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Communication: Kirkwood-Buff integrals in the thermodynamic limit
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(Received 2 September 2016; accepted 30 September 2016; published online 14 October 2016)

We present an accurate and efficient method to obtain Kirkwood-Buff (KB) integrals in the thermo-
dynamic limit from small-sized molecular dynamics simulations. By introducing finite size effects
into integral equations of statistical mechanics, we derive an analytical expression connecting the KB
integrals of the bulk system with the fluctuations of the number of molecules in the corresponding
closed system. We validate the method by calculating the activity coefficients of aqueous urea mix-
tures and the KB integrals of Lennard-Jones fluids. Moreover, our results demonstrate how to identify
simulation conditions under which computer simulations reach the thermodynamic limit. Published
by AIP Publishing. [http://dx.doi.org/10.1063/1.4964779]

One of the most significant achievements of statistical
mechanics is the connection between macroscopic thermo-
dynamic quantities and the microscopic components and
interactions of a physical system. This relation is routinely
employed in computer simulations, e.g., molecular dynamics
(MD), where structural, nanoscale features of a system can
be easily measured and related to macroscopic emergent
properties. However, this protocol is still a source of
major concern.1 In particular, the physical systems under
examination in experiments are open, that is, they exchange
energy and matter with the environment or, at least, are
composed by an Avogadro number of molecules. By contrast,
MD simulations are usually constrained to work under
canonical (microcanonical) conditions with fixed temperature
(energy), volume V0, and number of particles N0. Finite number
of particles and small volumes used to compute physical
observables thus introduce various kinds of finite size effects,
whose impact needs to be quantified if one aims at extracting
thermodynamic quantities from simulations.

In this study, we include finite size effects into statistical
mechanics integral equations, namely the Kirkwood-Buff2

equations, to derive accurate relations between thermody-
namic properties and structural quantities obtained from
nanoscale MD simulations. We use simple scaling arguments
to keep track of two effects originating from the finite size
of the simulated system: ensemble effects due to the fixed
number of particles and boundary effects due to the small
size of the subdomain used to compute physical observables.3

The derived analytical expression is used to obtain Kirkwood-
Buff (KB) integrals in the thermodynamic limit. We validate
this approach with a mixture of Lennard-Jones particles
and employ it to study the solvation thermodynamics of
prototypical urea/water liquid mixtures. In the latter case, we
compare the results with previous computational studies4 and
available experimental data.5–7

We focus our attention on the Kirkwood-Buff (KB)
theory,2 as it is arguably the most successful framework

a)corteshu@mpip-mainz.mpg.de

to investigate the properties of complex liquid mixtures.
KB theory relates the local structure of a system to density
fluctuations in the grand canonical ensemble, which are in turn
related to equilibrium thermodynamic quantities such as the
compressibility, the partial molar volumes, and the derivatives
of the chemical potentials.8 Despite the fact that KB theory
was formulated more than sixty years ago, it enjoys renewed
interest in computational soft-matter and statistical physics
communities. Recent works, in fact, have shown promising
applications related to solvation of biomolecules9 and potential
uses to compute multicomponent diffusion in liquids,10 and to
study complex phenomena such as self-assembly of proteins.11

For a multicomponent fluid of species i, j in equilibrium
at temperature T , the Kirkwood-Buff integral (KBI) is defined
as

Go
i j = V

( ⟨NiNj⟩ − ⟨Ni⟩⟨Nj⟩
⟨Ni⟩⟨Nj⟩ −

δi j

⟨Ni⟩
)

=
1
V


V


V

dr1dr2[go
i j(r12) − 1], (1)

with δi j the Kronecker delta. The superscript (o) indicates
that this definition holds for an open system, i.e., a system
described by the grand canonical ensemble. This means that
we compute fluctuations of the number of particles in a
subdomain of volume V embedded in a reservoir whose
size goes to infinity. Thus, ⟨Ni⟩ is the average number of
i-particles inside V , or ρi = ⟨Ni⟩/V . Moreover, go

i j(r12) is
the multicomponent radial distribution function (RDF) of the
infinite system, with r12 = r2 − r1.

To evaluate the integral on the right hand side (r.h.s.)
of Eq. (1), we assume that the fluid is homogeneous, and
we use translational invariance that implies the limit V → ∞.
Therefore, the transformation r2 → r = r2 − r1 gives G∞i j, the
KB integrals of the bulk system

G∞i j =
 ∞

0
dr(go

i j(r) − 1). (2)

Eq. (2) is strictly valid in the thermodynamic limit.
However, it is extensively used in computer simulations
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despite the fact that one is usually constrained to study
closed systems (c), i.e., systems described by the canonical
or microcanonical ensembles. More precisely, in computer
simulations one calculates the quantity

GR
i j =

 R

0
dr(gc

i j(r) − 1), (3)

where gc
i j(r) is the multicomponent RDF of the finite system

and R is a cutoff distance.
To justify the use of Eq. (3), it is always assumed that

go
i j(r) ≈ gc

i j(r), which implies that the volume of the simulation
box is large enough to locally reproduce the open system, or
grand canonical, thermodynamics. In addition, it is assumed
that R ≫ ζ , with ζ being the structural correlation length of
the liquid. This implies that gc

i j(r ≥ R) = 1, that is, structural
correlations between points separated by a distance R vanish
and the integral of Eq. (3) can be safely truncated.

We thus face two different finite sizes simultaneously at
play: the finite—and often too small—number of particles
that constitute the simulated system (ensemble); and the
extension of the subregion in which some physical observable
is computed (boundary effects), which is at risk of being
smaller than or too close to the system’s correlation length. It is
therefore only fair to expect that results obtained using Eq. (3)
might not be fully reliable. As a matter of fact, the minimal
errors introduced by using Eq. (3) yield dramatic explicit finite
size effects that become apparent when comparing standard
MD with semi-grand canonical simulations.12

Here, instead of using Eq. (3), we explicitly include both
finite size effects into an expression, analogous to Eq. (1),
defined for a finite system. Let us recall that in computer
simulations one considers systems with total fixed number of
particles N0 and volume V0 (see Fig. 1). Thus we define13

Gi j(V,V0) = V
( ⟨NiNj⟩′ − ⟨Ni⟩′⟨Nj⟩′

⟨Ni⟩′⟨Nj⟩′ −
δi j

⟨Ni⟩′
)

=
1
V


V


V

dr1dr2[gc
i j(r12) − 1], (4)

or, to rephrase it, we define a quantity Gi j(V,V0) that is
evaluated by computing fluctuations of the number of particles

FIG. 1. Simulation snapshot of a liquid mixture of urea and water indicating
the total volume of the simulation setup, V0, and one volume used to compute
the fluctuations of the number of molecules, V .

in finite subdomains of volume V inside a simulation box of
volume V0. The average number of i-particles ⟨Ni⟩′ ≡ ⟨Ni⟩V ,V0
depends on both subdomain and simulation box volumes, and
it is therefore conceptually different from the average used in
Eq. (1). Moreover, the integral on the r.h.s. of Eq. (4) should
be evaluated for the RDF of the finite system with volume V0
by using a finite integration domain V .

As a first step, we introduce a correction to ensemble
effects accounting for the fact that gc

i j(r) ≈ go
i j(r) holds only

in the thermodynamic limit. This implies that the asymptotic
behaviour of the tail of gc

i j(r) should be included to account
for small differences at large values of r . We propose to use an
expression for the multicomponent pair correlation functions
of the form

gc
i j(r) = go

i j(r) −
1
V0

(
δi j

ρi
+ G∞i j

)
, (5)

based on the asymptotic limit gc
i j(|r| ≫ ζ) = 1 − (δi j/ρi

+ G∞i j)/V0 discussed in Ref. 8. As expected, when the total
volume V0 → ∞we recover gc

i j(r) = go
i j(r). We include Eq. (5)

in the integral on the r.h.s. of Eq. (4) and obtain

Gi j(V,V0) = 1
V


V


V

dr1dr2[go
i j(r12) − 1]

− V
V0

(
δi j

ρi
+ G∞i j

)
. (6)

In Eq. (5) we neglect O(1/V0) contributions that include
derivatives of go

i j(r) with respect to ρi, as well as O(1/V 2
0 )

terms, because their contribution to ensemble size effects
becomes negligible upon integration.

Second, for the boundary effects, we correct for the finite
domain in which we compute the integral on the r.h.s of Eq. (6),
which indeed includes the RDF of the open system. However,
the volume V is finite and the transformation r2 → r = r2 − r1
cannot be applied directly since the system is no longer
translationally invariant. Alternatively, we take into account
the different integration domains defined by the volumes V
and V0,13 and write

IVV                                                        
V


V

dr1dr2[go
i j(r12) − 1]

=

IVV0                                                          
V


V0

dr1dr2[go
i j(r12) − 1]

−

V


V0−V

dr1dr2[go
i j(r12) − 1]

≈

V


V0

dr1dr2[go
i j(r12) − 1] − α′i jS, (7)

with S the surface area of the subdomain V and α′i j a
proportionality constant. The meaning of Eq. (7) can be
understood as follows. Both integrals, IVV and IVV0, are equal
to zero for r12 > ζ . Nevertheless, for values of r12 close to the
boundary of the subdomain V, i.e., r1 inside V and r2 outside
the subdomain with r12 < ζ , there are contributions to IVV0 that
are missing in IVV . Consequently, the difference IVV0 − IVV

must be proportional to the surface area of the subdomain V ,
so that


V


V0−V

dr1dr2[go
i j(r12) − 1] ∝ S.14 Replacing Eq. (7)
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in Eq. (6), we obtain

Gi j(V,V0) = 1
V


V


V0

dr1dr2[go
i j(r12) − 1]

− V
V0

(
δi j

ρi
+ G∞i j

)
+
αi j

V
1
3
, (8)

where for convenience we use S/V ∝ 1/V
1
3 . The constant αi j

depends only on intensive thermodynamic system properties
such as density and temperature.

To compute the integral on the r.h.s. of Eq. (8), we
assume that Vζ < V < V0 with Vζ = 4πζ3/3 and implicitly
neglect finite size effects due to oscillations of the RDF
beyond the volume V . Accordingly, we assume that periodic
boundary conditions are applied such that the system becomes
translationally invariant. We use the coordinate transformation
r2 → r = r2 − r1 to obtain an integral equal to the one in
Eq. (2), since for |r| > ζ , go

i j = 1. Finally, we rewrite Eq. (8)
as

Gi j(V,V0) = G∞i j

(
1 − V

V0

)
− V

V0

δi j

ρi
+
αi j

V
1
3
. (9)

It is worth noting that Eq. (9) gives both the correct
thermodynamic limit and asymptotic behaviour8 of Gi j(V,V0),
provided V > Vζ. The former is obtained in the limit
(V,V0) → ∞ that gives Gi j((V,V0) → ∞) = G∞i j. The latter
holds when V = V0, and gives Gi j(V = V0,V0) = −δi j/ρi.

The two finite size corrections discussed above can be
easily identified in Eq. (9): (i) the two V/V0 terms (ensemble
effects) appear from using an asymptotic correction to the
pair correlation functions, Eq. (5), which includes explicitly
the impact of the finite size of the simulation box V0. This
correction is similar to the one deduced from the Taylor
expansion in terms of N0 applied to the RDF of closed
single-component systems.3 (ii) The 1/V 1/3 term (boundary
effect) results from considering finite integration domains
explicitly. Using a different approach, namely arguments based
on the thermodynamics of small systems,15 a correction of this
form was proposed recently for single component systems16

and extended for multicomponent systems.17 However, the
results obtained using this method neglect the finite size of
the simulation box, because the underlying theory is only
valid for finite systems embedded in a reservoir of infinite
volume.16

Finally, we emphasise that Eq. (9) allows us to evaluate
G∞i j, the infinite system KBI, by computing Gi j(V,V0).
In practice, we perform a single NVT MD simulation
at fixed V0 and, for the production trajectory, compute
the fluctuations of the number of particles as a function
of the volume V of the subdomain. We recall that
extrapolations of thermodynamic properties from finite size
computer simulations have been applied in the past to study
single-component idealised systems. Examples include the
calculation of the compressibility of the Ising lattice gas18

and hard disk fluids,19 and the investigation of the gas-
liquid transition in two-dimensional Lennard-Jones fluids,20

as well as the calculation of the elastic constants of model
solids.21

We define λ ≡ (V/V0) 1
3 and rewrite Eq. (9) as

λGi j(λ) = λG∞i j
�
1 − λ3�

− λ4 δi j

ρi
+
αi j

V
1
3

0

. (10)

This expression depends on λ and the volume of the
simulation box V0. Since in MD simulations V0 is fixed, the
effect of the size of the simulation box on Eq. (10) reduces
to a global shift that leaves the general form of the equation
unchanged. This implies that results for different values of V0
superpose and it is possible to calculate G∞i j, and therefore the
open system RDF given the order of approximation implicit
in Eq. (5), even from relatively small MD simulations.

To validate Eq. (10), we first consider a binary mixture
(A,B) of Lennard-Jones (LJ) fluids. We use a purely
repulsive 6-12 LJ potential truncated and shifted with
cutoff radius 21/6σ. The potential parameters are chosen
as σ = σAA = σBB = σAB = 1, and ϵ AA = 1.2, ϵBB = 1.0
with ϵ AB = (ϵ AA + ϵBB)/2. All the results are expressed in
LJ units with mass m = 1, time σ(m/ϵBB)1/2, temperature
ϵBB/kBT , and pressure σ3/ϵBB. Simulations were carried
out using ESPResSo++22 with a time step of δt∗ = 10−3.
Constant temperature was enforced through a Langevin
thermostat with damping coefficient γ∗ = 1.0. Two system
sizes, N0 = 23 328 and 108 000, were considered in the range
of mole fractions of A-molecules CA = 0.1, . . . ,1.0. The
number density has been adjusted around ρ∗ = 0.864, thus
V0 ≈ (30σ)3 and (50σ)3, such that pressure remains nearly
constant at P∗ = 9.8. We performed equilibration runs of
64 · 106 MD steps (16 · 106 for N0 = 108 000 systems) and
production runs of 2 · 106 MD steps. To compute Gi j(λ), we
selected 800 frames per trajectory and for each frame identified
1000 randomly positioned subdomains with volumes ranging
from (2σ)3 < V < V0.

Fig. 2 shows results corresponding to CA = 0.3 (a) and
CA = 0.5 (b) mole fractions. In both cases a linear regime for
λ ≤ 0.3, indicated by vertical lines, appears. In this interval
we fit a line with slope G∞i j and intersection αi j. By replacing
these values in Eq. (10) we obtain curves that superpose

FIG. 2. Simulation results for a binaryCA= 0.3 (a) andCA= 0.5 (b) LJ fluid
at T ∗= 1.2 and constant pressure P∗= 9.8. GAA(λ) (red circles), GBB(λ)
(blue squares), and GAB(λ) (green triangles). There is a linear regime for
λ ≤ 0.3, indicated by vertical lines, where the slope of the line is equal to
G∞i j. Black lines were obtained by fitting Eq. (10) to the data in this linear
regime, however the superposition is evident for the whole interval 0 < λ < 1.
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remarkably well on the simulation data over the entire
range.

In this linear regime, λ3 ≈ 0 thus Gi j(V,V0) ≈ G∞i j,
provided V > Vζ. This suggests that the region defined by
λ ≤ 0.3 corresponds to the regime where the canonical and
grand canonical ensembles coincide, i.e., the thermodynamic
limit. Moreover, this also implies gc

i j(r) ≈ go
i j(r). In practical

terms, if we seek an accurate value of KBIs using the
standard expression (3) for GR

i j, i.e., obtaining gc
i j(r) from

simulations and integrating up to a cutoff R, for a LJ system
with correlation length ζ = 10σ, we would need to run a
simulation with, at least, V0 = (50σ)3. In other words, the
volume of the subdomain V > Vζ should be at most 3% of the
volume V0 in order to get GR

i j ≈ G∞i j.
12

To test this argument, we compare the results obtained
using Eq. (10) with the quantity GR

i j obtained from Eq. (3).
Fig. 3 shows GR

AB obtained with V0 = 50σ (red line) and
V0 = 30σ (blue line). The horizontal line indicates the value
of G∞AA obtained from Eq. (10) and Fig. 2. Clearly, upon
increasing the size of the simulation box, GR

AA converges to
the G∞AA calculated with our method.

Finally, we use Eq. (10) to study the solvation
thermodynamics of urea/water mixtures. In a system with
cosolvent U (urea) and solvent W (water) we have, at pressure
P, temperature T , and density ρU, the derivative of urea
activity coefficient defined as

γUU = 1 +
(
∂ ln γU
∂ ln ρU

)
P,T

=
1

1 + ρU(GUU − GUW) , (11)

with γU and kBT ln γU the urea activity coefficient and
chemical potential, respectively.8

Urea/water mixtures were simulated23 in GROMACS,24

using the Kirkwood-Buff derived force field6 and SPC/E
water.25 Four urea molar concentrations were considered (2.0,
3.99, 6.00, and 8.02 M). NPT simulations were performed with
pressure and temperature enforced with Berendsen barostat
(0.5 ps coupling) and thermostat (0.1 ps coupling) to ensure 1
atm pressure and 300 K temperature, respectively.

We compute γUU and report the results in Fig. 4. We
compare our data with two experiments, Exp. 15,6 (solid

FIG. 3. GR
AB for LJ mixtures with CA= 0.3. Data points correspond to

results obtained using Eq. (3) for two box sizes: V0= (30σ)3 (blue line) and
V0= (50σ)3 (red line). The horizontal line indicates the value obtained using
the extrapolation proposed in Eq. (10) with V0= (30σ)3.

FIG. 4. γUU for different urea molar concentrations CU. Data from two
experiments, namely Exp. 15,6 and Exp. 2,7 and simulations4 are compared
to results obtained with the method outlined in the text.

line) and Exp. 27 (dashed line), and with simulation results
using Eq. (3).4 The latter simulation results (blue squares)
tend to follow the behaviour observed in Exp. 1. This is not
surprising since the force field6 used in the simulations was
parameterised to reproduce the activity coefficients reported
in Exp. 1. Nevertheless, by using our method with the same
simulation sizes and trajectories of Ref. 4, we obtain results
in decidedly better agreement with Exp. 1. This suggests
that our method is more accurate than using Eq. (3) and
can be profitably employed to investigate complex molecular
fluids.

In conclusion, by explicitly including ensemble and
boundary finite size effects into integral equations of
statistical mechanics, we presented here a method to extract
thermodynamic properties of a physical system from small-
sized atomistic simulations. In particular, the combination
of small-sized simulation setups and the analytical relation
established here allows us to determine quantitatively the
activity coefficients of aqueous urea mixtures. We also
identified the thermodynamic limit for MD simulations based
on the ratio between the volume of the domain in which
a physical observable is computed and the volume of the
simulation box. Finally, we envisage a beneficial usage of
this method to study solvation properties of other complex
mixtures of biological interest and to characterise the phase
diagram of molecular fluids.
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for urea water mixtures. We thank Roberto Menichetti, Aoife
Fogarty, and Cristina Greco for a critical reading of the
manuscript. R.C.H. gratefully acknowledges the Alexander
von Humboldt Foundation for financial support.
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