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Abstract. A three-dimensional interpretation of the Borden Site experiment is proposed 
with the aid of a recently developed stochastic model that incorporates transiency of the 
piezometric head gradient. The behavior of the second-order central transverse plume 
moments is analyzed with the aim of explaining the underprediction of experimental 
results by existing steady state models. The model assumes uniformity in space, but time 
varying mean head gradient, stationary and anisotropic log conductivity, and a first-order 
approximation in the log conductivity variance. The solution for the trajectory covariances, 
assumed to be equal to the plume spatial second moments under ergodic conditions, is 
evaluated with the aid of a few quadratures. An analysis of the parameters and plume 
spatial moments found in the literature precedes application of the model. It is found that 
unsteadiness leads to an increase in the transverse, horizontal, second moment compared 
with the one based on a steady state flow model. Still, application of Borden Site data 
leads to values lower than the ones inferred from concentration measurements. We 
conclude that unsteadiness of the mean head gradient does not fully explain the 
magnitude of observed transverse spreading. However, the impact of transients on 
spreading is significant in the transverse direction, and the definition of a Fickian 
transverse dispersion coefficient may not be a simple task for transport occurring under 
natural flow conditions. 

1. Background 

The Borden Site field test [Sudicky, 1986; Freyberg, 1986; 
Mackay et al., 1986] is one of the first large-scale transport 
experiments in which measurements of solute concentration 
and aquifer properties were carried out in a detailed manner. 
One of the main aims of this experiment was to validate exist- 
ing theories that relate the solute spreading pattern to spatial 
variability of medium properties (mainly the hydraulic conduc- 
tivity K). Limiting the discussion to conservative solutes, the 
procedure was (1) to derive the first and second spatial mo- 
ments of the solute plume as functions of time by using the 
measured solute concentrations; (2) to determine indepen- 
dently the statistical parameters of Y - In K, regarded as a 
normal random space function; (3) to derive the head gradient 
from head measurements; and (4) to compare the theoretical 
spatial moments which are based on the above with the ones 
inferred from measurements. 

In the first attempts along these lines [Freyberg, 1986; Su- 
dicky, 1986], the concentration values employed in calculations 
were related to the discrete spatial measurements by an inter- 
polation scheme (see section 3). The parameters characteriz- 
ing Y, namely, the geometric mean KG, the variance o-2r, and 
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the horizontal and vertical integral scales Iyh and Iyv, were in 
turn determined by fitting an exponential covariance function 
Cy to the data (see Table 1). The theoretical values of the 
spatial moments of the plume were evaluated by using the 
first-order Lagrangian approximation for particle trajectories 
IDagan, 1982; Dagan, 1984] for steady two-dimensional flow 
and transport, after multiplying the variance o-2r by afactor Of 
0.74, based on the conjecture that thin horizontal layers of 10w 
hydraulic conductivity were preventing vertical flow and the 
assumed mean distance between layers was Irv. Th• conjec - 
ture was supported indirectly by the observed very small ver- 
tical spread of the plume and by the good agreement between 
inferred and computed horizontal second spatial moments, S • • 
(in the direction of the mean flow) and 822 (transverse). in 
particular, the asymptotic logarithmic growth of the theoretical 
X22 with travel time, as compared with its tendency to a con- 
stant value for the three-dimensional (3-D) solution, led to 
good agreement with measurements. 

Subsequent attempts have been made to improve the iden- 
tification of hydraulic pi'operties, the spatial moments compu- 
tation from concentration measurement, and the theoretical 
tools. Recently, the statistical parameters of Y, as well as their 
estimation variances, were derived by Woodbury and Sudicky 
[1991] based on the two vertical transects AA' and BB' along 
which K was measured (see Table 1). These estimates were 
found to differ from the initial aforementioned estimates. Sim- 

ilarly, improved estimates and errors of estimation for the 
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Table 1. Log Conductivity Parameters 

Parameter A-A' s.d. B-B' s.d. SUD 

6-}- 0.244 0.008 0.366 0.019 0.38 
0-02 0.072 0.021 0.111 0.16 0.10 
Iyh , m 5.14 1.17 8.33 1.68 2.8 
Iyv, m 0.209 0.050 0.336 0.075 0.12 

Here 6-} is the total log conductivity variance, 0-02 is the variance 
related to the "nugget" effect, and Iyh and Iyv are the horizontal and 
vertical integral scales, respectively. SUD refers to values obtained by 
Sudicky [1986], and s.d. is the standard deviation. Woodbury and Su- 
dicky [1991] estimated Kc and n at 7.17 cm/s and 0.33, respectively. 
After Woodbury and Sudicky [1991]. 

plume spatial moments were provided by Barry and Sposito 
[1990], Rajaram and Gelhar [1991], and Thierrin and Kitanidis 
[1994] (for details, see section 3). For S• these estimates were 
quite similar, but significant scatter was observed for the trans- 
verse 822 (see Figure 6). Finally, since there was no direct 
evidence to support the conjecture of two-dimensional (2-D) 
transport, theoretical 3-D solutions of flow and transport for 
anisotropic Cy [e.g., Dagan, 1988] were also tested [Woodbury 
and Sudicky, 1991]. The picture that emerged from these ef- 
forts with regard to longitudinal spreading was that the theo- 
retical X• overestimates the inferred S• by as much as a 
factor of 2, due to the increase in the new estimate of Iyh 
(Table 1). This effect was recently [Burr et al., 1994; Dagan, 
1995; Fiori, 1996] attributed to the influence of transverse 
pore-scale dispersion in the vertical direction, which was ne- 
glected previously. Examination of Figures 1 and 2 of Fiori 
[1996] shows that for an anisotropy ratio f = Iyv/l•h = 0.05, 
which is close to ihe one prevailing at the Borden Site (Table 
1), the longitudinal second moment X• • is reduced by a factor 
of 0.6 compared with purely advective transport for Pe = 
Ivy/ear • 250, where ear is the transverse pore-scale dis- 
persivity. With I•v • 0.21 m, the inferred value is ear • 0.8 
mm. Unfortunately, the transverse pore-scale dispersivity is 
not known from measurements and this hypothesis could not 
be tested independently, but the above value of ear is plausi- 
ble. In view of these findings and of the errors of estimation of 
parameters, the agreement between theory and experiment 
can be viewed as acceptable. The situation is different with 
respect to the horizontal transverse moment S22 inferred from 
concentration measurements (Figure 6), which was found to 
grow with time and to be much larger than the theoreticalX22 , 
derived with the aid of 3-D models. The large discrepancy 
between measurements and theory has been attributed re- 
cently [Sudicky, 1986; Rehfeldt and Gelhat, 1992; Naff et al., 
1988, 1989; Farrell et al., 1994] to the time variations of the 
head gradient, resulting in transverse motion of the plume that 
was neglected previously. In the original Borden Site experi- 
ment (BS1), carried out in the years 1982-1985, the monitoring 
of heads was not detailed enough for assessing the time vari- 
ations. Heads were measured on a time continuous basis later 

on at the same site during the period 1989-1991 (BS2), with- 
out carrying out a transport experiment. In a recent article 
[Farrell et al., 1994] the BS2 time record has been used in order 
to predict the spatial moments of a plume similar to that of 
BS1 by a few methods, leading to different results. In particu- 
lar, enhanced transverse spreading close to the measured one 
in BS1 was obtained by applying the method of Rehfeldt and 
Gelhar [1992]. 

In a recent study by Dagan et al. [1995] (hereinafter referred 

to as DBR), the impact of unsteadiness on the head gradient 
on transport was investigated using a Lagrangian framework 
and under assumptions that differed radically from those of 
previous works. We also found that for 2-D and 3-D forma- 
tions of isotropic heterogeneity, the unsteady component has a 
large impact upon the X22. The aim of the present article is to 
apply DBR to the Borden Site experiments in order to assess 
the influence of time variations upon plume transverse spatial 
moment. 

The plan of the article is as follows: In the next section we 
describe briefly, for the sake of completeness, the DBR model; 
subsequently, we discuss the field data we used, and finally, we 
derive the spatial moments under the conditions prevailing at 
BS1, but with time variations compatible with both BS1 and 
BS2. 

2. The DBR Model 

For the sake of completeness we recapitulate the assump- 
tions and the relationships pertinent to the DBR model. 

1. The log conductivity Y(x) = In K(x) is modeled as a 
stationary random space function of mean (Y} and anisotropic 
exponential covariance function 

Cv(r) = o'2v exp [- x/(r•/I•) 2 + (r2/I2) 2 + (r3/I3) 2] 

+ rro2[ 1 - Hv(r) ] (1) 

where ri, i = 1, .-., 3 are the components of the two points 
lag distance, r = X/r• 2 + r22 + r•, and I•, 12, 13 are the 
integral scales along the three principal direction of the log 
conductivity covariance tensor. Here %2 is the variance related 
to the "nugget" effect, and Hv(r ) is the Heaviside step func- 
tion. 

2. The piezometric head H comprises the mean (H} - 
-J(t) ß x and the fluctuation h(x, t) such that H(x, t) = 
-J(t) ß x + h(x, t). The instantaneous mean head gradient is 
then constant over the entire aquifer domain. This is accurate 
for cases in which flow unsteadiness is driven by seasonal 
changes in the mean head gradient. In that case the scale 
characterizing the variation of V(H} is much larger than the 
plume size. This assumptions was adopted in other models 
[Naff et al., 1988, 1989; Rehfeldt and Gelhar, 1992] as well. 

3. The flow and Darcy equations are solved by adopting a 
first-order approximation in rr}. The resulting mean velocity is 
given by [Dagan, 1982] 

KG 
U(t) = •- J(t), (2) 

where Ka - exp [(Y)] is the conductivity geometric mean and 
n is the formation porosity. 

Under assumptions (1) and (2) the velocity covariance func- 
tion is obtained in the following form [Dagan et al., 1995]: 

u,j(x, y, t, t') = U,(t)U•(t')v½,•(r) (r = x - y) (3) 

where U,(t), a = 1,..., rn is the ath component of the 
mean velocity field, m is the space dimensionality, and vii,,• is 
the velocity tensor defined as the covariance between the ve- 
locity fluctuations u/(x) and ui(y), associated with a mean flow 
of velocity U. The derivation of v•,,• is given in the appendix. 
The unsteadiness of the flow manifests itself through the time 
dependence of the mean velocity field. In the particular case of 
steady flow in the x• direction, i.e., U, = UiS•,, explicit 
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expressions of the velocity covariance tensor, Uo, have been 
obtained by Rubin [1990] for a two-dimensional flow and iso- 
tropic exponential Cv, by Rubin and Dagan [1992] for a three- 
dimensional flow and an anisotropic exponential Cy, and by 
Russo [1995] for a three-dimensional partially saturated flow 
and anisotropic exponential Cy. Owing to symmetries present 
in equation (A1), explicit expressions of vo,,• can be obtained 
in terms of U o (see the appendix). Note that in order to 
distinguish between unsteady and steady state velocity covari- 
ance functions, we denote the last by capital letters, i.e., U o is 
the steady state velocity covariance tensor while u o is the 
tensor for the unsteady case. 

Assuming ergodicity of the plume, i.e., that the plume is very 
large in the direction orthogonal to the long-term average 
mean flow direction [Dagan, 1991], the first-order expression 
for the trajectory of the plume centroid is given by [Dagan, 
1984] 

i0 (Xj(t)) = Uj(z) dz =- S•(z) dz (4) 

where J•, j = 1, .--, rn are the components of the mean head 
gradient. 

The spatial moments of the solute plume were obtained by 
the Lagrangian approach similar to that employed by Dagan 
[1984]: 

Xo(t ) = (X•(t)Xj(t)) = uij[X(t'), X(t"), t', t"] dt' dt" 

(5) 

After replacing X in (5) by its expected value (X), which is 
consistent with the order O(o-•.) of the sought solution, we 
obtain the following expression for X o [Dagan et al., 1995]: 

Xij(t ) = U•(t'iUt3(t")vij,•3[(X(t')) - (X(t"))] dt' dt" 

(6) 

Equation (6) encapsulates the effects of mean velocities not 
aligned with the long-term mean flow direction. For steady 
state, U, is nonzero only for a = 1, and (6) reduces to the 
expression obtained previously by Dagan [1984]. 

Since this paper focuses on the application of the method to 
Borden, we specialize here the DBR model to ahsymmetric 
formations, i.e., I• = 12 = Iyh; 13 = Iy•. The mean veloci• 
field is assumed to oscillate in the horizontal plane with the 
vertical component U3 = 0. The longitudinal direction is 
defined by the long-term time average of the mean veloci•: 

_ 1 fot" Ko •ot" U = • U(t) dt = nt,• J(t) dt (7) 

where we assume that the duration t" is sufficiently large for U 
to represent a meaningful time average. 

DBR concentrated on the spatial moments in isotropic for- 
mations (f = 1), with seasonal fluctuations characterized by a 
single harmonic variation of U around the long-term mean as 
follows: 

U•=U; U2= cos X• ; U3=0. (8) 

The resulting trajectory of the plume centroid is 

(X•(t)) = i/t; (X2(t)) = /3Irh sin X-•--• ; (X3) = 0 (9) 

The unsteadiness in this case is fully characterized by the 
parameters /3, the dimensionless amplitude of the mean 
trajectory, and X = T[I/(2rrlvh), where T is the period, 
respectively. The above study concluded that X and/3 have a 
large impact on transverse and only a minor one on the lon- 
gitudinal spread. The transverse dispersion coefficient D22 = 
(1/2)dX22/dt and the associated macrodispersivity A 22 = 
D22/U increase with time for/3 > 0, reaching a constant non- 
zero Fickian limit at large time. 

The essence of the DBR model is in the interaction between 

heterogeneity and unsteadiness. The asymptotic growth of the 
transverse spatial moment X22 results from a simple physical 
mechanism: As the plume moves laterally it spreads in that 
direction at a rate determined by the steady longitudinal ma- 
crodispersion, which is much larger than the transverse one. A 
similar effect was investigated by Goode and Konikow [1990] 
for the interaction between unsteadiness of the mean flow and 

pore-scale dispersion. At any rate, the rate of spreading is 
proportional to the log conductivity variance o-•., and it also 
grows with the amplitude/3. 

This mechanism is different in principle from the one 
adopted by Rehfeldt and Gelhat [1992]. In their model the 
effects of unsteadiness and heterogeneity are additive, and the 
enhanced transverse spreading occurs in a homogeneous for- 
mation (o-}. = 0) as well. This happens because they regard 
the unsteady motion as random, and their method assumes 
implicitly that concentration measurements are obtained by 
averaging over time. In our analysis of their method [see Dagan 
et al., 1995], we have emphasized that in field experiments such 
as at Borden, the major time variations have a seasonal nature 
and are characterized by a large timescale, while plume con- 
centrations were measured over a short time, providing "in- 
stantaneous" snapshots. Under these conditions, unsteadiness 
in a homogeneous medium (with neglect of pore-scale disper- 
sion) manifests itself in a translational motion of the plume 
with no spreading. Furthermore, the head gradient time vari- 
ations were measured in detail, and they can be regarded as 
deterministic. Indeed, when the deterministic approach of Naff 
et ai. [1988; 1989] was used by Farell et al. [1994], the resulting 
transverse spread was extremely small. For these reasons we 
concentrate subsequently on applying the DBR model solely. 

3. Discussion of Field Measurements at 

Borden Site and Summary of Data 
The application of the DBR model and comparison with 

field experiments requires identifying the following data: for- 
mation properties (K•, n, o'•, Ivh, I•), measured first and 
second spatial moments of the plume, R(t) and So(t), and 
unsteady mean gradient J(t) record. Herein is a brief discus- 
sion of the identification of these parameters. 

Formation Properties 

The Borden Site tracer experiments have been preceded by 
a sampling program in which a large number of hydraulic 
conductivity data were collected. The measurements were 
based on core extraction along two transects: The first, includ- 
ing 20 cores, roughly parallels the plume's trajectory (section 
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Figure 1. Dimensionless mean velocity as function of time, 
based on Figure 7a of Farrell et al. [1994]: (a) longitudinal 
component and (b) transverse component. 

A-A'), and the second, including 13 cores, is normal to the 
previous one (section B-B'). Hydraulic conductivities were 
measured in the laboratory using subsamples 0.05 m long taken 
from the cores and packed in the permeameter. 

The first statistical analysis of the database was presented by 
Sudicky [1986], who concluded that the hydraulic conductivity 
is lognormally distributed. Recently, Woodbury and Sudicky 
[1991] revisited the original analysis, and the revised parameter 
estimate are given in Table 1. Woodbury and Sudicky adopted 
an exponential covariance model of the type given by (1) for 
the log conductivity with 11 = 12 = Iyh and 13 = Ir•, << Iyh, 
with the parameter values corresponding to cross section A-A', 
which we adopt here as well. We note from Table 1 that the 
integral scales are characterized by large standard deviations. 

The influence of this estimation uncertainty on transport mod- 
eling will be considered subsequently. 

Spatial Moments Analysis 

The common approach to computing the spatial moments, 
starting from irregular sampling of concentration, is to inter- 
polate the measured data onto a regular grid followed by 
numerical quadrature [Aris, 1956]. The first analysis of BS1 
data was performed by Freyberg [1986] using trapezoidal inte- 
gration of solute concentrations measured along vertical bore- 
holes, followed by projection of the values onto a regular 
horizontal grid and a numerical two-dimensional fourth-order 
quadrature scheme. Rajaram and Gelhar [1988] noted that the 
second-order moments computed by Freyberg are biased, as a 
result of incomplete plume sampling. In an attempt to remove 
this effect, some interpolation models have been proposed by 
several authors [Barry and Sposito, 1990; Rajaram and Gelhat, 
1991; Thierrin and Kitanidis, 1994]. All authors agree that in- 
complete plume sampling and smoothing due to interpolation 
have a negligible impact on the second longitudinal plume 
moment S 11, but on the other hand, they have an appreciable 
impact on the transversal second moment S22. The spatial 
moments of the Borden Site plume are close to the ergodic 
behavior due to the large number of vertical integral scales 
encompassed by the plume. This is also reflected by the uni- 
form longitudinal motion of the centroid (see Figure 2a). 
Hence the DBR model is a suitable tool for representing the 
behavior of the Borden plume. In other situations, where the 
plume size is such that nonergodic behaviors are plausible, the 
analysis will have to be extended to incorporate such effects. 

Mean Head Gradient 

Freyberg [1986] pointed out that during the tracer gradient 
experiment, the mean head gradient experienced wide fluctu- 
ations. Unfortunately, the head gradients were not recorded 
regularly in BS1. In view of the data needs of our model, we 
present here two different ways for estimating the mean head 
gradient. The first method (I) consists of borrowing the head 
gradient data computed by Farrell et al. [1994] based on mea- 
surements collected during BS2. In this analysis the mean 
velocity field was taken parallel to the long-term mean head 
gradient. In agreement with previous observations [Freyberg, 
1986], the horizontal mean velocity field is assumed aligned 
with the horizontal trajectory of the plume center of mass. This 
suggests that the horizontal anisotropy of the hydraulic con- 
ductivity is negligible with respect to the vertical anisotropy. 
The components of the mean velocity field obtained using the 
recorded head gradient time series are shown in Figures l a and 
lb. In agreement with experimental findings [Freyberg, 1986; 
Barry and Sposito, 1990; Rajaram and Gelhat, 1991], we assume 
U3 = 0. Substituting the head gradient time series in (4) and 
performing a numerical quadrature, we obtain the trajectory of 
the plume center of mass shown by a solid line in Figure 2. It 
is seen from Figure 2b that the BS2 head gradient series does 
not lead to an accurate reproduction of the trajectory of the 
plume's centroid during the second and third years of BS1 
survey of R2(t ). This is probably caused by different climatic 
conditions during the two experiments. 

The second method (II) consists of using the mean trajectory 
given by regression of (9) on the trajectory of the plume's 
centroid as computed by Freyberg [1986], which is shown in 
Figure 2. Using this method, we retain only the principal sea- 
sonal oscillation of the mean head gradient, while short-period 
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oscillations are filtered out. The regression curve is shown in 1.2 
Figures 2a and 2b. The parameters found through this regres- 
sion are/3 = 0.23 and X = 1.25. On the basis of Iyh '- 5.14 m 
and U = 0.09 m/day, these parameters lead to oscillation ampli- 1.0 - 
tude and period equal to 1.2 m and 71.66 days, respectively. 

0.8- 

4. Application to Anisotropic Formations: • 
The Borden Site Case • 

• 0.6- 
General •,• 

In order to apply the DBR approach to Borden, anisotropy • 
of the log conductivity covariance must be considered. This 0.4- 
section expands the previous DBR model to anisotropic for- 
mations. The modification requires using the steady state ve- 
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Figure 2. Horizontal components of the plume centroid co- 
ordinates versus time based on concentration measurements 

(symbols) as well as of models I (continuous lines) and II 
(dashed lines) for (a) horizontal longitudinal component and 
(b) horizontal transverse component. 
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(b) 
Figure 3. X22 as a function of time (equation (6)) for a 
harmonic variation of the mean head gradient and for different 
degrees of anisotropy f: (a) • = 0.2 and (b) • = 0.3. In all 
cases, X = I. 

locity covariances, which are reported by Dagan et al. [1995] 
and Rubin and Dagan [1992]. 

Figures 3a and 3b show X22 as a function of time for the 
single harmonic mean velocity field given by (8), for/3 = 0.2 
and/3 = 0.3. In both cases, X = 1, while f = Iyv/Iyh varies 
between f = 0.04, the value reported for Borden [Woodbury 
and Sudicky, 1991], and f = 1, the isotropic case. Similar to 
steady state, X22 increases with f, and the amplitude/3 has a 
large impact on X22. Transverse dispersivity reaches a Fickian 
asymptotic limit which depends on both f and /3. Figure 4 
shows the asymptotic Fickian limit for transverse dispersivity. 
It can be seen that besides small fluctuations, probably due to 
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Figure 4. Fickian asymptotic limit for the transverse coeffi- 
cient of dispersion D22 as a function of f for different mean 
velocity oscillation amplitude. 

small numerical errors, the transverse asymptotic plume dis- 
persivity is independent off and it increases rapidly with/3, i.e., 
flow unsteadiness has a major impact on asymptotic transverse 
macrodispersivity, while the formation anisotropy plays a sig- 
nificant role only during the preasymptotic regime. An analysis 
of X22 (see equation (6) and the appendix) reveals that for/3 
- 0.3 and f = 0.04, the major contribution is coming from 
U11(r1, r2, r3) = U11(r2, rl, r3) , i.e., the spreading mech- 
anism which in steady state contributes only to Xll (see Fig- 
ures 5a and 5b). The contribution from U•2 is negligible, while 
that from U22 (the steady state lateral mixing mechanism) is 
close to the one existing in steady state, which is negligible. 

As f increases, the contribution from U22 increases while 
that from U• 1 decreases. For f - 1 the contribution from U22 
is larger than that from U• 1 at earlier times, while the opposite 
happens at large times. This is in agreement with the fact that 
as f increases, U22 increases near the origin and decreases at 
large lags, while the opposite is true for U* [see Rubin and 11 

Dagan, 1992, Figures 3 and 4]. Although contributions from 
U u, i, j - 1, 2 change with f, the Fickian asymptotic limit of 
the transverse dispersion coefficient D22 is quite constant in- 
side the range 0 < f -< 1 (Figure 4). 

The Borden Site Case: Discussion and Results 

The previous results assume a single harmonic head gradient 
oscillation. Such a situation is seldom observed in nature, 
where short-period oscillations are superimposed on seasonal 
variations that in turn may change through the years. A nec- 
essary condition for reaching a Fickian limit characterized by a 
constant macrodispersivity is for the periodicities to be station- 
ary. In natural conditions, successive years may show different 
behavior of the gradient oscillations, which prevents transport 
from converging to well-defined Fickian limits. The dispersivity 
can change through the years, depending on head gradient 
oscillations, and hence the computation of asymptotic disper- 
sivities based on few years of survey may be difficult and in 
some cases intractable. This is illustrated by Figures 6a and 6b, 
which display X22(t) for the actual record of J based on 

method I, for method II, as well as the inferred experimental 
S22 values reported by different authors. It is seen that for 
method I, a quick increase of the transverse dispersivity occurs 
at t = 230 days, which is followed by smaller transverse 
dispersivity induced by smoother gradient oscillations (see Fig- 
ure 6a). 

Since the impact of transients on macrodispersion depends 
on the oscillations of the trajectory of the plume centroid, and 
also in order to assess the impact of the different conditions 
during the BS1 and BS2 tests, we applied the DBR model using 
both models I and II. 

The estimates of formation parameters we employed in our 
model are those suggested by Woodbury and Sudicky [1991] 
(see Table 1). Note from (A1) that the nugget effect does not 
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Figure 5. X22 versus time for (a)f = 0.04 and (b)f = 1. 
Contributions from Uu, i, j - 1, 2 are shown. 
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contribute to spreading, hence the value for tr}. is obtained by 
subtracting the "nugget" o'• from the total variance b2• (Table 1). 

Model parameters are affected by measurement errors, 
which add uncertainty to the computation of plume moments. 
Woodbury and Sudicky [1991] computed the mean and stan- 
dard deviation of the formation parameters Iyh , Iyv , and tr}. 
(Table 1). The range of variations of Iyh and Iyv within their 
95% intervals of confidence suggest that f can actually vary 
between 0.014 and 0.11, which, according to Figure 3, has a 
negligible impact on X22. Hence we shall adopt for f its ex- 

Table 2. Expected Values (E) and Standard Deviation 
(s.d.) of the Model Parameters Used for the Simulations 

Parameter Value 

E[f] 0.04 
E[Iyh], m 5.14 
s.d. [Iyh], m 1.17 
E[tr2r] 0.172 
s.d. [tr2r] 0.0225 
E[n_] 0.33 
E[U], m/day 0.09 
s.d. [U], m/day 0.009 
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Figure •. E[X•] and its 95% inte•al of confidence as func- 
tion of time for (a) model I and (b) model II. In all cases, B 
denotes steady state flow (f = 0.04, I•a = 5.14 m); C, 
bromide [Fr•berg, 1986]; D, chloride [Fr•berg, 1986]; E, bro- 
mide with 95% inte•al of confidence [Ba• and Sposito, 1990]; 
F, bromide [Rajaram and •elhar, 1991]; and •, bromide 
[Thie•n and Kitanidis, 1994]. 

pected value E[f] = 0.04 (see Table 2). Another source of 
uncertainty is the long-term time average of the mean velocity 
that can be estimated directly from the recorded trajectory of 

_ 

the plume centroid. Substituting in (7) the value of J computed 
by Farrell et al. [1994] and the expected values of K a and n 
computed by Sudicky [1986] and Woodbury and Sudicky [1991], 
which are shown in Table 2, we obtain •/ = 0.09043 m/day. 
Since this value compares favorably with the value of 0.09 
m/day computed by several authors [Freyberg, 1986; Barry and 
Sposito, 1990; Rajaram and Gelhat, 1991] from moments anal- 

_ _ 

ysis, we adopt it as the estimate of U. As for the variance of U, 
we have used the values of the standard deviations of R • (t), 
the centroid trajectory in the mean flow direction, as given by 
Barry and Sposito [1990]. A simplified analysis of their data 
leads to an average standard deviation value SD(•/) = 0.09, 
which is also given in Table 2. To assess the impact of param- 
eter estimation errors upon prediction ofX o by the theoretical 
model, we have recast (6) in the following way: 

rrrlyh Xo(t ) = 2 2 X•j(t') (10) 

where X•i is the dimensionless second-order centered plume 
moment and t' = t O/Iyh is the dimensionless time. The ex- 
pected values of the plume moments are computed by 

tryIvhXo(t )p(Ivh, O, tr2y) dlvh dO dtr} 

where p is the joint probability distribution function of the 
parameter estimates. For sake of illustration we shall assume 
the parameters to be statistically independent and normally 
distributed such that p is given by the product of the marginals 
p(Irh, O, tr}.) = Pirh(Irh)PO(O)ptr}.(cr}.). Since Xij de- 
pends linearly on tr}., equation (11) reduces to 

E[Xij(t)]=E[tr•,]ffI•hXlj(t')Plyh(Iyh)Pb(•J)dI•d•] 
and the variance of X o is given by 

Var [Xij] = {Var [ tr}] + [E(tr}) ]2} 

' IvhXij (t)P•(Ivh)PO(O) dlvh dO - E[X0] 2 (13) 

where Var [t r}.] is the estimation variance of try.. Owing to the 
nonlinear dependence of X•i on U and Iyh , equations (12) and 
(13) were computed by numerical quadrature. Computation of 
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E [Xij] and their 95% interval of confidence is performed with 
models I and II. 

Figure 6a shows E[X22 ] and its interval of confidence for 
model I, while those corresponding to model II are given in 
Figure 6b. The jump in X22 at t • 230 days results from the 
quick rotation of the mean head gradient toward the direction 
x2. At t > 250 days, X22 grows at a lower rate due to the 
gradient rotation back toward the direction x• and hence the 
elimination of the enhanced lateral growth mechanism. At t > 
250 days the trajectory of the plume centroid shows small 
deviations from the x • direction and X22 resumes its previous 
growth rate. 

It is seen that accounting for the transient behavior of the 
head gradient leads to X22 values much larger than those 
based on the steady state model. Nevertheless, despite the 
large scatter of S22 estimates, it is seen that the theoretical 
transient model still underpredicts S22 at large travel times. 

5. Summary and Conclusions 
The conclusions of this paper are as follows: 
1. We provided a methodology to assess the impact of flow 

unsteadiness on transport of solute in heterogeneous porous 
formations based on head gradient fluctuations in time. The 
method provides the preasymptotic behavior of transverse ma- 
crodispersivity, which is particularly important for transport 
under natural conditions. 

2. We applied the method to the 1982-1985 Borden Site 
tracer experiment (BS1) using a three-dimensional anisotropic 
log conductivity field. 

3. Flow unsteadiness of the type analyzed here has a minor 
impact on the longitudinal plume second-order moment. Dif- 
ferences less than 5% between theoretical steady state and 
unsteady solutions were found for times larger than 100 days. 
Consequently, we concentrated on the transverse spreading in 
the horizontal plane solely. 

4. The impact of fl0w unsteadiness on transverse mixing is 
more significant, and it depends on formation anisotropy and 
on the magnitude and period of the head gradient oscillations. 

5. For the Borden Site the estimates of S22 by various 
authors display a large scatter. Nevertheless, the theoretical 
X22 underpredicts the experimental data. Thus we feel that the 
large transverse spreading in this field experiment could not be 
completely explained by the observed unsteadiness of the head 
gradient. 

6. Since the transverse spreading is sensitive to variations 
in phase and amplitude of the head gradient oscillation, it is 
recommended to record accurately the head gradient time 
series in future field experiments. 

6. Appendix 
The velocity tensor employed in (3) is given by 

02p 02p 04Q 
v,j,at•(r) = 8iaSj•Cv(r) + 8j• OriOr• + •ia OFjOFl 3 OriOr•OrjOr• 

(A1) 

where 8 is the Kronecker function and P and Q are two 
functions satisfying the folldwing differential equations [Dagan, 
1989; Rubin, 1990]: V2P = -Cy; P(0) = 0; and V2Q = P; 
Q(0) = 0. 

The horizontal components of the tensor u ij (equation (3)) 

assumes for the three dimensional anisotropic case the follow- 
ing form: 

u•(r, t', t") = Sl(t')Sl(t"){Cv(r) + 2P11(r) - Q111•(r)} 

+ [U•(t')U2(t") + U•(t")U2(t')]{P•2(r) - Q•2(r)} 

+ [U•(t')U3(t") + U•(t")U3(t')]' {P•3(r) - Q•n3(r)} 

+ U2(t')U2(t"){-Q•22(r)} 

+ [U2(t')U3(t") + U2(t")U3(t')]{-Q•23(r)} 

+ U3(t')U3(t"){-Qn33(r)} (A2) 

u•2(r, t', t") = U•(t')U•(t"){P•2(r) - Q•2(r)} 

+ U•(t')U2(t"){Cv(r) + P•(r) + P22(r) - Q•22(r)} 

+ U•(t")U2(t'){-Qn22(r)} + U•(t')U3(t") 

ß {P23(r) - Q•23(r)} + U•(t")U3(t') 

ß {-Q•23(r)} + U2(t')U2(t"){P•2(r)- Q•222(r)} 

+ U2(t')U3(t"){P•3(r)- Q•223(r)} + U2(t")U3(t') 

ß {Q•223(r)} + U3(t')U3(t"){-Q•233(r)} (A3) 

u22(r, t', t") = U•(t')U•(t"){-Qn22(r)} 

+ [U•(t')U2(t") + U•(t")U2(t')]{P•2(r) - Q•222(r)} 

+ [U•(t')U3(t") + U•(t")U3(t')]{-Q•223(r)} 

+ U2(t')U2(t"){Cv(r)+ 2P22(r)- Q2222(r)} 

+ [U2(t')U3(t") + U2(t")U3(t')] 

ß {P23(r) - Q2233(r)} + U3(t')U3(t"){-Q2233(r)} (A4) 

Assuming the mean velocity field given by U(t) = (U•(t), 
U2(t), 0) and considering the expressions for Ui• (i.e., the 
steady state velocity covariance function for U - (U, 0, 0)), 
given by Rubin and Dagan [1992], equations (A2), (A3), and 
(A4) simplify to 

U•l(r, t', t") = Ul(t')U•(t")Ul•(r) 

+ [Ul(t')U2(t") + U•(t")U2(t')]U•2(r) 

+ U2(t')U2(t")U22(r) (A5) 

u•2(r, t', t") = Ul(t')Ui(t")U•2(r) + Ui(t')U2(t") 

ß {U22(r) - P33(r)} + U•(t")U2(t')U22(r) 

+ U2(t')U2(t")U•2(r) (A6) 

u22(r, t', t") = U1(t')U•(t")U22(r) 

+ [Ut(t')U2(t") + U•(t")U2(t')]U•2(r) 

+ U2(t')U2(t")U•(r) (A7) 

where U,•.(r•, r2, r3) = Uij(r2, r•, r3) and P33 assumes the 
following expression: 

P33(r) = rr•, fo © 2fk x/1 + k 2- k2(1 + f2) _ 1 Jo(kp)k dk X/1 + k 2 [1 + (1 - f2)k212 
(A8) 

with p = V'r• 2 + r22 and •o the Bessel function of order zero. 
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