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Field transport of reactive solute species is investigated through a class of stochastic models, here 
termed mass response functions (MRFs), which incorporate simplified concepts of chemical/physical 
nonequilibrium kinetics in the formulation of transport by travel time distributions. MRFs are 
probability density functions (pdfs) associated with solute particles' travel time within transport 
volumes. The theory hinges on recent advances in modeling transport of solutes in groundwater and 
in basin scale transport volumes and links the approaches of surface hydrologists with recent 
subsurface transport models. The relationship between MRFs and the theory of solute transport by 
continuous motions is investigated. It is found that MRFs extend the basic formulation of transport of 
inert solutes to a particular case of sorption process. The relationship between MRFs and the basic 
differential convection-dispersion equation incorporating linear sorption is also investigated. It is 
found here that not only are transfer functions of solutes consistent with any mechanistic three- 
dimensional (3-D) model of convection dispersion, but also that they are, under limit conditions, the 
product of the travel time distribution of the carrier flow with a bounded continuous function. The 
latter is the solution to an initial value problem which results from solving the general 3-D differential 
equations of convection dispersion with sorption under some simplifying assumptions, and formally 
coincides with the resident concentration included (as an assumption) in the original MRF formulation. 
Travel time distributions and MRFs underlain by statistical constraints rather than by dynamical 
models are proposed. Non-Gaussian distributions are studied by statistical-mechanical tools and are 
found to represent the norm, rather than the exception, in this formulation of transport of reactive 
solutes. The concepts are applied to a field study and are shown to yield reliable models of solute 
migration in nonpoint pollution problems. 

1. INTRODUCTION 

In the wake of recent results [Jury et al., 1986; Sposito et 
al., 1986; Rinaldo and Marani, 1987; Dagan and Nguyen, 
1989], it has become apparent that transfer function models 
(TFM) based on travel time distributions of solute migration 
may represent a promising way of expressing results from 
large-scale transport experiments or calculations. 

In this paper the models of field solute transport through 
unsaturated soils proposed by Jury [1982] and Jury et al. 
[1986] and mass response functions (MRFs) for basin scale 
analysis developed for contaminant responses to rainfall 
pulses [Rinaldo and Marani, 1987; Rinaldo and Gambolati, 
1988] are reexamined as predictive tools for solute migration 
in various phases of the hydrological cycle. 

The class of models investigated here is related to mass 
balances interpreted in the context of probability theory 
[Rinaldo and Marani, 1987], and to the theory of diffusion by 
continuous motions [Taylor, 1921; Dagan, 1987], and is 
consistent with any mechanistic transport model with con- 
vection, dispersion, and linear sorption [Sposito et al., 
1986]. A comparison of travel time and concentration ap- 
proaches (the latter being the usual solution to a boundary 
value problem in terms of concentration as a function of 
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space and time) to characterize transport by groundwater 
has recently been proposed [Dagan and Nguyen, 1989]. 
Most notably, a discussion of the relative merits of the two 
approaches pointed out a potential of travel time approaches 
for applications in that they (1) are robust in characterizing 
the transport process; (2) appeal to physical intuition and are 
of general nature; and (3) blend in a unique curve all sources 
of uncertainty in transport characterization. 

The integral relations and the initial value problem 
[Rinaldo and Marani, 1987] describing both the carrier flow 
and the solute flux at the outlet control section of the 

transport volume are 

•0 t Q(t) = f(t- t')i(t') dt' (1) 

•0 t Qout(t) = G(t- t', t')i(t') dt' (2) 

G(t- t', t') = C'(t- t', t')f(t- t') (3) 

t: r + t' > 0 OC'(r, t')/Or = h(t){CE(t) - C'(r, t')} (4) 

c'(o, t') = Co (t') 

where Q(t)(L3/T) is the carrier outflow rate; Qo,t(t) (M/T) is 
the flow rate of solute which represents all modes of loss 
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from the soil transport volume through the control bound- 
aries or through physical, chemical, or biological transfor- 
mations; G(t - t', t') = C'(t - t', t') f(t - t') (M/TL 3) is 
defined as the (instantaneous unit) mass response function, 
or the probability density functions (pdf) of solute lifetime in 
the transport volume, conditional on the occurrence of the 
carrier inflow i(t'); i(t') (L3/T) is the carrier flow input time 
distribution (recall that in the work by Jury et al., [1986] i( ) 
was taken as the fractional rate of solute mass into the 

transport volume);f(t - t') is the pdf of residence time of the 
carrier in the transport volume, i.e., the travel time distri- 
bution to the control surface' t(T) is the current time; t'(T) is 
the time of injection of an input rate of solute C'(0, t')i(t'); r 
= t - t'(T) is the contact time between fixed and mobile 
phases, i.e., the travel time in the transport volume; C'(t - 
t', t') is a resident concentration solution to (4). It may be 
thought of as the concentration attached to the indivisible 
particles whose collection forms the solute body or plume; 
h(t)(T -•) is the overall mass transfer coefficient qualifying 
the speed of production/removal processes; CE(t)(M/L 3) is 
the equilibrium concentration in the mobile phase; 
Co(t')(M/L 3) is the assigned concentration of the input rate of 
solute. Equations (1) and (2) postulate the existence of a 
control section, where one observes the flux of water and 
solutes, acting as a trapping boundary. We believe that this 
is appropriate for basin-scale distances where the use of (1) 
(denoted as the instantaneous unit hydrograph approach in 
the literature of surface hydrology) is commonplace. 

In this model, termed MRF because it links the theory of 
hydrologic response behind (1) (the instantaneous response 
function f( ) of runoff) and the TFMs of reactive solute 
transport [Jury et al., 1986], the time evolution of C' is 
controlled by the contact time t - t' between fixed and 
mobile phases, and is conditional on the time of occurrence 
t' of the particle injection. In this model solutes enter or 
leave the transport volume because of sorption processes 
between fixed and mobile phases. 

An important feature of the proposed approaches is the 
consistency of statistical schemes with the basic mass bal- 
ance equation for a species in solution. Sposito et al. [1986] 
have already addressed this issue for the general one- 
dimensional (l-D) case and have concluded that TFMs in the 
form (2) (where the kernel takes on the general form G(t - 
t' It') regardless of the link with f(t - t')) are consistent with 
"any mechanistic model of solute movement." Neverthe- 
less, Sposito et al.'s [1986] 1-D deterministic model, termed 
two-component convection-dispersion equation (CDE), is 
restricted to one dimensional solute movement, steady water 
flow and linear sorption processes. 

The issue of theoretical validation is crucial to the actual 

reexamination of MRFs. The interest in validation was 

originated because some objections were raised on applying 
the concept of transfer function models to field transport (G. 
Dagan, personal communication 1988), because it implied 
that prediction had to be anticipated by a large-scale trans- 
port experiment. Needless to say, this fact seemed to 
drastically reduce the usefulness of the approach. The chal- 
lenge this theory must face as a predictive tool is to provide 
estimates of solute flow rates at monitoring sites on the basis 
of relatively easy measurements (e.g., hydraulic properties, 
geometry, sample measurements of concentration) of 
present conditions. This can only be done if the relation 
between the synthetic stochastic models and the underlying 

mechanics of convection, dispersion, and production/ 
removal processes is clearly established. In a foundational 
paper Sposito et al. [1986] proposed a rationalization of 
TFMs of transport of reactive solutes in 1-D porous media 

which clarified the connection between TFMs and 1-D 

two-component transport dynamics. This connection was 
further clarified by the recent analysis of the formulation of 
passive solute transport by travel time distributions [Dagan 
and Nguyen, 1989]. In the present paper the approach is 
extended to arbitrary 3-D transport volumes, and proof is 
given to the conditions which lead to the validity of the 
formulation (1), and (2) and of the reaction kinetics (4) 
assumed as model equation in the original paper [Rinaldo 
and Marani, 1987]. 

The contributions in this paper are (1) connecting MRFs 
with the stochastic theory of transport by continuous mo- 
tions and its formulation by travel time distributions. It is 
shown that the approaches developed by surface hydrolo- 
gists and recent subsurface transport models (in the latter 
both concentration and travel time approaches are included) 
can be related to MRFs under certain simplifying assump- 
tions; (2) the proposal of MRFs which are not underlain 
directly by dynamical models, but rather by some statistical 
constraints. A section on derivations of solute lifetime 

distributions through statistical-mechanical arguments is de- 
veloped, which narrows down on particular means of obtain- 
ing solutions to large-scale transport problems without actu- 
ally solving the basic differential equations and (3) applying 
the concepts to a field study. 

A discussion of the relative merits and the field of appli- 
cation for the model, set in the closure of the paper, 
emphasizes the potential of the MRF approach for modeling 
of water resources. 

2. FORMULATION OF TRANSPORT BY SOLUTE 

LIFETIME DISTRIBUTIONS 

To reexamine the assumptions built in the MRF approach, 
we consider a transport volume Vs as in Figure 1. A trapping 
surface S, which is crossed by all trajectories ensuing at a, 
belonging to the inlet section of solute, is selected as control 
surface. We assume that the choice of S does not preclude 
the treatment of time-varying velocities. Both convection 
and dispersion processes are assumed to result in an overall 
forward motion of the particle which, after the first arrival at 
S, cannot return upstream to cross S besides the first time 
(the absorbing barrier hypothesis in, for example, Cox and 
Miller [1965, p. 211]). This implies that (1) the time of 
crossing is defined in a unique manner and (2) the probability 
of a particle ensuing at a of ever reaching S is unity. 

A solute body of concentration Co is introduced at time to 
in a volume Vo. The ambient concentration is C = 0. The 
initial solute body or the plume is regarded as a collection of 
indivisible particles which move in space due to diffusion 
and convection by fluid, and subject to sorption processes. 
Let the initial mass of the particle be Arno = n da Co, where 
n is an effective porosity of the porous medium, n da is the 
volume element of the initial solute body Vo (let da = d3a be 
the Volume element), and Co is the initial concentration. 

Here, unlike diffusion by continuous movements, the 
mass attached to each particle is not constant. This assump- 
tion, consistent with the basic assumption in the MRF 
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19I(to,a) / { ,a)= n da Co(to,a) 

TRANSPORT 

} Amø(tø 
VOLUME Vs • '• 

. Am(t,to,a) 

<u>dt 

Fig. 1. (a) Schematical representation of the transport volume V, with indication of the initial solute body and the 
total displacement of a particle. The control surface S is also indicated. (b) The decomposition of the total displacement 
into convection by the mean velocity, convection by velocity fluctuation and a "BrownJan motion"-type component. 

approach, postulates that the mass associated with the 
particle does not depend on the particle's position in space. 
Rather the mass is assumed to depend on the time (t - to) 
spent within the transport volume, because production/ 
removal processes affect /Xm. We assume that the mass 
transfer by this process is characterized deterministically. 
The characterization of the particle's mass at time t > to is 
therefore Am(t, to, a). 

It is assumed [Dagan, 1987, p. 188] that the effective 
porosity n is constant owing to the little change experienced 
by n in comparison to that of conductivity in natural media. 
The trajectory of the particle is given by 

x = Xt(t; t o , a) (5) 

where x is a Cartesian coordinate vector, and X,(t; to, a) a 
vectorial function, x = a is the initial position of the particle 
at t = t o, or Xt(to; to, a) = a. X t decomposes generally as 
(Figure 1 b). 

Xt(t; to, a)= X + X d (6) 

where X and Xa are defined by a suitable stochastic differ- 
ential equation. Usually, [Dagan, 1984, 1987] X a is assumed 
as a"random walk" associated with pore scale dispersion; X 
is also a random function because velocity in natural forma- 
tions is not known with certainty because of the irregular 
spatial variability of the formation properties. Hence X,(t; to, 
a) is expressed in statistical terms by its pdf f(X,); i.e., fdX, 
is the probability that a particle, at x = a for t = t o, is found 
at time t in the volume dX t surrounding X t. The concentra- 
tion distribution/xC associated with the particle is then 

nAC(x, t, to, a) = Am(t, to, a)/3(x- Xt) (7) 

where b(x - X t) is the Dirac distribution [Taylor, 1921; 
Dagan, 1987]. Ensemble averaging yields the basic relation- 
ship between the resident concentration and the displace- 
ment pdf 

(/XC(x, t, t0, a))= • /XC(x, t, to, a)f(Xt)dXt 
= Am(t, to, a)f(x, t, to, a)/n (8) 

Equation (8) extends the basic result [Dagan, 1987, equation 
(3.3)] in that the particle's mass is allowed to change in time. 
It is expedient to rewrite (8) as 

(/XC(x, t, to, a))-/Xmo s(t, to, a)f(x, t, to, a)/n (9) 

where s(t, t o, a) - Am(t, to, a)/Am(to, to, a) is a loss (gain) 
function of the particle as it travels through V,., and Amo(t o, 
a) = Am(t o, t o, a) is the initial mass. 

Due to the commutative properties of the integration and 
averaging operations, (8) is generalized for the cases of solute 
body of finite initial extent Vo or for a plume injected through 
V o continuously. There, with Am o = nCo(t o, a) da, or Am o = 
M(t o, a) da dt o we get for a finite solute body or a plume 

(C(x, t, to))= fv Co(to, a)s(t, to, a)f(x, t, to, a) da 0 

(lO) 

(C(x, t))= dto M(to, a)s(t, to, a)f(x, t, to, a) da 
0 

(•) 

where Co is the initial concentration in Vo and M is the rate 
of solute input per unit time. 

Let T be the travel time of a solute particle from the inlet 
to S. T is characterized by a cumulative probability distri- 
bution function P(T < tla, t o) = F(t; a, to), which is the 
probability that a particle originating at x = a and t = t o had 
crossed S at t. 

Since IXt[ for transport by convection at any scale grows 
monotonously, we have [Cox and Miller, 1965, p. 221; 
Dagan and Nguyen, 1989] 
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F(t; a, to)= 1 - fv f(x, t, t o , a) dx (12) 
where integration is over the domain V.,. covered from 
trajectories from a to S, and dx = d3x. Substitution of (8) into 
(12) yields 

F(t; a, to)= fv (AC(x, t, to, a))n/Am(t, to, a) dx 
= (Ams)/Am (13) 

where (Ams) is the expected value of the concentration 
integrated over V•,.. If ergodicity applies, i.e., (AC) is the 
actual concentration distribution for a large number of 
particles, (Ams) simply represents the mass of solute which 
has not been transported beyond S at time t. In contrast, Am 
is the total mass changing due to sorption as if S did not 
exist. The pdf of travel time f(t) from a to the control surface 
S is obtained by differentiation as 

f(t) = f(t; to, a) = dF/dt = d({Ams)/Am) dt (14) 

which, in the case of constant Am and for ergodic conditions, 
is the solute flux through S divided by the total mass, which 
is also the initial mass. Here f(t; t o , a), which we term solute 
lifetime distribution, is the solute flux divided by the total 
mass at time t. 

It is interesting to note that both (1) and (2) derive from 
(14) under some simplifying assumptions. To prove this 
assertion, we now consider that a particle is representative 
of a volume of water, i.e., Am,., = p da, p being the density 
of water. In this case Am,. does not depend on time, i.e., s = 
1 in (10). Let M,,(t) be the labeled volume of water stored in 
V s at time t after a pulse M,, dto da of labeled particles. By 
the same procedure as from (9) to (11) (recall that in the case 
at hand M,, is a rate of volume injected per unit time which 
does not depend on t; here to - 0 for clarity) one obtains 

{Mw(t)) = ffv• dx n{AC,,(x, t)) 
= dx dto da Mw(to, a)f(x, t, to, a) (15) 

Here we have introduced the somewhat unusual concept of 
concentration of water particles (AC,,(x, t)), a model already 
used in the literature of surface hydrology [Gupta et al., 
1980]. In the case that the time and the space distributions 
are independent we have M,, (t o, a) = i(to)/(a). If stationarity 
is assumed to prevail we have 

F(t;a, to)=F(t-to;a)= 1-•v f(x, t- to, a) dx (16) 
and integration over the initial position yields 

0 

The model of hydrologic response assumed in (1) was based 
on uniform spatial distribution of input, i.e., G(a)= 1/Vo. 
Substitution of (15) into (13) yields the final result, upon 
differentiation, 

•0 t d{M,.(t))/dt = i(t) - dto i(to)f(t- to) (18) 

because F(0) = 0. Equation (18) is the continuity equation 
adopted in the original MRF approach [Rinaldo and Marani, 
1987, equation (10)]. The second term at right-hand side is 
the outflowing flux at the control section, i.e., discharge 
Q(t). It follows from (12) that the mass flux at S in response 
to i(t) = •(t), • being Dirac's delta "function," is the pdf of 
travel time to S. Hence (1) derives directly from the theory 
of transport by continuous motions. 

Interestingly, the result that the flux in response to an 
instantaneous unit impulse uniformly distributed is the pdf of 
the travel time distribution was derived independently in the 
literature in the case of the probabilistic theory of hydrologic 
response [Lienhard, 1964; Rodriguez-Iturbe and Valdes, 
1979; Gupta et al., 1980] and in the formulation of transport 
of passive solutes by travel time distributions [Dagan, 1987; 
Dagan and Nguyen, 1989]. The different derivations and the 
independent reasoning shed light on several aspects of 
modern hydrology. Among the cross-fertilizations induced 
by the analogy, we may recall the handy means for comput- 
ingf(t) given in the papers on hydrologic response. On the 
other hand, in the context of the theory of transport in 
groundwater, Dagan [ 1982, 1984, 1986, 1987] argued that the 
statistical model, when ergodicity is not assumed, reduces to 
a mathematical vehicle to compute essentially deterministic 
quantities. This shows that implicit in the theory of hydro- 
logic response is ergodicity. This means that in any realiza- 
tion (Am.,.) --- Am•., or the same mass of solute (or water) 
crosses S at time t. In this case the probability F rather than 
a measure of uncertainty represents deterministically the 
relative mass of solute which has left the transport volume 
through the control surface. 

Let us now turn to the derivation of (2). The particle's 
mass Am depends on time and on the initial position as in (7). 
The function M in (11), under the assumptions leading to the 
preceding result (18), is M(to, a) = i(to) l(a)Co(to, a). The 
MRF approach assumes that the initial concentration of the 
particles is independent of the position a, and therefore 
Co(to, a) --- Co(to). By the same token, s(t, to, a) = s(t - to, 
to). If M(t) is the labeled solute mass stored in the control 
volume, after injection of M(t o, a) dt o da labeled particles, we 
have from (11) and (17), with the above M, 

(M(t)) = •v, dx n(AC(x, t)) 
•0 t = dto i (to)Co (to)s(t - to, to) 

ß •vodal(a)•v dxf(x,t-to, a) 
•0 t = dtoi(to)Co(to)s(t- to, t0)[1 - F(t- to)] 

Differentiation yields the final result 

d(M(t))/dt = i(t)Co(t)- dtoi(to)Co(to)S(t- to, to) 

= (a) - (b) 

(19) 
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•0 t - dtoi(to)F(t- to)Co(to){ds(t- to, to)/dt} 

- (c) 

(20) 

Equation (20) is the probabilistic mass balance employed in 
the original MRF formulation [Rinaldo and Marani, 1987, 
equation (12)]. The physical meaning of (20) is that the rate 
of change of mass in the transport volume is (a) the input 
mass flux, minus (b) the mass flux at the control section 
minus (c) the rate of mass exchange due to sorption phenom- 
ena. Equation (2) is then derived from (20) by singling out the 
(b) term and denoting it by Qout, i.e., 

•0 t Qout(t) = dtoi(to)C'(t- to, t0)f(t- to) (21) 

(where C'(t - to, to) = Co(to)S(t - to, to)) which is the basic 
result in the original formulation [Rinaldo and Marani, 1987, 
equation (15)] connecting the travel time f(t - to) and solute 
lifetime distributions G(t - to, to) = C'(t - to, to)f(t - to). 

The important implications of ergodicity of concentration 
upon travel time distributions have been discussed by Dagan 
[1984, 1986, 1987] and Dagan and Nguyen [1989]. Here such 
implications on solute lifetimes go unchanged because the 
dynamics of sorption processes is assumed deterministic. 

A final note is related to the nature of the Lagrangean pdf 
f(Xt), which characterizes the dynamics of the system. In 
the important case of Gaussian f(Xt), f is completely char- 
acterized by the ensemble mean (Xt), and the covariance 
matrix R of X t about its ensemble mean {Xt)(R/l = {Xj(t; a, 
to) X •(t; a, to)), Xj = X• - {X•), i, j = 1, m) and has the form 
of the multivariate normal pdf (22) 

f(Xt, t; to, a) = (1/(2 rr)m/21Rl I/2) 

ß exp (-(1/2)(Xt- {Xt))XR- l(xt- {Xt)) (22) 

where IRI is the determinant of the covariance matrix, m is 
the number of space dimensions, and T denotes transpose. 
In this case f satisfies the transport equation [Dagan, 1987] 

Of/Ot + d(X)/dt Of/OXj = (1/2) dRjl/dt 02yomjoml (23) 
where the summation convention has been adopted. Substi- 
tution of (8) in (23) yields 

O(AC)/Ot + d(Xj)/dt O(AC)/Oxj = (1/2) dRjl/dtO2(AC)/Oxj Ox 1 

+ ((AC)/Am) OAm/Ot (24) 

The last term in (24) represents the rate of mass exchanged 
by sorption. A two-component convection-dispersion equa- 
tion (CDE) [e.g., van Genuchten, 1981] is therefore a model 
consistent with the assumptions built in the extension of the 
Lagrangean model leading to (1) and (2). 

The crux of the matter at this point is the choice of kinetics 
for Am, which affects both the formulation of transport by 
lifetime distributions via the term ds/dt in (20), and the 
two-component model equation (24) which needs be coupled 
by a local mass balance for the evaluation of the term 
OAm/Ot. In the approach by Rinaldo and Marani [1987] the 
chemical/physical nonequilibrium model was assumed as the 
reversible first-order initial value problem (4) thought of as 
representative of a large-scale model of the interactions 
between fixed and mobile phases. The question on whether 

such model is consistent with (24) is therefore addressed the 
next section of this paper. 

3. SOLUTE LIFETIME DISTRIBUTIONS AND THE 

Two-CoMPONENT CONVECTION-DISPERSION EQUATION 

Written in a form that is convenient for mathematical 

analysis, the model two component CDE (suggested by e.g., 
Sposito et al. [1986]) is as follows: 

BROCi(x, t)/Ot + (1 -B)ROC2(x, t)/Ot = (1/P)O2Cl/OX 2 

- UOCl/OX t > 0 x C Vs (25a) 

(1 -B)ROC2/Ot = W[Cl(X, t)- C2(x, t)] (25b) 

where Ci, i = 1, 2, are resident concentrations in mobile and 
fixed phases, respectively; U is a constant velocity; x and t are 
dimensionless space and time variables; Vs the domain of the 
transport volume; B, R, P, and W are adjustable parameters 
which can be interpreted physically [Sposito et al., 1986, Table 
1] according to different mechanisms incorporated in the 
model. Phase 2 is fixed, and no diffusion occurs therein. It 
receives a mass flow W[Cl - C2] (MT-l), at given temperature 
and instantaneous mixing is assumed. Equation (25b) is related 
to chemical or physical nonequilibrium models (for a recent 
review, see Lassey [1988]), where (25a) expresses local mass 
conservation in the combined phase system. 

It is stressed at this point that the formalism in the present 
discussion will be simplified in order to avoid beclouding the 
central idea with unnecessary details. 

Equation (25) assume one-dimensional flow and solute 
transport, as well as constant convection. It can be extended 
to 3-D control volumes (let x = (x, y, z) be the Cartesian 
coordinate vector) as 

BROCi(x, t)/Ot + (1 -B)ROC2(x, t)/Ot 

= V. [D. VCl(X, t)]- u(x, t) ß VCl(X, t) (26) 

where D is the dispersion tensor; u(x, t) is the convection 
field; and V is the gradient operator. Combining the 3-D form 
of (25b) with (26) one gets 

(H- O/Ot)Cl(X, t) = W(Cl(X, t) - C2(x, t)) (27) 

where H is a differential operator = [V.(D.V) - u.V]/BR; 
W = W/(1 - B)R. In fact, (27) is an integro-differential 
equation because (25b) has a general analytical solution in 
the form 

C2(x, t) = e- wt W eWeCl(X, s c) ds c + C2(x, 0) (28) 

Consider a general boundary value problem [Bartels and 
Churchill, 1942] 

0Cl(X, t)/Ot = H{Ci} + F(x, t) t > 0 x G Vs (29a) 

A{Ci(x0, t)} = cog I + • c i 0Cl(X0, t)/Ox i (29b) 
i= 1,3 

t>0 x0 G OVs 

Cl(X, 0) = Ii(x) C2 (x, 0) - 12 (x) x G Vs (29c) 

where F is the source term, g is (the surface condition at the 
boundary OVa,, and I is the initial condition) are prescribed 
functions. 
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It has been recently inferred [Sposito et al., 1986] that 
such boundary conditions hold for resident concentrations 
(in the sense defined by Parker and van Genuchten [1984]) 
and that the solution for the 1-D case can be written in the 

form of (2), where G(t - t'lt') equals the solution of (27) for 
the case of instantaneous source condition [Bartels and 
Churchill, 1942]. This result was proposed as a consequence 
of Duhamel's theorem: it had also been noted [Sposito et al., 
1986] that because of the linearity in the concentration 
variables, G(t- Fit') = G(t- t'). 

Our aim is somewhat different. It has been argued 
[Rinaldo and Marani, 1987] that the MRF G(t- tolt o) in (2) 
could be obtained as the product of the travel time distribu- 
tionf(t - to) in (1) and a bounded continuous function C(t - 
to, to) derived by a suitable initial value problem tailored to 
nonequilibrium kinetics. 

Let us focus our attention on (27) with no reaction term 
(W = 0), as seen in the context of stochastic modeling of 
groundwater transport. The corresponding solution for con- 
tinuous injection at a rate g in (29b) is 

f0 t Cl(X , t) = g(r)co[x- Xt(t- r), t- r] dr (3O) 

where Xt is the Lagrangian coordinate of the convected 
particle; co(x, t) is the Gaussian distribution [Dagan, 1982, p. 
837] as f in (22). 

Let us return to the solution of (26) and (27). To reobtain 
(30) as an eigenfunction expansion, which is suitable to 
extension to the inhomogeneous case, let us consider the 
formal solution to the homogeneous equation (i.e., for W = 
0) 

HG = OG/Ot (31) 

subject to the given boundary and initial conditions. In 
general, we can write, for Hermitian H, with uniform con- 
vergence 

G(x, t)= • Am(t)&m(X) (32) 
tn 

where 

Hl3m = Am 13,n (33) 

where &n are eigenvalues and •b,, are the corresponding 
orthonormal eigenfunctions. The nature of these eigenvalues 
is known from Sturm-Liouville theory [e.g., Churchill and 
Brown, 1973, p. 66], as in this case the {A,,} constitute a 
sequence of nonpositive numbers, with A• - • as m -• •. 

The solution for the homogeneous case (31) for the prop- 
agation of the initial condition l•(x') is obtained by standard 
Green's function techniques as 

G(x,t)=fdx'{•4•,,,(x')4•m(X)exp(&nt)}l•(x') (34) 
In the general case in which an initial condition lj(x') is 
propagated and a forcing term i(r) at the boundary x o is 
active, we have 

G*(x, t) = dx' dr i(r) 

' { • &,n(x')&m(X) exp (A,nt - r))}l,(x') 

For simplicity of notation, in the sequel only the propagation 
of the initial condition will be considered, i.e., i(t) = •t), 
such that the homogeneous solution G*(x, t) = G(x, t) in (34). 
We also assume, for simplicity of notation, that the initial 
distributions I• and 12 of concentration in phase 1 and 2 are 
uniformly distributed in space. 

It can be shown by direct contour integration in the case 
lj(x') = •(x' - Xo), that the infinite sum of eigenfunctions in 
(34) converges to co[x - Xt(t - r, Xo), t - r] in (30) and that 
the solutions (34) and (30) are equivalent [Morse and Fesh- 
back, 1953, p. 413]. 

The solution of the inhomogeneous boundary value prob- 
lem (27), obtained by Green's function techniques (having 
noted that the Green's function of the inhomogeneous equa- 
tion can be recovered from that of the homogeneous coun- 
terpart) is 

f t C l(X , t): W dx' dr 

'{• &m(X')&m(X)exp((Am-W)(t-r))},C2(x',r) (36) 
We now turn to the assumptions (3). If the concentration in 
the fixed phase is proportional to the instantaneous fraction 
of mass sorbed, it is (recall that (36) is the solution to an 
instantaneous pulse at to = 0)C2(x', r) = C2(x', r, 0), in 
which we emphasize the conditionality of the concentration 
in phase 2 on the instantaneous fraction of solute mass 
sotbed. If furthermore we can assume that such instanta- 

neous fraction of mass sorbed is independent of spatial 
location, it is 

C2(x', r, 0)--• C2(r, 0) (37) 

We note that although the conditions leading to the validity 
of (34) are still awaiting a general definition, (37) is consistent 
with the postulates of our extension (8) of transport by 
continuous motions. Equation (37) therefore reduces to 

Cl(X , t)= W dx' dT 

ß { • 4>,n(X')4>,,X)exp ((A,n- W)(t- r))}C2(r, O) !n 

= • dx' • •},n(X')•,n(X) exp (A,nt)W exp (- Wt) 

•0 t ß dr exp ((A,n- W)r)C2(r, O) (38) 

The term f dx' Z,7 •b,7(x')•b,,(x) exp (A,,t) is the propagator 
of the initial condition, or the Green's function G in (34) of 
the complete convection-dispersion equation with W = 0, 
i.e., without source/sink or reaction term. This is [Cox and 
Millet', 1965, p. 221; Feller, 1971, p. 477; Dagan and 
Nguyen, 1989; Moore and Clarke, 1983] the travel time pdf 
to the control section S of the transport volume V•. as in (12) 
provided a uniform input is propagated as the initial condi- 

(35) tion. The solution to a Dirac delta "function" input at x = a, 
t = 0, gives the impulse response function, equivalent to a 
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pf, i.e., Arn o = 1 in (9). At the trapping surface S (Figure 1) 
of the transport volume, the functions 

F(t) = P(T> t)= fv• dx(G(x, t)) 
= fv dx • dx' • Cbm(X')Cb, n(X) exp (Amt) (39) s m 

f (t) = dF/dt (40) 

are equivalent to (11) and (12) in that (34) is interpreted as 
solution for the ensemble mean concentration. These func- 

tions are well known in first-passage time problems occur- 
ring in statistics, where f is the pdf of the first passage T for 
a Wiener process starting at a to reach an absorbing barrier 
at S. The exit boundary surface need therefore to be con- 
structed in a suitable manner so that a Brownian trajectory in 
3-D has to hit the control section S. This fact is somewhat 

implicit in the choice of an appropriate transport volume 
[Rinaldo and Marani, 1987, p. 2108]. 

At this point we further assume Am • W in the Volterra 
integral (38), for rn < M, M being a large enough cutoff 
number independent of x and t. This is tantamount to 
assuming that the time scale of production/removal pro- 
cesses is larger than travel time in the transport volume. In 
this case the characteristic number M,. [Rinaldo and Marani, 
1987] is ---O(1), thereby implying that the characteristic time 
scales of transport and of sorption kinetics at most be 
comparable. 

The solution for the general case (36) can therefore be 
written as (let M(t) be the mass stored in the transport 
volume in the case of reactive tracer as in (19)): 

(M(t)) = fv dx (Cl(x, t))= F(t)W 

t ß exp (-Wt) dr exp (Wr)C2(r, O) 

To stress the analogies with (19) and (20), we introduce a 
function Cr(t, 0) defined by 

fo r Cr(t, O) = W exp (- Wt) dr exp (Wr)C2(r, 0) (42) 

which has the dimensions of a concentration. This function 

is solution to the differential equation 

OCr(t , O)/Ot = W[C2(t + O, O)- C,.(t, 0)] (43) 

Cr(0, 0) = 0 

The analogy with (2) and (20) is complete. It follows from the 
original MRF approach [Rinaldo and Marani, 1987, (5)] that 
h = W/(1 - B)R and CE(t) = C2(t, 0) in (4); t = r because 
here t' = 0. The function Cr(r, t') in (3) and (4) and in the 
following developments is a resident concentration in the 
Lagrangean form derived by Rinaldo and Marani [1987] as 
an assumption. Equation (43) can therefore be employed in 
(20) to incorporate the dynamics of sorption processes into 
the formulation of transport by lifetime distributions. It 
follows therefore from (2), (20), and (37) that for instanta- 
neous unit pulse at to = 0, we have 

Qout(t) = G(t10) = f(t)C(t, 0) (44) 

OC(t, O)/Ot = W[C2(t + O, O)- C(t, 0)] (45) 

which is the solution of (2) with i(t) = •t). In general, for the 
ith impulse i(t) = •i(t - t') at time t -- t', the corresponding 
MRF 

G(t- t'lt')= f(t- t')C(t- t') (46) 

as in (2) and (3). 

4. MRF's AND MOST PROBABLE DISTRIBUTIONS 

The conceptual strategy suggested by (1), (2), and (3) 
implies the decoupled determination of travel time and 
lifetime distributions. The effects of convection/dispersion 
and sorption are, in this model, computed independently and 
then coupled by the Volterra integral equation (2) because 
the underlying mechanical model implies that solute parti- 
cles move along with the carrier flow with the same velocity 
and interact with the surrounding media regardless of the 
particles' position. We might therefore speculate that as long 
as we are interested in the macroscopic distribution of 
residence times at some exit surface S of a large control 
volume, there is a way to derive the MRF without explicitly 
mentioning the underlying transport model. This can be 
achieved by maximum probability (or Boltzmann's) methods 
[e.g., Huang, 1963]. 

To build solute travel time distributions, it is observed that 
after instantaneous input of a large number N of particles 
over the area which corresponds to the entrance surface of 
the control volume, the proportion of particles arriving at the 
outlet surface S (Figure 1) equals the pdf of the travel time. 
This nonnegative variable is denoted by t and the number of 
arrivals at the outlet during the interval (ti_•, ti) will be 
designated by N i. Let t' < t• < ... < t i < t be a partition of 
t into subintervals of length At, where t' is the arbitrary 
origin taken as zero at no loss of generality. To consistency 
with (2) and (4), the Ni arrivals in At about t i (over the ith 
subinterval) are associated with particles labeled with the 

(41) same mass Am(ti; O, a) because mass transfer is assumed to 
depend only on the contact time t i via (4). 

Let q•(t), ..., qN(t) denote the positions of the particles 
such that qi(t) is in the control volume V, for each i = 1, -.., 
N. These coordinates (q•(0), '.', qN(O)) are assumed inde- 
pendent and identically distributed (uniform) over the inlet 
surface of coordinates x = a (Figure 1) at the injection. The 
time partition related to arrival counting induces a partition 
of V.,. defined by a volume c i --- subregion of V,. such that the 
time to the outlet of a particle in it is in (t i -- At, ti); in other 
words, the number of arrivals N i counts the number of 
particles whose position coordinate qi(t) belongs to ci. 
Clearly, N• + N 2 + .... N, where N i are random but N is 
fixed. 

The problem is now reduced to a traditional occupancy 
problem in probability. The joint density of N•, ..., N m, 
where rn is any large cutoff number, is a multinomial 
[Huang, 1963, p. 80; Feller, 1971] 

P(NI = nl, "', Nm = n,n) = N! [-[ (Pi)ni/ni! (47) 
i 

where Pi = Icil/IVI; I I denotes the "volume" of the 
bracketed region [Lienhard, 1964; Lienhard and Meyer, 
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1967; Gupta and Waymire, 1983; Rinaldo and Marani, 1987]. 
This position can be described heuristically as follows. 
Physically, Pi is a probability and P is the number of ways in 
which the set of distinguishable objects (N•, N2, '", Nm) can 
be selected from N objects if there are Pi distinguishable 
ways of placing N i objects in the ith partition. If the various 
cells constitute a subdivision of a large region A into smaller 
regions A•, ..., A,,and if spatial homogeneity holds (i.e., the 
uniform measure applies), then it is natural to estimate the 
probability Pi by means of 

Pi = IAil/IAI i= 1, '", m (48) 

where the angle brackets denote Lebesgue measure. 
The travel time distribution is characterized [Huang, 1961, 

p. 80, Lienhard, 1964] by maximum joint probability, subject 
to a fundamental couple of side conditions. One condition is 
the constraint of conservation 

• N i -- N i = 1, m (49) 
i 

The other constraint applies to the time moments of the 
residence time distribution. This is, indeed, consistent with 
the physical significance of flux concentration implicit in (1) 
and (2): it has been observed, in fact, [Kreft and Zuber, 1978, 
1986; Sposito and Barry, 1987] that if measured concentra- 
tions are the target of a mathematical description, physical 
significance can be attached only to time moments, because 
their spatial moments in general would have no physical 
meaning. Clearly, 

Er • = lim 2mb;-4qt: •,• tffP(tt_ • < r < tt) 
At-• 0 

(50) 

(where P(tx._• < r < &) is the probability associated to a 
discrete pdf of travel times) and, identifying P with N/N, 
one may estimate Er • in terms of 5;• N,t? for each/3 > 0. 
Hence a second constraint 

• (Ni/N)t? = Ki• Ki• > 0 i = 1 m (51) i ' 

applies, where Ko equals Ed •. Since N• and t• are both 
positive in response to a pulse at t' = 0, this is generally 
valid. 

Let N i be those values of n• maximizing P(N• = Nl, "', 
N,• = N,,. Passing on to the logarithms, differentiating, 
setting the constraints by Lagrange multiplication and apply- 
ing Stirling's formula we obtain 

Ni = Pi exp (-A - Bt?) (52) 

I -I Ni/N = (Pi exp (-Bti•)) . pj exp (-Bt•) (53) 

i,j=l,m 

The explicit form of (53) depends on the choice of dynamics 
implicit in the definition of Pi. If we assume [Lienhard and 
Meyer, 1967; Rinaldo and Marani, 1987] that 

Pi yt•- 1 = a > 1 (54) 

it follows that 

N/N=(yt7 -I exp (-Bt?)) . yt•-' exp (-Bt•) 
(55) 

j- 1,"-, m m-• 

The summations in the bracketed coefficient can be replaced 
with definite integrals, as At is taken to be small. Elimination 

of N/y exp (-A) from the two constraints gives B = a/lgK•. 
Hence letting At • 0, and applying the mean value theorem, 
we obtain 

f(t) = (•(•g/a)- •/F(W•))t "- • exp (- atO•g•) (56) 
and by (3) 

G(t, O)= C'(t, O)f(t) (57) 

Equation (57) for constant concentration (C'(t, 0) = C0 (i.e., 
the inert tracer) is a generalized gamma distribution. Among 
its features [Lienhard and Meyer, 1967; Rinaldo and Ma- 
rani, 1987], it has been observed that it reduces to standard 

gamma (• = 1), exponential (a = • = 1), Maxwell (• = 2, 
a = 3), or Weibull (a = •) distributions. 

The important result in (56) and (57) is that the existence of 
analytical forms for MRFs can be discussed. In particular we 
are interested in the possible occurrence of non-gaussian 
distributions for f(t) because (recall equations (22) to (24)) 
they have important bearing on the usual study of transport 
phenomena. We examine here the lognormal and the inverse 
gaussian distributions to emphasize the generality of the 
tools and to suggest new inroads to the problem. 

A lognormal distribution for MRFs is realistic only if (1) 
convection is steady and uniform, such that Qout (t) in (2) can 
be replaced, up to scaling, by the flux concentration C(t) (see 
equation (69)) below; also compare with Ju• et al. [1986, 
equation 17]' (2) the travel time distribution is normally 
distributed as 

f(t) dt: fl exp (-t2/20 2) (58) 

where fl and O are parameters of the distribution' (3) we let 
C to depend only on contact time, represented here by the 
travel time. Hence the derived distribution g(C') is com- 
puted by g(C'(t)) dC = f(t) dt [Rinaldo and Marani, 1987, 
equation (43)]' we then transform dt, dimensionless with h, 
according to (4) as 

dt: dC'/(C' - C•) (59) 

to obtain 

G(t, O) = g(C') = exp {-(log (C' - C•) - fl)2/202} 

• {O(C' - C•)(2•) •/2} (60) 

which is a lognormal distribution' (4) no removal/production 
process affects significantly the fraction of mass sorbed in 
the time scale of travel; hence C• in (59) is constant and (5) 
an instantaneous pulse of solutes is employed. Otherwise, 
the dt/dC' relation would have to embed the convolutive 

effects of variable surface conditions which upset the log- 
normal character. 

It is also impo•ant to note that the asymptotic Gaussian 
behavior for the dispersion processes on large time and 
spatial scale can be studied in this framework. In fact, if a 
diffusive regime is ever reached, at large times the ratio of 
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the time variance • and the spatial variance •/U, where U 
is a scale of velocity [Taylor, 1921], must approach a 
constant value regardless of the initial condition affecting • 
[ Tsai and Holly, 1978; Fischer et al., 1979]. Let us assume in 
(5•) 

• (Ni/N)(ti-/•)2: ff.•/U 2 (61) 
i 

where/• is the average residence time thought of as the ratio 
of the spatial scale L and the scale of velocity U. 

Under the assumptions that again no sorption process is 
significant (C'(t, 0)=C'(0, 0)) and that the path probability Pi 
in (54) tends to unity, one obtains, in analogy with the steps 
from (47) to (56): 

G(t, 0) = C'(0, 0)U exp (- U2(t-/x)2/2o-2Q/O-x(2Z-) 1/2 (62) 

To obtain (67), one must introduce the approximation, valid 
as the traveled length L is large, 

ERF (L,B/U) --> 1 y(3/2, L2/U 2) -• 0 (63) 

in the limit as/• = L/U grows large, with F (3/2) = x z-/2. ERF 
( ) and T(x, y) are respectively the error function and the 
incomplete gamma function of argument x, y. If we special- 
ize (63) to a 1-D diffusion problem at constant convection, it 
reduces to • = 2Dt. Hence (63) reduces to the solution of 
traditional first-passage time problems in statistics or to 
particular cases of the solution of the convection-dispersion 
equation IDagan, 1982]. 

5. DIscussioN 

The validity of the formulation (1) to (3) to characterize 
transport to a trapping boundary has been shown to be fully 
justified in the limiting case of short travel time with respect 
to sorption time. This is due to the assumption that solute 
particles move along trajectories with the same velocity of 
the carrier flow, and that they exchange mass with the 
surrounding environment irrespectively of the particles' 
position in space. A natural question therefore arises on 
whether the other asymptotic limit, that of large transport 
time compared to sorption time (which is more typical of 
subsurface flow), can be represented by a MRF model. Upon 
rescaling time by the retardation factor [e.g., Freeze and 
Cherry, 1979] an equivalence can be established, by the 
same approach leading to (8), between the expected value of 
concentration of a retarded tracer and a new pdf of trajec- 
tories. The latter is defined by the underlying probability 
model of movement of conservative solute particles with 
retarded velocity. The corresponding MRF model is there- 
fore (1) with travel time characterized by retarded mean and 
same variance with respect of the travel time distribution of 
the carrier flow. 

In the cases in which neither asymptotic limit is reached, 
the observation of Sposito et al. [1986] still stands, since a 
kernel G(t -t', t') in (2) is generally consistent with any 
mechanistic model of two-component convection/disper- 
sion, although no hint on his form can be derived a priori. 
The key factor in (!) to (3) for field application is decoupling, 
or the appearance of the travel time distribution f( ) of the 
carrier flow (i.e., the hydrologic response) in the transfer 
function G(t - t', t'). In this case f can be evaluated 
independently as inert solutes and carrier flow would hold 
the same travel time distribution. 

Another, ½ey aspect is related to the definition of the 
absorbing •rrier, i.e., the observation site S, which should 
not preclu• the treatment of time-varying velocities or yield 
the sampl ' ; of a portion of the plume. This barrier S defines 
the acces ,le environment and is easily identified in the 
context oi •rface hydrology as the closure of the catchment 
where rut • is observed. The only 3-D example to date in 
the litera: • of subsurface transport IDagan and Nguyen, 
1989] deft ½ S as a vertical plane normal to the direction of 
the flow, tistance from the source (a volume of leachate 
discharge •to a shallow unconfined aquifer). 

By the •,ve speculations derives that the field for appli- 
cation of • model (1)-(4) is therefore that of (1) large 
injection '•: of solutes, in which the source of solutes is 
distribute' .• a nonpoint manner, because it is assumed the 
irrelevant. of spatial location for the deduction of local 
concent.'a •ns. Travel (contact) time then controls mass 
transfer ?. ',,een fixed and mobile phases. We speculate that 
this ma' the case when production/removal processes 
occur du •, ' predominantly vertical movement through soil; 
(2) smal• . • ,el time to a drainage system, as compared to 
sorption .,.•c. Although this largely depends on the solute 
and on fi:e chemical, physical or biological process, we 
argue that efficient drainage systems serve to exit rapidly 
excess water warranting conditions for the possible validity 
of (3). 

MRFs models are therefore suitable to predict transport 
phenomena of nonpoint nature where the process of loss/ 
gain of solutes occurs in a confined zone (e.g., the topsoil 
about the root zone of crops subject to fertilization) where 
substantially vertical flow occurs. The related transport 
volume is therefore the topsoil, which is identified as a 
"sorption" or "generation" state [Rinaldo and Marani, 
1987, equations (38) and (39)], whereas due to the brevity of 
residence time in subsurface flow and in the drainage system 
the other "routing" or "mixing" media are not affected by 
significant loss/gain processes. As in our initial formulation, 
therefore basin scale transport of solutes residual of agricul- 
tural activities represent an example of relevant environmen- 
tal problem in which MRFs can be conveniently applied. 

To strengthen our confidence in the soundness of the 
approach for nonpoint pollution processes, the above con- 
cepts have been applied to a field study. The validation 
proposed here is based on an inverse procedure of decon- 
volution of travel and loss/gain function in comparison with 
experiments in which water and solute inputs and outputs 
had been measured. The experimental study dealt with river 
quality related to extensive data gathered in the small (8.4 
km 2) Japanese catchment of the upper Ai river [Takeuchi et 
al., 1984], for basinwide solute NO3-N circulation. The 
study, which presented no modeling effort, focused on the 
experimental determination of the concentration of solute 
NO3-N in all components of the hydrological cycle (rain, 
surface, subsurface waters). Its findings clearly indicated 
that the high content of NO3-N load to river water during 
floods was not brought in by rain or surface runoff, but by 
the discharge once in contact with the topsoil which turned 
out to be the sole significant source of solute NO3-N supply. 

The model (1) of the hydrologic response is tailored to a 
geomorphological scheme based on the information available 
in the paper. The geomorphological states are forested over- 
land areas (O1), drained by a steep channel (C1) which flows 
into a larger, milder stream (C2). Flatter agricultural areas (02) 
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Fig. 2. Computed (solid curve) and measured (O) [Takeuchi et al., 1984, Figure 11] water discharges for event 1. 

drain directly into the channel C2. The transitions are O 1 -• C 1 
--> C2 and 02 --> C2. Surface and subsurface runoff compo- 
nents are accounted for in the model by separating the net 
inflow rates i(t) into two components, namely, is(t) and ip(t) 
[Rinaldo et al., 1988]. Let fol(t), fcl(t), '", be the pdf's of 
statistically independent residence time in the basin states (a 
superscript s or p eventually denotes surface or subsurface 
detention); p(1), p(2) the proportion of area draining into the 
overland states O 1 and 02 (recall that in general p(i) is a path 
probability [Rodriguez-Iturbe and Valdes, 1979; Gupta et al., 
1980; Gupta and Waymire, 1983]); the asterisk denotes the 
convolution operator. The model equation (1) of water dis- 
charge at the control section becomes 

Q(t) = is(x)us(t- x) dx + ip(X)Up(t- x) dx (64) 

ui(t) = p(1)f•lfClfC2(t) + p(2)f•2fc2(t) (65) 

i=s,p 

The model of the hydrologic response (65) specializes the 
classic form of the geomorphologic unit hydrograph proposed 
by Gupta et al. [1980] to the simplified transition probabilities 
p(1) =Aol/A = 0.86, p(2) = Ao2/A = 0.14, where Aol is the 
area of the overland state 1, Ao2 is the area of overland state 2, 
and A is the total area of the catchment. Overland states are 

identified with forested and agricultural/urban areas the dimen- 
sions of which are given [Takeuchi et al., 1984]. 

The MRF model of NO3-N flux at the control section is 
then by (2) and (3) given by 

f0 t Qout (t) = dx is (x)G, (t - xlx) + dx ip (x)Gp (t - xlx) 

(66) 

Gs(tlt') = {p(1)[Cs(t, t')f*O•(t)] fc, + p(2) 

ß [Cs (t, t')f•)2 (t)]} fc2 (t) (67) 

Gp(tlt') = {p(1)[Cp(t, t')f•)•(t)] fc• + p(2) 

ß [C,(t, t')f•)2(t)] } fc2(t) (68) 

The concentration at the control section (the quantity ob- 
served in the field) is then defined as the ratio of solute and 
water fluxes as 

C(t) = Qout (t)/Q(t) (69) 

The complete description of the MRF needs only specifica- 
tion of the resident concentrations Ci(t, t'), i = s, p through 
integration of (4). The application of a second-order accurate 
scheme and the assumption CE(t) = CE(O) + M•.(t)/K D, 
where Ko is a distribution coefficient of the sorbed mass, and 
M•.(t) is the instantaneous fraction of solute mass sorbed, 
yields 

C'(i, i): C'(i- 1, i) exp (-hat) + [1 - exp (- hat)] 

ß [2Cœ(0) + (Ms(i +j) + Ms(i +j- 1))/KD]/2 (70) 

where C'(i,j) = C'(iAt,jAt) define a concentration matrix' At 
is the partition of time for the discrete solution. The implic- 
itness of (70) derives from the dependence of M,. on the 
actual concentrations C' and on the travel time pdfs f. An 
efficient computational procedure has been employed to 
solve (70) [Rinaldo et al., 1988]. The choice of pdf's for the 
residence time distribution has been made as one-parameter 
exponentials 

f>.;(t) = exp (-t/r>_;)/r• Y_, = O1 s, O1 p, O2 s, O2 p, C1, C2 

(7]) 

because the gcomorphological insight is rather superficial for 
the catchmcnt at hand. The numerical convolutions arc then 
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Fig. 3. Computed (solid curve) and measured (O) [Takeuchi eta!., 1984, Figure 11] flux concentrations of solute 
NO3-N at the control section for event 1. 

evaluated analytically (for complete expression of general 
n-fold convolution, see, for example, Gupta et al., [1980, 
equations (17)-(19)]. The parameters rz of the distributions 
are evaluated by least square error minimization via a 
standard routine. The test event is the distribution of mea- 

sured discharges and solute flux concentrations for the event 
1 [Takeuchi et al., 1984, Figure 8f]. 

The fitted discharges for the calibration event are reported 
in Figure 2. The parameters obtained by least square mini- 
mization are as follows' r'0, = 0.9 hour; •o, = 8.5 hours; 
r•02 = 1.1 hours; •o2 = 9.4 hours; TCi --- 0.5 hour; and rc2 = 
0.8 hour. The calibration of the parameters of the nonequi- 
librium model has been performed comparing (69) with the 
concentration measured at the control section of the Ai 
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Fig. 4. Computed (solid curve) and measured (O) [Takeuchi et al., 1984, Figure 10] water discharges for event 2. 
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river. The calibrated curve of computed flux concentration 
(equation (25)) is plotted in Figure 3. The parameters are as 
follows for the surface layer s, h = 2.7 hours; Ko = 0.1; 
CE(0) = 13.2 mg/L; for the subsurface layer p, h is fixed at 
the same value of the surface state; Ko = 0.11; CE(0) = 11.7 
mg/L. It is assumed that the concentration of solutes in 
rainwater is negligible (C'(0, 0) = 0 mg/L). 

The reliability of the model has been tested by predicting 
the behavior of another gauged event on the basis of the 
parameters calibrated by the first curve. The measured 
values [Takeuchi et al., 1984, Figure 8el refer to a hydrologic 
event characterized by very intense rainfall. Water dis- 
charges are predicted as in Figure 4. The agreement of 
computed and measured discharges is good, underlining the 
reliability of the hydrologic model in the case of intense 
storms. Measured and predicted flux concentrations accord- 
ing to our prediction are shown in Figure 5. The prediction is 
deemed satisfactory because the error between instanta- 
neous values of predicted and measured concentrations is 
less than 20%. However, the predicted mass released is 30% 
less than that measured because a defect in the computed 
concentration appeared at the time of maximum discharge. 
We observe, in particular, that the dilution of recharge in the 
concentrations are estimated qualitatively in a correct frame- 
work and that the excess of dilution that occasionally occurs 
in the calculated concentrations may be due to a correspond- 
ing error in the prediction of the flow component. Improving 
the parameter estimation technique may overcome such 
shortcomings, but still a predictive character of the MRF 
model is, in the writers' opinion, warranted. 

Figures 6 and 7 show the prediction of another event 
[Takeuchi et al., 1984] characterized by short and intense 
precipitation yielding a small fraction of net rainfall. A1- 

though water discharges are predicted satisfactorily from the 
engineering viewpoint, it is apparent that the estimated 
fraction of flow through the two possible routes is partly 
misestimated. In fact, the total water volume is quite cor- 
rect, but the predicted concentrations (Figure 7) suffer from 
an insufficient prediction of the runoff components which is 
probably due to the calibration of the rainfall model per- 
formed on an intense storm event. Interestingly, in this case 
the total mass released is predicted quite correctly. The need 
for reliable hydrological models to characterize well solute 
transport over basin scales is nevertheless quite clear. It is 
also clear, in the writers' opinion, that the correct prediction 
of the order of magnitude of flux concentrations in a case 
significantly different from that of calibration underscores 
the robustness of the approach. 

It is therefore the writers' opinion that notwithstanding the 
need for further clarification of a number of issues (e.g., the 
interval of confidence expected for predictions; the impact of 
uncertainty upon parameter estimation), MRFs provide 
some new theoretical insight and tools for practical applica- 
tions in the study of water resources. 

6. CONCLUSIONS 

In the present paper the relation between concentration 
and travel time distribution approaches with models of MRF 
has been discussed in the context of transport theory in 
heterogeneous large-scale media. Following are the major 
conclusions of the paper. 

1. The MRF theory was first examined in connection 
with the underlying dynamical models of solute transport 
through heterogeneous media. MRFs were proved to extend 
the basic formulation of transport by continuous motions to 
a particular case of removal/production processes. It was 
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also inferred that the MRF formalism is consistent with (and, 
under limit assumptions, can be derived from) the general 
3-D differential mass balance equations for a two-component 
system. It is concluded that solute lifetime distributions can 
be thought of as the product of travel time distributions and 
a suitable resident concentration if the equilibrium concert- 

tration for the mobile phase (solute in the transport volume) 
depends weakly on spatial location. This implies that solute 
transfer between mobile and fixed phases is controlled by the 
contact time (i.e., the travel time distribution). 

2. MRFs were defined as an extension of travel time 

distributions to incorporate simplified concepts of produc- 

a 

E 

Z 
I 2.2E5 

0 

Z 2.0 
LL 

0 t .7E5 
Z 
0 
H t.E5 

Z 
IIJ t.0 
O 
Z 
0 .7E5 
O 

X .5 
.J 

EVENT • 3 

MEASURED 

COMPUTED 

I I I I I I I I I ' 

4.0 Et.0 t:::'.0 '18.0 :::'0.0 2::'4.0 2::'8.0 3:::'.0 38.0 40.0 

TIME (h) 

Fig. 7. The same as Figure 5 for event [Takeuchi et al., 1984]. 



1616 RINALDO ET AL ' MASS RESPONSE FUNCTIONS 

tion/removal of solutes. The form of MRFs employed as an 
assumption by the original formulation, was derived through 
a formal solution to the general 3-D equations of two- 
component convection-dispersion in the limit case of short 
travel time compared to loss/gain (sorption) time. A valida- 
tion was given in such a limit case to the use of MRFs as the 
product of travel time distributions and of a bounded con- 
tinuous function associated with an initial value problem for 
a resident concentration. Computations of transport of reac- 
tive solutes can therefore be performed by evaluating inde- 
pendently the effects of convection/dispersion and those of 
sorption, which are then coupled by a Volterra-type integral 
equation. In the other limit case, of large travel time with 
respect to sorption time, MRF degenerate into travel time 
distributions with retarded mean and same variance. In the 

case of comparable time scales of transport and loss/gain, 
the effect of the travel time pdf on the MRF cannot be clearly 
distinguished although it was ascertained that a TFM model 
is generally consistent with any dynamical model. 

3. Evaluation of travel times was performed through 
maximum probability algorithms aiming at the features of 
large-scale transport dynamics. It was concluded that quite 
possibly a general solute lifetime distribution does not exist 
in analytic form (e.g., the lognormal, the inverse ERF) 
whenever the time scale of sorption kinetics is comparable 
with that of transport and/or the input rate of solute mass 
cannot be modeled accurately by a Dirac-delta function. It 
was also concluded that non-Gaussian distributions of travel 

time (and of the parent lifetime distributions) represent the 
norm, rather than an exception, in this representation of 
transport. 

4. The application of MRF concepts to a field study 
revealed reliability and robustness for application to non- 
point pollution problems. 

5. Questions remain open on (1) the effect of uncertainty 
on parameter estimation; (2) the effects of variable rates of 
reaction experienced by a traveling particle depending on its 
position; and (3) the effects of the possible correlation of the 
parameters of sorption processes with the conductivity of 
the medium. On this issues research is in progress in the 
search of a more general characterization of transport by 
pdfs. 
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