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In this paper, we propose a new unified first order hyperbolic model of Newtonian 
continuum mechanics coupled with electro-dynamics. The model is able to describe 
the behavior of moving elasto-plastic dielectric solids as well as viscous and inviscid 
fluids in the presence of electro-magnetic fields. It is actually a very peculiar feature 
of the proposed PDE system that viscous fluids are treated just as a special case of 
elasto-plastic solids. This is achieved by introducing a strain relaxation mechanism in the 
evolution equations of the distortion matrix A, which in the case of purely elastic solids 
maps the current configuration to the reference configuration. The model also contains 
a hyperbolic formulation of heat conduction as well as a dissipative source term in 
the evolution equations for the electric field given by Ohm’s law. Via formal asymptotic 
analysis we show that in the stiff limit, the governing first order hyperbolic PDE system 
with relaxation source terms tends asymptotically to the well-known viscous and resistive 
magnetohydrodynamics (MHD) equations. Furthermore, a rigorous derivation of the model 
from variational principles is presented, together with the transformation of the Euler–
Lagrange differential equations associated with the underlying variational problem from 
Lagrangian coordinates to Eulerian coordinates in a fixed laboratory frame. The present 
paper hence extends the unified first order hyperbolic model of Newtonian continuum 
mechanics recently proposed in [110,42] to the more general case where the continuum 
is coupled with electro-magnetic fields. The governing PDE system is symmetric hyperbolic
and satisfies the first and second principle of thermodynamics, hence it belongs to the 
so-called class of symmetric hyperbolic thermodynamically compatible systems (SHTC), 
which have been studied for the first time by Godunov in 1961 [61] and later in a series of 
papers by Godunov and Romenski [67,69,119]. An important feature of the proposed model 
is that the propagation speeds of all physical processes, including dissipative processes, are 
finite. The model is discretized using high order accurate ADER discontinuous Galerkin 
(DG) finite element schemes with a posteriori subcell finite volume limiter and using high 
order ADER-WENO finite volume schemes. We show numerical test problems that explore 
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a rather large parameter space of the model ranging from ideal MHD, viscous and resistive 
MHD over pure electro-dynamics to moving dielectric elastic solids in a magnetic field.

© 2017 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

1.1. Electrodynamics of moving media

In this paper, we propose a new unified first order hyperbolic model of Newtonian continuum mechanics coupled with 
electro-dynamics. The model is the extension of our previous results [42], hereafter Paper I, on a unified formulation of 
continuum mechanics towards the coupling of the time evolution equations for the matter with the electric and magnetic 
fields. The problem of determining the force acting on a medium in an electromagnetic field, as well as the related problem 
of determining the energy-momentum tensor of an electromagnetic field in a medium, has been discussed in the literature 
over the years since the work by Minkowski [93] and Abraham [2]. However, to the best of our knowledge, a universally 
accepted solution to this problem has been absent to date [83,88,60,51,34].

In this respect, our work can be broadly considered as a contribution to the modeling of electrodynamics of moving con-
tinuous media. We do not claim to give an ultimate solution to the problem, but rather to show that, within our formalism, 
all the equations can be obtained in a consistent way with rather good mathematical properties (symmetric hyperbolicity, 
first order PDEs, well posedness of the initial value problem, finite speeds of perturbation propagation even for dissipative 
processes in the diffusive regime) and that the corresponding physical effects are correctly described. By an extensive com-
parison with the numerical and analytical solutions to the well established models as the Maxwell equations, ideal MHD 
equations and viscous resistive MHD (VRMHD) equations, we demonstrate that the proposed nonlinear hyperbolic dissi-
pative model is able to describe dielectrics (η → ∞), ideal conductors (η → 0), and resistive conductors (0 < η < ∞) as 
particular cases, where η is the resistivity. Thus, the applicability range of the proposed model is larger than those for ideal 
and resistive MHD models, because the electric and magnetic fields are genuinely independent and are governed by their 
own time evolution equations as in the Maxwell equations.

In Paper I and [110], we provided a unified first-order hyperbolic formulation of the equations of continuum mechanics, 
showing for the first time that the dynamics of fluids and solids can be cast in a single mathematical framework. This 
becomes possible due to the use of a characteristic strain dissipation time τ , which is the characteristic time for continuum 
particle rearrangements. By its definition, the characteristic time τ , as opposed to the viscosity coefficient, is applicable to 
the dynamics of both fluids and solids (see the discussions in [110] and Paper I) and is a continuum interpretation of the 
seminal idea of the so-called particle settled life time (PSI) of Frenkel [54], who applied it to describe the fluidity of liquids, 
see also [18,16,17] and references therein. In addition, the definition of τ assumes the continuum particles to have a finite 
scale and thus to be deformable as opposed to the scaleless mathematical points in classical continuum mechanics. We note 
that the model studied in [110] and Paper I was used by several authors, e.g. [118,91,114,57,10,66,53,115,9,99,109,139] to 
cite just a few, in the solid dynamics context since its original invention in 1970th by Godunov and Romenski [68,64] but 
the recognition that the same model is also applicable to the dynamics of viscous fluids and its extensive validation in the 
fluid dynamics context was made only recently in [110] and Paper I.

1.2. Symmetric hyperbolic equations, well-posedness, causality

When one deals with nonlinear dynamical phenomena, and thus with nonlinear time-dependent partial differential 
equations (PDEs), perhaps, the first examination a new model has to pass is to verify if the initial value problem (IVP) is 
well-posed, at least locally, i.e. whether the solution to the system of PDEs with given initial data exists, is unique and stable 
(depends continuously on the initial data). We emphasize that the well-posedness of the IVP should not be considered 
as a purely mathematical requirement but as a fundamental physical observation about the time evolution of physical 
systems, i.e. exactly as we consider causality, conservation and thermodynamic principles, Galilean or Lorentz invariance to 
be essential features of macroscopic time evolution. In other words, a model describing the time evolution of a physical 
system and having an ill-posed IVP should be regarded as wrong. Moreover, the well-posedness of the IVP is a fundamental 
property of time-dependent PDEs in order to be numerically solvable.

From the mathematical viewpoint, the well-posedness of the IVP cannot be guaranteed for a general nonlinear system of 
PDEs. This even cannot be guaranteed for a first order quasi-linear system [12,49,96], or for models which were consistently 
derived from microscopic theories as, for example, the Burnett equations derived from the gas kinetic theory [14,128,138]. 
However, there is a class of nonlinear PDEs for which the IVP is locally well-posed in time, which is the class of hyperbolic 
PDEs. Unfortunately, it is hardly possible to prove that a given non-linear first order system is globally (not in time but in 
the space of physically relevant state parameters) hyperbolic because this would require to prove the global existence of 
the full basis of eigenvectors for a matrix whose entries can be highly nonlinear. For example, the model considered in this 
paper has nonlinear terms up to power 4 and to find analytical expressions for the eigenvalues and eigenvectors, and thus 
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to prove hyperbolicity in this way, seems impossible. So how can we be sure that the IVP for the proposed nonlinear model 
is well-posed, i.e. that the model is hyperbolic?

The model proposed in this paper was developed within a very important subclass of first order nonlinear hyperbolic 
systems whose non-dissipative part can be written in the following quasi-linear form

M(p)
∂p

∂t
+Hk(p)

∂p

∂xk
= 0, (1)

MT = M > 0 and HT
k = Hk , for which (local) well-posedness is known to hold true [80,12,96,121]. This subclass is called 

symmetric hyperbolic systems of PDEs and it is a generalization of Friedrichs-symmetrizable linear systems [55]. One may 
naturally question how restrictive it is for a model to be symmetric hyperbolic? As it was shown by Godunov [61–63] and 
later by others [56,15,122] there is an intimate connection between the symmetric hyperbolicity and thermodynamics, i.e. 
a first order system of PDEs is symmetric hyperbolic if it admits an extra conservation law for a convex potential which 
plays the role of the total energy for the system. Therefore, such a subclass of hyperbolic PDEs can be associated with the 
thermodynamically compatible systems of first order time-dependent PDEs.

The considered nonlinear system for electrodynamics of moving media has been developed within such a class of sym-
metric hyperbolic systems with convex energy. Therefore, one can be certain that, despite the highly nonlinear terms, the 
proposed model is globally hyperbolic and the IVP for it is well-posed, and hence the model can be solved numerically.

What concerns a mathematical guide to derive symmetric hyperbolic time evolution equations, as in [110] and Paper I, 
we follow the so-called formalism of Symmetric Hyperbolic Thermodynamically Compatible systems of conservation laws, or 
simply SHTC formalism here. This formalism is described in Section 2. 

Eventually, we recall that apart of the well-posedness of the IVP the hyperbolicity also naturally accounts for another fun-
damental observation about time evolution of physical systems, namely the finite velocity for any perturbation propagation, 
i.e. causality.

1.3. Hyperbolic PDEs with stiff relaxation source terms

By passing from the non-dissipative dynamics described by symmetric hyperbolic PDEs of type (1) to dissipative dynam-
ics (viscous momentum, heat and charge transfer), we do not want to destroy the fundamental physical properties discussed 
above, i.e. the well-posedness and causality. Thus, we believe that the only compromise is to model dissipative processes 
by adding algebraic source terms of relaxation type to the right hand side of (1). Thus, we shall consider the following 
generalization of (1)

M(p)
∂p

∂t
+Hk(p)

∂p

∂xk
= − 1

τ
S(p), (2)

where τ is a dissipation time scale1 that can be a function of the state parameters p as well. This option preserves both 
features (well-posedness and causality) because the hyperbolic character of the PDEs is defined by the leading terms only, 
i.e. by the symmetric matrices M and Hk . As shown in Paper I, the relaxation source terms can be successfully used to 
describe viscous momentum and heat transfer which, for many years, in classical continuum mechanics was believed to be 
possible only in the framework of second order parabolic PDEs.

An attractive feature of using algebraic relaxation source terms is the possibility of a straightforward generalization to a 
nonlinear transport theory via τ = τ (p) (e.g. non-Newtonian fluids, elasto-plastic solids, non-Fourier heat conduction) with-
out any increase in the complexity of the mathematical formulation, because no new analytical and numerical techniques 
are required to treat the model with τ (p). For example, the same family of ADER finite volume and discontinuous Galerkin 
methods that was used in paper I for the simulation of Newtonian flows with τ = const was also applied to the modeling 
of nonlinear elasto-plastic deformation in solids in [139] where the dissipation time was not constant but varies over ∼ 15
orders of magnitude.

At this point, we stress that the SHTC formalism is radically different from the well-known Maxwell–Cattaneo approach to 
construct hyperbolic relaxation models [25] typically used in extended irreversible thermodynamics (EIT) [79]. The notice-
able difference between the Maxwell–Cattaneo and the SHTC approach is that the relaxation affects the differential terms 
in the Maxwell–Cattaneo approach while it is introduced in a purely algebraic manner in the SHTC formalism. In Maxwell–
Cattaneo-type models the flux Jacobian as well as the corresponding sound speeds depend on a relaxation parameter ε as 
ε−1 [142]. In particular, in order to approach Newtonian flows with a Maxwell–Cattaneo-type model, the shear sound speed 
has to go to infinity2 which of course violates the causality principle. In the SHTC formalism, as demonstrated in paper 
I via the dispersion analysis, the sound speeds are always finite, also in the limit τ → 0. Another apparent consequence 

1 There may be, of course, multiple dissipation time scales τ1, τ2, . . . , etc. corresponding to different physical processes (viscous dissipation, dissipation 
due to heat transfer, chemical reactions, etc.). In equation (2), we write a single time τ just for simplicity of notation and only to emphasize the main 
character of the source terms used in this paper.

2 This defect, however, was removed in the version of EIT by Müller and Ruggeri [96] due to a more elaborate structure of the equations, in which the 
relaxation is introduced in a purely algebraic manner and does not affect the differential terms, as in our formalism.
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of the structure of the relaxation terms of the Maxwell–Cattaneo-type models is that the generalization to a more realis-
tic case with ε = ε(p) inevitably affects the hyperbolicity of a model [49] because the matrices of the quasi-linear form 
now depend on ε(p). In addition, the differences between the approaches become also apparent if one takes a look at the 
physical meaning of the state variables used in both approaches. We recall that in the EIT the fluxes are typically used as 
the extra state variables (in addition to the conventional ones like mass, momentum and energy), which usually leads to 
the situation that the PDEs have no apparent structure (new differential terms may appear or disappear depending on the 
choice of the closure for the system). In the SHTC formalism, only density fields may serve as state variables which, in fact, 
due to the fundamental conservation principle allows to obtain equations in a rather complete form with an elegant struc-
ture, see Section 2. Last but not least, it is well known that for Maxwell–Cattaneo-type models the choice of an objective 
time derivative (objective frame rate) for the fluxes can not be addressed in a unique manner since an infinite number of 
objective time derivatives is possible [142,49]. This is not the case for the SHTC formalism because it is frame invariant by 
construction [65]. 

1.4. Numerical solution of hyperbolic PDEs with stiff relaxation

Although the SHTC formalism provides a consistent framework for the modeling of time-dependent nonlinear dissipative 
phenomena the use of hyperbolic relaxation models (2), as it is well known, imposes certain difficulties for the numerical 
solution in the case when the dissipation time scale defined by the relaxation time τ � T is much smaller than the 
macroscopic time scale T ∼ 1/cmax defined by the maximum characteristic speed cmax of the non-dissipative part of the 
model (i.e. by the left hand side of (2)). In such a case, the source term in (2) is called a stiff source term. The presence of 
a stiff source term may let the original system tend towards an asymptotically reduced system (see [26,124]) that may even 
have a different structure than the original one, see e.g. [42]. 

For nondissipative hyperbolic PDEs (1), only a numerical flux must be chosen, or an appropriate fluctuation for non-
conservative products [24,104]. In this case, the classical properties required are consistency, stability and accuracy. For 
dissipative hyperbolic PDEs (2) with relaxation source terms also an appropriate numerical source term must be chosen. 
Here, not only the three classical properties are required, but some additional properties are needed for the global numeri-
cal scheme: It should be well-balanced, i.e. able to preserve certain relevant steady state solutions also numerically. It should 
be robust also on coarse grids if the source term is stiff. A coarse grid is a grid whose size does not take into account the 
source term, i.e. the characteristic space and time steps are based on the associated homogeneous system (1) only. Finally, 
the scheme should be asymptotically consistent or in other words asymptotic preserving (AP) if the source term is stiff. This 
means that the scheme should give the correct asymptotic behavior even if the source term is under resolved.

In this paper, we do not aim to provide new developments concerning the numerical treatment of hyperbolic systems 
with stiff relaxation. The reader is referred to the extensive literature on the subject, see e.g. the following non-exhaustive 
list of references [85,107,108,78,21,124,19,22,105,98,87,92,40,75,20] and references therein. Our numerical results fully rely 
on the unified family of ADER finite volume (FV) and ADER discontinuous Galerkin (DG) methods developed previously 
in [40,36,41,46,75] and successfully applied to the modeling of viscous Newtonian flows (i.e. in the stiff relaxation limit) 
in Paper I within the SHTC framework, see [42]. The ADER finite volume methods are based on a three stage procedure. 
First, a high-order non-oscillatory WENO reconstruction procedure is applied to the cell averages at the current time level. 
Second, the temporal evolution of the reconstruction polynomials is computed locally inside each cell using the governing 
equations. In the original ENO scheme of Harten et al. [74] and in the ADER schemes of Toro and Titarev [130,137,131,132], 
this time evolution is achieved via a Taylor series expansion where the time derivatives are computed by repeated differen-
tiation of the governing PDEs with respect to space and time, i.e. by applying the so-called Cauchy–Kowalevski procedure. 
However, this approach is not able to handle stiff source terms, unless an implicit Cauchy–Kowalevski method is used, see 
recent developments documented in [136]. Therefore, a new strategy was proposed in [40], which only replaces the Cauchy–
Kowalevski procedure compared to the previously mentioned schemes. For the time-evolution part of the algorithm, a local
space–time discontinuous Galerkin (DG) finite element scheme was introduced, which is able to handle also stiff source 
terms. This step is the only part of the algorithm which is locally implicit, and thus allows the use of a time step for the final 
numerical scheme that has to obey only a classical CFL-type stability condition based on the maximum wave speed cmax of 
the advective processes and not based on the relaxation time τ . The third and last step of the fully-discrete ADER family of 
schemes consists of a fairly standard explicit integration over each space–time control volume, using the local space–time 
DG solutions at the Gaussian integration points for the intercell fluxes and for the space–time integral over the source term. 
Compared to ADER-FV schemes, in the case of ADER-DG methods there is no need for the high order WENO reconstruction 
operator, since the discrete solution is directly evolved in the space of higher order piecewise polynomials. However, these 
schemes require proper limiting at shock waves, see e.g. [48,145,144] for recent developments.

The ADER-FV and ADER-DG framework is now well established and has already been applied to many different systems 
of PDEs [36,39,41,35,46,48,145,144,42], including hyperbolic systems with stiff relaxation. 

1.5. Computational advantages of using hyperbolic dissipative models

From the computational performance viewpoint, a clear difference between classical parabolic theories such as the 
Navier–Stokes–Fourier (NSF) equations or the viscous and resistive magnetohydrodynamics (VRMHD) equations and our 
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hyperbolic approach is that the latter uses a much larger set of state variables (2 scalar fields, namely the mass density 
and the total energy density, + 3 components of the momentum density + 9 components of the non-symmetric distor-
tion tensor + 3 components of the thermal impulse vector + 6 components of the electro-magnetic fields), that is a total 
number of 23 evolution equations. This obviously requires more memory and computational effort if compared with only 
5 equations for the NSF equations or 8 equations for VRMHD. However, we can also list some benefits in utilizing first 
order hyperbolic models. As discussed in [42,89,90], one may point out the following computational advantages when using 
hyperbolic models over conventional parabolic models

• the key advantage of the SHTC model proposed in the present paper is its natural ability to describe moving fluids and 
solids in an electromagnetic field within the same PDE system and thus allows the simulation of magnetized fluids and
solids within the same computer code, while implementations based on classical theories such as NSF and VRMHD only 
apply to fluids and are not able to describe the motion and deformation of elastic solids;

• a numerical method applied to first order hyperbolic PDEs can achieve higher order of accuracy than for high-order 
PDEs on the same discrete stencil; in particular, in first order hyperbolic models the same order of accuracy for the 
solution and the stresses and other fluxes is easily achieved, while in parabolic models the dissipative fluxes are based 
on the derivatives of the state vector, and thus in general one order of accuracy is lost if the stencil of the scheme is 
not properly extended;

• first order systems are less sensitive to the quality of computational grids and boundary singularities;
• no severe parabolic time step restriction �t ∼ �x2 arises for explicit discretizations of first order hyperbolic systems 

and therefore numerical schemes with an explicit time stepping can be used. This allows not only for a straightforward 
and efficient parallelization, but can even lead to faster simulations with the enlarged SHTC system compared to con-
ventional parabolic models, in particular in the context of explicit discontinuous Galerkin finite element schemes, see 
the examples provided in [42];

• the possibility of an easy and filter-less visualization of complex flows with the help of the distortion tensor, see [42].

For recent work on hyperbolic reformulations of the steady viscous and resistive MHD equations and time dependent 
convection–diffusion equations based on standard Maxwell–Cattaneo relaxation, see the papers of Nishikawa et al. [100,101,
89,90,11] and Montecinos and Toro [95,94,135]. These approaches, however, were motivated by computational reasons, while 
our hyperbolic theory was motivated by the construction of a consistent physical theory first. In particular, the mentioned 
hyperbolic approaches are attributed to the Maxwell–Cattaneo-type models discussed in Section 1.3 because the gradients 
of the fields (stress, heat flux) are used as extra state variables, and thus such approaches may suffer from the same physical 
inconsistencies as discussed in Section 1.3. Models of a similar nature are also used in non-equilibrium gas dynamics. See 
the following section where we discuss other differences between this sort of models and our approach.

1.6. Beyond conventional continuum theories

After many discussions following the publication of paper I, the authors believe that it is necessary to stress that the 
unified hyperbolic theory proposed in [110,42] was never thought to be an extension of the conventional parabolic Navier–
Stokes–Fourier (NSF) theory like it was intended in the Maxwell–Cattaneo approach. It should be rather considered as a 
completely independent model based on different principles. For example, the constitutive laws (Newton’s law of viscosity 
and Fourier’s law of heat conduction) of the NSF theory entirely rely on the steady state assumption by completely ignoring 
the history (even short) of how such a steady state was reached. Such a steady state assumption is not used in our hy-
perbolic theory, neither explicitly nor implicitly, and thus it should be regarded as a genuinely transient model. In fact, in 
order to use our model one may not even know about the existence of the famous transport laws of Newton and Fourier. 
Nevertheless, solutions corresponding to Newtonian flows and Fourier heat conduction are realizable in our theory in the 
long wave-length approximation (or in the stiff relaxation limit) as discussed above and was shown in [42], paper I, through 
a formal asymptotic expansion up to first order terms in the different relaxation times appearing in the model.

Therefore, one may consider the possibility that the parabolic NSF theory with its steady state assumption is just a 
particular realization of the more general hyperbolic model [110,42]. This also becomes transparent after recalling that 
our hyperbolic theory also includes solid mechanics (nonlinear elastic and elasto-plastic solids) as a particular case, see 
paper I. Clearly, the non-Newtonian liquids fall in between the Newtonian-like and solid-like behavior and hence can also 
be modeled with our approach via the dependence of the relaxation time on the state parameters. This is however the 
subject of an ongoing research.

Eventually, there is an apparent similarity between the extended structure (if compared with the Euler equations) of 
our hyperbolic model and the macroscopic models in non-equilibrium gas dynamics derived with the help of the method of 
moments [138] from the gas kinetic theory of Boltzmann. Nevertheless, on the mathematical side, there are more differences 
than similarities between these approaches, and a straightforward comparison of the solutions is not a trivial task. For 
example, it is not acceptable in the SHTC formalism that the fluxes serve as state variables, but only density-like quantities 
are admissible, while in the method of moments, the moments of the distribution function are constructed in a such a way 
that the macroscopic fields have the meaning of fluxes, such as stress tensor, heat flux, etc. Another remarkable difference 
is the fact that the method of moments serves as a method to derive macroscopic equations for gas flows solely, while 
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the application of our model is not restricted to gas dynamics only, but it includes elasto-plastic solids and liquids as well, 
which are not described by the kinetic gas theory of Boltzmann. Nevertheless, a detailed comparison of the approaches 
in the gas dynamics setting may lead to a better understanding and a further improvement of the theory and deserves 
a detailed investigation in the future. For now, we only note that both approaches give the same low-order terms in the 
expansion in the so-called Knudsen number (relaxation time in our case) corresponding to the NSF theory, while the higher 
order terms, as always, depend on the choice of the closure, which in our case corresponds to the choice of the scalar 
functions, the total energy potential (to be convex to guarantee the symmetric hyperbolicity) and the relaxation times. 

1.7. Outline of the paper

The rest of the paper is structured as follows. In the first part, we concentrate on the mathematical principles of the 
SHTC formalism. In particular, Section 2 is dedicated to the departure point of the SHTC formalism, namely the Lagrangian 
system of master equations, while Section 3 contains the Eulerian formulation of the master system after the change of the 
Lagrangian variables into Eulerian ones. In Section 3.3, we then propose a total energy potential which serves as the closure 
of the governing equations. In Section 4, we summarize the Eulerian system of governing PDEs which shall be used later 
for the numerical simulation in Section 7. In Section 5, we demonstrate via a formal asymptotic analysis the relation of the 
proposed hyperbolic model to the ideal magnetohydrodynamics (MHD) and viscous and resistive magnetohydrodynamics 
(VRMHD) equations. Here, we also partially repeat the results of paper I for completeness. Section 6 briefly describes the 
family of ADER methods employed in this paper. Eventually, the proposed energy potential and the Eulerian system of 
governing PDEs are used in Section 7 where we give extensive numerical evidence of the applicability of the model to a 
wide range of electromagnetic flows. Some concluding remarks and an outlook to future work is given in Section 8. 

In the rest of the paper we use the Einstein summation convention over repeated indices.

2. SHTC formalism and the master system

The hyperbolic dissipative theory discussed in this paper relies on the SHTC formalism. The development of the formal-
ism started in 1961 after it was observed by Godunov [61,62] that some systems of conservation laws admitting an extra 
conservation law also admit an interesting parametrization 

∂Mpi

∂t
+ ∂N j

pi

∂ y j
= 0 (3)

which allows to rewrite the governing equations in a symmetric form

Mpi pk

∂ pk

∂t
+ N j

pi pk

∂ pk

∂ y j
= 0, (4)

where t is the time, y j are the spatial coordinates, pk is the vector of state variables, M(pi) and N j(pi) are the scalar 
potentials of the state variables. Here and in the rest of the paper, a potential with the state variables in the subscript 
should be understood as the partial derivatives of the potential with respect to these state variables. Thus, for example, 
Mpk , N j

pk
, Mpi pk and N j

pi pk
in (3)–(4) should be understood as the first and second partial derivatives of the potentials M

and N j with respect to the state variables pi , e.g. Mpk = ∂M/∂ pk , Mpi pk = ∂2M/(∂ pi∂ pk), etc.
In this parametrization, the extra conservation law has always the following form 

∂(pi Mpi − M)

∂t
+ ∂(pi N

j
pi

− N j)

∂ y j
= 0 (5)

and, in fact, it is just a straightforward consequence of the governing equations (3) and can be obtained as a linear com-
bination of these equations. Indeed, (5) can be obtained as a sum of the equations (3) multiplied by the corresponding 
factors pi .

If the potential M(pi) is a strictly convex function of the state variables then the symmetric matrix Mpi pk is positive 
definite and (4) becomes a symmetric hyperbolic system of equations [55].

Usually, the generating potential M has the meaning of the generalized pressure while its Legendre transformation 
pi Mpi − M has the meaning of the total energy and thus, (5) is the total energy conservation law.3 Hence, the observa-
tion of Godunov establishes the very important connection between the well-posedness of the equations of mathematical 
physics and thermodynamics.

3 Note that the potentials N j have no apparent physical meaning and play no role in the later developments of the SHTC formalism.
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It was understood later on the example of the ideal MHD equations [63] that the original observation of Godunov [61]
relates only to conservation laws written in the Lagrangian frame, which indeed admits a fully conservative formulation,4

while the time evolution equations in the Eulerian frame have a more complicated structure, except for the compressible 
Euler equations of ideal fluids.

The structure of the Eulerian equations and its relation to the fully conservative structure of the equations in Lagrangian 
form was revealed in a series of papers by Godunov and Romenski [69,70,65,71,119,120,72]. In particular, in [65], based on 
the group representation theory [59], a rather general form of first order PDEs with the following properties was proposed:

• PDEs are invariant under rotations
• PDEs are compatible with an extra conservation law
• PDEs are generated by only one potential like M
• PDEs are symmetric hyperbolic
• PDEs are conservative and generated by invariant differential operators only, such as div, grad and curl.

One may naturally question how this class of PDEs, which shall be referred to as the master system, relates to the models that 
describe continuum mechanics and whether it is too restrictive to deal with dissipative processes such as viscous momen-
tum transfer, heat transfer, resistive MHD, etc., typically described by second order parabolic equations. First, it is important 
to emphasize that invariance under orthogonal transformations and the existence of an extra conservation law, which is 
typically the total energy conservation, are compulsory requirements for continuum mechanics models. Second, as shown 
recently [110,42], there is no physical reason imposing that the dissipative transport processes such as viscous momentum 
transfer or heat conduction should be exclusively modeled by the second order parabolic diffusion theory, but they can also 
be very successfully modeled by a more general framework based on first order hyperbolic equations with relaxation source 
terms. Third, after analysis of a rather large number of particular examples of continuum models [69–71,119,120], it was 
shown that many models fall into the class of SHTC systems. Among them are the compressible Euler equations of ideal 
fluids, the ideal MHD equations, the equations of nonlinear elasto-plasticity, the electrodynamics of moving media, a model 
describing superfluid helium, the equations governing compressible multi-phase flows, elastic superconductors, and finally 
also the unified first order hyperbolic formulation for fluid and solid mechanics introduced in [110,42]. In this paper, we 
show that also the viscous and resistive MHD equations can be cast into the form of a first order SHTC system.

The starting point of the SHTC formalism is a sub-system of the Lagrangian conservation laws given in eqs. (1) of [65], 
which will be refereed to as the master system from now on. The final governing PDEs written in the Eulerian frame will 
then be the result of the following system of Lagrangian master equations: 

dMvi

dt
− ∂ Pij

∂ y j
= 0, (6a)

dM Pij

dt
− ∂vi

∂ y j
= 0, (6b)

dMdi

dt
− εi jk

∂bk

∂ y j
= 0, (6c)

dMbi

dt
+ εi jk

∂dk

∂ y j
= 0. (6d)

Here, vi is the velocity of the matter, Pij is the stress tensor, while di and bi are some vectors describing the electric and 
magnetic fields, respectively.

In contrast to the classical parabolic theory of dissipative processes, the governing equations in our approach are all first 
order hyperbolic PDEs and the dissipative processes will not be modeled by differential terms, but exclusively via algebraic re-
laxation source terms, which will be specified later in the Eulerian case. This has the important consequence that the structure 
of the differential terms and the type of the PDE is the same in both, the dissipative as well as in the non-dissipative case. 
We recall, that if the dissipation is excluded in the classical second order parabolic diffusion theory, this then changes not 
only the structure of the PDEs, but also their type.

Because of this fact, within the SHTC formalism we can study the structure of the governing equations by restricting our 
considerations to the non-dissipative case only. We also note that if the dissipation source terms are switched off, then the 
model describes an elastic medium, see [110,42].

4 In this paper, under fully conservative form of the equations we understand not only the divergence form of the equations, i.e. generated by the 
divergence differential operator, but rather that there are no space derivatives multiplied by unknown functions, while algebraic production source terms 
can be present.
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2.1. Variational nature of the field equations in a moving elastic medium

It is well known that many equations of mathematical physics can be derived as the Euler–Lagrange equations obtained 
by the minimization of a Lagrangian. As an example, one can consider the nonlinear elasticity equations in Lagrangian co-
ordinates [73]. The classical Maxwell equations of electrodynamics can also be derived by the minimization of a Lagrangian 
with the use of the gauge theory [58]. It turns out that the coupling of these two physical objects in a single Lagrangian 
gives us a straightforward way to derive the equations for the electromagnetic field in a moving medium. We start by 
introducing two vector potentials and a scalar potential:

x = [xi(t, y)], a = [ai(t, y)], ϕ(t, y), (7)

so that

v̂ i = ∂xi

∂t
, F̂ i j = ∂xi

∂ y j
, (8)

êi = −∂ai

∂t
− ∂ϕ

∂ yi
, ĥi = εi jk

∂ak

∂ y j
, (9)

Here, t is time, y = [yi] and x = [xi] are the Lagrangian and Eulerian spatial coordinates respectively, while a and ϕ are the 
conventional electromagnetic potentials.

Then, we define the action integral 

L =
∫

	d ydt, (10)

where 	 = 	(v̂ i, F̂ i j, ̂ei, ̂hi) is the Lagrangian.
First variation of L gives us the Euler–Lagrange equations

∂	v̂ i

∂t
+

∂	 F̂ i j

∂ y j
= 0, (11)

∂	êi

∂t
+ εi jk

∂	ĥk

∂ y j
= 0, (12)

∂	ê j

∂ y j
= 0. (13)

To this system, the following compatibility constraints should be added (they are trivial consequences of the definitions (8)
and (9))

∂ F̂ i j

∂t
− ∂ v̂ i

∂ y j
= 0 ,

∂ F̂ i j

∂ yk
− ∂ F̂ ik

∂ y j
= 0 , (14)

∂ĥi

∂t
+ εi jk

∂ êk

∂ y j
= 0 ,

∂ĥ j

∂ y j
= 0 . (15)

In order to rewrite equations (11)–(15) in the form of system (6), let us introduce the potential U as a partial Legendre 
transformation of the Lagrangian 	

dU = d(v̂ i	v̂ i
+ êi	êi

− 	) = v̂ id	v̂ i
+ êid	êi

− 	 F̂ i j
d F̂ i j − 	ĥi

dĥi =
v̂ id	v̂ i

+ êid	êi
+ 	 F̂ i j

d(− F̂ i j) + 	ĥi
d(−ĥi). (16)

Hence, denoting mi = 	v̂ i
, ei = 	êi

, Fij = − F̂ i j , hi = −ĥi , we get the thermodynamic identity 

dU = Umi dmi + U Fij dFij + Uei dei + Uhi dhi .

Eventually, in terms of the variables 

q = (mi, Fij, ei,hi) (17)

and the potential U = U (q), equations (11), (12), (14)1 and (15)1 become 
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dmi

dt
− ∂U Fij

∂ y j
= 0, (18a)

dFij

dt
− ∂Umi

∂ y j
= 0, (18b)

dei

dt
− εi jk

∂Uhk

∂ y j
= 0, (18c)

dhi

dt
+ εi jk

∂Uek

∂ y j
= 0 , (18d)

which should be supplemented by stationary constraints (13), (14)2 and (15)2 which now read as 

∂ Fij

∂ yk
− ∂ Fik

∂ y j
= 0 ,

∂ei

∂ yi
= 0 ,

∂hi

∂ yi
= 0 . (19)

System (18) is, in fact, identical to (6). In order to see this, one needs to introduce fluxes as new (conjugate) state 
variables 

p = (Umi , U Fij , Uei , Uhi ), (20)

which we denote as 

vi = Umi , Pij = U Fij ,

di = Uei , bi = Uhi ,
(21)

and a new potential M(p) as a Legendre transform of U (q), i.e. 

M = mi Umi + Fij U Fij + ei Uei + hi Uhi − U , (22)

or briefly 

M(p) = q · p − U (q). (23)

After that, system (18) transforms exactly to (6), while the constraints (19) read as 

∂M Pij

∂ yk
− ∂M Pik

∂ y j
= 0 ,

∂Mdi

∂ yi
= 0 ,

∂Mbi

∂ yi
= 0 . (24)

One may clearly note a similarity between the equations (6c)–(6d) (or (18c)–(18d)) and the Maxwell equations. However, 
because no assumptions about the Lagrangian 	, and thus, about the potentials U (q) and M(p) have been made yet, these 
equations should be considered as a nonlinear generalization of the Maxwell equations, e.g. see [28,126,1].

We note that equations (6a)–(6b) and (6c)–(6d) (or (18a)–(18b) and (18c)–(18d)) are not independent as it may seem. 
They are coupled via the dependence of the potential M(p) (or U (q)) on all the state variables (17). This coupling will 
emerge in a more transparent way when we shall consider these equations in the Eulerian frame in Section 3.

2.2. Properties of the master system

2.2.1. Energy conservation
A central role in the system formulation is played by the thermodynamic potential 

U = U (mi, Fij, ei,hi), (25)

or its dual 

M = M(vi, Pij,di,bi) (26)

as one of them generates the fluxes in (18), while the other generates the density fields in (6). The potential U typically has 
the meaning of the total energy density of the system, while M has the meaning of a pressure.

In addition, solutions of the system (18) satisfy an extra conservation law 

dU

dt
− ∂

∂ y j

(
Umi U Fij + εi jkUei Uhk

)= 0 (27)

which should be interpreted as the total energy conservation. In terms of the dual potential M and dual state variables (21)
it reads as 

d

dt

(
vi Mvi + Pij M Pij + di Mdi + bi Mbi − M

)− ∂

∂ y

(
vi P i j + εi jkdibk

)= 0. (28)

j
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The energy conservation law (27) is not independent but a consequence of all the equations (18). Indeed, if we multiply 
each equation in (18) by a corresponding factor and sum up the result, we obtain equation (27) identically: 

Umi · (18a) + U Fij · (18b) + Uei · (18c) + Uhi · (18d) ≡ (27). (29)

The same is true for (28) and (6).

2.2.2. Possible interpretation of the state variables
Usually, the derivation of a model begins with the choice of state variables. In the context of classical hydrodynamics, 

the answer is universal. The state variables are the classical hydrodynamic fields such as mass, momentum, entropy, or total 
energy. In any case which is beyond the inviscid hydrodynamics settings, the choice of extra state variables is not universal. 
In the SHTC formalism, we however follow a different strategy, which consists of two stages. In the first stage, the governing 
equations are formulated before any choice of extra state variables has been made. The structure of the governing PDEs is 
a consequence of the five fundamental requirements formulated earlier in this section. The physical meaning of the state 
variables becomes clear at the second stage, when we try to compare a solution to the model with specific experimental 
observations. At this stage, we simultaneously clarify the meaning of the state variables and look for an appropriate energy 
potential which can be seen also as the choice of the constitutive relations in the classical continuum mechanics. For the 
proposed model, this strategy is realized in Section 3.3.

Thus, in this section, we give only approximate interpretations of the state variables while their precise meanings will 
be given in Section 3.3. As stated above, the space variables y = [yi] can be treated as the Lagrangian coordinates which 
are connected to the Eulerian coordinates x(t) = [xi(t)] measured relative to a laboratory frame by the equality yi = xi(0). 
It is also implied that vi = dxi

dt in (6) is the velocity of the matter relative to the laboratory frame, while mi = Mvi in (18)
has a meaning of a generalized momentum density which may include contributions from other physical processes and in 
general depends on the specification of the potential M , or U . As it will be shown in Section 3.3, mi couples the material 
momentum and electromagnetic momentum (Poynting vector). The tensorial variable Fij = ∂xi

∂ y j
is the deformation gradient, ei

and hi are the electric and magnetic fields, respectively. However, the exact meaning of the fields ei and hi will be clarified 
later in Section 3 when we shall distinguish among different reference frames.

2.2.3. Symmetric hyperbolicity
System (6) can be rewritten in a symmetric quasilinear from 

M
∂p

∂t
+N j

∂p

∂ y j
= 0, (30)

with the symmetric matrix M(p) = Mpp = [∂2M/∂ pi∂ p j] and constant symmetric matrices N j consisting only of 1, −1 and 
zeros. Moreover, system (6) is symmetric hyperbolic if M(p) is convex. In other words, the Cauchy problem for (6) (as well 
as for (18)) is automatically well posed locally in time for smooth initial data [29]. We recall that the convexity of M(p) is 
equivalent to the convexity of U (q) due to the properties of the Legendre transformation.

2.2.4. q and p-type state variables
We emphasize the very distinct nature of the variables q and p. The variables q appear in the time derivative and have 

the meaning of densities (volume averaged quantities). We thus shall refer to components of q as density fields. On the other 
hand, the variables p appear as fluxes in the master system (18) (or (6)), and thus will be referred to as flux fields (surface 
defined quantities), see also the discussion in [109]. In the SHTC formalism, the potential M(p) (the generalized pressure) 
and the flux fields p are conjugate quantities to the potential U (q) (total energy density) and the density fields q, i.e. they 
are connected by the following identities 

pi = Uqi , qi = Mpi (31)

and 

M = qi Uqi − U , U = pi Mpi − M. (32)

Thus, it follows from (31) that if we want the nonlinear change of variables (31) to be a one-to-one map, one should require 
that the potentials U (q) and M(p) be convex functions because 

Mpp = ∂q

∂p
=
[

∂p

∂q

]−1

= Uqq. (33)

2.2.5. Stationary constraints
Solutions to system (18) satisfy some stationary conservation laws that are compatible with system (18) and conditioned 

by the structure of the flux terms: 
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∂ Fij

∂ yk
− ∂ Fik

∂ y j
= 0,

∂ek

∂ yk
= 0,

∂hk

∂ yk
= 0. (34)

These stationary laws hold for every t > 0 if they are valid at t = 0, and thus should be considered as the constraints on the 
initial data. Indeed, applying the divergence operator, for instance, to equations (18d) we obtain 

∂

∂t

(
∂hk

∂ yk

)
= 0, (35)

which yields the third equation in (34) if it was fulfilled at the initial time. The other laws can be obtained in a similar way. 
As we shall discuss later on the example of the Eulerian equations, the situation is rather different in the Eulerian setting, 
and the stationary constraints like (34) are not separate but an intrinsic part of the structure of the governing equations 
written in the Eulerian frame.

2.2.6. Complimentary structure
We also note a complimentary structure of equations (18) and (6), i.e. the PDEs are split into pairs. In each pair, a variable 

appearing in the time derivative, say ui in (18a), then appears in the flux of the complimentary equation as Uui in (18b). 
Thus, ui and Fij are complimentary variables, as well as ei and hi . This means, that a physical process should be always 
presented at least by two state variables and hence by two PDEs in the SHTC formalism. One may note a close relation of 
such a complimentary structure of the SHTC formalism and the odd and even parity of the state variables with respect to 
the time-reversal transformation in the context of the GENERIC (general equation of nonequilibrium reversible–irreversible 
coupling) formalism discussed in [106].

3. Master system in the Eulerian frame

In this section, we formulate a system of governing equations describing motion of a heat conducting deformable 
medium (fluid or solid) in the electromagnetic field in the Eulerian frame. This system is obtained as a direct conse-
quence of the master system (18) by means of the Lagrange-to-Euler change of variables: y → x. This transformation is a 
nontrivial task, and the details are given in Appendix B for the electromagnetic field equations and in Appendix C for the 
momentum conservation law while the details about the derivation of the other equations can be found in the Appendix 
in [109] or in [65]. We give the Eulerian formulations using both density fields q and flux fields p. As we shall see, the 
Eulerian equations do not have such a simple structure as the Lagrangian equations. Nevertheless, we stress that none of the 
differential terms was prescribed “by hand”, but all of them are a direct consequence of the y → x variable transformation 
solely.

3.1. (E, q)-formulation

The main system of governing equations studied in this paper is formulated in terms of q-type state variables (density 
fields, see Section 2.2.4) 

q = (ρ,m, A,e,h,w,σ ), (36)

and the total energy density E(q) = w−1U , where U is the Lagrangian total energy density introduced in Section 2, ρ is 
the mass density, σ = ρs is the entropy density, s is the specific entropy, m = [mi] is a generalized momentum density 
which couples the ordinary matter momentum density, ρv, with the electromagnetic momentum density, i.e. the Poynting 
vector. The exact expression for m will be given later. Matrix A = [Aik] is the distortion field5 (see Paper I), e = [ei] and 
h = [hi] are the vector fields which relate to the electro-magnetic fields and will be specified later, w = ρJ is the thermal 
impulse density (see Paper I), which can be interpreted as an average momentum density of the heat carriers. The velocity 
of the medium, v, is not a primary state variable and should be computed from the generalized momentum m, but also, 
according to the SHTC formalism, the velocity and the generalized momentum relate to each other as vi = Emi (see (21)
and the discussion below). In the Eulerian coordinates xk , the system of governing equations reads as 

∂ρ

∂t
+ ∂(ρvk)

∂xk
= 0, (37a)

∂mi

∂t
+ ∂

∂xk

(
mi vk + δik

(
ρEρ + σEσ + mlEml + elEel + hlEhl − E

)+ AliEAlk − ekEei − hkEhi

)= 0, (37b)

∂ Aik

∂t
+ ∂(Ail vl)

∂xk
+ v j

(
∂ Aik

∂x j
− ∂ Aij

∂xk

)
= − EAik

ρ θ1(τ1)
, (37c)

5 Rigorously speaking, A is not a tensor field of rank 2, since it transforms like a tensor of rank 1 with respect to a change of coordinates. Thus, we shall 
avoid to call it the distortion tensor, but instead call it simply the distortion field.
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∂ei

∂t
+ ∂

(
ei vk − viek − εiklEhl

)
∂xk

+ vi
∂ek

∂xk
= −Eei

η
, (37d)

∂hi

∂t
+ ∂

(
hi vk − vihk + εiklEel

)
∂xk

+ vi
∂hk

∂xk
= 0, (37e)

∂ wi

∂t
+ ∂ (wi vk + Eσ δik)

∂xk
= − ρ Ewi

θ2(τ2)
, (37f)

∂σ

∂t
+ ∂

(
σ vk + Ewk

)
∂xk

= 1

Eσ

(
1

ρθ1
EAikEAik + ρ

θ2
EwiEwi + 1

η
EeiEei

)
≥ 0. (37g)

The energy conservation law

∂E
∂t

+ ∂

∂xk

(
vkE + vi

[(
ρEρ + σEσ + mlEml + elEel + hlEhl − E

)
δik + AliEAlk − ekEei − hkEhi

]
+εi jkEeiEh j + Eσ Ewk

)
= 0 (38)

is a consequence of equations (37), i.e. it can be obtained by means of the summation rule (29). We emphasize that in the 
numerical computations shown later in Section 4, we solve the energy equation (38) instead of the entropy equation (37g), 
but from the point of view of the model formulation, the entropy should be considered among the vector of unknowns 
because it is the complementary variable to the thermal impulse w = ρJ, see the remark in Section 2.2.6 and Paper I.

All equations in system (37) except the continuity equation6 (37a) and the heat conduction equation7 (37f)–(37g) orig-
inate from the Lagrangian equations with the structure (18). The momentum equation and the distortion equation are 
derived from the pair (18a)–(18b), the electromagnetic field equations (37d)–(37e) are derived from the pair (18c)–(18d).

The energy conservation law (38) is the consequence of equations (37), since it can be obtained as a linear combination 
of all equations (37) with coefficients introduced in the following section. As in the Lagrangian frame, these coefficients 
(multipliers) are the thermodynamically conjugate state variables and have the meaning of fluxes.

As discussed in [110,42], the distortion field A describes deformability and orientation of the continuum particles which 
we assume to have a finite (non-zero) length scale. Macroscopic flow is naturally considered as the process of continuum 
particles rearrangements in the SHTC model. Because of the rearrangements of particles, the field A is not integrable in the 
sense that it does not relate Eulerian and Lagrangian coordinates of the continuum. As a result, the field A is local and it 
relates to the deformation gradient F introduced in Section 2.1 only via 

det(F ) = 1/det(A). (39)

However, if we consider a particular case of system (37) when the dissipation term in the right hand side of (37c) is absent, 
which corresponds to an elastic solid (e.g. see the last numerical example in Paper I), then we have that A = F −1.

For simplicity, we use the same notations mi , ei and hi for the generalized momentum, electric and magnetic fields in 
both the Lagrangian and the Eulerian framework. However, these fields are different, see Appendix B. For example, if we 
denote by mL , eL and hL the Lagrangian fields, i.e. exactly those fields which are used in equations (18a), (18c) and (18d), 
then they are related to m, e and h appearing in the Eulerian equations (37b), (37d) and (37e) as 

mL = w m, eL = w F −1e, hL = w F −1h, (40)

where w = det(F ) = 1/ det(A), and F is the deformation gradient introduced in Section 2.1. Subsequently, the Lagrangian 
total energy density U relates to the Eulerian total energy density E as 

w−1U (mL, F ,eL,hL) = w−1U (w m, F , w F −1e, w F −1h) = E(ρ,m, F ,e,h). (41)

Here, for brevity, we omit other state variables. For example, if we denote by � = [�i j] all the terms in the momen-
tum flux (37b) except the advective term mi vk , it can be shown (e.g. see [65] or Appendix in [109]) that, after the 
Lagrange-to-Euler transformation, the Lagrangian momentum flux U Fij , see (18a), transforms to the Eulerian momentum 
flux �ik = ρ Fkj U Fij which in turn, because of the change of the state variables like (40), expands as 

�ik = −δik P − AliEAlk + ekEei + hkEhi , (42)

where the scalar 

6 The continuity equation is, in fact, a consequence of the distortion equation (37c), e.g. see [72,109], but it is convenient to consider density as an 
independent state variable with the compatibility constraint ρ = ρ0 det(A).

7 A different form of the hyperbolic heat conduction is possible, see system (38) in [119], which is fully compatible with the SHTC formalism in the 
sense that its Lagrangian equations belong to the master system [65]. However, both forms are consistent in the Fourier approximation and because we do 
not consider non-Fourier heat conduction we follow the hyperbolic heat conduction formulation from Paper I in this study. The detailed comparison of the 
heat conduction (37f)–(37g) and [119] is the subject of an ongoing research and will be presented somewhere else.



310 M. Dumbser et al. / Journal of Computational Physics 348 (2017) 298–342
P = ρEρ + mlEml + elEel + hlEhl − E (43)

is the generalized pressure which includes the hydrodynamic pressure and electromagnetic pressure. Nevertheless, P is not a 
total pressure8 in the media given by the trace �ii of the total stress tensor � = [�ik] and the rest of the terms in (42) may 
also contribute to the total pressure �ii .

In (42), we also use that ∂ w/∂ Fij = w F −1
ji , ∂ F −1

jk /∂ Fil = −F −1
ji F −1

lk and that ρ = ρ0 w−1, where ρ0 is the reference mass 
density and F −1

i j are the entries of the inverse deformation gradient F −1 (should not be confused with 1/Fij ). It is important 
to emphasize that the structure of (42) does not depend on the specification of the total energy, but it is only conditioned 
by the structure of the governing equations.

Note that strictly speaking it is not correct to call � the stress tensor because, classically, by the stress tensor the 
non-advective flux of the matter momentum conservation law is understood, while equation (37b) is the conservation law for 
the matter-field momentum m. Nevertheless, for brevity, � shall be referred to as the stress tensor in the rest of the paper. 
Recall that the matter momentum ρv is not a conservative quantity in the case of a medium moving in an electromagnetic
field. In general, the question of definition of the force acting on a matter moving in an electromagnetic field seems to 
have no universally accepted solution and several forms of the stress tensor are known [51,88,34]. It is thus necessary to 
emphasize that the form of the momentum flux (37b), quite abstract yet, is fully determined by the structure of the fluxes 
of the entire system (37) and, at this moment, it does not depend on the physical settings. The only remaining degree of 
freedom to fulfill experimental observations is to specify the total energy potential E and define a proper meaning of the 
state variables which then completely determine the force acting on the matter moving in an electromagnetic field. An 
example of such a potential and state variables will be given in Section 3.3.

We now make a very important remark about the divergence terms, ∂ek
∂xk

and ∂hk
∂xk

, in equations (37d) and (37e) as 
they have a clear physical meaning of electric and magnetic (hypothetical though) charge, respectively. It is necessary to 
emphasize that these terms are not added by hand, but they emerge during the Lagrange-to-Euler change of variables, 
see Appendix B. Moreover, as can be checked by taking the divergence of Eqs. (37d) and (37e), the following formal relations 
hold 

∂ R

∂t
+ ∂(vi R +Ji)

∂xi
= 0,

∂ Q

∂t
+ ∂(vi Q + Ki)

∂xi
= 0 , (44)

where R = ∂ei
∂xi

and Ji = 1
η Eei are the volume electric charge and the electric current, while Q = ∂hi

∂xi
and Ki ≡ 0 are, at least 

formally, the analogous magnetic charge and magnetic current. Because it is assumed that Ki ≡ 0, it follows from (44)2 that 
Q = ∂hi/∂xi ≡ 0 if it was so at the initial moment of time. Nevertheless, we stress that the term ∂hi/∂xi should not be 
dropped out from the equation (37e) because, first, this would destroy the Galilean invariance of the system9 and, secondly, 
such a system will be not compatible with the energy conservation.

3.2. (L, p)-formulation and symmetric hyperbolicity

In the previous section, the governing equations were formulated in terms of the state variables q and the total energy 
potential E(q). In this section, we also provide another, dual, formulation in terms of p-type state variables (flux fields) and 
a potential L whose physical meaning is, in fact, identical to the generalized pressure (43). This formulation is not used for 
the numerical solution, but allows to emphasize an exceptional role of the generating potentials L and E in our formalism.

If we introduce the new vector of state variables 

p = (r, vi,αik,di,bi, ηk, T ) (45)

as the following partial derivatives of the total energy density E = ρE with respect to the conservative state variables q, 
where 

r = Eρ, vi = Emi , αik = EAik , di = Eei , bi = Ehi , ηk = Ewk , T = Eσ ,

and a new potential L(p) = q · p − E = rρ + vimi + αi j Aik + diei + bihi + ηi wi − E as the Legendre transformation of E then 
system (37) can be rewritten as (see details in [72,119,120,109]) 

∂Lr

∂t
+ ∂[(vk L)r]

∂xk
= 0, (46a)

∂Lvi

∂t
+ ∂

∂xk

[
(vk L)vi + αmk Lαmi − δikαmn Lαmn − di Ldk − bi Lbk

]= 0, (46b)

8 We emphasize, however, that the definition of the pressure plays no role in the model formulation and introduced merely for convenience.
9 One may show that if the terms such as ∂hi/∂xi are dropped out from the system than a non-physical characteristic appears with a 0 velocity instead 

of v ± c which apparently violates the Galilean invariance [112]. Here, v is the velocity of the media and c is some wave propagation speed.
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∂Lαik

∂t
+ ∂[(vm L)αim ]

∂xk
+ εkljεlmn v j

∂Lαin

∂xm
= − 1

ρθ1
αik, (46c)

∂Ldi

∂t
+ ∂[(vk L)di − vi Ldk − εiklbl]

∂xk
+ vi

∂Ldk

∂xk
= − 1

η
di, (46d)

∂Lbi

∂t
+ ∂[(vk L)bi − vi Lbk + εikldl]

∂xk
+ vi

∂Lbk

∂xk
= 0, (46e)

∂Lηi

∂t
+ ∂[(vk L)ηi + δik T ]

∂xk
= − ρ

θ2
ηi, (46f)

∂LT

∂t
+ ∂[(vk L)T + ηk]

∂xk
= 1

T

(
1

ρθ1
αikαik + ρ

θ2
ηiηi + 1

η
didi

)
. (46g)

In terms of the potential L, the symmetric Cauchy stress tensor �ik reads 

�ik = −δik
(
L − αmn Lαmn

)− αmk Lαmi + di Ldk + bi Lbk . (47)

As in the Lagrangian framework, the parametrization of the governing equations in terms of the flux fields p and gener-
ating potential L(p) allows to rewrite the system in a symmetric quasilinear form. Moreover, if L is a convex potential, then 
the system (46) is symmetric hyperbolic, since it can be written as 

M(p)
∂p

∂t
+Hk(p)

∂p

∂xk
= S(p), (48)

with MT = M = Lpp > 0, HT
k = Hk and S being the vector of the algebraic source terms, i.e. those terms on the right 

hand side of (46). This was discussed many times in [69,70,119,71,119] and we omit these details.

3.3. Closure relation and the choice of state variables

As we have seen in the previous sections and Paper I, the total energy potential E(q) or its dual potential L(p) has the 
meaning of a generating potential, and in order to close system (37) or (46), one needs to specify one of these potentials 
(the other one then can be obtained as the Legendre transformation). In this section, we provide a particular example for 
the energy E which completely defines equations (37) and which then will be used in the numerical part of the paper. Of 
course, other specifications of the energy E are possible.

One should however note that there is still no universally accepted set of equations describing the motion of a de-
formable dielectric medium in electromagnetic fields, and we do not have a reference system of PDEs to compare with. At 
the same time, we note that the resulting equations are not in contradiction with the existing theories, e.g. [83,60,88,51]
but rather generalize them.

The SHTC formalism described above and in the papers [65,69,70,119,120,72] gives us the information about the general 
structure of the macroscopic time evolution equations, while the question of the choice of the state variables remains 
unaddressed. However, we are interested only in those state variables whose time evolution equations can be cast into the 
forms (37) or (46). In this section we introduce such state variables for the electromagnetic field.

After the choice of the state variables has been done, another nontrivial task is to specify the generating potentials E or L. 
According to the SHTC formalism, such potentials should be convex functions of the chosen state variables and depend on 
these variables only through their invariants. In general, these potentials should be derived from microscopic theories such 
as nonequilibrium statistical physics, kinetic theory, etc. To the best of our knowledge, there were no successful attempts to 
derive such potentials from microscopic theories for such a general case considered here. In this section, we complete the 
model formulation by specifying state variables and the potential E = ρE .

We assume the following additive decomposition of the total energy 

E(ρ,m, A,e,h, J, s) = Emicro(ρ, s) + Emeso(A, J) + Emacro(m,e,h). (49)

These three terms are refereed to as the part of the total energy distributed on the microscale (Emicro is the kinetic energy 
of the molecular motion), on the mesoscale which is the scale of the continuum particles, Emeso, and on the observable 
macroscale represented by Emacro. The first two terms were specified in Paper I, while the third term, macroscopic energy, 
was represented by the macroscopic kinetic energy. In the presence of the electromagnetic field, the macroscopic energy 
carries also the contribution of the electromagnetic field.

In this paper, we use the same expressions for the energies Emicro and Emeso as specified in [110] and Paper I. Moreover, 
for the rest of this section, we ignore the dissipative effects and thus we assume that Emeso = 0 as it has no influence on the 
specification of the energy Emacro. We are now in position to specify the macroscopic part Emacro(m, e, h) of the total energy 
and to give a certain meaning to the electromagnetic fields e and h and to the generalized momentum m. The following 
strategy will be used. Because no exact physical meaning is assigned yet to the fields m, e and h, we cannot construct the 
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potential Emacro(m, e, h) directly. However, as usual, the flux fields v, d and b have more intuitive meaning10 and thus we 
first construct the dual potential L(r, v, d, b) and then, according to the SHTC formalism, we define density fields and the 
potential E as 

ρ = Lr, mi = Lvi , ei = Ldi , hi = Lbi , E = rLr + vi Lvi + di Ldi + bi Lbi − L. (50)

Following the paper [119] and the discussion made in Appendix A, we define the potential L (for brevity, we also assume 
that the medium is isentropic and omit entropy in this section) as the following function 

L(r,v,d,b) = ρ2eρ + 1

2

(
ε′didi + μ′bibi

)+ ε′μ′ εi jk vid jbk, (51)

or 

L(r,v,d,b) = ρ2eρ + 1

2

(
ε′d2 + μ′b2

)
+ ε′μ′ v · (d × b)

of the state variables 

p = (r,v,d,b), (52)

where e = ρ−1Emicro is the specific internal energy, r = e + ρeρ − vi vi/2 is a scalar state variable dual to the density 
(see (50)1), v is the velocity of the medium, μ′ = μ0μr denotes the magnetic permeability (we use μ′ throughout this 
paper, to avoid confusion with the fluid viscosity μ, which is also used later) and ε ′ = ε0εr is the electric permittivity of 
the continuum. As usual, μ0 and ε0 are respectively the permeability and the permittivity of vacuum, while εr and μr are 
dimensionless parameters that depend on the material. We furthermore use the standard relation between the speed of 
light in the medium c, the magnetic permeability and the electric permittivity of the medium: 

c2 = 1

ε′μ′ . (53)

Eventually, the fields d = [di] and b = [bi] are the electric and magnetic fields in the comoving frame11 with velocity v, 
which are related to the electric field E = [Ei] and the magnetic field B = [Bi] in the laboratory frame by

d = [Ei + εi jk v j Bk] = E + v × B, (54)

b = 1

μ′ [Bi − 1

c2
εi jk v j Ek] = 1

μ′

(
B − 1

c2
v × E

)
. (55)

The motivation for this choice of the potential L is in the field equations for a slowly moving medium (see §76 of 
[83] and [88]) obtained under the assumption of small v2/c2 ratios. To show that the equations from [83,88] are indeed 
recovered in our formalism, one needs to put the partial derivatives Ldi = ∂L/∂di and Lbi = ∂L/∂bi

e = [Ldi ] = [ε′di − ε′μ′ εi jk v jbk] = ε′d − 1

c2
v × b, (56)

h = [Lbi ] = [μ′bi + ε′μ′ εi jk v jdk] = μ′b + 1

c2
v × d, (57)

into the equations (46d) and (46e).
According to the momentum equation (46b), the field-medium momentum density ρu = m = [mi] is defined as the 

partial derivative of L with respect to v

m = [Lvi ] = [ρvi + ε′μ′ εi jkd jbk] = ρv + 1

c2
d × b , (58)

which includes the Poynting vector. Here, one needs to take into account that the potential L is not a fully explicit function 
of unknowns (52). Namely, the hydrodynamic pressure ρ2eρ is the implicit part, and to compute the derivative Lvi one 
needs also to express ρ2eρ in terms of r = e + ρeρ − vi vi/2, vi , di and bi , e.g. see [72].

Note that fields e and h can be obtained from the electric and magnetic fields E and B in the Eulerian frame as

10 This, however, should not be a reason to use flux fields as the state variables because usually time evolution equations for the flux fields are highly 
complex and, which is more important, have no apparent structure.
11 We note that it is necessary to distinguish a comoving frame from the Lagrangian frame of reference used in Section 2.1. Both frames move with the 

matter, however the distance between two points in the comoving frame changes in time (because it is measured with respect to the Laboratory frame) 
while it is constant in the Lagrangian frame (because the distance is measured with respect to the reference frame itself). That is why the transformation of 
fields between the comoving and the Laboratory frame involves only the velocity, like in (54) and (55), but it involves the deformation gradient Fi j = ∂xi

∂ y j

in the other case, see (40).
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e = ε′
(

E + 1

c2
v × (v × E)

)
, (59)

h = B + 1

c2
v × (v × B). (60)

An apparent difference between the fields (d, b) and (e, h) is that each of the fields (d, b) depends on both E and B while 
the fields (e, h) depend on either E or B.

The unknown functions (52) belong to the p-type state variables (flux fields) in our classification, while the energy po-
tential E depends on q-type state variables (density fields) which are ρ , m, e and h. Therefore, to complete the formulation 
of the model, we need to find the expression for E(ρ, m, e, h).

According to the SHTC formalism, total energy density E(ρ, m, e, h) is the Legendre transformation of L(r, v, d, b):

E = rLr + vi Lvi + di Ldi + bi Lbi − L = (e + ρeρ − vi vi/2)ρ + vimi + diei + bihi − L. (61)

It appears that to express E = ρE explicitly in terms of ρ , m, e and h only is a nontrivial task. However, using formu-
las (58), (56) and (57), it can be easily expressed in terms of the dual variables v, d and b as 

E(ρ,v,d,b) = ρe + 1

2

(
ρv2 + ε′d2 + μ′b2

)
+ 2ε′μ′

∣∣∣∣∣∣
v1 d1 b1
v2 d2 b2
v3 d3 b3

∣∣∣∣∣∣ , (62)

Moreover, because we restrict ourselves to flows for which v2/c2 � 1 is small and terms of the order c−4 can be ignored, 
then an approximate expression for E can be obtained in terms of ρ , m, e and h. Under such assumptions, E can be 
approximated as 

E(ρ,m,e,h) = ρe + 1

2

(
1

ρ
m2 + 1

ε′ e2 + 1

μ′ h2
)

− 1

2ρ

∣∣∣∣∣∣
m1 e1 h1
m2 e2 h2
m3 e3 h3

∣∣∣∣∣∣ . (63)

When compared with (49) then ρe is Emicro and the rest of the terms in (63) are Emacro, while we recall that Emeso was 
omitted in this section. Therefore, system (37) together with the energy potential (63) supplemented by Emeso from Paper I 
form the closed system of PDEs.

Note that (62) can be also rewritten in terms of v, E and B as 

E = ρe + 1

2

(
ρv2 + ε′E2 + 1

μ′ B2
)

, (64)

where we again ignore quadratic terms in v/c and terms of the order of c−4. Remark that the determinant term is not 
present in E if the fields E and B are used.

We accomplish the model formulation by giving an explicit formula for the total stress tensor � in the case of an 
inviscid medium moving in the electromagnetic field. Note that this expression for the stress tensor is, of course, the result 
of a particular definition of the energy potential (63). Thus, using formulas (63) and (42), one can write (42) as

�(ρ,m,e,h) = −P I − 1

ρ
m ⊗ m + 1

ε′ e ⊗ e + 1

μ′ h ⊗ h + 1

ρ
m ⊗ (e × h), (65)

P = p + 1

2

(
1

ε′ e2 + 1

μ′ h2
)

. (66)

where ⊗ means the dyadic product, I is the identity tensor, p = ρ2eρ is the matter pressure.
If required, the stress tensor can be expressed in terms of v, d and b using formulas (47) and (51) as

�(ρ,v,d,b) = −P I + ε′d ⊗ d + μ′b ⊗ b + ε′μ′[b ⊗ (v × d) − d ⊗ (v × b)], (67)

P = L = p + 1

2

(
ε′d2 + μ′b2

)
+ ε′μ′ v · (d × b). (68)

Eventually, for the slowly moving media, the above formulas are equivalent to the following one written in terms of v, E
and B

�(ρ,v,E,B) = −P I + ε′E ⊗ E + 1

μ′ B ⊗ B, (69)

P = p + 1

2

(
ε′E2 + 1

μ′ B2
)

. (70)

We recall that the scalar P is introduced merely for convenience and should not be understood as the total pressure tr�, 
trace of the stress tensor, but just as a part of it.
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4. The mathematical model for the numerical solution

The form of the equations adopted for the numerical simulations is obtained from system (37) closed by (63) by dropping 
the terms of the order v2/c2 and by expressing the contributions to the momentum and total energy equation in conven-
tional form, i.e. by using the fluid pressure, the electro-magnetic pressure, the viscous stress tensor and the Maxwell stress 
tensor. From v2/c2 � 1 it also follows that ei = Ei/(μ

′c2) = ε′Ei = Di and hi = Bi , see also Appendix A. In this notations, 
the relations between v, d, b and m, D, B read as (see (55), (54) and (58))

d = 1

ε′ D + v × B, (71)

b = 1

μ′ B − v × D, (72)

and 

m = ρv + ε′μ′ d × b = ρv + D × B − μ′D × (v × D) − ε′B × (v × B). (73)

Furthermore, the compatibility condition ∇ · B = 0 in general holds exactly only at the continuous level. Within a numer-
ical method, discretization errors can lead to a violation of this constraint, which is a well-known problem in computational 
electro-magnetics. Therefore, in this paper the divergence constraint on the magnetic field is imposed by making use of 
the hyperbolic generalized Lagrangian multiplier (GLM) approach of Dedner et al. [31], which introduces an evolution equa-
tion for an additional auxiliary field variable ϕ with associated propagation speed ch , that is supposed to propagate errors 
in the ∇ · B = 0 constraint out of the computational domain. However, it has to be pointed out that there are also very 
important and widely-used numerical methods that guarantee the divergence condition exactly even at the discrete level 
by using a proper discretization of the equations on staggered grids, see for example the Yee scheme [141] for the time 
domain Maxwell equations and its extension to the MHD equations proposed by Balsara and Spicer in [4]. For very recent 
developments concerning exactly divergence-free high order schemes, see [5,7,6]. We also note that within this paper, we 
do not take any measures to enforce the compatibility conditions on the distortion A or on the electric field D. After that, 
system (37) reads as 

∂ρ

∂t
+ ∂ρvk

∂xk
= 0, (74a)

∂mi

∂t
+ ∂ (mi vk + pδik − σik + βik)

∂xk
= 0, (74b)

∂ Aik

∂t
+ ∂ Ain vn

∂xk
+ v j

(
∂ Aik

∂x j
− ∂ Aij

∂xk

)
= − ψik

θ1(τ1)
, (74c)

∂(ρ J i)

∂t
+ ∂ (ρ J i vk + T δik)

∂xk
= − ρHi

θ2(τ2)
, (74d)

∂ Di

∂t
+ ∂ (vk Di − vi Dk − εiklbl)

∂xk
+ vi

∂ Dk

∂xk
= − 1

η
di, (74e)

∂ Bi

∂t
+ ∂ (vk Bi − vi Bk + εikldl + ϕδik)

∂xk
+ vi

∂ Bk

∂xk
= 0, (74f)

∂(ρE)

∂t
+ ∂

(
vkρE + vi[pδik − σik + βik] + εi jkdib j + qk

)
∂xk

= 0, (74g)

∂ϕ

∂t
+ ∂

(
c2

h Bk
)

∂xk
= 0, (74h)

where εi jk is the three dimensional Levi-Civita tensor. Neglecting the presence of the artificial scalar ϕ , the entropy produc-
tion equation is given according to (37g) by 

∂(ρs)

∂t
+ ∂ (ρsvk + Hk)

∂xk
= ρ

θ1(τ1)T
ψikψik + ρ

θ2(τ2)T
Hi Hi + 1

ηT
didi ≥ 0. (75)

In the following, we will refer to the above model given by (74a)–(75) also as the Godunov–Peshkov–Romenski (GPR) 
model. These equations are the mass conservation (74a), the momentum conservation (74b), the time evolution for the 
distortion (74c), the time evolution equations for the electric and magnetic field (74e) and (74f), the evolution equations 
for the thermal impulse (74d) and the entropy (75) as well as the total energy conservation law given by (74g). The PDE 
governing the time evolution of the thermal impulse (74d) looks formally very similar to the momentum equation (74b), 
where the temperature T takes the role of the pressure p. Due to this similarity, it will also be called the thermal momentum 
equation in the following.
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Recall that the system (74)–(75) is an overdetermined system of PDEs which has one more equation than the number of 
unknowns. In the formulation of the SHTC formalism, see Section 2.1 and 3, the energy potential plays an exceptional role 
and its time evolution is considered as an extra conservation law which is a consequence of the rest of the governing equa-
tions. However, from the numerical viewpoint, it is convenient to consider the total energy among the unknowns and the 
entropy law as an extra equation. This means that the entropy equation (75) is not discretized and that the entropy is found 
on each time instant t = tn+1 as the solution to the nonlinear algebraic equation E(ρn+1, s, vn+1, An+1, Jn+1, Dn+1, Bn+1) =
En+1.

According to the definitions made in the previous sections of this paper, [Aik] = A is the distortion, [ J i] = J is the thermal 
impulse vector, s is the entropy, E = ρE = ρE(ρ, s, v, A, J, D, B) is the total energy density (specified below), p = ρ2 Eρ is 
the fluid pressure, δik is the Kronecker delta and [σik] = σ = [−Ami(ρE)Amk ] is the symmetric stress tensor. Because we are 
interested in flows for which the ratio v2/c2 � 1 is small (Newtonian limit), the Maxwell stress reduces to (see (69)–(70))

β = 1

2

(
1

ε′ D2 + 1

μ′ B2
)

I − 1

ε′ D ⊗ D − 1

μ′ B ⊗ B. (76)

Moreover, T = Es = (ρE)ρs is the temperature, [qk] = q = [Es E Jk ] is the heat flux vector; θ1 = θ1(τ1) > 0 and θ2 =
θ2(τ2) > 0 are positive scalar functions, which will be specified below, and which depend on the strain dissipation time 
τ1 > 0 and on the thermal impulse relaxation time τ2 > 0. The parameter η > 0 is the electric resistivity of the medium. All 
the relaxation parameters τ1, τ2 and η in general may depend on the state parameters, however, in this paper we consider 
them to be constant. The viscous stress tensor and the heat flux vector are directly related to the dissipative terms on the 
right hand side via σ = −ρ AT ψ and q = T H.

The first two non-conventional dissipative terms ψik and Hi on the right hand side of the evolution equations for A , J, 
Ei and s are given by [ψik] = ψ = [E Aik ] and [Hi] = H = [E Ji ], respectively. The algebraic source term on the right-hand side 
of equation (74c) describes the shear strain dissipation due to material element rearrangements, see [110] for a detailed 
discussion. The source term in (74d) describes the relaxation of the thermal impulse due to heat exchange between material 
elements, while the one in the governing equations for the electric field (74e) is the well-known law of Ohm [102].

We stress that in the GPR model (74a)–(75) derived within the SHTC framework, all dissipative processes have the 
same structure and take the form of algebraic relaxation source terms. The structure of these terms is a result of the SHTC 
formalism, in order to guarantee energy conservation and consistency with the second principle of thermodynamics, see 
also [42].

As a result of this observation, it is very interesting to note that the dissipative term − 1
η di in the PDE for the electric field

is given by the well-known Ohm law [102] discovered in 1826, which already has a suitable structure that directly fits into 
the SHTC framework. It is a question of mere philosophical nature, but from the viewpoint of hyperbolic thermodynamically 
compatible systems, it seems that a mathematically more consistent and perhaps even more profound insight into the 
physics of dissipative processes has first been discovered in the equations of electro-dynamics rather than in the classical 
standard laws of dissipative transport processes, such as the Newtonian law for viscous fluids and the Fourier law for heat 
transfer. The latter lead to parabolic differential terms in the governing equations, while Ohm’s law in the Maxwell equations 
does not generate parabolic terms.

As detailed in the previous sections, Eρ , Es , E Aik and E Ji should be understood as the partial derivatives ∂ E/∂ρ , ∂ E/∂s, 
∂ E/∂ Aik and ∂ E/∂ J i ; they are the so-called energy gradients in the state space or the thermodynamic forces.

One can clearly see that in order to close the system, it is necessary to specify the total energy potential 
ρE(ρ, s, v, A, J, d, b). This potential then generates all the constitutive fluxes (i.e. non-advective fluxes) and source terms 
by means of its partial derivatives with respect to the state variables. Hence, the energy specification is one of the key steps 
in the model formulation.

The total energy density (i.e. energy per unit volume) ρE is the sum of four terms, i.e. 

ρE(ρ, s,v, A, J,d,b) = ρE int(ρ, s) + ρEmes(A, J) + ρEkin(v) + Eem(d,b) , (77)

where

• E int is the specific (i.e. per unit mass) internal energy, which depends on the equation of state chosen, and which in 
the rest of the paper we assume to be that of an ideal gas 

E int(ρ, s) = c2
0

γ (γ − 1)
, c2

0 = γργ −1es/cV , (78)

or the stiffened gas equation of state 

E int(ρ, s) = c2
0

γ (γ − 1)

(
ρ

ρ0

)γ −1

es/cV + ρ0c2
0 − γ p0

γρ
, c2

0 = const. (79)

In both cases, c0 has the meaning of the adiabatic sound speed, cV is the specific heat capacity at constant volume, γ
is the ratio of the specific heats, i.e. γ = cP /cV , if cP is the specific heat capacity at constant pressure. In (79), ρ0 is the 
reference mass density, p0 is the reference (atmospheric) pressure.
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• Emes is the specific energy density at the mesoscale level 

Emes(A, J) = c2
s

4
GTF

i j GTF
i j + α2

2
J i J i, (80)

with

[GTF
i j ] = dev(G) = G − 1

3
tr(G)I, and G = AT A. (81)

Here, [GTF
i j ] = dev(G) is the deviator, or the trace-free part, of the tensor G = AT A and tr(G) = Gii is its trace, I is the 

unit tensor and cs is the characteristic velocity of propagation of transverse perturbations. In the following we shall 
refer to it as the shear sound velocity.

• Ekin = 1

2
vi vi is the specific kinetic energy and, finally

• Eem is the energy density of the electromagnetic field, which is given by (see (62)) 

Eem(d,b) = 1

2

(
ε′d2 + μ′b2

)
+ 2ε′μ′v · (d × b) , (82)

or by the following approximate relation in terms of quantities in the laboratory frame (see (64)) 

Eem(D,B) = 1

2

(
1

ε′ D2 + 1

μ′ B2
)

. (83)

In our implementation, we have used (82), since it uses less assumptions.

After the total energy potential has been specified, one can write all fluxes and source terms in an explicit form. Thus, 
for the energy Emes(A, J) given by (80), we have ψ = E A = c2

s A dev(G), hence the shear stresses are 

σ = −ρ ATψ = −ρ AT E A = −ρc2
s G dev(G), (84)

and the strain dissipation source term is 

− ψ

θ1(τ1)
= − E A

θ1(τ1)
= − 3

τ1
|A| 5

3 A dev(G), (85)

where we have chosen θ1(τ1) = τ1c2
s /3 |A|− 5

3 , with |A| = det(A) > 0 the determinant of A and τ1 being the strain relaxation 
time, or, in other words, the time scale that characterizes how long a continuum particle is connected with its neighbor 
elements before rearrangement.12 Note, that the determinant of A must satisfy the constraint

|A| = ρ

ρ0
, (86)

where ρ0 is the density at a reference configuration, see [110]. Furthermore, from the energy potential Emes(A, J) the heat 
flux vector follows with E J = α2J directly as 

q = T H = Es EJ = α2T J. (87)

For the thermal impulse relaxation source term, we choose θ2 = τ2α
2 ρ

ρ0

T0
T , and hence 

− ρH

θ2(τ2)
= − ρEJ

θ2(τ2)
= − T

T0

ρ0

ρ

ρJ

τ2
. (88)

It contains another characteristic relaxation time τ2 that is associated to heat conduction.

5. Formal asymptotic analysis and wave speeds

In [42] we have studied in detail the behavior of the GPR model in the stiff relaxation limit τ1 → 0 and τ2 → 0 without 
the presence of electro-magnetic forces. Here, we briefly present the main results of this analysis and extend it also to 
the case when η → 0 and c → ∞. In all cases, the employed technique is a formal asymptotic analysis based on the 
Chapman–Enskog expansion.

12 Following Frenkel [54], this relaxation time was called particle-settled-life (PSL) time in [110].



M. Dumbser et al. / Journal of Computational Physics 348 (2017) 298–342 317
5.1. Asymptotic limit of the viscous stress tensor

Here we briefly recall the main results found in [42] when expanding the tensor G = AT A in a series of the relaxation 
parameter τ1, 

G = G0 + τ1G1 + τ 2
1 G2 + ... (89)

To analyze the stress tensor in the stiff relaxation limit we start from the derivation of an evolution equation for G. Using 
the definition of G = AT A and the product rule, we obtain Ġ = AT Ȧ + Ȧ

T
A, where the dot denotes the Lagrangian or material

derivative Ġ = dG/dt = ∂G/∂t + v · ∇G. Summing up equation (74c) multiplied by AT from the left and transposing equation 
(74c) multiplied by A from the right, and using that σ = −ρ AT E A = −ρ(E A)T A = σ T we obtain the sought evolution 
equation under the following form: 

Ġ = −
(

G∇v + ∇vTG
)

+ 2

ρ θ1
σ , (90)

where ∇v is the velocity gradient. As in [42] we define θ1 = τ1|A|− 5
3 c2

s /3 = τ1|G|− 5
6 c2

s /3. With E A = c2
s A dev(G) and after 

inserting (89) into (90) and collecting terms of the same power in τ1 one has 

τ−1
1

(
6|G| 5

6 G dev(G0)
)

︸ ︷︷ ︸
0

+τ 0
1

(
dG0

dt
+ ...

)
︸ ︷︷ ︸

0

+... = 0. (91)

Relation (91) holds for any τ1, hence the coefficients which multiply powers of τ1 must be equal to zero. Since ρ =
ρ0|A| = ρ0|G| 1

2 > 0 we have |G| > 0, which means that G is invertible. Thus, the leading order term (τ−1
1 ) in (91), yields 

dev (G0) = 0, ⇒ G0 − 1

3
tr (G0) I = 0, ⇒ G0 = 1

3
tr (G0) I. (92)

Introducing the definition g := 1
3 tr (G0) and neglecting higher order terms, we obtain 

G = gI + τ1G1 = AT A, (93)

i.e. in the stiff limit τ1 � 1, the distortion matrix A tends to an orthogonal matrix. The coefficient g can be easily com-

puted from the determinant of G and the compatibility condition ρ = ρ0|A| as g = |G| 1
3 = |A| 2

3 = (ρ/ρ0)
2
3 . Retaining only 

the leading term G0 in the expansion (89) we get G = G0 = gI and thus σ = −ρc2
s G0 dev(G0) = 0, hence as zeroth order 

approximation one retrieves the inviscid case in the limit τ1 → 0.
To get a first order approximation of the viscous stress tensor σ in terms of τ1 one needs to expand the stress tensor 

(84) in a series of τ1. With G = gI + τ1G1 one has that ρ = ρ0|A| = ρ0|gI + τ1G1| 1
2 = ρ0(g3/2 + τ1

2 g1/2 tr(G1) +O(τ 2
1 )) and 

dev(G) = dev(gI + τ1G1) = τ1 dev(G1). Then, the viscous stress tensor can be written as 

σ = −ρc2
s G dev(G) = −ρ0c2

s

(
g3/2 + τ1

2
g1/2 tr(G1)

)
(gI + τ1G1) τ1 dev(G1). (94)

Retaining only the leading terms τ1 yields the simple expression 

σ = −τ1ρ0c2
s g5/2 dev(G1). (95)

After applying the “dev” operator to (90) one gets the following evolution equation for dev(G): 

d

dt
dev(G) + G∇v + ∇vTG − 1

3
tr(G∇v + ∇vTG)I = − 6

τ1
|G|5/6 dev(G dev(G)). (96)

Inserting (89) into (96) and recalling from (92) that dev G0 = 0, one gets the following relation for the leading order terms 
(τ 0

1 ): 

G0∇v + ∇vTG0 − 2

3
tr(G0∇v)I = −6|G0|7/6 dev(G1).

Since G0 = gI, the last relation can be rewritten as 

g

(
∇v + ∇vT − 2

3
tr(∇v)I

)
= −6 g7/2 dev(G1). (97)

After inserting (97) into (95) one obtains the following final expression for the first order approximation of the viscous 
stress tensor in terms of τ1: 
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σ = 1

6
τ1ρ0c2

s

(
∇v + ∇vT − 2

3
tr(∇v)I

)
:= μ

(
∇v + ∇vT − 2

3
(∇ · v)I

)
, (98)

This is nothing else than the classical viscous stress tensor that is known from the compressible Navier–Stokes equations 
(using Stokes’ hypothesis), where the dynamic viscosity coefficient is given in terms of the relaxation time τ1 and the shear 
sound speed cs as 

μ = 1

6
τ1ρ0c2

s , (99)

see [110,42]. For a comment on the possible experimental measurement of τ1 and cs see [42]. We stress at this point that 
the usual form of the viscous stress tensor of the compressible Navier–Stokes equations is a result of the model, which is 
obtained by the mere choice of a quadratic energy potential in terms of GT F . The special choice of θ1 was only made to 
produce a constant viscosity coefficient μ. More general relations of μ (say, e.g., the well-known law of Sutherland) can be 
obtained by a suitable choice of θ1.

5.2. Asymptotic limit of the heat flux

In [42] a formal asymptotic analysis was also carried out for the heat flux q = E S E J = α2T J. The Chapman–Enskog 
expansion of the thermal impulse vector J in terms of the small relaxation parameter τ2 � 1 reads 

J = J0 + τ2J1 + τ 2
2 J2 + ... (100)

With θ2 = τ2α
2 ρ

ρ0

T0
T the PDE (74d) for J becomes: 

∂ρJ

∂t
+ ∇ · (ρJ ⊗ u) + ∇T = − 1

τ2

T

T0

ρ0

ρ
ρJ. (101)

Inserting (100) into (101) and proceeding with the collection of the τ2 terms as in the previous section yields 

τ−1
2

(
T

T0

ρ0

ρ
ρJ0

)
︸ ︷︷ ︸

0

+τ 0
2

(
∂ρJ0

∂t
+ ∇ · (ρJ0 ⊗ u) + ∇T + T

T0

ρ0

ρ
ρJ1

)
︸ ︷︷ ︸

0

+... = 0. (102)

As a consequence one obtains the following relations for the first two terms in the expansion of J: 

J0 = 0, and J1 = − T0

Tρ0
∇T . (103)

As a result of (100) and (103) the heat flux vector q = α2T J becomes for small relaxation times τ2 � 1

q = α2T J = −α2τ2
T0

ρ0
∇T := −κ∇T , (104)

which is the familiar form of the Fourier heat flux with heat conduction coefficient κ = α2τ2
T0
ρ0

.

5.3. Asymptotic limit of the electro-magnetic stresses

In this paper the extended GPR model (74a)–(74g) also accounts for the presence of electro-magnetic forces and effects. 
We therefore analyze the model in the stiff relaxation limit for η → 0 and c → ∞. From (55) and (58) we immediately 
obtain b → 1

μ′ B and u → v for c → ∞. Furthermore, the governing PDE system for the electric field reduces for c → ∞ to 
the simple relation 

− 1

μ′ ∇ × B = − 1

η
d. (105)

A Chapman–Enskog expansion of d in terms of the small parameter η reads 

d = d0 + ηd1 + η2d2 + ... (106)

and thus eqn. (105) becomes 

η−1 (d0) + η0
(

d1 − 1
′ ∇ × B

)
+ ... = 0. (107)
μ



M. Dumbser et al. / Journal of Computational Physics 348 (2017) 298–342 319
Since the above equation must be valid for any η, we set all coefficients multiplying terms with η to zero and get as a 
result

d0 = 0, and d1 = 1

μ′ ∇ × B. (108)

From d0 = 0 and (54) follows immediately that at leading zeroth order the electric field behaves as E = −v × B, which is 
a well known relation for the ideal MHD equations. It also means that in the comoving frame, the electric field vanishes. 
Inserting (108) into the PDE for the magnetic field (74f) we obtain

∂ Bi

∂t
+ ∂

∂xk
(vk Bi − vi Bk) + vi

∂ Bk

∂xk
= − η

μ′
∂

∂xk
εikl

∂

∂xm
εlmp B p, (109)

i.e. we obtain the classical dissipative term of the type − η
μ′ ∇ × (∇ × B) = η

μ′ ∇ · (∇B − ∇BT
)

that is present in the viscous 
and resistive MHD equations [140,37]. For η � 1 and c → ∞ the flux term εi jkdib j in the energy equation (74g) becomes 
up to first order terms in η

d × b = η

(μ′)2
∇ × (B × B) = − η

(μ′)2
BT
(
∇B − ∇BT

)
, (110)

see [140,37]. Finally, the Maxwell stress tensor β reduces to 

β = 1

μ′

(
1

2
B2 I − B ⊗ B

)
, (111)

which is the usual relation for the ideal MHD equations.

5.4. Asymptotically reduced limit system

Combining the results of the previous sections, we get the following asymptotically reduced system (i.e. if only first order 
terms are kept in the formal series expansions (89), (100) and (106)) for the quantities ρ , ρu → ρv, ρE and B, in the stiff 
relaxation limit when η → 0, τ1 → 0 and τ2 → 0:

∂

∂t

⎛
⎜⎜⎜⎝

ρ
ρv
ρE
B
ϕ

⎞
⎟⎟⎟⎠+ ∇ ·

⎛
⎜⎜⎜⎜⎝

ρv
ρv ⊗ v + pI − σ + β

vT ((ρE + p)I − σ + β) + q − η
(μ′)2 BT

(∇B − ∇BT
)

B ⊗ v − v ⊗ B − η
μ′
(∇B − ∇BT

)+ ϕI
c2

hB

⎞
⎟⎟⎟⎟⎠= 0, (112)

with the viscous shear stress tensor of the fluid 

σ = μ

(
∇v + ∇vT − 2

3
∇ · v

)
, with μ = 1

6
τ1c2

s ρ0, (113)

the heat flux 

q = −κ∇T , with κ = τ2α
2 T0

ρ0
, (114)

and the Maxwell stress tensor of the electro-magnetic forces 

β = 1

μ′

(
1

2
B2 I − B ⊗ B

)
. (115)

The above system (112) is the classical viscous and resistive MHD system based on conventional parabolic terms for the 
description of dissipative momentum and heat transfer. In this system, also the electric resistivity of the medium is modeled 
by parabolic terms, which is in contrast to the original Maxwell equations. Because system (112) is one of the principal 
models that will be compared with the new hyperbolic model (74) in Section 7, it is therefore useful to compare these PDE 
systems in terms of the number of equations. As we discussed in Section 1.5, there are 23 time evolution equations that 
have to be solved in the SHTC formalism (we ignore here field ϕ which is only added for computational reasons in both 
approaches) and 8 PDEs to be solved in the classical second order parabolic approach. Thus, the flow is represented by 13 
fields (ρ, m, A) in (74) while it is represented by 4 fields (ρ, ρv) in (112). The electrodynamics is represented by 6 fields 
(D, B) in (74) and by 3 fields B in (112). Eventually, the heat transfer is represented by four fields (s, J) in (74) and by one 
field, the energy E , in (112).
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5.5. Characteristic velocities for the inviscid case

The approximate Riemann solvers used later in this paper only require extremal wave speed estimates, since we employ 
the simple Rusanov or local Lax–Friedrichs flux [123]. This means that the full eigenvalue decomposition of the coefficient 
matrices of the quasi-linear form of (74) is not needed. The same holds true if centered fluxes such as the FORCE method 
of Toro and Billet is used, see [133,134,41]. However, it is in general always useful to know the characteristic speeds in 
order to better understand the characteristic structure of a considered hyperbolic model. Unfortunately, to find analytical 
formulas for the characteristic speeds when all fields are present in (74) is a very difficult task and numerical linear algebra 
algorithms have to be used. However, even to obtain formulas for a simplified inviscid and non-heat conducting case might 
be useful for direct comparison with, for example, ideal MHD equations. We thus consider system (74) in a one-dimensional 
case, along the axis x1 (we also ignore equation (74h)) without the equations for the distortion field and thermal impulse. 
The following formulas for the characteristic velocities can be obtained

λ1,2,3,4 = 1√
ε′μ′ = ±c, λ5,6,7,8,9 = v1, λ10,11 = Z v1 − X ±√4Z(X v1 + Y ) + (Z v1 − X)2

2Z
, (116)

where

X = ρ
[
ε′B1

(
ρ − ε′B2

)
B · v + μD1

(
ρ − μ′D2

)
D · v +

ρv1

(
ρ − 3

(
μ′D2 − ε′B2

)
+ 2

ρ

(
μ′2 (D2

)2 + ε′2 (B2
)2
))

+(
ρ − μ′D2 − ε′B2

)
P1

]
− εμ′ (ρ (B1D · v + D1B · v)D · B − 4ρv1B2D2 −

P2
((

ρ − 2ε′B2 − 2μ′D2
)

v1 + P1

))
,

Y =−ρc2
0

[
ρ2 + ε′2 B2

1B2 + μ′2 D2
1D2 − ε′ρ

(
B2

1 + B2
)

− μ′ρ
(

D2
1 + D2

)
+ ε′μ′ (B2

1 D2
1 − (B · D − B1 D1)

2 + B2D2
)]

,

Z = −ρ

[
ρ2 − 2ε′ρB2 − 2μ′ρD2 + ε′2 (B2

)2 + μ′2 (D2
)2
)

+ ε′μ′ (ρ ((D · B)2 − 3B2D2
)

+(
μ′D2 + ε′B2

)(
B2D2 − (D · B)2

)]
,

and P = [Pi] = D × B. 
One may note that the characteristic speeds (116) are apparently different from those of the ideal MHD equations. 

For example, there is no light characteristics in the MHD equations such as λ1,2,3,4 above. These velocities correspond to 
the electric and magnetic fields and indicate that the field equations are not Galilean invariant,13 exactly as the Maxwell 
equations, while the MHD equations are Galilean invariant [112]. In addition, if the fields D and B are genuinely independent 
like in our case then there are no two pairs of the so-called fast and slow magneto-sonic waves [117], but instead we have 
only one pair of waves with velocities λ10,11. Note that speeds λ10,11 are not symmetric with respect to v1 in the presence 
of electro-magnetic fields. If however D = B = (0, 0, 0) then λ10,11 = v1 ±c0. As in the whole system (74), the velocity vector 
and the electro-magnetic fields are strongly entangled in λ10,11.

As discussed in [42,97,96], the characteristic speeds of the non-dissipative part of a hyperbolic relaxation model are not 
the real sound speeds but the high frequency limits of the sound speeds due to the dispersion of sound waves while the 
characteristic speeds of the ideal MHD equations should be obtained in our model as the low frequency limits, exactly as 
the classical adiabatic sound speed of the Euler equation is recovered in the low frequency limit of our SHTC model, as 
it is shown in [42]. The detailed dispersion analysis of the model is however beyond the scopes of this study and will be 
presented somewhere else.

6. The numerical scheme

As in Paper I, the governing equations of the SHTC formulation of the GPR model can be written as a nonlinear system 
of hyperbolic PDEs with non-conservative products and stiff source terms: 

13 To be more precise, the field equations of our model are not invariant under translations of the space but they are still rotationally invariant [65].
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∂Q

∂t
+ ∇ · F(Q) +B(Q) · ∇Q = S(Q), (117)

where Q = Q(x, t) is the state vector, F(Q) = (F1, F2, F3) is the nonlinear flux tensor expressing the conservative part of 
the PDE system, while S(Q) contains the potentially stiff algebraic relaxation source terms and B(Q) · ∇Q is a purely non-
conservative term. The explicit expressions for Q, F(Q) and S(Q) are directly obvious from (74).

The matrix B(Q) consists of zeros and only components of the velocity vector vi and accommodates the terms 

v j

(
∂ Aik

∂x j
− ∂ Aij

∂xk

)
, vi

∂ Dk

∂xk
, vi

∂ Bk

∂xk
(118)

on the left hand side of the equations (74c), (74e) and (74f).
The exact expressions for the elastic stress σik and Maxwell stress βik are given by (84) and (76), while the expressions 

for the pressure p = ρ2 Eρ and the temperature T = Es depend on the choice of the internal energy given by (78) or (79). 
The relaxation times τ1 > 0 and τ2 > 0 and the resistivity η > 0 are assumed to be constant of the order ∼ 10−3 in most of 
the numerical examples. The shear sound speed cs < c0 and the adiabatic sound speed c0 were typically taken of the order 
of ∼ 1, while the speed of light ∼ 10.

The system (117) can also be written in quasilinear form as 

∂Q

∂t
+A(Q) · ∇Q = S(Q) , (119)

where A(Q) = ∂F(Q)/∂Q +B(Q) includes both the Jacobian of the conservative flux, as well as the non-conservative product.
We choose to solve the PDE system (117) by using high order one-step ADER-DG methods, which evolve in time the 

degrees of freedom with respect to a given basis, rather than the point values or the cell averages of the solution, like 
in finite difference or in finite volume methods. Our description of the numerical scheme is limited to the most relevant 
aspects, while all the details can be found in [36,46,75,8,48,145,144]. At the generic time tn , the numerical solution of the 
PDE is represented within each cell Ti by polynomials of maximum degree N ≥ 0, namely 

uh(x, tn) =
N∑

l=0

�l(x)ûn
l = �l(x)ûn

l , x ∈ Ti , (120)

where the coefficients ûn
l are sometimes called the degrees of freedom. The functions �l(x) form a nodal basis, which is given 

by the Lagrange interpolation polynomials passing through the Gauss–Legendre quadrature nodes associated with element 
Ti , see [127]. The symbol N denotes the number of degrees of freedom per element and is given by N = (N + 1)d for 
tensor-product elements in d space dimensions.

6.1. The discontinuous Galerkin scheme

A fully discrete one-step ADER-DG scheme [36,48] is obtained after multiplying the governing PDE (117) by test functions 
�k identical to the spatial basis functions of Eq. (120). After that, we integrate over the space–time control volume Ti ×
[tn; tn+1]. Following the idea of path-conservative schemes, see [24,104,39,41], one obtains: ⎛

⎜⎝∫
Ti

�k�ldx

⎞
⎟⎠(ûn+1

l − ûn
l

)
+

tn+1∫
tn

∫
∂Ti

�k D−
h

(
q−

h ,q+
h

) · n dSdt

+
tn+1∫
tn

∫
Ti\∂Ti

�k (∇ · F (qh) +B(qh) · ∇qh)dxdt =
tn+1∫
tn

∫
Ti

�kS(qh)dxdt ,

(121)

where n is the outward pointing unit normal vector on the surface ∂Ti of element Ti . There are a couple of aspects worth 
mentioning in the above expression. First of all, we used the symbol qh to denote a predictor state available at any inter-
mediate time between tn and tn+1 and with the same spatial accuracy of the initial DG polynomial. The calculation of qh
is briefly described in the next Section. Second, the element mass matrix appears in the first integral of (121), the second 
term is a Riemann solver (written in terms of fluctuations) that accounts for the jump in the discrete solution at element 
boundaries and the third term takes into account the smooth part of the non-conservative product, while the fourth term 
(the one on the right hand side) accounts for the presence of the algebraic source terms. Third, due to the presence of 
non-conservative products, the jumps of qh across element boundaries are taken into account in the framework of path-
conservative schemes put forward by Castro and Parés in the finite volume context [24,104] and extended to discontinuous 
Galerkin schemes in [116,39,41]. Finally, as for the choice of the Riemann solver, in this paper we have used the sim-
ple Rusanov method [123] (also called the local Lax Friedrichs method), although any other kind of Riemann solver could 
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be adopted in principle, in particular the centered FORCE flux, which does not even need extremal wave speed estimates, 
see [133,134,41], or the recent generalizations of the Osher–Solomon flux proposed in [43,44,23], or the extension of the 
HLLEM method [50] recently forwarded in [38]. In all the latter Riemann solvers, it is sufficient to use a numerical eigen-
vector decomposition of the matrix A, which can be achieved with standard numerical linear algebra packages. In terms of 
fluctuations our path-conservative Rusanov method simply reads 

D−
h

(
q−

h ,q+
h

) · n = 1

2

(
F(q+

h ) − F(q+
h )
) · n + 1

2
B̃n
(
q+

h − q−
h

)− 1

2
smax

(
q+

h − q−
h

)
, (122)

where smax is an extremal wave speed estimate for the largest eigenvalue of A(q−
h ) · n and A(q+

h ) · n and the matrix B̃n

has been calculated according to [24,104,39,41,44] as the path integral

B̃n =
1∫

0

B
(
ψ(q−

h ,q+
h , s)

) · n ds, (123)

along the simple straight line segment path 

ψ = ψ
(
q−

h ,q+
h , s
)= q−

h + s
(
q+

h − q−
h

)
, with 0 ≤ s ≤ 1. (124)

The path integral in (123) has been computed numerically via Gauss quadrature, as suggested in [41,44,43]. Since the SHTC 
model presented in this paper explicitly includes the speed of light c as propagation speed, we simply set smax = c, assuming 
that all other wave speeds are bounded by c from above. The ADER-DG method described above refers to the unlimited
scheme. In the presence of discontinuities, a proper nonlinear limiting strategy is needed. Here, we use the a posteriori finite 
volume subcell limiter proposed in [48,145,144], which is based on the MOOD framework developed in [27,32,33].

6.2. Local space–time predictor

The computation of the predictor state qh is obtained after resorting to an element-local weak formulation of the gov-
erning PDE in space–time, see [40,36,75,46,8,48,145,144]. Since this procedure is performed locally for each computational 
element, irrespective of neighbouring elements, no Riemann problem is implied in that. To simplify notation, we define 

〈 f , g〉 =
tn+1∫
tn

∫
Ti

f (x, t)g(x, t)dx dt, [ f , g]t =
∫
Ti

f (x, t)g(x, t)dx, (125)

which denote the scalar products of two functions f and g over the space–time element Ti × [tn; tn+1
]

and over the 
spatial element Ti at time t , respectively. The discrete representation of qh in element Ti ×[tn, tn+1] is assumed to have the 
following form 

qh = qh(x, t) =
∑

l

θl(x, t)q̂n
l,i := θlq̂

n
l,i, (126)

where it is important to stress that θl(x, t) is now a space–time basis function, of degree N . At this point we multiply (117)
with a space–time test function θk = θk(x, t) and subsequently integrate over the space–time control volume Ti × [tn; tn+1

]
. 

Replacing for qh , the following weak formulation of the PDE is obtained: 〈
θk,

∂qh

∂t

〉
+ 〈θk,∇ · F (qh) +B(qh) · ∇qh〉 = 〈θk,S (qh)〉 . (127)

After integration by parts in time of the first term, eqn. (127) reads 

[θk,qh]tn+1 − [θk,uh(x, tn)
]tn −

〈
∂

∂t
θk,qh

〉
+ 〈θk,∇ · F (qh) +B(qh) · ∇qh〉 = 〈θk,S (qh)〉 . (128)

Eq. (128) represents a nonlinear system to be solved in the unknown expansion coefficients q̂n
l,i . We recall that, unlike the 

original ADER approach based on the Cauchy–Kowalevski procedure, the discontinuous Galerkin predictor just described 
remains valid even in the presence of stiff source terms, as it has been done for various physical systems in [46,75,143,45,
42] and as it is the case for the equations considered in this paper. Since the space–time predictor method above is locally 
implicit, we restrict our time step �t only based on a standard CFL-type stability condition for explicit DG schemes based 
on the maximum wave speed and not in terms of the relaxation times τ1, τ2 and the resistivity η, i.e. 

�t <
1

(2N + 1)

1
c + c + c , (129)
�x1 �x2 �x3
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where �xi are the mesh spacings in coordinate direction xi and we have again assumed that the maximum wave speed is 
the speed of light c and the term (2N + 1) is typical for high order explicit DG schemes. For more details on the time step 
restriction of explicit ADER-DG schemes, see [113,36]. 

7. Numerical results

In this section on numerical results, we will assume that the magnetic permeability of the medium is μ′ = 1 for all test 
problems, and only the speed of light c is explicitly specified. If not stated otherwise, the ideal gas equation of state (EOS) 
is used. Within this section, we will specify the standard material parameters that are conventionally used in continuum 
mechanics, i.e. the fluid viscosity μ and the heat conduction coefficient κ . Together with the associated wave speeds cs

(shear sound speed) and α (heat propagation wave speed), one can calculate the corresponding characteristic times τ1 and 
τ2 used in the GRP model according to the results (99) and (104) given by the formal asymptotic analysis presented in 
Section 5. Note that the model parameter η is already a well-known quantity, namely the electric resistivity of the medium 
used in the Ohm law. Also, remark that the wave speeds cs and α can be measured in the experiments on propagation of 
high frequency sound waves as discussed in paper I. The associated relaxation times τ1 and τ2 however might be extremely 
small, of the order of nanoseconds, and the use of such values would put the model into extremely stiff conditions. Thus we 
stress that if one is interested in simulating Newtonian flows with Fourier heat conduction it is not necessary to use physical 
values (recovered from an experiment or from a microscopic theory) for the model parameters. Indeed, the asymptotic 
analysis suggests that if the flow is in local equilibrium (Newton and Fourier transport laws are dominant) the process 
is not anymore governed by two parameters cs and τ1 (or α and τ2) but by their product, the viscosity μ = 1

6 ρ0τ1c2
s

(or heat conductivity κ ). In fact, in such a case, any values for the relaxation time are valid which satisfy two conditions 
τ1 = 6μ/(ρ0c2

s ) and τ1 � T , where T is the characteristic macroscopic time scale (time scale of the problem). If one 
chooses τ1 ≈ T then the flow will be viscoelastic with an apparent elastic effect, while if τ1 > T then the flow is absent 
and the medium deforms elastically during the time T . For the non-equilibrium flows when the Navier–Stokes–Fourier 
approximation does not work, the sound speed cs and relaxation time τ1 (or α and τ2) may not satisfy the relations (99) or 
(104) and, in fact, may not be constant anymore. In such a case, extra information (experiments) have to be used to define 
the model parameters.

7.1. Numerical convergence results in the stiff relaxation limit

As shown in the formal asymptotic analysis carried out in [42] and Section 5 of this paper, the governing PDE system 
(74a)–(74g) relaxes to the classical ideal MHD equations in the case where c → ∞ and when the relaxation times and the 
resistivity tend to zero, i.e. for τ1 → 0, τ2 → 0 and η → 0. We can use this knowledge in order to design a test case that 
allows us to verify numerically the order of accuracy of our high order one-step ADER-DG schemes in the stiff relaxation 
limit of the first order hyperbolic GPR model by comparing against known exact solutions of the ideal MHD system. For 
that purpose, we use the initial condition proposed by Balsara in [3] that consists of a smooth magnetized vortex. The 
computational domain used for this test is � = [−10, +10]2 and the initial condition is given by 

ρ = 1, u = 1 + δu, v = 1 + δv, w = 0, p = 1 + δp,

E = −v × B, A = 3
√

ρ I, J = 0,

with r =√x2 + y2, ε = 1
2π and the perturbations 

δu = −yε exp

(
1

2
(1 − r2)

)
, δv = +xε exp

(
1

2
(1 − r2)

)
, δp = −1

2
ε2r2 exp(1 − r2),

Bx = −yε exp

(
1

2
(1 − r2)

)
, B y = +xε exp

(
1

2
(1 − r2)

)
, Bz = 0.

For the governing PDE system, we use the following parameters: γ = 1.4, ρ0 = 1, cs = 0.8, α2 = 0.8, c = 100, μ = κ =
η = 10−6. The speed for the hyperbolic divergence cleaning in the GLM approach [31] is set to ch = 2. The simulations are 
carried out with a fourth and fifth order accurate ADER-DG scheme until a final simulation time of t = 0.1 using a sequence 
of successively refined meshes. The exact solution of the underlying ideal MHD problem consists in a mere transport of the 
initial condition translated with velocity v = (1, 1, 0). This test is very difficult for the GPR model, since the system is run in 
a very stiff regime and with c � 1, so that the resulting time step is very small due to the CFL condition. For that reason, 
only a small final simulation time has been chosen.

The obtained numerical convergence rates are reported in Table 1, where we can observe that the schemes reach their 
designed order of accuracy even in the stiff relaxation limit, which is a very important property of the numerical method 
used here.
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Table 1
Numerical convergence results for the magnetized vortex obtained with ADER-DG P3 and P4 schemes applied to the GPR model (cs = 0.8, α2 = 0.8, 
c = 100) in the stiff relaxation limit (μ � 1, κ � 1, η � 1). Results are shown for the magnetic field component Bx at a final time of t = 0.1. The reference 
solution is given by the exact solution of the ideal MHD equations.

Nx ε(L1) ε(L2) ε(L∞) O(L1) O(L2) O(L∞)

ADER-DG P3 (μ = κ = η = 10−6)

20 2.9646E−03 7.9141E−04 7.0490E−04
30 3.7070E−04 1.0288E−04 9.3677E−05 5.13 5.03 4.98
40 8.9193E−05 2.4785E−05 2.1279E−05 4.95 4.95 5.15
50 2.9814E−05 8.2723E−06 7.8091E−06 4.91 4.92 4.49

ADER-DG P4 (μ = κ = η = 10−6)

8 2.4129E−02 5.2803E−03 4.2926E−03
10 6.2946E−03 1.4070E−03 1.0618E−03 6.02 5.93 6.26
12 1.4985E−03 3.2871E−04 2.9132E−04 7.87 7.97 7.09
16 3.1902E−04 7.1927E−05 5.8008E−05 5.38 5.28 5.61

Fig. 1. Current sheet at time t = 0.1 simulated for different resistivities (η = 10−1 and η = 10−3) with the GPR model using an ADER-DG P2 scheme.

7.2. Current sheet

Here, we simulate a simple current sheet, see [82,46], in order to verify the correct description of resistive effects by the 
model. The computational domain is defined as � = [−1, +1] × [−0.1, +0.1] and the initial condition is given by ρ = 1, 
v = 0, A = I, J = 0, p = 1, Bx = Bz = 0 and B y = sign(x). The parameters for the simulation are ρ0 = 1, γ = 1.4, cs = 0.8, 
α2 = 0.8, c = 10, μ = κ = η. In this test, two different values for the resistivity have been used, namely η = 10−1 and 
η = 10−3, respectively. The exact solution for the time evolution of the magnetic field component B y in the current sheet 
is given by (see [82,46]): 

B y(x, t) = erf

(
x

2
√

ηt

)
.

A comparison between the exact solution and the numerical solution obtained with an ADER-DG P2 method on a uniform 
grid composed of 100 ×5 grid points for both values of the resistivity is depicted at time t = 0.1 in Fig. 1, where an excellent 
agreement can be observed in both cases. 

7.3. Riemann problems

While the previous test cases involved only smooth solutions, the Riemann problems solved in this section contain all 
different kinds of elementary flow discontinuities. The initial conditions for density, velocity, pressure and magnetic field 
together with the final simulation time te as well as the position of the initial discontinuity xd are summarized in Table 2, 
while the initial data for the remaining variables are given by A = 3

√
ρ I, J = 0 and E = −v × B. The computational domain 

is � = [−0.5, +0.5] × [−0.1, 0.1] and is discretized with an ADER-DG P2 method using an adaptive Cartesian mesh (AMR) 
with initial resolution on the level zero grid of 100 × 4 cells. Two levels of refinement are admitted (�max = 2) with a 
refinement factor of r = 3 between two adjacent levels. Refinement and recoarsening are based on the density as indicator 
variable. For more details on the AMR implementation, in particular for high order ADER schemes in combination with 
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Table 2
Initial states left and right for the density ρ , velocity vector v = (u, v, w), the pressure p and the magnetic field vector B = (Bx, B y , Bz). The final output 
times, (tend) and the initial position of the discontinuity (xd) are also given.

Case ρ u v w p Bx B y Bz te, xd

RP1 L: 1.0 0.0 0.0 0.0 1.0 3
4 1 0.0 0.1

R: 0.125 0.0 0.0 0.0 0.1 3
4 −1 0.0 0.0

RP2 L: 1.08 1.2 0.01 0.5 0.95 0.564189 1.015541 0.564189 0.2
R: 0.9891 −0.0131 0.0269 0.010037 0.97159 0.564189 1.135262 0.564923 −0.1

RP3 L: 1.0 0.0 0.0 0.0 1.0 1.3 1 0.0 0.16
R: 0.4 0.0 0.0 0.0 0.4 1.3 −1 0.0 0.0

time-accurate local time stepping (LTS), see [47,145]. The model parameters used for the simulation are γ = 5
3 , ρ0 = 1, 

cs = 0.8, α2 = 0.8, c = 10 and μ = κ = η = 10−4, i.e. we are in a rather stiff regime of the model where a comparison 
with the ideal MHD equations is appropriate. The results obtained with the GPR model for density ρ and the magnetic field 
component B y are depicted in Fig. 2 for all three problems, together with the exact solution of the Riemann problem of the 
ideal MHD equations. Overall, a good agreement can be noted, apart from the compound wave which can be observed in 
the density for RP1. This phenomenon is visible also in standard finite volume schemes applied to the ideal MHD equations, 
see e.g. [43].

7.4. MHD rotor problem

Here we solve the well-known MHD rotor problem originally proposed by Balsara and Spicer in [4] and later also used in 
many other papers on numerical methods for the ideal MHD equations. In this test problem, a rapidly rotating high density 
fluid (the rotor) is embedded in a low density atmosphere at rest. The fluid pressure and the magnetic field are initially 
constant everywhere. The rotor produces torsional Alfvén waves which travel into the outer fluid. The computational domain 
is defined as � = [−0.5, +0.5]2 and we use an ADER-DG P2 scheme on a uniform Cartesian grid composed of 200 × 200
elements. The initial density is ρ = 10 inside the rotor (0 ≤ r ≤ 0.1) and ρ = 1 for the outer fluid. The velocity in the outer 
fluid is initially set to zero, while it is given by v = ω × x inside the rotor, with ω = (0, 0, 10). The initial pressure is p = 1
and the magnetic field vector is set to B = (B0, 0, 0)T in the entire computational domain �, with B0 = 2.5√

4π
. As proposed 

by Balsara and Spicer, a linear taper is applied to the velocity and density field between 0.1 ≤ r ≤ 0.105. The other variables 
are initially set to A = 3

√
ρ I, J = 0 and E = −v × B. The speed for the hyperbolic divergence cleaning is set to ch = 2 and the 

model parameters are γ = 1.4, c = 10, α2 = 0.8, ρ0 = 1, cs = 0.8 and μ = κ = η = 10−4, which make the system sufficiently 
stiff so that a comparison with the ideal MHD equations is possible. The results are depicted at time t = 0.25 in Fig. 3 for 
the usual quantities density, pressure, Mach number and magnetic pressure. The results agree qualitatively well with those 
reported by Balsara and Spicer in [4], as well as those reported in other papers on high order numerical methods for the 
ideal MHD equations, see e.g. [36,47].

7.5. MHD blast wave problem

The MHD blast wave problem is a very challenging test problem even for numerical schemes applied to the ideal MHD 
equations. Here, we solve the GPR model (74a)–(74g) in a rather stiff regime so that comparisons with numerical results 
obtained with the ideal MHD equations are possible. The computational domain is given by � = [−0.5, +0.5]2 and is 
discretized with an ADER-DG P2 scheme on a uniform Cartesian grid using 200 × 200 elements. The initial data are ρ = 1, 
v = 0 and B = (B0, 0, 0) with B0 = 100√

4π
. The pressure is set to p = 1000 in a small internal circular region (r < 0.1) and is 

p = 0.1 elsewhere, hence the pressure jumps over four orders of magnitude in this test problem. Furthermore, the fluid is 
highly magnetized due to the presence of a very strong magnetic field in the entire domain.

The other variables of the model are initially set to A = 3
√

ρ I, J = 0 and E = −v × B. The speed for the hyperbolic diver-
gence cleaning is chosen as ch = 2 and the model parameters are given by γ = 1.4, c = 10, α2 = 0.8, ρ0 = 1, cs = 0.8 and 
μ = κ = η = 10−3. The computational results are depicted at time t = 0.01 in Fig. 4 for the magnetic field component Bx , 
the fluid pressure p, the density ρ and the color map of the limited cells and unlimited cells in red and blue, respectively. 
For details on the finite volume subcell limiter, see [48,145,144]. The computational results agree qualitatively with those 
reported by Balsara and Spicer in [4].

7.6. Inviscid Orszag–Tang vortex system

In this section we study the well-known Orszag–Tang vortex system for the MHD equations [103,30,111], comparing 
the numerical results of the GPR model with those obtained with the ideal MHD equations. The setup is the one used in 
[77] and [36]. In both computations, the numerical method and the computational grid used are identical, as well as the 
initial conditions for the density, velocity, pressure and the magnetic field. The other variables of the GPR model are set to 
A = 3

√
ρ I, J = 0 and E = −v ×B. The computational domain under consideration is � = [0, 2π ]2 with four periodic boundary 
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Fig. 2. MHD Riemann problems RP1 (top), RP2 (center) and RP3 (bottom) simulated with the GPR model (μ = κ = η = 10−4) using an ADER-DG P2 scheme 
with AMR and comparison with the exact solution of the ideal MHD equations. The fluid density ρ (left) and the magnetic field component B y (right) are 
depicted.

conditions and the initial conditions are given by ρ = γ 2, v = (− sin(y), sin(x), 0), p = γ and B = (− sin(y), sin(2x), 0), with 
γ = 5

3 . The remaining parameters of the GPR model are c = 10, α2 = 0.8, cs = 0.8, ch = 2, ρ0 = 1 and μ = κ = η = 10−4, so 
that the system is sufficiently stiff in order to allow a comparison with the ideal MHD equations. Simulations are carried out 
on a uniform Cartesian grid composed of 200 × 200 elements using an ADER-DG P2 scheme until a final time of t = 3. The 
comparison between the computational results obtained with the GPR model and the ideal MHD equations is provided in 
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Fig. 3. MHD rotor problem at time t = 0.25 simulated with the GPR model (μ = κ = η = 10−4) using an ADER-DG P2 scheme. The contours of fluid density 
ρ (top left), fluid pressure p (top right), magnetic pressure (bottom left) and Mach number (bottom right) are shown.

Fig. 5. A very good agreement between the two solutions can be noted, even for later times when the solution has already 
developed many small scale structures. We stress that in both cases two completely different PDE systems have been solved.

7.7. Viscous and resistive Orszag–Tang vortex

We now solve the Orszag–Tang vortex system in a highly viscous and resistive regime, where the computational results 
of the GPR model are compared with those of the viscous and resistive MHD equations (VRMHD). The computational setup 
of this test case is taken from [140] and [37]. The computational domain is again � = [0, 2π ]2 with four periodic boundary 
conditions and the common initial condition for both models is given this time by ρ = 1, v = (− sin(y), sin(x), 0), B =
(− sin(y), sin(2x), 0), p = 15

4 + 1
4 cos(4x) + 4

5 cos(2x) cos(y) − cos(x) cos(y) + 1
4 cos(2y). The ratio of specific heats is set to 

γ = 5
3 . The other variables of the GPR model are set to A = I, J = 0 and E = −v × B. We choose μ = η = 10−2 and a Prandtl 

number of Pr = 1 based on the heat capacity at constant volume of cv = 1, leading to a heat conduction coefficient of 
κ = γμ.

For the GPR model, we run the test problem until t = 2 with an ADER-DG P3 scheme on a uniform Cartesian grid 
composed of 200 × 200 elements, while the numerical solution of the viscous and resistive MHD equations has been taken 
directly from [37], where an eighth order P4 P7 scheme has been used to solve the VRMHD equations on a very coarse 
unstructured triangular mesh composed of only 990 triangles. The direct comparison between the first order hyperbolic GPR 
model and the second order hyperbolic–parabolic VRMHD model is provided in Fig. 6, where the velocity streamlines as 
well as the magnetic field lines are plotted. Overall, we can observe an excellent agreement between the two computational 
results, which have been obtained by solving two completely different PDE systems and using two different mesh topologies 
(Cartesian grid versus an unstructured simplex mesh).
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Fig. 4. MHD blast wave problem at time t = 0.01 using the GPR model (μ = κ = η = 10−3) and an ADER-DG P2 scheme. The contours of the magnetic field 
component bx (top left), the fluid pressure p (top right) and the fluid density ρ (bottom left) are shown, together with a map of troubled zones in red 
that use the subcell finite volume limiter of the ADER-DG P2 scheme, while unlimited cells are colored in blue (bottom right). (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.)

7.8. Kelvin–Helmholtz instability in a viscous and resistive magnetized fluid

This test problem concerns the simulation of the Kelvin–Helmholtz instability in a magnetized fluid. As in the previous 
test, we solve the problem with the first order hyperbolic GPR model and with the viscous and resistive MHD equations 
(VRMHD). The setup of the initial conditions of the problem is taken from [37] and references therein: ρ = 1, p = 3

5 , γ = 5
3 , 

v = (u, v, 0) with u = − 1
2 U0tanh

(
y−0.5

a

)
and v = δv sin(2πx) sin(π y). The magnetic field is given by 

B =
⎧⎨
⎩

(B0,0,0), if 1
2 + a < y < 1,

(B0 sin(χ),0, B0 cos(χ)), if 1
2 − a < y < 1

2 + a,

(0,0, B0), if 0 < y < 1
2 − a,

with χ = π
2

y−0.5+a
2a , a = 1

25 , U0 = 1, δv = 0.01 and B0 = 0.07. The computational domain is � = [0, 1] × [−1, 1] with 
periodic boundary conditions in the x direction and is discretized with an ADER-DG P2 scheme using 200 × 400 elements 
for both PDE models, i.e. for the first order hyperbolic GPR system and for the viscous and resistive MHD model (VRMHD). 
The physical parameters are μ = η = 10−3, κ = 0, i.e. heat conduction is neglected in this test. The remaining parameters of 
the GPR model are set to c = 2, α = 0, cs = 0.8, ch = 2 and ρ0 = 1. The computational results are shown in Fig. 7, where an
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Fig. 5. Orszag–Tang vortex problem at output times t = 0.5, t = 2.0 and t = 3.0 from top to bottom. Left column: GPR model (μ = κ = η = 10−4). Right 
column: ideal MHD equations for a direct comparison.

excellent agreement between the GPR results and the VRMHD results can be noted. One can clearly see the development 
of the so-called cat-eye vortices and the thin filaments connecting the individual vortices. For a detailed discussion of the 
MHD Kelvin–Helmholtz instability, see [81] and [76]. In Fig. 8 we also show two components of the distortion A , which is 
the key quantity of the GPR model that allows the computation of the stress tensor in the case of both, fluids and solids. As 
already emphasized in [42], the distortion A is very well suited for flow visualization.
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Fig. 6. Viscous Orszag–Tang vortex problem (μ = η = 10−2, Pr = 1) at time t = 2.0. First order hyperbolic GPR model (left) and classical VRMHD equations 
(right) for direct comparison. Velocity streamlines (top) and magnetic field lines (bottom).

Fig. 7. Kelvin–Helmholtz instability in a viscous and resistive magnetized fluid (μ = η = 10−3, κ = 0) at time t = 4.0. Density contours obtained with an 
ADER-DG P3 scheme for the first order hyperbolic GPR model (left) and for the VRMHD equations (right).
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Fig. 8. Kelvin–Helmholtz instability in a viscous and resistive magnetized fluid (μ = η = 10−3, κ = 0) at time t = 4.0. Contours of the distortion components 
A11 (left) and A12 (right) for the first order hyperbolic GPR model.

7.9. High Lundquist number magnetic reconnection

As next test problem we consider the case of a high Lundquist number magnetic reconnection. Reconnection occurs in 
unstable current sheets due to the tearing instability that generates so-called plasmoid chains, see e.g. [13,86,125,84]. For 
investigations of magnetic reconnection in the resistive relativistic case see [143], where high order ADER schemes similar 
to those employed in the present paper have been used [46].

The computational domain is given by � = [−25a, 25a] × [−L/2, L/2], where L is the length of the domain, a = L/S1/3

is the width of the current sheet and the Lundquist number is S = Lva/η, with the Alfvén speed va . The initial condition 
for the magnetic field is 

B = (0, B0tanh(x/a), B0sech(x/a)), (130)

with the relation between B0 and va given by v2
a = B2

0/ρ . The initial fluid pressure is set to p = ρ/(γ M2), where M = va/c0
is the magnetic Mach number and c0 is the sound speed. For our test we use ρ = 1, va = L = 1, γ = 5/3, M = 0.7 and 
S = 106, hence the thickness of the current sheet is a = 0.01, while the plasma parameter β is given by β = 2.4. The 
instability is triggered by adding a small perturbation to the velocity field of the form

u = ε tanh ξ exp(−ξ2) cos(ky) (131)

v = ε(2ξ tanhξ − sech2ξ)exp(−ξ2)S1/2 sin(ky)/k , (132)

where ε = 10−3, ξ = xS1/2 and the wave-number is computed from kL = 2πm, with m = 10. Free outflow and periodic 
boundary conditions are chosen along the x and y direction, respectively. The remaining variables and parameters of the 
GPR model are set to A = 3

√
ρI, J = 0, E = −v × B, c = 2, ch = 2, ρ0 = 1, cs = α = 0, μ = κ = 0. Simulations have been 

carried out until a final time of t = 5.5 using an ADER-DG P2 scheme with a posteriori subcell finite volume limiter [48,145,
144] on a uniform Cartesian grid composed of 200 × 400 elements. In Fig. 9 the computational results for density, magnetic 
field component B y and for two components of the distortion A are shown. One can clearly see the formation of a main 
reconnection island or major plasmoid, which has the usual form similar to that observed also in other simulations reported 
in the literature [84,52]. 

7.10. Scattering of a plane wave

Here, we run the GPR model inside a solid medium at rest in the limit τ1 → ∞, τ2 → ∞ and η → ∞, i.e. without 
source terms. Hence, one expects to recover the behavior of the classical Maxwell equations concerning electromagnetic 
wave propagation. We therefore run the following test case twice, once with the full GPR model (74a)–(74g), and once 
with the standard time domain Maxwell equations in a laboratory frame at rest. For high order ADER-DG schemes ap-
plied to the Maxwell equations, see [129]. The computational domain for this test problem is � = [−2.5, +2.5]2 with 
four periodic boundary conditions. The initial electric and magnetic field vectors are set to E = (0, 0, E0 sin(kx)) and 
B = (0, −B0 sin(kx), 0), with k = 4π and E0 = B0 = 0.1, while the remaining variables of the GPR model are initially set 
to ρ = 1, p = 1, v = J = 0 and A = I. The light speed is set to c = co = 1 everywhere in �, apart from a small cylindrical 
inclusion of radius R = 0.25, where it has been set to c = ci = 2. In order to avoid spurious oscillations, the transition has 
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Fig. 9. High Lundquist number magnetic reconnection (η = 10−6, μ = κ = 0) at time t = 5.5. Results obtained for the first order hyperbolic GPR model with 
an ADER-DG P2 scheme. Density (top left), magnetic field component B y (top right), distortion components A11 (bottom left) and A21 (bottom right). The 
magnetic field lines are also shown.

been smoothed by setting c(r) = ci(1 − ξ) + coξ , with ξ = 1
2 (1 + erf((r − R)/δ)) and δ = 0.05. The remaining parameters in 

the GPR model are chosen as γ = 1.4, τ1 = τ2 = η = 1020, ch = 2, cs = 0.8, α2 = 0.8 and ρ0 = 1. The problem is run with an 
unlimited ADER-DG P3 scheme on a uniform Cartesian grid composed of 100 × 100 elements until a final time of t = 2.0, so 
that the scattered waves have not yet reached the boundaries. In Fig. 10, the computational results obtained with the GPR 
model are compared to those of the standard Maxwell equations. Overall, a very good agreement can be noted between the 
two different models, both, for the contour plot of Bx that represents the scattered wave field, as well as for the time series 
recorded in the four observation points x1 = (−1, 0), x2 = (+1, 0), x3 = (0, −1) and x4 = (0, +1).

7.11. Comparison of different model regimes

In this last example we explore the behavior of the GPR model in a large range of relaxation parameters, from the regime 
of a viscous and conducting magnetized fluid (case I, τ1 � 1, τ2 � 1, η � 1) over an electrically conducting elastic solid 
(case II, τ1 → ∞, τ2 → ∞, η � 1) to a non-conducting elastic solid (case III, τ1 → ∞, τ2 → ∞, η → ∞). The initial data are 
essentially the same as for the MHD rotor problem solved in Section 7.4, i.e. density is set to ρ = 1 in the ambient fluid and 
ρ = 10 inside the rotor of radius R = 0.1, while the initial pressure is constant everywhere p = 1. The magnetic field vector 
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Fig. 10. Scattering of a planar EM wave (k = 4π ) at a cylindrical inclusion of radius R = 0.25. The light speed is c = 1 in the ambient medium, while it 
is c = 2 inside the inclusion. Comparison of the GPR model with the Maxwell equations using an ADER-DG P3 scheme. Time series of the magnetic field 
components Bx (top left) and B y (top right) registered in four observation points. Contour plot of the magnetic field component Bx at time t = 2.0 using 
the GPR model (bottom left) and the Maxwell equations (bottom right).

Table 3
Relaxation parameters of the GPR model used for the three different cases under consideration (cs = 0.8, α2 = 0.8, c = 4).

Case I
(viscous and resistive fluid)

Case II
(conducting elastic solid)

Case III
(non-conducting elastic solid)

τ1 10−3 1020 1020

τ2 10−3 1020 1020

η 10−3 10−3 1020

is set to B = (B0, 0, 0)T in the entire computational domain �, with B0 = 2.5√
4π

and the velocity is zero in the ambient fluid 
and v = ω×x inside the rotor, with ω = (0, 0, 10). In this test we use a light speed of c = 4 and the stiffened gas equation of 
state [42] with p0 = 1. Furthermore, the reference density inside the rotor is chosen as ρ0 = 10 so that the initial condition 
for the distortion is simply given by A = I. Furthermore, we initially set J = 0 and E = −v × B. The computational domain is 
� = [−1.25, +1.25]2, covered with a uniform Cartesian grid of 400 × 400 elements. All simulations are carried out with a 
third order ADER-WENO finite volume scheme [47] and are run up to a final time of t = 0.25. The parameters used for the 
three cases under consideration are summarized in Table 3.

The computational results are depicted in Fig. 11. We can see that in the case of electrically conducting material η � 1, 
the magnetic field is tight to the main pressure and shear waves arising in the medium, while in the case of an infinitely 
resistive or electrically non-conducting solid (η → ∞), the electro-magnetic waves travel at the speed of light, independently 
of the other waves present in the medium. One can also clearly observe the effect of elasticity in the case of an elastic solid, 
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Fig. 11. Rotor problem in different regimes of the relaxation parameters. Case I: viscous and conducting magnetized fluid (top row). Case II: magnetized 
electrically conducting elastic solid (middle row). Case III: magnetized electrically non-conducting elastic solid (bottom row). The contours of pressure (left 
column), velocity component u (middle column) and magnetic field component Bx are reported.

since the rotor starts to oscillate and produce shear waves that are not visible in the case of the magnetized fluid, see the 
middle column of Fig. 11. A similar behavior of the velocity field in elastic bodies has already been observed in [36].

8. Conclusions

We have presented a new unified first order symmetric hyperbolic and thermodynamically compatible (SHTC) model for 
the description of continuous media like fluids and solids interacting with electro-magnetic fields. The theoretical founda-
tions of the model have been shown in great detail, in particular the connection of the final Eulerian form of model to the 
Euler–Lagrange differential equations associated with the underlying variational principle governed by the minimization of 
a Lagrangian. In the SHTC framework, the dissipative terms are not modeled by classical parabolic differential operators (as 
for example in the Navier–Stokes or in the viscous and resistive MHD equations), but via algebraic relaxation source terms, 
like the Ohm law in the case of electro-magnetic wave propagation in conducting media. In the SHTC framework, the same 
idea is also used to model dissipative momentum and heat transfer. The model satisfies the first and second principle of 
thermodynamics. It has also been shown via formal asymptotic analysis that in the stiff relaxation limit our first order hy-
perbolic system of PDEs reduces to the classical viscous and resistive MHD equations. A particular feature of the governing 
PDE system presented in this paper is the fact that all wave speeds remain finite, even in the stiff relaxation limit when the 
relaxation parameters τ1, τ2 and η tend to zero. This makes the model a potential candidate for a possible future extension 
to the more general case of special and general relativistic continuum mechanics, in particular for the description of viscous 
and resistive relativistic fluids, where all propagation speeds in the medium must be necessarily bounded from above by the 



M. Dumbser et al. / Journal of Computational Physics 348 (2017) 298–342 335
speed of light in order to obtain a causal theory. In absence of relaxation source terms (τ1 → ∞, τ2 → ∞, η → ∞), the PDE 
system proposed in this paper describes the propagation of electromagnetic waves in moving, electrically non-conducting 
dielectric media.

Future investigations will concern a more detailed study of the coupling between the stress tensor and the electro-
magnetic field, as it appears, for example, in piezoelectric actuators. For that purpose, the coupling between the distortion 
and the electro-magnetic field needs to be considered within the generating potential. Further work is also needed con-
cerning the development of new numerical methods which are able to preserve all stationary compatibility conditions, i.e. 
those on the matrix A and on the electro-magnetic fields exactly also at the discrete level. Finally, also the introduction of 
dispersive effects where the speed of propagation of electro-magnetic waves depends on the wave number will be subject 
to future research.
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Appendix A. Connection of the SHTC model with the Maxwell equations

We start from the Maxwell equations in the laboratory frame, which are universally accepted to be true: 
∂D

∂t
− ∇ × H = −I (A.1a)

∂B

∂t
+ ∇ × E = 0, (A.1b)

with the constitutive relations 

D = ε′E and B = μ′H. (A.2)

From (A.1) and (A.2) one obtains 
∂

∂t

(
ε′E
)− ∇ × H = −I (A.3a)

∂

∂t

(
μ′H

)+ ∇ × E = 0, (A.3b)

Here, μ′ = μ0μr denotes the magnetic permeability of the medium (not to be confounded with the fluid viscosity μ), 
given as a product of the magnetic permeability of vacuum μ0 and the relative permeability μr . The electric permittivity is 
denoted by ε′ = ε0εr , where ε0 is the electric permittivity of vacuum and εr is the relative permittivity of the medium. In 
(A.1) the electric current I is given by the usual Ohm law 

I = ρcv + σ (E + v × B) , (A.4)

with the conductivity σ = 1/η and the resistivity η. The charge density is ρc = ε′∇ · E. We furthermore have the stan-
dard relation between the speed of light in the medium c, the magnetic permeability and the electric permittivity of the 
medium: 

c2 = 1

ε′μ′ . (A.5)

We now make the following change of variables 

d = E + v × B, (A.6a)

b = H − v × D = H − v × E

μ′c2
= 1

μ′

(
B − v × E

c2

)
, (A.6b)
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where d and b denote respectively the electric and the magnetic field in the comoving frame K ′ that moves with velocity v. 
Substituting (A.6) into (A.1) yields 

∂

∂t

[
ε′ (d − v × B)

]− ∇ ×
(

b + v × E

μ′c2

)
= −σd − ε′v∇ · E, (A.7a)

∂

∂t

[
μ′
(

b + v × E

μ′c2

)]
+ ∇ × (d − v × B) = 0. (A.7b)

We now substitute (A.6) also into the remaining terms of (A.7), hence obtaining 

∂

∂t

[
ε′
(

d − v ×
(
μ′b + v × E

c2

))]
+ ∇ ×

(
−b − v × (d − v × B)

μ′c2

)
= −σd − ε′v∇ · E, (A.8a)

∂

∂t

[
μ′
(

b + v × (d − v × B))

μ′c2

)]
+ ∇ ×

(
d − v ×

(
μ′b + v × E

c2

))
= 0. (A.8b)

The above equations are still fully consistent with the relativistic equations; no assumptions have been made so far, only a 
change of variables. The formal structure is still exactly the same as the one of the original Maxwell equations (A.1). We 
now insert (A.6) once more into the fluxes of (A.8), which yields 

∂

∂t

[
ε′
(

d − v ×
(
μ′b + v × E

c2

))]
+ ∇ ×

⎛
⎝−b −

v ×
(

d − v ×
(
μ′b + v×E

c2

))
μ′c2

⎞
⎠= −σd − ε′v∇ · E, (A.9a)

∂

∂t

[
μ′
(

b + v × (d − v × B))

μ′c2

)]
+ ∇ ×

(
d − v ×

(
μ′b + v × (d − v × B)

c2

))
= 0. (A.9b)

With the auxiliary variables 

e′ := ε′
(

d − v ×
(
μ′b + v × E

c2

))
= ε′

(
d − μ′v × b − 1

c2
v × (v × E)

)
, (A.10a)

h′ := μ′b + v × (d − v × B)

c2
= μ′b + v × d

c2
− 1

c2
v × (v × B) , (A.10b)

the system (A.9) can be rewritten as 

∂e′

∂t
+ ∇ × (−v × e′ − b

)= −σd − ε′v∇ · E, (A.11a)

∂h′

∂t
+ ∇ × (−v × h′ + d

)= 0. (A.11b)

We now assume that v2/c2 � 1, hence we neglect quadratic terms in v/c. This allows us to define the new simplified 
conserved variables 

e := ε′d − ε′μ′v × b ≈ e′, (A.12a)

h := μ′b + ε′μ′v × d ≈ h′, (A.12b)

which yields the following simplified system, where we have also used the identity ∇ · B = 0 and where again quadratic 
terms in v/c have been neglected in the final expressions: 

∂e

∂t
+ ∇ × (−v × e − b) + v∇ · e = −σd, (A.13a)

∂h

∂t
+ ∇ × (−v × h + d) + v∇ · h = 0. (A.13b)

The above system is written in the form given in [119]. Note that compared to [119], the consistency with the Maxwell 
equations in the laboratory frame requires the following definition of the generating potential for electro-magnetic energy 
density: 

Lem = 1

2

(
μ′b2 + ε′d2

)
+ ε′μ′v · (d × b) = 1

2

(
μ′bibi + ε′didi

)+ ε′μ′ εi jk vid jbk, (A.14)

since we must have that

ei = ∂Lem

∂di
= ε′di − ε′μ′ εi jk v jbk, (A.15)

hi = ∂Lem = μ′bi + ε′μ′ εi jk v jdk. (A.16)

∂bi
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Using (A.12) and (A.6) the variables e and h can be expressed in terms of the electro-magnetic field quantities in the 
laboratory frame as follows: 

e = ε′
(

E + 1

c2
v × v × E

)
, and h = μ′H + 1

c2
v × v × E, (A.17)

which together with (A.2) reduces to the simple identities 

e = D, and h = B, (A.18)

if quadratic terms in v/c are again neglected in (A.17).

Appendix B. Euler-to-Lagrange field transformation

In this section, we demonstrate how to obtain Eulerian equations (37d)–(37e) for electromagnetic fields ei and hi from 
their Lagrangian counterparts (18c)–(18d). However, it is more convenient to chose the opposite strategy. Namely, we de-
rive the Lagrangian field equations from the Eulerian. Thus, if one likes to get the Lagrange-to-Euler derivation then the 
calculations should be repeated from the end to the beginning of what follows. Recall that in (18c)–(18d) we use the same 
notations ei and hi for the fields however they are different. As we mentioned earlier and as will be proven in what follows, 
the Eulerian and Lagrangian fields are related by (40). As discussed in Section 2, in the structure study, we can ignore the 
algebraic source terms as they are low order terms.

B.1. Auxiliary relations

Here, we summarize the definitions and formulas used in this section. The total deformation gradient F = [Fij], the 
distortion matrix A = [Aij] and the velocity are defined as 

Fij = ∂xi

∂ y j
, A = F −1, w = det(F ) = ρ0

ρ
, vi = dxi

dt
, (B.1)

where, as previously, y j are the Lagrangian coordinates and xi are the Eulerian ones, ρ and ρ0 are the actual and the 
reference mass densities, respectively. The time evolution equation for Fij in the Lagrangian coordinates 

dFij

dt
− ∂vi

∂ y j
= 0 (B.2)

is a trivial consequence of definitions (B.1).
The following standard definitions and formulas are also introduced

C = cof(F ) = w AT = [Cij
]
, or Aij = w−1C ji, (B.3)

∂Cij

∂ y j
= 0, εmjp

∂ Fmp

∂ y j
= 0, (B.4)

dw

dt
− ∂ w A jk vk

∂ y j
= 0,or using (B.3) and (B.4):

dw

dt
− w A jk

∂vk

∂ y j
= 0, (B.5)

εikl Ami A jk Aal = εmja w−1, (B.6)

Ckm = 1

2
εlnkεpqm Flp Fnq, (B.7)

εimnε jmn = 2δi j. (B.8)

B.2. Transformation of (37d)–(37e) to (18c)–(18d)

We shall transform (37d) into (18c) while (37e) transforms into (18d) analogously. Thus, (37d) is equivalent to 

∂ei

∂t
+ vk

∂ei

∂xk
+ ∂vk

∂xk
ei − ∂vi

∂xk
ek − εikl

∂Ehl

∂xk
= 0. (B.9)

Using d/dt = ∂/∂t + vk/∂xk we have 

dei

dt
+ ∂vk

∂xk
ei − ∂vi

∂xk
ek − εikl

∂Ehl

∂xk
= 0. (B.10)

From (B.1) it follows that ∂ = A jk
∂ and thus we change the variables xk on y j
∂xk ∂ y j
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dei

dt
+ A jk

∂vk

∂ y j
ei − A jk

∂vi

∂ y j
ek − εikl A jk

∂Ehl

∂ y j
= 0. (B.11)

Applying (B.5)2 to the second term and (B.2) to the third term of the last equation, we have 

dei

dt
+ 1

w

dw

dt
ei − A jk

dFij

dt
ek − εikl A jk

∂ Ehl

∂ y j
= 0, (B.12)

dwei

dt
− wek A jk

dFij

dt
− wεikl A jk

∂Ehl

∂ y j
= 0. (B.13)

Now, we add 0 ≡ wek
dδik

dt
to the left hand side and then using that δik = Fij A jk one can obtain that 

dwei

dt
+ wek

dδik

dt
− wek A jk

dF ij

dt
− wεikl A jk

∂Ehl

∂ y j
= 0, (B.14)

dwei

dt
+ wek

dFij A jk

dt
− wek A jk

dF ij

dt
− wεikl A jk

∂Ehl

∂ y j
= 0, (B.15)

dwei

dt
+ wek Fij

dA jk

dt
+ wek

dFij

dt
A jk − wek A jk

dF ij

dt
− wεikl A jk

∂Ehl

∂ y j
= 0. (B.16)

After multiplying the last equation by Ami

Ami

(
dwei

dt
+ wek Fij

dA jk

dt
− wεikl A jk

∂Ehl

∂ y j

)
= 0, (B.17)

Ami
dwei

dt
+ wek

dAmk

dt
− wεikl Ami A jk

∂Ehl

∂ y j
= 0, (B.18)

we have an intermediate result: 

dw Amkek

dt
− wεikl Ami A jk

∂Ehl

∂ y j
= 0. (B.19)

Now, we introduce the change of unknowns (40): w Amkek = e′
m , w Amkhk = h′

m , and we also change the energy potential 
E(ei, hi) = E(w−1 Fije′

j, w
−1 Fijh′

j) = w−1U (e′
j, h

′
j). Hence, Ehi = A ji Uh′

j
. After this, the intermediate result (B.19) reads as 

de′
m

dt
− wεikl Ami A jk

∂ AalUh′
a

∂ y j
= 0, (B.20)

de′
m

dt
− wεikl Ami A jk Aal

∂Uh′
a

∂ y j
− wεikl Ami A jk

∂ Aal

∂ y j
Uh′

a
= 0. (B.21)

Applying (B.6) and (B.3)3 to the second term, we get

de′
m

dt
− εmja

∂Uh′
a

∂ y j
− wεikl Ami A jk

∂ Aal

∂ y j
Uh′

a
= 0. (B.22)

Now using the cofactor definition (B.3) and then applying (B.7) to the third term, we have 

de′
m

dt
− εmja

∂Uh′
a

∂ y j
− εikl Ami Ckj

∂ Aal

∂ y j
Uh′

a
= 0, (B.23)

de′
m

dt
− εmja

∂Uh′
a

∂ y j
− 1

2
εiklεlnkεpqj Flp Fnq Ami

∂ Aal

∂ y j
Uh′

a
= 0. (B.24)

Using (B.8) in the third term gives us 

de′
m

dt
− εmja

∂Uh′
a

∂ y
− δinεpqj Flp Fnq Ami

∂ Aal

∂ y
Uh′

a
= 0, (B.25)
j j
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and subsequently, 

de′
m

dt
− εmja

∂Uh′
a

∂ y j
− εpqj Flp Fiq Ami

∂ Aal

∂ y j
Uh′

a
= 0, (B.26)

de′
m

dt
− εmja

∂Uh′
a

∂ y j
− εmjp Flp

∂ Aal

∂ y j
Uh′

a
= 0. (B.27)

Now, adding 0 ≡ εmjp
∂ Flp
∂ y j

AalUh′
a

(see (B.4)2), we get 

de′
m

dt
− εmja

∂Uh′
a

∂ y j
− εmjp Flp

∂ Aal

∂ y j
Uh′

a
− εmjp

∂ Flp

∂ y j
AalUh′

a
= 0, (B.28)

de′
m

dt
− εmja

∂Uh′
a

∂ y j
− Uh′

a

(
εmjp

∂ Aal Flp

∂ y j

)
= 0, (B.29)

de′
m

dt
− εmja

∂Uh′
a

∂ y j
− Uh′

a

(
εmjp

∂δap

∂ y j

)
= 0. (B.30)

Eventually, we have 

de′
m

dt
− εmja

∂Uh′
a

∂ y j
= 0, (B.31)

which is identical to (18c).

Appendix C. Euler-to-Lagrange momentum transformation

In this section, we shall use m′
i to denote the Lagrangian momentum and e′

i and h′
i to denote Lagrangian electro-magnetic 

fields, i.e. exactly those vector fields appearing in (18a), (18c) and (18d). Now, (18a) reads as 

dm′
i

dt
− ∂U Fij

∂ y j
= 0. (C.1)

Using that d/dt = ∂/∂t + vk∂/∂xk and Fij = ∂xi/∂ y j , equation (C.1) can be rewritten as 

∂m′
i

∂t
+ vk

∂m′
i

∂xk
− Fkj

∂U Fij

∂xk
= 0. (C.2)

Subsequently, using the Eulerian stationary constraint for Fij and time evolution of w = det(F ) (e.g. see [72]) 

∂ w−1 Fkj

∂xk
= 0,

∂

∂t

(
1

w

)
+ ∂

∂xk

( vk

w

)
= 0, (C.3)

(C.2) can be rewritten as 

∂

∂t

(
m′

i

w

)
+ ∂

∂xk

(
vkm′

i − Fkj U Fij

w

)
= 0. (C.4)

Finally, introducing the change of the variables mi = w−1m′
i , w Amkek = e′

m and w Amkhk = h′
m and the change of the poten-

tial E(ρ, mi, ei, hi, Fij) = w−1U (m′
i, e

′
i, h

′
i, Fij), equation (C.4) transforms into equation (37b). 
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