
Presenting the ECO:
Evolutionary Computation Ontology

Anil Yaman1,2, Ahmed Hallawa3, Matt Coler2,4, and Giovanni Iacca2(B)

1 Department of Mathematics and Computer Science, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

a.yaman@tue.nl
2 INCAS3, P.O. Box 797, 9400 AT Assen, The Netherlands

m.coler@rug.nl, giovanni.iacca@gmail.com
3 Chair for Integrated Signal Processing Systems, RWTH Aachen University,

52056 Aachen, Germany
hallawa@ice.rwth-aachen.de

4 Campus Fryslân, University of Groningen, Sophialaaan 1, 8911 AE Leeuwarden,

The Netherlands
AQ1

Abstract. A well-established notion in Evolutionary Computation
(EC) is the importance of the balance between exploration and exploita-
tion. Data structures (e.g. for solution encoding), evolutionary operators,
selection and fitness evaluation facilitate this balance. Furthermore, the
ability of an Evolutionary Algorithm (EA) to provide efficient solutions
typically depends on the specific type of problem. In order to obtain
the most efficient search, it is often needed to incorporate any available
knowledge (both at algorithmic and domain level) into the EA. In this
work, we develop an ontology to formally represent knowledge in EAs.
Our approach makes use of knowledge in the EC literature, and can be
used for suggesting efficient strategies for solving problems by means of
EC. We call our ontology “Evolutionary Computation Ontology” (ECO).
In this contribution, we show one possible use of it, i.e. to establish a link
between algorithm settings and problem types. We also show that the
ECO can be used as an alternative to the available parameter selection
methods and as a supporting tool for algorithmic design.

Keywords: Ontology · Knowledge representation · Evolutionary com-
putation

1 Introduction

Ontologies are a type of formal knowledge representation that make it possible to
represent kinds of knowledge for different applications [1]. Ontologies structure
data as a network of objects and their relations. These objects refer to entities
and events (also known as concepts) in the real world, and their relations repre-
sent the semantic relations between entities. Thus, ontologies can be represented
as a graph structure similar to semantic networks [2].
c⃝ Springer International Publishing AG 2017
G. Squillero and K. Sim (Eds.): EvoApplications 2017, Part I, LNCS 10199, pp. 1–16, 2017.
DOI: 10.1007/978-3-319-55849-3 39

A
u

th
o

r
P

ro
o

f

2 A. Yaman et al.

Ontologies have been used successfully in a number of applications, such as
knowledge modeling [3] and decision support for medical diagnosis [4]. A com-
prehensive survey of such application was performed by [5]. The goal of building
an ontology depends normally on its use: for instance, in Evolutionary Computa-
tion (EC), ontologies can be used to represent knowledge about the evolutionary
operators and their parameters, as well as the problem features and their fitness
landscapes. Knowledge plays a key role in various aspects of EC including encod-
ing, population initialization, evolutionary operators [6]. For instance, individual
representations facilitate implicit knowledge, while population initialization, fit-
ness evaluation, and evolutionary operators facilitate explicit knowledge incor-
poration [7]. Knowledge incorporation is in turn beneficial for an efficient search,
by balancing the trade-off between exploration and exploitation. In the litera-
ture there are a number of works where knowledge incorporation has been used,
for instance in the design of evolutionary operators [7], in the selection of the
algorithm parameters [8] and in the selection process in Interactive Evolutionary
Computation (IEC) [9].

In this work, we present the “Evolutionary Computation Ontology” (ECO),
an ontology that is primarily designed to include available knowledge in EC
and problem domains, and to establish a link between algorithmic and domain
knowledge; in this sense, it can provide the background for reasoning methods
such as case-based and analogical reasoning. As we will see in Sect. 3, some
motivating use cases for the ECO are operator and parameter selection, human-
made selection in IEC, user guidance in EC software tools [10], and teaching and
self-learning of EC-related topics [11].

As a proof-of-concept, we show how the ECO can be used for instance to
define efficient strategies (i.e., algorithm settings, see Table 2 in Sect. 4 for a
complete definition) based on the type of the problem. In particular, we focus on
the strategies for parameter selection. First, we make use of the existing literature
in EC to collect these strategies. However, since most of the proposed strategies
are defined as vague rules that rarely are applicable off-the-shelf, we perform
an empirical analysis to specify such rules in concrete terms. We then populate
our ontology with concrete rules to be used for parameter selection. We describe
the development process of our ontology in Sect. 4, and perform experiments to
demonstrate the performance of the ECO. We then present our experimental
results in Sect. 5. In these experiments, we used the ontology to extract rules
established on benchmark functions, and compared the results of an evolutionary
algorithm based on such rules, with the performance of a control algorithm whose
parameters are chosen arbitrarily. Finally, we discuss our concluding remarks and
the future work in Sect. 6.

2 Background

The term “ontology” is used in computer science to describe a type of knowl-
edge representation that explicitly defines what exists in a domain. Ontologies
represent knowledge by defining concepts, their properties and relations, and the

A
u

th
o

r
P

ro
o

f

Presenting the ECO: Evolutionary Computation Ontology 3

individuals [12]. The properties of concepts describe their features; and, the rela-
tions define how concepts semantically relate to one another. These components
are essential for representing knowledge. For example, taxonomic relations are
one of the fundamental relations, as they establish the concept class hierarchy
using “is-a” relation. The individuals are instances of the concept classes.

A general guideline of the practical steps for developing an ontology is pro-
vided by Noy et al. [13]. An initial step for developing ontologies is to identify the
domain and scope of the ontology. It is impossible to represent everything; there-
fore, it is required to define its scope [14]. Thereafter, the concepts in the domain
are identified and hierarchically structured. Next, the properties of the concepts
and the relations between them are defined. In the final step, individuals are
added to the ontology.

To guarantee the interoperability across different ontologies from different
domains, a number of standardized formal representation languages have been
proposed for developing ontologies. These include the Resource Description
Framework (RDF) [15], a framework for structuring the data as an easy-to-
process graph and the Web Ontology Language (OWL) [16], an ontology devel-
opment language endorsed by World Wide Web Consortium (W3C) [17]. Once
ontologies are developed, the knowledge can then be retrieved by query lan-
guages such as the SPARQL Protocol or the RDF Query Language (SPARQL),
a standard query language for querying RDF structured data [18].

3 Motivating Use Cases

In this section, we motivate knowledge incorporation into Evolutionary Compu-
tation by discussing some possible use cases and applications.

3.1 Operator and Parameter Selection

The knowledge involved into the evolutionary operator and parameter selection
plays a key role for balancing the trade-off between the exploration and exploita-
tion processes, a fundamental aspect for an efficient search [19]. In addition, the
availability of any additional knowledge about the problem domain offers a great
source of information for suggesting efficient strategies for evolutionary search.
There are several approaches listed in Table 1 that can be used for selecting the
evolutionary operators and adjusting their parameters.

The approaches listed in (1)–(8) are outlined by Črepinšek et al. [19]. We
included an additional approach (9). Ontologies can be designed to include the
knowledge involved in the approaches (2), (4), (5), (6) and (9). The ECO is
designed to include the knowledge involved in (2) and (5), but it is also applica-
ble to the approaches (4) and (9). It is applicable to (4) (also known as case-based
reasoning [20]) because it establishes the links between (2) and (5), and makes
it possible to reuse these links on similar problems; it is also applicable to (9)
because it allows the structural mappings between different knowledge represen-
tations from different domains. Although there has been extensive research in

A
u

th
o

r
P

ro
o

f

4 A. Yaman et al.

Table 1. Approaches to evolutionary operator/parameter selection (adapted from [19])

Approach

(1) Trial and error

(2) Following guidelines from the literature [21,22]

(3) Parameter-less EA [23]

(4) Using experience from previous similar problems [24]

(5) Identifying fitness landscape’s features to propose suitable parameters [25,26]

(6) Analyzing the parameters and their effects statistically [27]

(7) Mathematical modeling

(8) Optimizing the parameters algorithmically [28,29]

(9) Adapting solutions to the problems from different domains

the literature focused on evolutionary operators and parameters, to the best of
our knowledge (as also demonstrated by [19]) there is no application that makes
direct use of such knowledge in the approaches given in (4) and (9). Our work
here aims at collecting (part of) this knowledge accumulated over many decades
of EC literature, and make it available —in a structured and consistent way—
for future developments in Evolutionary Computing.

We hypothesize that it is beneficial to use the existing knowledge in the ECO,
i.e. that similar strategies can solve similar problems. Under this assumption,
transferring the algorithm settings obtained from past problems to new prob-
lems should produce an advantage in terms of optimization. In this scenario,
the ontology can be populated with example problems (representing different
problem types: unimodal vs multimodal, separable vs non-separable, etc.) and
their landscape properties can be described by using the concepts in the ECO.
Using the links between the concepts related to problem types and strategies
present in the ontology, specific strategies that apply to specific problem types
can then be identified.

By leveraging the ECO, all this existent knowledge can be collected and used
automatically for selecting the most efficient strategies for a problem. Using the
knowledge included in the ECO, the following example questions can be answered
(the definitions of the concepts mentioned in the example questions can be found
in Table 2, see Sect. 4):

– What is the best strategy for unimodal functions?
– What are the operators and their parameters that cause low exploration?
– Which crossover operator is the best for mutimodal functions when the evo-

lutionary process is in is “maturation” phase?

A
u

th
o

r
P

ro
o

f

Presenting the ECO: Evolutionary Computation Ontology 5

3.2 Human-Made Selection in Interactive Evolutionary
Computation

Another example task that involves knowledge is in Interactive Evolutionary
Computation, where experts and users can involve directly into the evolutionary
process to select the individuals they find interesting, in order to pass their
genes to the next generation [9]. However, this process is often extremely time-
consuming and requires a significant effort to perform the individual selection
manually. Also, it is often impossible to monitor all individuals for thousands of
generations, especially if the population is large. The ECO can provide support
for improving the speed of IEC processes, thus reducing the effort spent by
users. For instance, the knowledge of how selection is performed by humans can
be represented in the ECO, and used automatically in the selection process to
find similar individuals that satisfy the user’s interests or preferences.

3.3 Guidance in Software Tools Based on Evolutionary
Computation

Evolutionary algorithms are now widely available in several optimization soft-
ware packages [10,30,31]. In general, it is straightforward to apply evolutionary
algorithms to custom problems using these tools. However, it is not always so
easy to adjust their settings if the user does not have any expertise in the EC
field. As we discussed in Sect. 3.1, parameter selection requires extensive exper-
tise regarding what concerns the algorithm configuration, the problem type, and
the strategies that should be applied. Therefore in many cases it can be use-
ful that these software tools are able to provide some guidance to users from
different expertise domains.

In this sense, the ECO defines the knowledge required for supporting smart
human computer interaction. Explicit relations between the concepts in the evo-
lutionary algorithms, the problem types and the strategies can make the expert
knowledge available in the software packages making use of evolutionary algo-
rithms. For instance, the ECO can be used to recommend a suitable algorithm,
as well as its operator and parameter configuration, based on the problem that
is introduced by a user. The ECO is a good candidate for providing this support
in software.

3.4 Teaching and Self-learning

Ontologies are well suited also for introducing new topics to students. In the
literature, an example use of the ontologies for education in EAs was demon-
strated by Kaur and Chaudhary [11], who included useful knowledge about the
background and history in evolutionary algorithms into their ontology. It should
be noted, however, that the main difference between the ontology proposed in
[11] and that one proposed in this work is: while the ECO proposed by Kaur
and Chaudhary is only limited to historic knowledge and education purposes,
whereas, our ECO extends that knowledge, and includes efficient strategies and

A
u

th
o

r
P

ro
o

f

6 A. Yaman et al.

problem types which is used for parameter selection problem. As such, our ECO
is dynamically updatable, and extensible that support a lifetime learning and
knowledge-based optimization.

4 Evolutionary Computation Ontology

The development process of the ECO involves the steps elaborated in Sect. 2. In
this work, we focus on representing the knowledge for problem solving making
use of the literature in EC. To structure the knowledge formalized in the ECO,
we manually parsed 50 of the most cited research papers in the field. We then
identified the relevant concepts, as shown in Table 2, and we extracted concrete
strategy instances to populate the ontology.

There are different “knowledge categories” in ECO that describe the concepts
in Evolutionary Computation. These are broadly categorized under: evolutionary
algorithms, evolutionary processes, problem types, search properties, and strategies.

Evolutionary Algorithms. One of the earliest taxonomies of evolutionary
algorithms is provided by Bäck and Schwefel [34]. We limit our ontology to the
algorithms provided in their overview, with the addition of genetic programming.
Thus, the domain knowledge covered in this area describes four main classes of
evolutionary algorithms, namely, Genetic Algorithms (GA), Genetic Program-
ming (GP), Evolutionary Programming (EP) and Evolutionary Strategies (ES).
Each class of algorithms originates from a different research line, and has different
characteristics. The properties of these classes define the algorithmic character-
istics (i.e. data structure, population parameters, evolutionary operators), which

Table 2. Some example concepts represented in the ECO, and their definitions

Concept Definition

Modality A feature of a fitness landscape representing the no. of optima
[32]

Maturation phase One of the four phases of an evolutionary run: initial,
sub-maturation, maturation and convergence [33]

Strategy Algorithm settings that can be applied to an evolutionary
algorithm for solving a problem. The settings of an algorithm
define the data structure, the evolutionary operators and their
parameters, the selection operator, the population size and
the initialization methods

Percentage of
performed
evaluations

The number of evaluations performed at any point of an
evolutionary run, divided by the total number of evaluations
allotted to the EA

Exploration A property of a search process that aims to visit as many
search space regions as possible

A
u

th
o

r
P

ro
o

f

Presenting the ECO: Evolutionary Computation Ontology 7

are in turn included in concept classes. The concepts of the evolutionary opera-
tors and parameters are represented as algorithm-independent and therefore can
be manipulated and plugged into any suitable evolutionary algorithm.

Evolutionary Processes. This knowledge area includes the properties related
to the runtime of the evolutionary processes. Percentage of performed evalu-
ations, convergence rate, average, minimum and maximum fitness values are
some of the properties that describe an evolutionary run. These properties are
univocally determined, except the convergence rate [35] which can be used e.g.
for defining the phases of an evolutionary run. For example, Zhang et al. [33]
measures the convergence rate by finding the relative sizes of the clusters (sub-
populations) that include the worst and the best individual. In their work, they
used this rate to identify the phases of an evolutionary process which they divided
into initial, sub-maturation, maturation and convergence. We find it appropriate
to include these concepts into our ontology, although the methods that define
the convergence rate and the evolutionary phases are not restricted to these
examples. For instance, the evolutionary phases can also be split based on the
percentage of performed evaluations.

Problem Types. We define here the concepts linked to the fitness landscapes
properties. We include the following types of functions: unimodal, multimodal,
separable, non-separable, symmetric and non-symmetric [32]. An instance of a
problem can be linked to one or more of these types.

Search Properties. This category includes two main concepts, namely
“Exploration” and “Exploitation”. Such concepts define special properties of
the search where exploration refers to the process of visiting areas of the search
space that have not been visited before; exploitation defines the process of visit-
ing neighboring solutions to those that have been visited during an evolutionary
run. There is a well-established knowledge in the correlation between the prob-
lem types and the suggested amount of computational budget dedicated to each
of the two search regimes. These suggestions often are coupled with an evolution-
ary phase that they apply to, or to the specific problem type (see the example
strategies defined below).

Strategies. Finally, we define the strategies to establish a link between the
operator/parameter settings of evolutionary algorithms and the problem types
they apply to. The strategies suggested in the literature are usually conditional
on some of the runtime properties. Therefore, we include the conditions that can
be defined to trigger a strategy. These conditions can be based e.g. on percentage
of performed evaluations, convergence rate, and/or population diversity.

To populate our ontology, we extracted strategies that are suggested in the
literature. Some of these strategies are presented in Table 3. There are various
levels of specificity in these statements. For example, the strategies given in (1)

A
u

th
o

r
P

ro
o

f

8 A. Yaman et al.

Table 3. Example strategies (with references)

Strategy

(1) For unimodal functions, the mutation rate is constant and there is an optimal
value which is 1/l where l is the string length. This value is quite low because
there is no need to invest more into exploration [22,36]

(2) “For deceptive trap functions of order k, the best mutation rate is k/l” [22,36]

(3) “If only local variation operators are used, e.g., mutation flipping only a single
bit, it is easy to see that then sub-functions in a separable function are
optimized independently and in parallel” [37]

(4) “High mutation rate can help within the first phase of the evolution, but it
becomes useless when we get close to the best solution” [22,36]

(5) “[...] in the early stages a larger population is needed than in the later stages,
when fine tuning of sub-optimal solutions is done.”[19]

(6) Selection can mainly be used for exploitation. Adjusting the selection pressure
in the selection operator changes the level of exploitation. The selection
operators can be ranked by increasing selection pressure: proportional
selection, linear ranking, tournament selection, and (µ, λ)- and
(µ + λ)-selection [19,38]

and (2) are quite specific as they suggest certain mutation rates that should be
used for unimodal and deceptive functions; however, the strategies given in (4)
and (5) are open to different interpretations, since they use categorical terms
like “high” and “large” while their definitions are not explicit. For instance the
statement given in (4) suggests starting with a “high” mutation rate in the
beginning and decreasing it in later stages of the evolutionary process. It is also
important to note that the concept of “high” mutation rate can be dependent on
the problem (e.g. number of dimensions), as well as the other parameter settings
(e.g. population size, crossover, etc.).

To translate these statements to readily applicable strategies in our ontology,
we then performed a systematic set of preliminary experiments, and assessed the
ranges of the categorical concepts to use. For illustration purposes, we picked
a unimodal and a multimodal function, namely the Sphere and the Rastrigin’s
functions (F1 and F9 in [39]), in D = 10 dimensions, to observe examples of per-
formance obtained with different parameter settings on different kinds of func-
tions. Following an experimental setting similar to that performed in [40], we con-
sider population sizes n ∈ {10, 30, 50, 100, 200}, Gaussian mutation with muta-
tion rates pm ∈ {0.0005, 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5}, elite
counts e ∈ {0, 1}, selection operator fixed as “roulette selection”, and crossover
rate fixed at 0.8. With these experimental settings, we aim to establish concrete,
optimal ranges for the concepts {“high”, “medium”, “low”}.

The Supporting Information SI.11 presents the results we obtained on the
Sphere and Rastrigin’s functions using different mutation rates, population sizes
and elite counts. All the experiments were implemented in Matlab, using the
1 Available online at: http://www.goo.gl/xSgVvv.

A
u

th
o

r
P

ro
o

f

http://www.goo.gl/xSgVvv

Presenting the ECO: Evolutionary Computation Ontology 9

Genetic Algorithm Toolbox [31]. Tables (a), (b), (c), and (d) present results for
the Sphere function with elite count 0, the Rastrigin’s function with elite count
0, the Sphere function with elite count 1 and the Rastrigin’s function with elite
count 1, respectively. The columns and the rows of the tables are organized w.r.t.
mutation rates population sizes in ascending order. We follow the evaluation
criteria presented in [39]. We set the maximum number of evaluations to D×104,
and record the fitness of the best individual for the checkpoints at 1st, 103th,
104th and 105th generations. We run an evolutionary algorithm 25 times for
each specified parameter settings for the two selected functions, and found the
average best fitness values for each checkpoint.

We defined the concept “EvolutionaryProcessPhases” based on these check-
points. We then refer to the evolutionary process between the checkpoints 1st and
103th, 103th and 104th, 104th and 105th as “Initial”, “Maturation”, and “Conver-
gence” respectively. Our aim is to identify how a parameter set performs within
each evolutionary phase. Therefore, we find the difference between the average fit-
ness values at the start and the end point of each phase, and divide this delta by the
number of evaluations performed in each phase. In other words, this value indicates
the average change of fitness per evaluation observed within a phase.

With reference to SI.1, the color (gray in print) intensity level in each cell
indicates the magnitude of the average fitness difference observed in each phase
(scaled across the values within each row). With elite count 0, some parameter
settings produced negative fitness differences, which we represented as zeros for
the sake of illustration.

For the Sphere function with elite count 0 and pop. sizes {10, 30, 50, 100, 200},
mutation rates {0.2, 0.1, 0.2, 0.2, 0.1} perform better in phase 1, respectively. How-
ever, when a larger population size is used, the difference in the performance
obtained with a high mutation rate gradually decreases. The comparisons between
phases 1 and 2, and between phases 2 and 3, reveal that in further phases lower
mutation rates generally perform better. Moreover, we observe a clear pattern
within phases 2 and 3, which indicates that for larger population sizes lower muta-
tion rates perform better. The behavioral pattern of the algorithm persists on the
Sphere function using an elite count 1. On the other hand, the range of better per-
forming mutation rates shift to the left to cover the lower values, and the perfor-
mance differences among different mutation rates for each row becomes more dis-
tinct and sharp relative to table (a). If we fix the mutation rate and we compare
the preferred population sizes across different phases, we observe that in the later
stages smaller population sizes perform better in general. AQ2

For the Rastrigin’s function, we observe similar patterns observed for the
Sphere function in phase 1, for both elite counts 0 and 1. Also in this case, in the
initial phase of the evolutionary process higher mutation rates are preferable. The
pattern observed on the population sizes (i.e., lower population sizes are better
for later stages of the evolutionary process) also persists. Moreover, we observe
the trade-off between the population sizes and mutation rates specifically in table
(d) where higher mutation rates work best with lower population sizes, and lower
mutation rates work best with higher population sizes. These observations support

A
u

th
o

r
P

ro
o

f

10 A. Yaman et al.

Table 4. Optimal parameters (population size and mutation rate) defined using cate-
gorical concepts for different phases and elite count 0

Sphere function Rastirigin’s function

Pop.Size Mutation rate Mutation rate

Phase 1 Small High –

Medium Medium-High Medium

Large Low-Medium-High Low-Medium

Phase 2 Small Medium Low-Medium

Medium Low-Medium Medium

Large Low Medium-High

Phase 3 Small Medium Low-Medium

Medium Low Low-Medium

Large Low Medium-High

the literature on shrinking the mutation rate [7] and population size [41,42] during
an evolutionary run and comply with the suggestions presented in Table 3.

Based on these initial experiments, we then define population sizes {“Small”,
“Medium”, “Large”} as {10, 50, 200}, and mutation rates {“Low”, “Low-
Medium”, “Medium”,“Medium-High”,“High”} as {[0.001, 0.002), [0.002, 0.01),
[0.01, 0.05), [0.05, 0.2), [0.2, 0.5]}, respectively. We map the optimal population
sizes and mutation rates to their categories for each function and elite count
using the experimental results given in SI.1. As an example, we illustrate the
mapping results in Table 4 for elite count 0. On the Rastrigin’s function, none
of the mutation rates produced a fitness improvement for small population size;
this is shown as a “–” in the table.

Finally, we populate our ontology with the rules summarized in Table 4 asso-
ciated to the function types (e.g. unimodal, multimodal, etc.) represented by
the two chosen benchmark functions. For example, for unimodal functions with
“Small” population size our ontology would suggests starting with “High” muta-
tion rate in phase 1, and modifying it to “Medium” in phase 2 and 3. The
suggested strategies are retrieved from the ontology using the SPARQL query
language. Questions such as “What is the mutation rate for unimodal functions
when the evolutionary process is in maturation phase?” are converted into a
SPARQL query (see Query 1.1). The query returns the list of mutation rates
that are stored in the ontology.

SELECT ?MutationRate
WHERE {
?strategy initializes ?MutationRate.
?strategy suggestedFor UnimodalFunction .
?strategy conditionedOn MaturationPhase

}

Query 1.1. An example SPARQL query

A
u

th
o

r
P

ro
o

f

Presenting the ECO: Evolutionary Computation Ontology 11

For the sake of completeness, we provide a detailed scheme of our ontology
and a partial illustration of the ECO as Supporting Information SI.2 and SI.32.

5 Experimental Validation

In this section, we use the strategies in the ECO in a parameter selection exam-
ple to demonstrate the advantage of incorporating knowledge into the EA. We
select three test functions that were not used in the experiments performed for
populating the strategy instances represented in the ECO. These functions are
the Schwefel’s, Rosenbrock’s, and Ackley’s functions (F2, F6 and F8 in [39]). The
Schwefel’s function is unimodal while the Rosenbrock’s and Ackley’s functions
are multimodal. Thus, we test the strategies we derived and represented for uni-
modal and multimodal functions correspondingly. A list of tested strategies is
given in Table 5. The strategies labeled as (1), (2) and (3) were retrieved from
the ECO, with strategy (1) suggested for unimodal functions and strategies (2)
and (3) suggested for multimodal functions. The rest of the strategies {(4), (5),
(6)} are used as control strategies, selected arbitrarily as if no prior knowledge
existed on the function types.

The numerical results are summarized in Table 6. Each column in the table
shows the performance of a selected strategy on a selected test function. Strate-
gies are labeled as in Table 5. For testing, we used elite count 1 for all the selected
functions. We only compared the strategies that are retrieved from the ECO with
the ones that are defined arbitrarily, i.e. we did not compare the performance of
all strategies across different functions. As for the mutation rates, we considered
the lowest value of the categories defined above. The rows labeled as 1, 1e+03,
1e+04 and 1e+05 indicate the generations (checkpoints) when we record the
best fitness value. We present the results of 1st, 7th, 13th and 25th best fitness
values, and the mean and standard deviations for 25 separate evolutionary runs
using the same strategy. In the table, for each function and phase the boldface
indicates the strategy showing the best performance (on average, across 25 runs).

Table 5. Selected strategies for testing

Phase Strategy (1) Strategy (2) Strategy (3)

Pop.Size Mut.Rate Pop.Size Mut.Rate Pop.Size Mut.Rate

1 Medium Medium-High Medium Medium-High Large Medium

2 Medium Low Medium Medium Medium Medium

3 Medium Low Medium Medium Small Medium

Phase Strategy (4) Strategy (5) Strategy (6)

Pop.Size Mut.Rate Pop.Size Mut.Rate Pop.Size Mut.Rate

1 Medium Medium-High Medium Medium Medium Medium

2 Medium Medium-High Medium Medium Medium Low

3 Medium Medium-High Medium Medium Medium Low

2 Available online at: http://www.goo.gl/xSgVvv.

A
u

th
o

r
P

ro
o

f

http://www.goo.gl/xSgVvv

12 A. Yaman et al.

T
a
b
le

6
.
T

h
e

p
er

fo
rm

an
ce

of
d
iff

er
en

t
st

ra
te

gi
es

F
u
n
c
ti

o
n

F
2

F
2

F
2

F
2

F
6

F
6

F
6

F
6

F
6

F
8

F
8

F
8

F
8

F
8

S
tr

a
te

g
y

1
4

5
6

2
3

4
5

6
2

3
4

5
6

1
1
st

7
.8

8
E
+

0
3

8
.6

8
E
+

0
3

6
.6

6
E
+

0
3

6
.8

1
E
+

0
3

9
.3

5
E
+

0
2

7
.5

0
E
+

0
2

5
.7

1
E
+

0
2

4
.8

3
E
+

0
2

5
.8

9
E
+

0
2

7
.8

9
E
+

0
3

6
.8

0
E
+

0
3

6
.0

2
E
+

0
3

9
.3

8
E
+

0
3

9
.0

8
E
+

0
3

7
th

1
.0

0
E
+

0
4

1
.1

8
E
+

0
4

1
.0

3
E
+

0
4

1
.2

8
E
+

0
4

1
.3

5
E
+

0
3

9
.7

9
E
+

0
2

1
.1

5
E
+

0
3

1
.2

1
E
+

0
3

1
.1

8
E
+

0
3

1
.2

4
E
+

0
4

1
.0

3
E
+

0
4

1
.2

1
E
+

0
4

1
.2

6
E
+

0
4

1
.3

2
E
+

0
4

1
3
th

1
.3

0
E
+

0
4

1
.3

4
E
+

0
4

1
.4

3
E
+

0
4

1
.4

2
E
+

0
4

1
.6

2
E
+

0
3

1
.1

5
E
+

0
3

1
.3

4
E
+

0
3

1
.3

9
E
+

0
3

1
.4

7
E
+

0
3

1
.4

9
E
+

0
4

1
.1

2
E
+

0
4

1
.3

9
E
+

0
4

1
.4

4
E
+

0
4

1
.4

7
E
+

0
4

2
5
th

1
.9

8
E
+

0
4

1
.7

7
E
+

0
4

2
.0

9
E
+

0
4

1
.8

6
E
+

0
4

1
.9

6
E
+

0
3

1
.5

2
E
+

0
3

2
.1

8
E
+

0
3

2
.0

2
E
+

0
3

2
.0

5
E
+

0
3

2
.0

7
E
+

0
4

1
.4

4
E
+

0
4

1
.9

7
E
+

0
4

2
.0

1
E
+

0
4

2
.0

4
E
+

0
4

M
e
a
n

1
.3

2
E
+

0
4

1
.3

4
E
+

0
4

1
.3

8
E
+

0
4

1
.4

0
E
+

0
4

1
.5

5
E
+

0
3

1
.1

4
E
+

0
3

1
.4

2
E
+

0
3

1
.4

0
E
+

0
3

1
.4

3
E
+

0
3

1
.4

3
E
+

0
4

1
.1

0
E
+

0
4

1
.3

4
E
+

0
4

1
.5

0
E
+

0
4

1
.4

6
E
+

0
4

S
td

.
3
.4

1
E
+

0
3

2
.3

9
E
+

0
3

4
.1

6
E
+

0
3

2
.8

2
E
+

0
3

2
.6

4
E
+

0
2

2
.2

0
E
+

0
2

4
.2

3
E
+

0
2

3
.4

1
E
+

0
2

3
.5

3
E
+

0
2

3
.4

2
E
+

0
3

1
.9

1
E
+

0
3

3
.2

6
E
+

0
3

3
.0

2
E
+

0
3

3
.1

1
E
+

0
3

1
E
3

1
st

2
.0

8
E
-0

2
7
.0

8
E
-0

2
7
.3

8
E
-0

3
4
.2

7
E
-0

3
3
.1

8
E
+

0
0

6
.6

2
E
-0

3
8
.1

7
E
-0

2
1
.4

9
E
-0

2
2
.1

3
E
-0

2
1
.0

2
E
+

0
1

2
.5

0
E
+

0
0

3
.5

3
E
+

0
1

8
.9

1
E
+

0
0

8
.4

5
E
+

0
0

7
th

7
.1

2
E
-0

2
1
.8

7
E
-0

1
2
.0

6
E
-0

2
2
.1

4
E
-0

2
4
.3

6
E
+

0
0

1
.2

1
E
-0

2
1
.3

0
E
-0

1
3
.2

2
E
-0

2
3
.3

1
E
-0

2
1
.8

5
E
+

0
1

8
.1

5
E
+

0
1

7
.1

6
E
+

0
1

8
.7

4
E
+

0
2

9
.4

1
E
+

0
0

1
3
th

1
.0

8
E
-0

1
3
.4

1
E
-0

1
2
.5

6
E
-0

1
1
.4

8
E
-0

1
9
.1

4
E
+

0
0

1
.5

9
E
-0

2
1
.5

9
E
-0

1
5
.3

9
E
-0

1
4
.2

1
E
-0

2
3
.4

9
E
+

0
1

1
.3

3
E
+

0
2

1
.3

1
E
+

0
2

3
.1

6
E
+

0
3

1
.1

3
E
+

0
2

2
5
th

2
.8

1
E
-0

1
7
.7

1
E
-0

1
2
.1

8
E
+

0
3

1
.8

9
E
+

0
3

2
.1

1
E
+

0
1

3
.0

7
E
-0

2
3
.9

3
E
-0

1
1
.6

2
E
+

0
1

1
.2

1
E
+

0
1

6
.1

7
E
+

0
3

8
.1

7
E
+

0
3

8
.0

7
E
+

0
3

9
.0

6
E
+

0
5

9
.2

2
E
+

0
3

M
e
a
n

1
.1

7
E
-0

1
3
.6

8
E
-0

1
2
.9

4
E
+

0
2

2
.2

6
E
+

0
2

1
.1

8
E
+

0
1

1
.7

6
E
-0

2
1
.8

0
E
-0

1
4
.6

9
E
+

0
0

5
.3

0
E
-0

1
9
.0

6
E
+

0
2

1
.1

1
E
+

0
3

9
.3

9
E
+

0
2

9
.9

6
E
+

0
4

2
.0

5
E
+

0
3

S
td

.
6
.0

2
E
-0

2
2
.0

6
E
-0

1
5
.9

1
E
+

0
2

4
.8

1
E
+

0
2

7
.6

1
E
+

0
0

7
.1

9
E
-0

3
7
.1

7
E
-0

2
6
.0

0
E
+

0
0

2
.4

1
E
+

0
0

1
.5

6
E
+

0
3

2
.1

7
E
+

0
3

1
.9

1
E
+

0
3

2
.4

1
E
+

0
5

3
.2

9
E
+

0
3

1
E
4

1
st

1
.1

7
E
-0

7
1
.1

4
E
-0

3
1
.5

7
E
-0

5
3
.0

4
E
-0

7
1
.5

0
E
-0

1
4
.6

0
E
-0

4
5
.5

9
E
-0

3
5
.0

4
E
-0

4
6
.1

8
E
-0

5
1
.5

7
E
-0

2
3
.0

2
E
-0

2
5
.2

6
E
+

0
0

4
.8

5
E
+

0
0

7
.0

5
E
-0

2

7
th

3
.6

2
E
-0

7
3
.3

4
E
-0

3
4
.3

6
E
-0

5
5
.1

1
E
-0

7
2
.8

1
E
-0

1
8
.7

4
E
-0

4
9
.2

0
E
-0

3
1
.0

6
E
-0

3
1
.1

7
E
-0

4
4
.6

1
E
+

0
0

5
.8

8
E
+

0
0

7
.1

3
E
+

0
0

5
.6

5
E
+

0
0

1
.7

6
E
-0

1

1
3
th

5
.5

6
E
-0

7
5
.2

4
E
-0

3
5
.9

0
E
-0

5
7
.6

3
E
-0

7
4
.8

3
E
-0

1
1
.2

1
E
-0

3
1
.3

4
E
-0

2
1
.3

9
E
-0

3
1
.7

6
E
-0

4
5
.3

7
E
+

0
0

3
.5

0
E
+

0
1

1
.0

6
E
+

0
1

6
.2

2
E
+

0
0

8
.4

1
E
-0

1

2
5
th

4
.2

4
E
-0

6
2
.0

1
E
-0

2
2
.5

4
E
-0

4
6
.3

4
E
-0

5
2
.1

1
E
+

0
1

2
.2

4
E
-0

3
2
.5

7
E
-0

2
2
.4

8
E
-0

3
1
.0

2
E
+

0
1

2
.6

0
E
+

0
1

9
.2

3
E
+

0
2

1
.2

0
E
+

0
2

1
.0

1
E
+

0
3

7
.0

3
E
+

0
3

M
e
a
n

8
.0

5
E
-0

7
5
.6

4
E
-0

3
8
.2

5
E
-0

5
4
.3

8
E
-0

6
6
.8

6
E
+

0
0

1
.2

3
E
-0

3
1
.3

7
E
-0

2
1
.4

5
E
-0

3
4
.0

8
E
-0

1
5
.7

0
E
+

0
0

1
.5

5
E
+

0
2

2
.6

3
E
+

0
1

1
.7

4
E
+

0
2

1
.1

5
E
+

0
3

S
td

.
8
.2

3
E
-0

7
3
.7

4
E
-0

3
5
.8

7
E
-0

5
1
.2

9
E
-0

5
9
.6

7
E
+

0
0

4
.5

8
E
-0

4
5
.1

4
E
-0

3
5
.1

4
E
-0

4
2
.0

4
E
+

0
0

4
.7

8
E
+

0
0

2
.5

4
E
+

0
2

3
.4

4
E
+

0
1

3
.2

0
E
+

0
2

2
.4

3
E
+

0
3

1
E
5

1
st

3
.6

8
E
-0

9
1
.3

7
E
-0

5
1
.5

3
E
-0

7
3
.0

3
E
-0

9
1
.6

8
E
-0

1
3
.0

4
E
-0

4
5
.8

0
E
-0

4
7
.1

8
E
-0

5
6
.6

1
E
-0

6
1
.4

1
E
-0

2
1
.2

6
E
-0

2
7
.9

9
E
-0

1
1
.3

0
E
+

0
0

3
.6

9
E
-0

3

7
th

8
.4

7
E
-0

9
3
.0

6
E
-0

5
4
.1

9
E
-0

7
7
.3

4
E
-0

9
2
.9

1
E
-0

1
4
.3

8
E
-0

4
1
.0

4
E
-0

3
8
.8

2
E
-0

5
1
.1

6
E
-0

5
2
.9

7
E
+

0
0

3
.9

4
E
+

0
0

3
.6

2
E
+

0
0

3
.7

4
E
+

0
0

5
.6

5
E
-0

3

1
3
th

9
.5

2
E
-0

9
7
.0

1
E
-0

5
6
.5

3
E
-0

7
9
.1

4
E
-0

9
3
.6

5
E
-0

1
5
.9

5
E
-0

4
1
.3

1
E
-0

3
1
.1

8
E
-0

4
1
.5

5
E
-0

5
3
.3

4
E
+

0
0

4
.4

8
E
+

0
0

6
.6

7
E
+

0
0

4
.0

1
E
+

0
0

8
.7

4
E
-0

3

2
5
th

2
.5

6
E
-0

8
2
.0

5
E
-0

4
2
.0

5
E
-0

6
2
.8

2
E
-0

8
2
.1

3
E
+

0
1

1
.2

6
E
-0

3
2
.9

6
E
-0

3
2
.0

9
E
-0

4
1
.0

2
E
+

0
1

6
.6

2
E
+

0
0

2
.4

6
E
+

0
2

8
.5

2
E
+

0
1

5
.2

5
E
+

0
1

2
.8

0
E
+

0
2

M
e
a
n

1
.0

1
E
-0

8
7
.6

4
E
-0

5
8
.0

7
E
-0

7
9
.4

9
E
-0

9
6
.1

4
E
+

0
0

6
.5

3
E
-0

4
1
.3

6
E
-0

3
1
.2

5
E
-0

4
4
.0

8
E
-0

1
3
.1

4
E
+

0
0

2
.6

5
E
+

0
1

1
.3

9
E
+

0
1

8
.6

7
E
+

0
0

1
.7

3
E
+

0
1

S
td

.
4
.3

0
E
-0

9
5
.0

9
E
-0

5
5
.0

1
E
-0

7
4
.9

8
E
-0

9
9
.4

9
E
+

0
0

2
.7

4
E
-0

4
4
.8

7
E
-0

4
4
.0

7
E
-0

5
2
.0

4
E
+

0
0

1
.3

8
E
+

0
0

5
.0

3
E
+

0
1

2
.0

9
E
+

0
1

1
.3

3
E
+

0
1

5
.7

6
E
+

0
1

A
u

th
o

r
P

ro
o

f

Presenting the ECO: Evolutionary Computation Ontology 13

We omit the boldface for the 1st evaluation, due to the random initialization of
the evolutionary algorithm.

The first four columns show the result on the unimodal function (Schwefel’s
function [39]). On average, the strategy suggested by the ECO performs better
than the arbitrarily selected strategies labeled as (4), (5) and (6) in the first
two phases. In the last phase, the strategy (6) performs better than the strategy
(1), on average. However, this fact may be ignored since two of these strategies
implement the same mutation rate for the final phase. We should note that the
strategy (4) is often recommended by the literature (see (1) in Table 3); however,
in our experiments we observe that the strategy (1) performs better than the
strategy (4) (see (4) in Table 3).

As for for multimodal functions, the ECO suggests the strategies labeled as
(2) and (3). Therefore, we tested the strategies (2) and (3) on F6 and F8. On
F6, the strategy (3) shows the best performance. The empirical results point
out that for multimodal functions, population reduction in further phases of
the evolutionary process is a good strategy. However, it is interesting to see
the contradiction where the strategy (5) performs better than the strategy (3).
When we take a closer look, the strategy (3) performs better than (5) in phase
1 and 2. On the other hand, the results show that during the last phase a
small population size caused the strategy (3) to slow down in terms of fitness
improvement; whereas, a medium population size caused (5) to catch up. This
suggests that in the last phase of strategy (3), a slightly higher population size
might be preferable (e.g. as a last attempt to introduce diversity). Finally, from
the comparison among the strategies evaluated on F8 we can observe that the
strategy (2) performs significantly better in all three phases.

6 Conclusions

In this work, we presented the ECO, an ontology designed to represent domain
and algorithmic knowledge in evolutionary algorithms. As such, the ECO
includes concepts relevant to evolutionary algorithms, problem domains and
strategies. The strategies are defined as general guidelines in EC that were
extracted from the literature. To populate the ontology, we collected the knowl-
edge available in fifty research papers from the specialized EC-related litera-
ture. We then described some possible uses of the ontology in parameter selec-
tion, Interactive Evolutionary Computation, software design and education. We
finally demonstrated numerically the performance of an evolutionary algorithm
with parameters driven by the ECO on three different functions. Our results
show that the incorporation of knowledge (coming from different sources, i.e. lit-
erature and/or empirical experiments) into evolutionary algorithms can improve
their performance consistently. Furthermore, the use of a common ontology guar-
antees a systematic way of collecting, representing and sharing this knowledge
among researchers, among algorithms, and across different application domains.

The main limitation of the ECO is the uncertainty that characterizes knowl-
edge in EC. While parsing the literature, we noted that most of the strategy

A
u

th
o

r
P

ro
o

f

14 A. Yaman et al.

statements that we found use non-specific wordings such as “high mutation rate
facilitates more exploration”. Clearly, the exact parameter values that should be
used are not defined. Here, to define the range of these values in the ECO, we
performed preliminary experiments on a unimodal (Sphere) and a multimodal
(Rastrigin) function and we observed, for instance, that some mutation rates are
expected to perform better depending on the population size, and vice versa. In
this work, we assigned a crisp value for each category based on the experimental
data. However, in future works we aim to include representation methods that
can deal with gradual ranges for categories, such as fuzzy logic [33]. Another
source of uncertainty is due to the fact that multiple strategies (characterized
by different combinations of operators and parameters) may be equally efficient
in an optimization scenario. Currently, querying over the ECO yields a list of
suitable strategies. These strategies are conditional on the type of problem and
other properties of the evolutionary process, e.g. its phase. However, the list
of suggested strategies should be aggregated to recommend one single strategy.
This aggregation is probabilistic in nature, because in general it summarizes con-
flicting and vague strategies available in the knowledge base. Moreover, different
strategies may have different levels of confidence, depending on how well they
perform in specific settings. Future research will focus on specific methods for
providing aggregated probabilistic results into our query processing.

Another limitation of the present work obviously consists in the limited set of
unimodal and multimodal functions we used for testing. However, these limited
experiments were shown here as a simple proof-of-concept. In order to derive
statistically rigorous conclusions and generalize the experimental results, so to
transfer these generalizations to a broader set of optimization functions, we will
need to perform more experiments on a much larger set of benchmark functions.

In future works, we also aim to extend our strategies to cover different kinds
of evolutionary operators and different evolutionary algorithms. We believe that
a similar experimental analysis would improve our current understanding of the
effects of different evolutionary operators and parameter settings.

Acknowledgments. This project has received funding from the European
Union’s Horizon 2020 research and innovation programme under grant
agreement No 665347.

References

1. Gruber, T.R.: A translation approach to portable ontology specifications. Knowl.
Acquis. 5(2), 199–220 (1993)

2. Sowa, J.F.: Principles of Semantic Networks: Explorations in the Representation
of Knowledge. Morgan Kaufmann, San Mateo (2014)

3. Studer, R., Benjamins, V.R., Fensel, D.: Knowledge engineering: principles and
methods. Data Knowl. Eng. 25(1), 161–197 (1998)

4. Riaño, D., Real, F., López-Vallverdú, J.A., Campana, F., Ercolani, S., Mecocci, P.,
Annicchiarico, R., Caltagirone, C.: An ontology-based personalization of health-
care knowledge to support clinical decisions for chronically ill patients. J. Biomed.
Inf. 45(3), 429–446 (2012)

A
u

th
o

r
P

ro
o

f

Presenting the ECO: Evolutionary Computation Ontology 15

5. Liao, S.H.: Expert system methodologies and applications-a decade review from
1995 to 2004. Expert Syst. Appl. 28(1), 93–103 (2005)

6. Jin, Y.: Knowledge Incorporation in Evolutionary Computation, vol. 167. Springer,
Heidelberg (2013)

7. Bonissone, P.P., Subbu, R., Eklund, N., Kiehl, T.R.: Evolutionary algorithms +
domain knowledge = real-world evolutionary computation. IEEE Trans. Evol.
Comput. 10(3), 256–280 (2006)

8. Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary
algorithms. IEEE Trans. Evol. Comput. 3(2), 124–141 (1999)

9. Takagi, H.: Interactive evolutionary computation: fusion of the capabilities of EC
optimization and human evaluation. Proc. IEEE 89(9), 1275–1296 (2001)

10. Wagner, S., Kronberger, G., Beham, A., Kommenda, M., Scheibenpflug, A., Pitzer,
E., Vonolfen, S., Kofler, M., Winkler, S., Dorfer, V., Affenzeller, M.: Architec-
ture and design of the heuristiclab optimization environment. In: Klempous, R.,
Nikodem, J., Jacak, W., Chaczko, Z. (eds.) Advanced Methods and Applications in
Computational Intelligence, vol. 6, pp. 197–261. Springer International Publishing,
Heidelberg (2014) AQ3

11. Kaur, G., Chaudhary, D.: Evolutionary computation ontology: e-learning system.
In: 2015 4th International Conference on Reliability, Infocom Technologies and
Optimization (ICRITO) (Trends and Future Directions), pp. 1–6, September 2015

12. Roussey, C., Pinet, F., Kang, M.A., Corcho, O.: An introduction to ontologies and
ontology engineering. In: Roussey, C., Pinet, F., Kang, M.A., Corcho, O. (eds.)
Ontologies in Urban Development Projects, vol. 1, pp. 9–38. Springer, London
(2011)

13. Noy, N.F., McGuinness, D.L., et al.: Ontology development 101: a guide to creating
your first ontology (2001)

14. Davis, R., Shrobe, H., Szolovits, P.: What is a knowledge representation? AI Mag.
14(1), 17 (1993)

15. Pan, J.Z.: Resource description framework. In: Staab, S., Studer, R. (eds.) Hand-
book on Ontologies, pp. 71–90. Springer, Heidelberg (2009)

16. McGuinness, D.L., Van Harmelen, F., et al.: OWL web ontology language overview.
W3C recommendation 10(10) (2004)

17. The World Wide Web Consortium (W3C) (2016). Accessed 14 Aug 2016 AQ4

18. Quilitz, B., Leser, U.: Querying distributed RDF data sources with SPARQL.
In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC
2008. LNCS, vol. 5021, pp. 524–538. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-68234-9 39

19. Črepinšek, M., Liu, S.H., Mernik, M.: Exploration and exploitation in evolutionary
algorithms: a survey. ACM Comput. Surv. 45(3), 35:1–35:33 (2013)

20. Johnson, J., Louis, S.J.: Case-initialized genetic algorithms for knowledge extrac-
tion and incorporation. In: Jin, Y. (ed.) Knowledge Incorporation in Evolutionary
Computation, pp. 57–79. Springer, Heidelberg (2005)

21. De Jong, K.A., Spears, W.M.: A formal analysis of the role of multi-point crossover
in genetic algorithms. Ann. Math. Artif. Intell. 5(1), 1–26 (1992)

22. Falco, I.D., Cioppa, A.D., Tarantino, E.: Mutation-based genetic algorithm: per-
formance evaluation. Appl. Soft Comput. 1(4), 285–299 (2002)

23. Bäck, T., Eiben, A.E., van der Vaart, N.A.: An empirical study on GAs “with-
out parameters”. In: International Conference on Parallel Problem Solving from
Nature, pp. 315–324. Springer, London (2000) AQ5

A
u

th
o

r
P

ro
o

f

http://dx.doi.org/10.1007/978-3-540-68234-9_39
http://dx.doi.org/10.1007/978-3-540-68234-9_39

16 A. Yaman et al.

24. Yeguas, E., Luzón, M., Pavón, R., Laza, R., Arroyo, G., Dı́az, F.: Automatic para-
meter tuning for evolutionary algorithms using a bayesian case-based reasoning
system. Appl. Soft Comput. 18, 185–195 (2014)

25. Picek, S., Jakobovic, D.: From fitness landscape to crossover operator choice. In:
Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Compu-
tation, pp. 815–822. ACM (2014)

26. Asmus, J., Borchmann, D., Sbalzarini, I.F., Walther, D.: Towards an FCA-based
recommender system for black-box optimization. In: Workshop Notes, p. 35 (2014)

27. Czarn, A., MacNish, C., Vijayan, K., Turlach, B., Gupta, R.: Statistical exploratory
analysis of genetic algorithms. IEEE Trans. Evol. Comput. 8(4), 405–421 (2004)

28. Eiben, A., Smit, S.: Parameter tuning for configuring and analyzing evolutionary
algorithms. Swarm Evol. Comput. 1(1), 19–31 (2011)

29. Neumüller, C., Wagner, S., Kronberger, G., Affenzeller, M.: Parameter meta-
optimization of metaheuristic optimization algorithms. In: Moreno-Dı́az, R.,
Pichler, F., Quesada-Arencibia, A. (eds.) EUROCAST 2011. LNCS, vol. 6927,
pp. 367–374. Springer, Heidelberg (2012). doi:10.1007/978-3-642-27549-4 47

30. Inspyred: Bio-inspired Algorithms in Python (2016). Accessed 11 Nov 2016
31. Matlab Genetic Algorithm Toolbox (2016). Accessed 11 Nov 2016
32. Finck, S., Hansen, N., Ros, R., Auger, A.: Real-parameter black-box optimiza-

tion benchmarking 2009: presentation of the noiseless functions. Technical report,
Citeseer (2010)

33. Zhang, J., Chung, H.S., Lo, A.W., Hu, B.: Fuzzy knowledge incorporation in
crossover and mutation. In: Jin, Y. (ed.) Knowledge Incorporation in Evolutionary
Computation, vol. 167, pp. 123–143. Springer, Heidelberg (2005)

34. Bäck, T., Schwefel, H.P.: An overview of evolutionary algorithms for parameter
optimization. Evol. Comput. 1(1), 1–23 (1993)

35. He, J., Kang, L.: On the convergence rates of genetic algorithms. Theor. Comput.
Sci. 229(1), 23–39 (1999)

36. Mühlenbein, H.: How genetic algorithms really work: mutation and hillclimbing.
PPSN 92, 15–25 (1992)

37. Doerr, B., Sudholt, D., Witt, C.: When do evolutionary algorithms optimize separa-
ble functions in parallel?. In: Proceedings of the Twelfth Workshop on Foundations
of Genetic Algorithms XII, FOGA XII 2013, pp. 51–64. ACM, New York (2013)

38. Back, T.: Selective pressure in evolutionary algorithms: a characterization of selec-
tion mechanisms. In: Proceedings of the First IEEE Conference on Evolutionary
Computation, 1994, IEEE World Congress on Computational Intelligence, vol. 1,
pp. 57–62, June 1994

39. Suganthan, P.N., Hansen, N., Liang, J.J., Deb, K., Chen, Y.P., Auger, A., Tiwari,
S.: Problem definitions and evaluation criteria for the CEC 2006 special session
on constrained real-parameter optimization. Technical Report, Nanyang Techno-
logical University, Singapore, AND KanGAL Report 2005005, IIT Kanpur, India,
May 2005

40. Gates, G.H., Merkle, L.D., Lamont, G.B., Pachter, R.: Simple genetic algorithm
parameter selection for protein structure prediction. In: IEEE International Con-
ference on Evolutionary Computation, vol. 2, pp. 620–624. IEEE (1995)

41. Iacca, G., Mallipeddi, R., Mininno, E., Neri, F., Suganthan, P.N.: Super-fit and
population size reduction in compact differential evolution. In: 2011 IEEE Work-
shop on Memetic Computing (MC), pp. 1–8. IEEE (2011)

42. Tanabe, R., Fukunaga, A.S.: Improving the search performance of shade using
linear population size reduction. In: IEEE Congress on Evolutionary Computation
(CEC), pp. 1658–1665. IEEE (2014)

A
u

th
o

r
P

ro
o

f

http://dx.doi.org/10.1007/978-3-642-27549-4_47

