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Biologically Guided Driver Modeling: the Stop
Behavior of Human Car Drivers
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Abstract— This paper presents a principled approach to the
modeling of human drivers—applied to stop behavior—by unit-
ing recent ideas in cognitive science and optimal control. With
respect to the former, we invoke the affordance competition
hypothesis, according to which human behavior is produced by
resolving the competition between action affordances that are
simultaneously instantiated in response to the environment. From
the theory of optimal control, we deploy motor primitives based
on minimum jerk as the potential suite of actions. Furthermore,
we invoke a layered control architecture, which carries out action
priming and action selection sequentially, to model the biological
affordance competition process. Motor output may be directed
to distinct motor channels, which may be partially inhibited, e.g.,
to model gas pedal release saturation. Within this architecture,
two types of motor units—“deceleration” acting on a gas pedal
channel and “brake” acting on a brake pedal channel—are
sufficient to model, with remarkable accuracy, the various phases
that can be observed in human maneuvers in stopping a car,
namely: gas release, gas chocked, brake, and final brake release
at stop. The model is validated using experimental data collected
in 16 different stop locations, from roundabouts to traffic lights.
We also carry out a comparison with the well-known Intelligent
Driver Model, discuss the scaling of this framework to more
general driving scenarios and finally give an example application
where the driver model is used, within a mirroring process,
to infer the human driver intentions.

Index Terms— Driver modeling, intelligent vehicles, layered
control architectures, adaptive behavior, cognitive robotics, motor
primitives.

I. INTRODUCTION

MODELING drivers has always been an important part of
vehicular and transportation studies. Successful models

for many application fields have been developed with many
approaches, such as, e.g., psychological, analytical, machine
learning, [1], [2], experimental [3], etc..

Concerning the genesis of these models, a generally com-
mon trait is that they are developed from plausible assumptions
regarding the driver decision making process or what the driver
is supposed seeking to do. However, incomplete understanding
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of the principles underlying human behaviors makes it difficult
to generalize the assumptions and scale these models – for
example, to produce a human model suited for man-machine
interactions.

In the domain of robotics and cognitive science a parallel
research thread has evolved, that seeks to explain human
sensorimotor behaviors in terms of models of the underlying
brain architectures and processing. This theoretical framework
can be, in principle, used to engineer new driver models
grounded into more general cognition theories.

In particular, following the work of people like Cisek [4],
this paper argues that human driving can be modelled fol-
lowing the principles of competition between affordances –
which are possible actions ‘invited’ by objects and situations
in the immediate environment and ‘affordable’ by the motoric
capabilities of the agent (e.g. a bifurcation affords taking
either lane). We also assume that these actions are imple-
mented with optimal goal-directed motor strategies.

With these principles, we show how to develop a driver
model focusing on the stop behavior of human car drivers,
which we analyze theoretically and with real driving data.
We show that the stop behavior is surprisingly complex
when examined in detail. Nonetheless with the introduced
principled approach we generate a model that predicts phe-
nomena such as ‘coasting’ (no gas and no brake), and the
release of the brake to reduce the jerk pulse just before
the stop. The switching between different phases preceding
the stop (gas release, braking, brake release etc.) is explained
with an environmentally-responsive action-selection mecha-
nism, rather than a pre-programmed sequence. Experimental
data are used to produce evidence of the different types
of affordances, of their optimality and to parametrize their
instantiations representing an average driver.

Beyond the interest represented by the detailed knowledge
of the stop behavior in itself, we believe that this paper
contributes to supporting the thesis that human driver behavior
can be modeled with layered control architectures and optimal
control motor primitives. Thus, in the conclusions we discuss
the prospective application of these studies to human-vehicle
interactions, to be achieved by providing the vehicle with a
human model that attempts, in silico, to ‘mirror’ the dynamics
of the internal cognitive states enjoyed by the human agent
in vivo [5]–[15].

II. RELATED STUDIES

A. Models for Stop Behavior in Transportation Studies

A large number of models can be found in the literature
concerning car following (CF) scenarios [16]; many of these
include stop.
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The Intelligent Driver Model (IDM) [17] is among the most
famous ones. It is of particular interest for us as it has been
used to infer the intentions of drivers at intersections among
four alternative hypotheses [18]. Thus, the IDM generates the
longitudinal plans for the four hypotheses, which are compared
with observations of the actual driver behavior to find the
most probable one. In Cognitive Science terms, this method
uses the ‘mirroring’ principle, where another agent (in this
case the IDM) generates behaviors – like a human – for
possible actions and then selects the one/ones which best
fits the observed behavior of the mirrored agent (the human
driver). For the success of this process it is mandatory that
the mirroring agent possesses actions similar to those of
the mirrored agent [15]. Then, the environment can offer
similar affordances to both agents which, in turn, allows
(at least in principle) for the mirroring agent to enjoy similar
internal mechanisms to its mirrored counterpart. Only in this
case, fitting the observed behavior means that the ‘intentions’
(internal states corresponding to the active action/affordance)
of the observed agent are captured correctly. Thus, given
that accurate modelling of driver behavior is a prerequisite
for mirroring, a close comparison between the stop behavior
predicted by the IDM and that predicted by this paper’s models
will be carried out in sections VI and VII.

Most stop maneuvers occur at intersections, and so pre-
vious studies have focused on this scenario. Further, they
have approached the problem by simply classifying different
driver behaviors. Thus, Aoude et al. [19] used two machine-
learning approaches (Support Vector Machines SVM and
Hidden Markov Models HMM) to categorize the vehicles
approaching an intersection into two classes: compliant or non-
compliant. The speed and distance of the approaching vehicles
is observed till a given time before the intersection. Then the
classification is carried out and, if necessary, warnings may
be issued to other vehicles. The time when the classification
is carried out, is a tradeoff between classification accuracy
and timely/usefulness of warnings: the later the classification
is carried out the better; but the lesser time remains for
reactions. If the classification is carried out 2 seconds before
the intersection, the reported true positive rate is about 65%,
with 5% false positive rate.

Classification at intersections is also studied in [20], extend-
ing the case to yield scenarios and classification among four
possible intentions (no action, stop, creep and go). Three
machine-learning approaches are studied and observations of
the second vehicle are included to account for the mutual
influence between vehicles in the yield scenario.

However, in view of our objectives (modelling drivers),
a limitation of classification approaches is that they do not
provide an explicit explanation for why and how the driver
behaves.

B. Biological Plausible Human Behavioral Models

There are two main ideas that can be useful for the devel-
opment of rational models of human drivers, at least at mid-
low levels of sensorimotor control: 1) the notion of affordance
competition, implemented in layered control architectures and

2) the notion of efficient motor control, that can be emulated
by optimal control.

1) Affordance Competition and Layered Control
Architectures: The basic idea in layered control is to use
multiple, parallel, processing streams, each with perceptual
and motor abilities, and of ever increasing processing
complexity.

Layered control is a recurrent theme in many disciplines in
cognitive science (for a cross-disciplinary review see [21]). For
example, in neuroscience it has a long and rich history going
back to Jackson in the 1880s [22]. Indeed, the idea of layered
systems instantiated in different structures along the neuraxis
(from brain stem to frontal lobes) is now part of mainstream
opinion.

More latterly, in robotics, the ‘subsumption’ architecture
of Brooks [23] has enjoyed considerable attention. While not
intended as a biological model, this architecture showed how
simple behaviors could run autonomously without extensive
processing but could, if needed, be replaced or ‘subsumed’ by
those requiring more complex control.

Across all layered schemes, a key question is how the dif-
ferent layers of control can be orchestrated to act in a coherent
way when confronted with the problem of action selection –
determining which of the many possible actions or behaviors
should take control of the agent at any one time. In the
subsumption scheme in robotics, this is not always clear
and is solved in a variety of ways. In biology, however,
there is a possibility of a single unified approach – that
of a central selection mechanism based on an evolutionary
old brain system – the basal ganglia [24]. In this proposal,
the brain can simultaneously prime many ‘potential actions’
or ‘action requests’ which may originate in any part of a
layered architecture. These requests are transmitted to the basal
ganglia which, via internal competition, allow only the most
urgent or salient actions to prevail. A similar idea has been
articulated independently by Cisek under the banner of the
affordance competition hypothesis [4]. This emphasizes the
notion that perceptions for possible actions – or affordances –
generate action requests that are continually being evaluated
for selection. Indeed, both action priming and action selection
occur continuously, which permits continuous adaptation of
potential solutions to the current tasks in hand, and thereby,
selection of the most appropriate behavior.

In the driving domain, with respect to layered control, many
driver models have indeed long recognized the hierarchical
organization of the driving task, spanning from long-term
complex goals at higher levels to short-term simple con-
trol actions at lowest levels [25]–[27]. With respect to the
affordance competition hypothesis, human decision-making at
intersections has been in particular studied in [28], concluding
that it looks to be the choice between affordances, where
‘drivers take into account both the crossing possibilities and
the stopping possibilities’.

2) Optimal Goal-Directed Actions and Motor
Primitives: Many studies on human motor control reveal
the existence of highly optimized strategies, e.g., [29]–[38],
which hold not only for body movements but also for the
manipulation and control of objects [39], [40]. Models of such
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Fig. 1. Layered control architecture for the driver model. Perception-action
loop occurs in two phases: 1) based on the perceived environment potential
actions (m0, . . . , m5) are primed in parallel; 2) among these, the action
that best suites higher-level biasing directives is selected and gated to the
motor system for execution. If selected, (m0, m1) are directed to motor
channel 1 (the accelerator pedal); the remaining actions to motor channel 2
(brake pedal). Only one action is gated at any time. This architecture is
scalable with the addition of additional actions mk , which participate to
the same selection procedure. Algorithms that instantiate this architecture for
3 models of increasing complexity will be given in section V.

optimized control include those governed by the minimum
jerk and minimum variance principles [35], [36].

The notion of motor primitives, as atomic motor units
forming the bottommost layer of a layered architecture, is also
present in the literature [41], [42].

In the driving domain, optimal control has been used to
describe driver behaviors (from a functional point of view)
both for long-term tactical plans [43]–[45] and for producing
atomic motor units (motor primitives) for layered control
architectures [46]–[48]. However, the connection with studies
in human optimal sensory-motor control have been rarely
recognized.

III. MODELING HUMAN STOP BEHAVIOR

A. Layered Control

Following section II.B.1, our artificially engineered layered
control architecture aims at reproducing the mechanism of
affordance competition in biology [4], [21], [24].

In the schematic representation of Fig.1, action requests
related to many plausible goals are generated simultane-
ously (the action priming block). These ‘compete’ according
to given ‘fitness’ criterion, and the winner is then gated to
the motor system, thereby taking control of the plant (the
action selection block). However, the competition process
can be steered by biasing the ‘fitness’ criterion from higher
levels, resulting in a layered architecture of the kind described
in section II.B.1.

Note how this architecture reverses the traditional logic
processing order that sees situation assessment preceding
action planning. Here the opposite happens: action planning –
in the form of nascent behaviors – occurs before assessment of
which is best, and each plan influences the selection process.

The scheme of Fig.1 has direct analogues with ([4], Fig.1).
There, action affordances are generated in the so-called ‘dorsal
processing stream’ in cortex which generate candidates for

action selection (action requests) in basal ganglia. The ‘action
selection’ block in Fig.1, indeed, mimics the use of such a
dedicated central mechanism in the vertebrate brain. At any
time, only one action is gated (only one switch is closed).

Finally, Fig.1 shows two different motor channels, defined
as of the operation of the accelerator/gas pedal (channel
1), or the brake (channel 2). Actions aimed at controlling the
speed in free flow or releasing the gas pedal in early phases
of stop are directed to motor channel 1; actions aimed at
changing the speed via the brake (including brake release), act
on motor channel 2. This will allow modelling the different
characteristics of each channel, and in particular, for this paper,
the fact that deceleration saturates when the gas pedal is
completely released.

1) Enacting Actions, Motor Primitives: This section deals
with how actions (such as, e.g., m0, . . . m4 in Fig.1) can be
enacted. Following section II.B.2, modelling a generic action
‘m’ is carried out within an Optimal Control framework as
follows.

Initial Conditions: Let us consider a goal-directed action m
to connect the present state1 of the vehicle s(0), v(0), a(0) to
an aimed final state s(T ), v(T ), a(T ); m may be embodied by
a function s(t), t ∈ [0, T ], representing the travelled distance
as function of time, and, when necessary, by its derivatives:
v(t) velocity, a(t) acceleration, etc. Let t = 0 represent the
present time and t = T the time at which the final state will
be reached. In general, the movement time T is not given
beforehand, but is part of the problem.

Let the current state be defined by the following initial
conditions:

s(0) = 0, v(0) = v0, a(0) = a0 (1)

where a0 and v0 are the current acceleration and velocity,
and a curvilinear reference frame with origin on the present
position and longitudinal abscissa following the lane centerline
is assumed (hence s (0) = 0).

Final Conditions (for Stop): Let a future stop state be
defined by the following final conditions:

s(T ) = s f , v(T ) = 0, a(T ) = a f (2)

where s f is the position of the stop line (or any other desired
stop point) in the current curvilinear coordinates system, and
the final velocity v(T ) must be zero. Note that, like T , the final
acceleration a f is not known yet and will be determined
by imposing the optimality conditions (this is to model the
residual acceleration left at stop by human divers).

Final Conditions (for Free Flow): The final condition (2) is
suited for modeling actions that aim at a final rest state (stop),
such as m1, m2, m3, m4. However, the sensorimotor system of
Fig.1 includes two actions, free-flow m0 and rolling stop m5
which do not aim at stop, but rather at a finite value, vd , for
the final velocity. Hence, let us define an alternative set of
final conditions to be used for modeling actions such as m0:

s(T ) = f ree, v(T ) = vd , a(T ) = 0 (2’)

1We consider the acceleration to be a state variable because longitudinal
forces do not change instantaneously.
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Plant Model: Let the plant be modelled with a simple
kinematic model (3). This choice is motivated in part by
simplicity and in part because there is some evidence that
human motor planning occurs at the kinematic level in the
Cartesian space, e.g., [37], [38].

ṡ(t) = v(t), v̇(t) = a(t), ȧ(t) = j (t) (3)

where j (t) is the control input, which corresponds to the
longitudinal jerk.

Optimality Criterion: Finally, let us formulate the following
optimality criterion:

J = wAa2
f +

∫ T

0
wT + j (t)2dt (4)

In equation (4), the part in the integral is a trade-off
between smoothness (if wT = 0 the integral reduces to the
minimum square jerk criterion), and speed (if wT → ∞
the integral reduces to the minimum time criterion). Defining
the optimality criterion as a trade-off between the two clearly
serves to model the different speed-accuracy combinations that
humans may use. Thus, with large values for wT , primitives
that quickly reach the aimed final state are produced, but they
will also use large jerk, which in turn results in large command
noise (because human neural noise is proportional to the
control signal [35], [38]), and thus in less accurate movements.
Vice-versa, maximally smooth maneuvers are produced with
wT ≈ 0, but they require more time to reach the desired final
state.

Thus, for what concerns the integral part, formulation (4)
is identical to previously used ones [46]–[48]. The difference
in this paper is the new term wAa2

f ; a terminal cost which
is introduced to reduce the final acceleration, a f , making
it loosely bound to zero, instead of exactly zero. Indeed,
if wA = 0 the final acceleration minimizing (4) would be
free to vary and would result quite large; if wA → ∞ the
final acceleration would be forced to zero; but, to obtain this,
larger j (t) would be necessary. As the experimental data in
Section IV show, human drivers adopt a tradeoff, tolerating
some residual acceleration at the stop time, (which results in
a slightly uncomfortable jerk pulse). This is here modeled by
a finite value for wA, which will be estimated in section V for
different motor primitives.

a) Stop motor primitives: Equations (1), (2), (3), (4)
define an optimal control problem, which aims at a final rest
state. This problem has an analytical solution, which is given
in details in Appendix I. The resulting trajectory is a 5th order
polynomial:

s(t) = c1t+ 1

2
c2t2+ 1

6
c3t3+ 1

24
c4t4+ 1

120
c5t5, t ∈ [0, T ]

(5)

where coefficients ci of the polynomial and the movement
time T , are functions of the initial conditions a0, v0, of the
final condition s f and of the weights wT , wA that set the
trade-off among smoothness, time and residual acceleration.

Let us indicate the solution of the optimal control problem
with the following concise writing:

m = Stop
(
a0, v0, s f , wT , wA

)
(6)

meaning that m is the particular polynomial (5) with ci and
T computed as shown in Appendix I given a0, v0, s f , wT , wA.
Alternatively –which is better suited for a computer– m
may be a vector collecting the coefficients ci and T : m =
{c1, c2, c3, c4, c5, T }. Either way we have a representation of
the action.

Further, we note that the optimal control problem is some-
how ‘atomic’ in the sense that it cannot be further decomposed.
Hence the polynomial solution (5) is called ‘motor primitive’
in broad analogy with the biological ones.

b) Free-flow motor primitives: Similarly, if we replace
the final condition (2) with (2’) we get an optimal control
problem aiming at achieving a uniform speed vd . The solu-
tion is another 5th order polynomial, with coefficient given
in Appendix II. Let us call this second type of motor primitive
as follows:

m = FreeFlow
(

a0, v0, vd , wT

)
(7)

2) Implementing Action Selection: For longitudinal control
in a stop scenario, a suitable selection criterion may be based
on the initial value of the longitudinal jerk j (0) = c3, i.e., by
choosing the action mi with the smallest initial jerk ji(0). This
also means choosing the motor plan that is initially the slowest,
and if this process is continuously updated, the control output
from the scheme of Fig.1 is the one which complies with the
most severe longitudinal limitation ahead, on a moment-to-
moment basis.

However, one should note that this simple selection criterion
works only for the stop scenario of this paper. More complex
situations call for more complex selection mechanisms [49],
requiring the representation of actions in a metric space, and
the use of inhibition mechanisms. A discussion of action
selection mechanisms for such more general situations in
longitudinal control is given in [48], section V.B.

3) Receding Horizon Control, Minimum Intervention
Principle: Let mi be the selected motor primitive. The corre-
sponding optimal control is obtained from (5):

ji(t) = c3,i + 1

2
c4,i t + 1

6
c5,i t

2, t ∈ [0, T ] (8)

It could be used to specify the requested acceleration
rate, which, if tracked, would produce the planned motion.
However, if the action priming/selection is continuously
updated, e.g. like in a receding horizon framework, we are
going to use only the initial part of (8) – ideally only ji(0) if
the agent of Fig.1 runs continuously.

Note that in the re-planning hypothesis, any deviation that
might occur, gives birth to an updated plan that still aims at
achieving the same final goal, but from the deviated state.
Thus, there is no return to the original trajectory and only the
deviation components that affects the achievement of the final
goal have effect. This is known as the ‘minimum intervention
principle’ [50], [51], which is here an emergent feature of the
driver model.

4) Modeling Pedal Saturation: The requested accelera-
tion rate ji(0) can be produced by either acting on the
gas or brake pedal. Since the pedal absolute positions approx-
imately map onto engine torque or brake force, the rate
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Fig. 2. Map of the test circuit. Numeric labels indicate 16 selected locations.

of pedal stroke approximately maps onto the longitudinal
intentional jerk (albeit with different gains for gas and brake).
Hence, the output of the model in Fig.1 can be interpreted as
determining the rate of pedal strokes. However, both pedals
saturate, in particular when they are fully released. This can
be modeled with thresholding ji(0): namely, if the gas pedal
is completely released negative values for ji(0) are set to
zero (the pedal cannot be further released). The same happens
for the brake. In this way actions directed to the gas/brake
pedal become non-effectives if they correspond to a further
release. As shown in the following, this is enough to reproduce
the phenomenon of ‘coasting’, where a driver releases the gas
pedal, but does not yet brake (colloquially speaking, we could
say that in the coasting phase the driver ‘would like’ to further
release the gas pedal –which is not effective– but is not ready
yet to brake).

IV. EXPERIMENTAL DATA

We introduce experimental data that form the basis for both
qualitative and quantitative parameterization of the models and
model validation. These data were collected during the user
tests of the EU FP7 ‘interactIVe’ project [52].

For the project, data of many sensors were logged at
50 ms rate. Signals relevant for this paper, are: longitudinal
velocity, longitudinal acceleration, gear, gas pedal position,
brake master cylinder pressure and distance of the vehicle
ahead.

Velocity and acceleration signals have been improved with
a combination of two Kalman filters. One designed for speed
above 0.5 m/s (where the odometer is accurate), to remove,
in particular, the acceleration bias caused by variation of the
road slope and thermal drift. Another designed for the short
periods with speed below 0.5 m/s (at which the odometer is
less accurate, but slope variation and drift can be neglected)
to compensate the loss of accuracy of the odometer at low
speed, and consequently to improve the estimation of actual
stop positions.

Fig.2 shows the test circuit, which is close to Orbassano,
west of Turin, in Italy. The circuit was driven 50 times by

24 users and 1 professional test driver, each driving twice
(see [47], [53] for other details).

In the map, 16 locations where stop events have been
observed are labeled. Points 1, 2, 3, 4, 9, 11, 13, 14 and
15 are yield locations at the entrance of small or medium-
sized roundabouts. Points 6, 7, 8 are yield locations in large
roundabouts with complex geometry. Point 5 is a left turn (with
yield sign). Point 10 is a ramp (with yield sign). Point 12 is a
traffic light. Point 16 is another traffic light (and end of route).
Together they represent different conditions that may require
a vehicle to stop (today roundabouts are the most frequent
situations in EU urban and extra urban roads).

Fig.3 gives a global representation of the speed profiles
observed at the 16 locations, as functions of the longitudinal
abscissa. Not all drivers stopped at the same position: in some
cases, they had to stop behind other vehicles (e.g.: see the
traffic lights queues in points 12 and 16).

Vehicle trajectories, over all 16 stopping locations, have
been divided into three types.

1) Type 1 (the light blue curves in the online version of
this paper) is formed by vehicles that reached a real
stop condition (i.e., zero speed).

2) Types 2 and 3 have been formed by dividing the non-
stopping vehicles in two classes: ‘slow’ (yellow curves)
and ‘fast’ (violet curves). The ‘fast’ type represents
vehicles that either do not reduce speed at all (e.g., at the
green traffic lights at location 12) or reduce the speed
only for what is strictly necessary to comply with
the safe speed in the curves ahead. The ‘slow’ type
represents vehicles that initially reduce speed in a way
that is compatible with stopping, until a point where
they resume speed, when they have enough information
to take the decision to go.

A close examination of Fig.3 shows that, except for the
traffic lights (locations 12 and 16) the speed profiles of the
three types become distinctly separated only when very close
to the possible stop point.

A. Evidence of Hierarchically Structured Behaviors

Fig.4 gives a first example of a maneuver ending with
complete stop at the first roundabout (point 1).

The recordings begin from the precedent peak of the speed,
which occurred about 21 seconds earlier, and which marks
the beginning of the approach to the stop point. From that
moment, the maneuver proceeds with different phases: 1) an
initial partial use of the gas pedal (b-c), which corresponds to
very slight deceleration; 2) a subsequent phase with complete
choking of the gas (c-d); 3) a phase where the brake pressure
is gradually increased, causing increasing deceleration (d-e);
4) a final phase where brake pressure is reduced, to suppress
the uncomfortable jerk pulse that would otherwise happen
at the stop (e-f). In Fig.4, brake and gas signals, which repre-
sent the intentional driver control, originally sensed as percent
of the gas stroke or percent of the maximum brake cylinder
pressure, have been scaled to show the correspondence with
the longitudinal acceleration.

The composite nature of this example is a first indication
that the stop behavior is actually made by sub-behaviors.
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Fig. 3. Speed of vehicles in the 16 selected locations. Light blue tracks represent stopping vehicles; yellow and violet are two clusters that represent vehicles
slowing down/not slowing down for possible stop (see text).

Fig. 4. Example of an unperturbed stop maneuver shows it is made of
sub-behaviors (partial gas, chocked gas, brake, brake release). The y-axis
scale serves for both speed (blue curve) and acceleration (orange curve),
the units of which are labeled next to each curve (dm/s for speed and
m/s2 for acceleration). Brake and gas pedal signals, originally in percent of
stroke or max pressure, have been scaled to show the quasi proportionality
that relates pedal commands to acceleration. Brake and gas represent the
intentional actions of the driver, which result in a proportional acceleration
control. The coding of this figure has been used also for Fig.5 and 6.

Here we noted: partial gas, chocked gas, brake and brake
release, at least.

The situation of Fig.4 still is a comparatively simple case,
in particular because not perturbed by traffic, where the stop

behavior is achieved by executing the sub-behaviors in ordered
sequence. However, depending on the context (in particular
traffic, changes in visibility and available information, etc.)
the driver may switch back and forth between sub-behaviors.

Fig.5, shows one such example for a left turn (point 5):
the driver brakes a first time between d ′ and f ′ because of
front vehicles, as the violet ‘car following’ vertical bands mark
(as detected by the frontal laser-scanner and confirmed by
visual inspection of front camera recordings). When the driver
returns in the ‘free flow’ condition, he/she returns to using the
gas in a′′, until the final stop maneuver is carried out in d-e-f.
A video showing these events is included in the supplement
materials. Note that, in this case, the final brake release is
incomplete, ending with a finite acceleration at stop.

Fig.5 is given as an example of the dynamic adaptation
that layered control architectures can produce: while the long-
term goal of the driver was stopping, the continuous selection
of the most appropriate behavior let him/her suspend the
stop behavior and brake at d′- f ′ in response to a temporary
condition caused by front vehicles.

To model car following the layered architecture should be
extended with new specific actions (say in place of mk);
in particular using a new type of final conditions in place
of (2), (2’); such as used in e.g., [46]. This is not done here
because out of scope. However, for the parameterization of
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Fig. 5. Example of alternation of sub-behaviors induced by traffic. Note the
acceleration adjustment after traffic clears at a′′. The coding is the same of
Fig.4: the y-axis scale serves for both speed (dm/s) and acceleration (m/s2).
Brake and gas are scaled to show proportionality with acceleration.

Fig. 6. Example ‘rolling’ stop. Close to stop the driver modulates the brake
pressure to slowly creep across the yield location.

actions we will have to ignore maneuvers that are conditioned
by traffic.

Fig.6 gives a final example, which is similar to Fig.4, except
that, close to stop, the driver modulates the brake in order to
creep across the yield line, as shown in the new phase f − g.
This kind of behavior is referred as ‘rolling stop’.

V. MODEL INSTANTIATIONS AND PARAMETRIZATION

A. Model Instantiation

We study three different models, derived from the archi-
tecture given in Fig.1 and made of increasing number of
motor primitives, i.e., with increasingly richer motor repertoire
(we do not include rolling stop though).

1) Model 1: The simplest possible instantiation switches
between only two motor primitives: m0, to travel at constant
desired speed vd , and m2 to stop by braking (Algorithm 1).

Algorithm 1
Require: a0, v0, vd , wT ,0, s f , wT ,, wA

1: m0 ← FreeFlow(a0, v0, vd , wT ,0)
2: m2 ← Stop(a0, v0, s f , wT ,, wA)
3: i ← argmin( j0 (0) , j2 (0))
4: Return mi

2) Model 2: Model 2 switches among free-flow m0 and two
different ways of reducing the speed: m1, by releasing the gas
pedal, and m2 by braking (Algorithm 2). It is assumed that m1,
makes no attempt at reducing the final acceleration to zero,
i.e., wA,1 = 0. The gas g ∈ [0, 1] and brake b ∈ [0, 1] pedal
positions are required and they are exclusively non-zero (when
one is non-zero, the other must be zero).

Algorithm 2
Req.: g, b, a0, v0, vd , wT ,0, s f , wT ,1,, wT ,2,, wA,2
1: wA,1 ← 0
2: m0 ← FreeFlow(a0, v0, vd , wT ,0)
3: m1 ← Stop(a0, v0, s f , wT ,1,, wA,1)
4: m2 ← Stop(a0, v0, s f , wT ,2,, wA,2)
5: i ← argmin( j0 (0) , j1 (0))
6: If g > 0 Return mi // gas pedal pressed
7: If b > 0 Return m2 // brake pedal pressed
8: h ← argmin( j0 (0) , j1 (0) , j2 (0))
9: Return mh

If the gas pedal is pressed (g > 0) the algorithm selects
between m0 and m1. If the brake is pressed (b > 0) the
algorithm selects m2. If both pedals are released the algorithm
choses the action with minimum jh (0). If the latter acts on a
saturated channel (e.g., j1 (0) < 0), it remains ineffective until
superseded (e.g., by j2 (0)).

3) Model 3: Model 3 switches among free-flow m0, two
different ways of reducing the speed: m1, and m2 and an
additional brake primitive m3 specifically aimed at modelling
the brake release phase e- f .

Algorithm 3
R: g, b, a0, v0, vd , wT ,0, s f , wT ,1,, wT ,2,, wA,2, wT ,3,, wA,3
1: wA,1 ← 0
2: m0 ← FreeFlow(a0, v0, vd , wT ,0)
3: m1 ← Stop(a0, v0, s f , wT ,1,, wA,1)
4: m2 ← Stop(a0, v0, s f , wT ,2,, wA,2)
5: m3 ← Stop(a0, v0, s f , wT ,3,, wA,3)
6: i ← argmin( j0 (0) , j1 (0))
7: l ← argmin( j2 (0) , j3 (0))
8: If g > 0 Return mi // gas pedal pressed
9: If b > 0 Return ml // brake pedal pressed
10: h ← argmin( j0 (0) , j1 (0) , j2 (0) , j3 (0))
4: Return mh

Like Model 2, this algorithm selects between m0 and m1
when the gas pedal is pressed and between m2 and m3 when
the brake is pressed.

Caveats: Stop motor primitives become singular when
s f → 0 (close to the stop line). That is because when s f → 0,
also T → 0. We prevent the singularity by switching to a spe-
cial ‘stop’ maneuver when the speed is below 0.5 m/s which
is implemented as a maximally smooth (wT = 0) free-flow
primitive aimed at zero speed: m4 = FreeFlow(a0, v0, 0, 0).

In the cognitive architecture of Fig.1, the switch from
one of Models 1, 2, 3 to m4, can be obtained by biasing
action-selection to m4.
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Fig. 7. Speed of 66 stop maneuvers not affected by traffic. The median,
95 and 5 percentile speed and an estimation of the uncertainty band are shown.

Fig. 8. Acceleration of 66 stop maneuvers not affected by traffic. The median,
95 and 5 percentile speed and an estimation of the uncertainty band are shown.
Note a dense cloud at about -0.37 m/s2 which corresponds to travelling with
fully release gas pedal (and brake not pressed), i.e., the coasting phase. Note
that a fraction of maneuvers, about a half, end with finite acceleration.

B. Parameterization of Models

For parameterization of the motor primitives of the 3 models
we have considered only the maneuvers that were not delayed
by the traffic, such as, e.g., Fig.4 and Fig.6, but not Fig.5.

1) All Types of Stop: Considering al stop locations, there
are 66 stop maneuvers that were not influenced by traffic.
For these, Fig.7 shows the speed profiles, an estimation of the
95 and 5 percentiles, the median speed and an estimation of the
uncertainty region (taken as 3σ/

√
n where σ is the standard

deviation and n = 66). In the inset, a magnified view of the
last 5 seconds is given, which allows appreciating the effect of
rolling stop maneuvers (particularly clear for the 5-percentile
curve) and the final residual acceleration.

Fig.8 is the analogous of Fig.7 for the acceleration.
A dense cloud at approximately ac = −0.37 m/s2, between
25 and 10 s before stop, represents the ‘chocked gas’ states
(e.g., a-b Fig.5). Note also that the 5-percentile curve
ends with zero acceleration indicating 3-4 seconds rolling
stops (inset). The median curve has a very small residual
end-acceleration a f which is instead much larger for the
95-percentile curve.

Fig. 9. Comparison of the median acceleration for roundabouts, traffic light
and the whole set.

2) Traffic Light and Roundabout Subsets: To investigate the
influence of the stop type, the stop maneuvers corresponding to
the two traffic lights (locations 12 and 16) have been separated,
and the corresponding distributions and medians computed.
The same has been done for the 9 simple roundabouts
(locations, 1, 2, 3, 4, 9, 11, 13, 14, 15).

Fig.9 compares the median acceleration for traffic lights
(21 maneuvers), roundabouts (37 maneuvers) and the whole
set in the background (i.e., the same of Fig.8, 66 maneuvers
including also locations 5, 6, 7, 8, 10 that are neither traffic
lights nor simple roundabouts, Fig.3).

A Wilcoxson-Mann-Whitney test has been used to test
whether the roundabout and traffic lights medians are signifi-
cantly different in the three regions compared below.

1) One first difference may be noticed for the gas release,
which for traffic lights tends to occur∼5 s earlier. This may be
explained with the fact that the future states of the traffic light,
and thus whether it is necessary to stop, tend to be predictable
earlier, as traffic lights are placed in long straights and visible
from long distance. Conversely, at roundabouts drivers will
know later, and closer to the yield line, whether they can
cross. Statistically, this difference is however not significant,
probably because the distributions are bimodal, in this region,
and not different enough, even if the medians appear different.

2) The maximum deceleration at traffic lights is less than
at roundabouts (i.e., overall traffic light stop occur with less
deceleration over longer time). This difference is significant
(Wilcoxon-Mann-Whitney p < 0.002 at t ∈ [−4.4s,−2.1s]).

3) Finally, the residual acceleration at stop tends to be non-
zero for traffic lights, but essentially zero at roundabouts.
This difference is also significant (Wilcoxon-Mann-Whitney
p ≈ 0.006 at t ∈ [−0.4s, 0s]).

From the insets, it can be seen that at roundabouts the
median acceleration is close to zero for about the last second,
which represents frequent rolling stop conditions lasting abut
one second for the median case, and about 3-4 s for the
5-percentile case. This latter difference can be explained with
the fact that at traffic light there is a ‘hard’ stop condition,
whereas at roundabouts there is a yield sign; hence drivers
creep into the roundabout till they can decide whether to
stop or cross.
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TABLE I

COMPARISON OF MODELS

C. Motor Primitive Fitting

The three models have been fitted onto the median
acceleration curve. The best fitting parameters are listed
in Table I.

Fig. 10. Model 1 best fit.

For Model 1, the fit is shown in Fig.10. With only one brake
primitive, Model 1 does not describe the initial gas release
(Fig.10, label a). Also, the maximum deceleration (label b)
and the final acceleration (label c) are not captured very
well. The traffic light sub-set is fitted a little better than the
roundabout sub-set (Table I) because there is less correction
of the final speed. Recalling the interpretation given in section
III.A.1, the parameter wA is larger for roundabouts because the
final acceleration a f has to be closer to zero; wT is smaller
for traffic lights because deceleration begins earlier.

Fig.11, left, shows Model 2 fits, respectively for traffic
lights (top), roundabouts (bottom) and all scenarios (center).
For the latter, at time -23.15 s, the model switches from free-
flow to deceleration; at time -16.05 s the gas pedal saturates.
At time -13.45 s the brake primitive is engaged. Hence, com-
pared to Model 1 (Fig.10), the deceleration phase produced
with releasing the gas pedal (label a) is now modeled. Also,
the fit in the brake phase and, in particular, with the final
acceleration adjustment (d-c) is improved.

Modeling the gas release, which can be achieved with
two stop primitives, may thus be an important modeling
innovation for at least two reasons: the first is mirroring of
the vehicle by a driver or passenger, who will understand
that the automated vehicle is going to stop, even before brake
activation; the second reason is energy saving (if the agent is
used for automation). In fact, fuel consumption is cut when
the gas is chocked. Hence maneuver in Fig.11 uses less fuel
than that of Fig.10, which would instead continue to feed the
engine until the brake phase begins.

Fig.11 (center column) shows the maneuver that is produced
by Model 3, which obtains a further improvement thanks to
modeling the final acceleration adjustments.

For the traffic light case (top row) Model 2 and Model 3 fit
the same way. This is confirmed by similar residuals in Table I.
In fact, the third stop primitive of Model 3 –

{
wT ,3, wA,3

}
in Table I – is not substantially different from the second
primitive –

{
wT ,2, wA,2

}
– which is also very similar to{

wT ,2, wA,2
}

of Model 2. Thus, both Model 3 and Model 2
have substantially only one brake phase, because there is no
important correction of acceleration at the end for traffic light
approaches.
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Fig. 11. Comparison of models with experimental data. Top row: traffic light subset. Center row: complete dataset. Bottom: roundabouts subset.
Left: Model 2: layered control with two stop primitives (gas release and brake). Centre: Model 3: layered control with three stop primitives (gas release,
brake, brake release) and simple rolling stop. Right: Intelligent Driver Model (IDM).

For roundabouts (bottom row) the final brake release
(anticipating possible rolling stop) is instead important. Hence,
Model 3, fits better: the triangular shape of the median
acceleration is reproduced with greater accuracy, and in par-
ticular the sharp peak of deceleration (label b) and the final
adjustment (label c). The root mean square fitting residuals
in Table I confirm the better fit; with acceleration error of the
order of 0.05 − 0.08 m/s2 rms for Model 3 (part of which
is data noise and only part remaining model approximations).
The mid row of Fig.11 refers to the complete set. The fitting
of Model 3 is remarkable, which is also because the complete
set has more samples and thus less noise, allowing to better
appreciate the modeling errors.

D. Residual Significance Analysis

We have shown that some models look to better fit the
experimental data, whereas other models show systematic
deviations in some zones of the curve (for example, Model
1 departs systematically from the fitting curve in zones labeled
a, b, c, and d , Fig.10).

To test whether these deviations are statistically significant
the time domain has been divided into bins of 0.1s. For each
bin the distribution of all observed accelerations has been

compared to model predictions. The null hypothesis was that
the acceleration predicted by the model in the bin was the true
median of the observed accelerations in the same bin (which
is equivalent to testing whether the median of the residual in
each bin is significantly different from zero).

For each bin the most appropriate statistical location test
was carried out, depending on the population distribution (the
Student t-test in bins where the distribution was normal;
otherwise the Wilcoxson signed rank test or the Fisher sign
test as a last resource).

Table II summarizes the results, listing the intervals where
statistically significant deviations occurs (the p value is the
probability that the acceleration of the model is the true median
of the data). Each interval is located in one zone (Fig.10):
zone a for model deficiency on the coasting phase, zone b
for the peak acceleration, zone c for the final acceleration and
zone d for the phase preceding the peak acceleration.

Model 1 departs from the experimental data in zone a for
all the three datasets because it does not model the coasting
phase at all. It also does not model well the peak and pre-
peak acceleration (b, d) for the complete dataset and for the
roundabout dataset. Lastly, it does not model well the final
acceleration for the roundabout set, zone c.
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Fig. 12. Comparison of mirroring the stop actions by Model 1∗ and Model 2. The trajectories corresponding to the roundabout at location 1 (Fig.3) are
shown. The three types of maneuvers, stop, yield and cross are shown from left to right columns. Red dots show where Model required jerk fall below the
0.05 quantile threshold. This is where a hypothetical advisory warning associated with that threshold would be issued.

Model 2 improves over Model 1. There is no statistically
significant deviation for the traffic light dataset; there is a
deviation in zone d-b for the complete dataset and for the
roundabout dataset (related to the difficulty of modeling the
peak acceleration and the preceding linear phase); and there is
a deviation for the final acceleration in roundabouts (zone c).

Model 3 has no statistically significant deviations from data
for all the three datasets.

E. Bootstrap Analysis

A bootstrap analysis [54] has been carried out to estimate
the intervals of variation of the model parameters.

Since the complete dataset is a combination of heteroge-
neous situations (roundabouts, curves, traffic light, etc.) we
have restricted the bootstrap analysis to the traffic light and
roundabout cases separately. This way the estimated variations
in the model parameters reflect variations due to different
drivers, together with different executions for the same driver,
in consistently similar situations (e.g., roundabouts vs. round-
abouts). It is implicit that, with more data this same analysis
could be carried out for individual drivers, thus finding per-
sonalized range of variations of the model parameters.

Table III gives an estimate of the range of variability of
the model parameters. These has to be regarded as rough
estimates, since the number of resamples that could be used
was limited by the long computation time required by each
re-fitting procedure for Models 2 and 3. For the same reason
we report estimates for the 10 and 90 percentiles, rather than
5 and 95 percentiles, that turned out to be more stable within
different resample numbers.

The range of variation of the model parameters has to
be interpreted as the consequence of different driving styles

(of both different drivers and of the same driver in differ-
ent moments). Hence, the 10 percentiles tend to represent
slow maneuvers (beginning early) and the 90 percentiles fast
ones. Approximately the parameters vary by a factor of 2,
except wA. In evaluating the variations of the latter, one must
however recall that it needs to vary between 0 and ∞ to
switch between free and zero final acceleration (i.e., large
variations in wA are required to obtain small changes in the
final acceleration).

VI. COMPARISON WITH THE INTELLIGENT

DRIVER MODEL

The Intelligent Driver Model (IDM) is given in (9).

v̇ = a

(
1−

(
v

vd

)δ

−
(

s∗

s

)2
)

(9)

where v is the velocity, vd the desired velocity, s the gap with
the preceding vehicle and s∗ the desired gap:

s∗ = s0 + s1

√
v

vd
+ τv + v�v√

4ab
(10)

where �v is the velocity difference with the preceding vehi-
cle (for modeling stop maneuvers �v = v).

The model has parameters: s0, s1, τ, a, b, vd , δ, which may
be interpreted as modeling: a) the free flow (a, vd , δ);
in particular vd has the same meaning of aimed velocity it
has in the motor primitive (A1.2) and a, δ model the way vd

is approached, just like wT ,0 does in the motor primitive; b)
the deceleration for car following or for stopping (s0, s1, τ, b);
in particular s0 means the clearance left at stop, τ the aimed
time headway, b the maximum deceleration, s1 models a
velocity related clearance but is often set to zero.
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Using the words of the authors [17], the model ‘interpolates
the tendency to accelerate with acceleration a f = a(1 −
(v/vd )δ) on a free road and the tendency to brake with decel-
eration ab = −a(s∗/s)2 when approaching a front vehicle’.

From the perspective of human behavior modeling, a f , and
ab may be regarded as the response to two affordances (drive
at desired speed and brake to keep relative position and
velocity with respect to vehicle ahead). These are added in
the resulting action v̇ (9). However, in human behavior action
selection almost always is not additive but exclusive (either
one or another is realized).

With these observations, one can expect that (9) captures
large scale phenomena resulting from ‘combination’ of free-
flow and following behaviors – just like expected from the
architecture of Fig.1 – but will miss features that arise from
competition of behaviors, such as the switching between dif-
ferent phases/states, asymmetries of different motor channels
and channel saturation.

The IDM has been fitted onto the same three data sets.
Fitting parameters and residuals are given in Table I. For the
actual fitting, parameters (s0, s1, τ, b) have been allowed to
vary but parameters (a, vd , δ), which are designed to model
the free flow, have been set to the values indicated in [17]
(a = 0.73 m/s2, δ = 4), and vd the initial velocity
(in the IDM, there is coupling between parameters used to
model the free flow acceleration a f , and the car following
acceleration ab).

Fig.11, right, plots the IDM model in the three scenarios,
for comparison with Model 2 and Model 3. As expected,
the IDM captures the large-scale phenomena that are described
by the two considered affordances, a f and ab, and it does this
remarkably well, but misses the details that are due to the
exclusive selection of one or another motor primitive. In the
traffic light case, the modeling of gas release and the saturation
of acceleration is not captured (label a). In the roundabout
case, the peak deceleration (b) and the final correction (c),
which are the result of switching between two brake modalities
cannot be captured likewise. In addition, while the parameters
for Models 2 and 3 in Table I have been easily interpreted
for the three stop scenarios, the variation of the parameters
of the IDM, for the same three scenarios, is more difficult to
interpret (e.g., what does the time headway parameter τ mean
for a stop condition? and how can the three different values
for the three scenarios be explained?).

Table II shows that statistically significant deviations exist
for the IDM in two parts of zone a (before and after the
gas pedal release), which again depends on the fact that
“interpolating” between behavior is not biologically plausible.
The IDM also does not model well the peak and pre-peak
acceleration for the complete dataset and the roundabouts
dataset (zone d-b). For the latter dataset, there also is a
mismatch at the final (rolling) phase, zone c.

Concerning Table III, the variation of the model parameters
is typically much larger than the variations of the other models.

VII. IMPACT

One first impact of this work is definitely methodological:
a framework based on bio-inspired principles has been intro-

TABLE II

RESIDUAL SIGNIFICANCE ANALYSIS

duced for both the modelling of drivers and for developing
agents for driver support/interaction. Indeed, the models pre-
sented here are the logical application –to the specific case
of vehicle stopping– of the affordance competition hypothesis
and of known human motor optimality principles (these prin-
ciples constrain the models before fitting to experimental data
is even attempted). One can expect that the adoption of such
principles may allow to design better agents for human driver
support beyond the application domain specifically studied in
this paper.

Driver models derived in this way have perhaps the main
strength in human vehicle interactions. The similarity of
sensorimotor control sought in this paper approach is indeed
finalized to mirroring (both robot mirroring the human and
vice-versa). We provide here one example; however, on this
aspect the reader is invited to consider our previous work
which present more extensive explanations [46]–[48].

1) Using the Models for Mirroring: The basic idea of
mirroring is using one agent as a model for another agent.
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TABLE III

INTERVALS OF VARIATION OF MODEL PARAMETERS

Facing the same situation, the model is expected to produce
affordances that can be compared to the actual human driver
behavior.

To implement the complete mirroring process, the agent
should produce a complete set of affordances. This is not the
case for the models of this paper, which produce affordances
for only two possible goals (free flow and stop). Hence,
Models 1-3 can be used in a restricted way here: only to assess
whether a stop behavior falls within the actions that can be
human-directed.

We give an example comparing Model 2 to Model 1 in
a roundabout. Choice of Model 2 is motivated because it
the simplest model involving both the gas pedal and brake
pedal as distinct motor channels. Choice of Model 1 is
because it is the simples model, with only one primitive for
stopping.

Fig. 13. Distribution of human-directed jerk produced with the use of the
gas or brake pedal. Driving data from the InteractIVe dataset.

TABLE IV

HUMAN-DIRECTED JERK

Moreover, for Model 1 we use the parametrization of [48]
(wT = 0, wA = ∞, instead of the figures given in Table I2) for
comparison with that work, which further develops the notion
of mirroring in intersection scenarios. We call this Model 1∗.

Mirroring in practice is implemented using the
driver models in parallel with the human driving. With
Algorithms 1 and 2, at any time the actions that the models
would implement for stopping can be computed (we ignore
the free flow primitive m0 because we aim to assess only
whether a stop behavior is ‘feasible’ for the human driver).
To decide whether Model 1∗ and Model 2 actions can be
human directed we compare the required longitudinal control
of the models ji(0) to the distribution of longitudinal jerk
observed in human driving. Fig.13 shows the longitudinal jerk
distributions for human drivers, making distinction between
gas and brake pedal.

Table IV reports the jerk of different quantiles. A ratio-
nal approach is thus setting a probability threshold
(e.g., 0.05 quantiles) and deem that, with that probability,
the human driver will not carry out the action required by
the model (for advisory and cautionary warnings two distinct
thresholds can be selected).

Fig.12 compares mirroring with model 1∗ and 2 at
0.05 quantiles. Red dots show where the model required jerk
falls below the chosen quantile threshold.

Model 1∗, which uses only one stop primitive tend to con-
fuse fast approaches with violations of the stop line (as shown
by dots on the highest curves). This does not happen for
Model 2, which ‘is aware’ that actions occurring on the brake
can have larger jerk.

2The difference in actual trajectories is not large: the main difference is that
the final acceleration is exactly zero.
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In case of yield violations (Fig.12, center, right) both models
detect the critical condition almost at the same time.

An interesting comment is due for the alarms that
are produced when drivers ‘adjust’ their position
(Fig.12, left, bottom curves), i.e., when the driver resumes
speed to move closer to the stop line. This situation, in both
models, and in a few cases, uses barely3 enough acceleration
to be confused with the intention to trespass the stop line.
What happens is that both models interpret the driver behavior
in the library of actions that they have, which do not include
any behavior like ‘move closer to the stop line’. If such
a motor behavior were added, the models would find that
both ‘trespass the stop line’ and ‘move closer to the stop
line’ actions would be a potential fit, and if the fitness were
comparable, the latter would win because being the most
logical in the context (of course, if the driver insists with the
acceleration at some point the intention of trespassing the
line would be clearer).

VIII. CONCLUSIONS

The main contribution of this paper is the demonstration
that drivers can be modelled with layered control architectures,
including bio-inspired selection mechanisms, conforming to
recent developments in cognitive science.

The engineering of an agent having motor behaviors similar
to humans is relatively simple: motor primitives may be pro-
duced (with optimal control) to represents simple motor units;
and, at higher level, many motor units may be simultaneously
primed, and the most suited one selected, thus implementing
adaptive behavior.

In order to correctly produce the architecture (both primi-
tives and selection mechanisms) some basic understanding of
human motor primitives and selection criteria is necessary.

This paper casts light on stop maneuvers. However, with
similar knowledge of how humans respond to other types of
affordances, layered architecture could scale to more complex
scenarios.

The paper has shown that stopping is indeed made
of 3-4 different motor units: deceleration by releasing the
gas pedal, braking, releasing the brake to ‘smooth’ the stop
or releasing the brake to produce rolling stop are the main
units of this vocabulary. These motor units are not rigidly
programmed in sequences because their activation is the result
of a competition process (nor any finite state machine is
needed).

Model 3 fits the median behaviors in three scenarios with
remarkable accuracy. Model 2, missing the motor primitive
designed for the final correction at stop, is somewhat less accu-
rate. Both however model the transition from gas pedal release
to brake activation which may be important for enabling
mirroring processes.

Compared with the state of the art Intelligent Driver Model,
both Model 2 and Model 3 describe features (transitions and
states) that IDM misses. Model 3 also achieves the best fits
ever (Table I).

3If the quantile thresholds id lowered only a little these situations disappear
because they are borderline.

The main application domain of such kind of modelling
is designing agents for human-vehicle interactions, as shown
with one example. Models 1 and 2 have been parame-
trized (including jerk distributions) using data from a natu-
ralistic driving set that involved 25 different drivers and one
vehicle. To parametrize the models in other situations (e.g., dif-
ferent countries, different types of vehicles, etc.) or for driver
personalization, similar (small size) experimental campaigns
may be necessary.

APPENDIX I
STOP MOTOR PRIMITIVES

The solution of the Optimal Control Problem (1), (2),
(3), (4) yields the following three outcomes:

1) The optimal movement time T , which is the smallest real
positive root of the following 8th order polynomial equations.

wAw2
T T8 + 18wAwT T 7 + 9(9wT − a2

0w2
A)T 6 +

− 144a0wA(a0 + v0wA)T 5 − 72(9a2
0 + 8v2

0w2
A +

− 5a0wA(s f wA − 6v0))T 4 + 144(−7a0(9v0 − 5s f wA)+
+ 4v0wA(−14v0 + 5s f wA))T 3 + 144(135a0s f − 216v2

0 +
+ 260s f v0wA − 25s2

f w
2
A)T 2 − 43200s f (−3v0 + s f wA)T +

− 129600s2
f = 0 (11)

We know (11) has at least one real positive root (the
polynomial is negative for T = 0 and tend to +∞ for
T → +∞). The meaning of the first root, and of possible
further roots was already discussed in [47]. It may be sufficient
to say here that further real roots of (11), if they exist,
represent additional strategies to get to the stop point, which
however may imply inversion of movement or slow-down and
re-acceleration (in both cases taking longer time). Our main
interest here is to find the shortest time to stop; hence the
first root. For the computation of the polynomial roots, the
Jenkins-Traub algorithm has been reliably used [55].

2) The optimal final acceleration:

a f = 3(8T v0 + a0T 2 − 20s f )

T 2(9+ T wA)
(12)

3) The motor primitive (and derivatives):

s(t) = c1t + 1

2
c2t2 + 1

6
c3t3 + 1

24
c4t4 + 1

120
c5t5

v(t) = c1 + c2t + 1

2
c3t2 + 1

6
c4t3 + 1

24
c5t4

a(t) = c2 + c3t + 1

2
c4t2 + 1

6
c5t3

j (t) = c3 + c4t + 1

2
c5t2 (13)

with:

c1 = v0, c2 = a0

c3 = 60
s f

T 3 − 36
v0

T 2 + 3
a f − 3a0

T

c4 = −360
s f

T 4 + 192
v0

T 3 + 6
6a0 − 4a f

T 2

c5 = 720
s f

T 5
− 360

v0

T 4 + 60
a f − a0

T 3 (14)
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APPENDIX II
FREE FLOW MOTOR PRIMITIVES

The solution of the Optimal Control Problem (1), (2’),
(3), (4) yields the following three outcomes4:

The primitives have the same structure given in (12), but
with coefficients given by [47]:

c1 = v0, c2 = a0, c5 = 0

c3 = 6
(vd − v0)

T 2 − 4
a0

T
, c4 = 6

a0

T 2 + 12
(vd − v0)

T 3 (15)

where the movement time is given by the first real positive
root of the following polynomial:

wT T 4 − 4a2
0 T 2 + 24a0T (vd − v0)− 36(vd − v0)

2 = 0 (16)
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