
Large Scale Problems in Practice:
The Effect of Dimensionality on the Interaction

Among Variables

Fabio Caraffini1,2, Ferrante Neri1,2, and Giovanni Iacca1,2(B)

1 Centre for Computational Intelligence,
De Montfort University, The Gateway, Leicester LE1 9BH, UK

{fabio.caraffini,fneri}@dmu.ac.uk
2 INCAS3, Dr. Nassaulaan 9, 9401 HJ Assen, The Netherlands

giovanni.iacca@gmail.com

AQ1

Abstract. This article performs a study on correlation between pairs
of variables in dependence on the problem dimensionality. Two tests,
based on Pearson and Spearman coefficients, have been designed and
used in this work. In total, 86 test problems ranging between 10 and
1000 variables have been studied. If the most commonly used experi-
mental conditions are used, the correlation between pairs of variables
appears, from the perspective of the search algorithm, to consistently
decrease. This effect is not due to the fact that the dimensionality mod-
ifies the nature of the problem but is a consequence of the experimental
conditions: the computational feasibility of the experiments imposes an
extremely shallow search in case of high dimensions. An exponential
increase of budget and population with the dimensionality is still prac-
tically impossible. Nonetheless, since real-world application may require
that large scale problems are tackled despite of the limited budget, an
algorithm can quickly improve upon initial guesses if it integrates the
knowledge that an apparent weak correlation between pairs of variables
occurs, regardless the nature of the problem. AQ2
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1 Introduction

Dimensionality is a problem feature that is, in most cases, explicitly available
when an optimization problem is formulated. It follows that a good algorithmic
design should take into account the knowledge about the problem dimensionality
to efficiently solve the problems at hand.

Optimization problems in many dimensions radically differ from low dimen-
sional problems since the size of a domain grows exponentially with the number
of dimensions. To remark this fact, let us consider a uni-dimensional decision
space D. Let D be a set composed of 100 points (candidate solutions). Let us
consider now a function f defined over the set D. Without loss of generality, let
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2 F. Caraffini et al.

us assume that there exists a solution x∗ ∈ D such that f (x∗) is minimal. Hence,
in order to find the global minimum x∗, an optimization algorithm needs at most
100 samples (or like it is often indicated in nature-inspired algorithms, fitness
evaluations, see [1]). This problem would be very easy for a modern computer.
On the other hand, if the problem is scaled up to two dimensions, there will be
one optimum x∗ in a space composed of 1002 = 10000 candidate solutions. If
the problem is scaled up to 1000 dimensions, the optimum will be only one point
in a space of 1001000 solutions. With an exhaustive search, the latter problem
would be extremely hard to solve in a feasible time. Thus a specifically designed
algorithm will be required to tackle it. In other words, since the decision space
grows exponentially with the problem dimensionality, the detection of the opti-
mal solution in high dimensions is like the search of a needle in a haystack, and
requires some specific strategies.

In addition to that, the problem dimensionality affects not only the number
of candidate solutions in the search space, but also other intrinsic features of
the search space itself. For example, a unitary radius sphere in a 3-dimensional
Euclidean space has area of the surface S2 = 4π and volume V3 = 4

3π. In
the generic n-dimensional space, it can be easily proved that the ratio between
volume and surface is 1

n . This means that if we consider a unitary radius sphere
in high dimensions and randomly sample some points within it, most of them
will be located on its surface as its volume is a small fraction of it.

An optimization problem characterized by a high number of dimensions is
known as Large Scale Optimization Problem (LSOP). Large scale problems can
be hard to solve as some optimization algorithms that easily solve a problem
in e.g. 30 dimensions can display a poor performance to solve the same prob-
lem scaled up to e.g. 300 dimensions. The deterioration in the performance of
optimization algorithms as the dimensionality of the search space increases is
commonly called “curse of dimensionality”, see [2], and generally affects every
kind of search logic. For example, several studies show that Differential Evolu-
tion (DE) and Particle Swarm Optimization (PSO) can easily display a poor
performance when applied to solve LSOPs, see e.g. [2,3].

Furthermore, the dimensionality has a direct impact on the computational
cost of the optimization, see [4]. In general, this is true because, due to the
large decision space, a large budget is usually necessary to detect a solution with
a high performance. Moreover, due to high dimensionality, algorithms which
perform a search within the neighborhood of a candidate solution (e.g. Hooke-
Jeeves Algorithm, [5]) might require a very large number of fitness evaluations
at each step of the search, while population based algorithms are likely to either
prematurely converge to suboptimal solutions, or stagnate due to an inability
to generate new promising search directions. Other approaches that inspect the
interaction between pairs or variables in order to perform an exploratory move,
see e.g. [6], can be computationally onerous and in some cases, see e.g. [7],
unacceptably expensive for modern computers.

A trivial but overlooked consideration regarding the scalability of optimiza-
tion problems is that the parameter setting of the algorithm and the experimental
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setup should take the dimensionality into account. At first, if a population-based
algorithm is used, an exponential increase in the population size should be per-
formed to keep the domain coverage constant. For example, if a DE algorithm
is run with a population size of 30 individuals in 10 dimensions, to reproduce
the same coverage in 50 dimensions, 3050− 10 ≈ 1.22 × 1059 solutions would be
needed. A population of this size is in practice impossible to use in the vast
majority of problems. Hence, metaheuristics in high dimensions cover only a
minimal part of the decision space.

A similar consideration can be done on the computational budget. Let us
consider a DE algorithm run to solve a 10−dimensional problem with a budget
of 50000 fitness evaluations. In order to explore/visit the same portion of decision
space in 50 dimensions a budget of 5000040 ≈ 9.1 × 10187 fitness evaluations.
Also this setting would be infeasible.

While in some cases scalability can simply be addressed by heuristic rules
that scale up the algorithm parameters (e.g. by imposing that the computational
budget is proportional to the problem dimensionality), as we have seen this
strategy is not always possible, let alone efficient. Nevertheless, in real-world
applications LSOPs must often be tackled efficiently in order to achieve a solution
with a reasonable performance, e.g. in scheduling [8], chemical engineering [9,10],
and in engineering design [11,12]. To address the aforementioned feasibility issues
in terms of computational cost, several algorithms have been therefore proposed
in the literature for handling this kind of problems.

In this paper, we present a study on the effect of dimensionality in optimiza-
tion problems when the usual experimental conditions are set. Our purpose is to
shed light on some specific characteristics that we consider especially interest-
ing in large scale optimization and that, according to our empirical results, are
common -to some extent- to most LSOPs. Among the features that can be used
to analyze the fitness landscape in LSOPs, we focus on the correlation between
pairs of problem variables. In particular, we study how the pairwise correlation
changes in dependence on the dimensionality of the problem, in an attempt to
address the research question: On the basis of the usual algorithm and exper-
imental setting, what happens to the correlation among the variables when the
dimensionality grows?

To address this question we illustrate a procedure to estimate the correlation
between pairs of variables, an averaging technique to extract a unique mea-
sure that the describes the overall correlation among variables, and a sensitivity
analysis of this measure with respect to the problem dimensionality. We applied
the proposed analysis over a number of scalable problems commonly used in
continuous optimization benchmarks, with dimensionality ranging between 10
and 1000 dimensions.

The remainder of this paper is organized in the following way. Section 2
shows successful strategies proposed in the literature to tackle LSOPs. Section 3
gives the implementation details of the procedure for estimating the correlation
between pairs of variables. Section 4 shows the numerical results on a broad set
of benchmark functions. Finally, Sect. 5 concludes this work.
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4 F. Caraffini et al.

2 Background: A Literature Review on Large Scale
Optimization

In recent years, several modern metaheuristics have been proposed in order
to tackle LSOPs, such as some modified versions of Ant Colony Optimization
(ACO) [13] and Artificial Bee Colony Algorithm (ABC) [14]. In our view, the
methods for tackling LSOPs can be roughly divided into two main categories:

– Methods that intensively exploit promising search directions. These
algorithms with an apparent counterintuitive action, instead of exploring the
large decision space, give up the search for the global optimum and use an
intensive exploitation to improve upon a set of initial solutions to detect a
solution with a high quality (regardless its optimality). Two popular ways to
implement this approach have been proposed in the literature. The first way
to achieve this aim is by using population-based algorithms with very small
populations, see [15– 18], or with a population that shrinks during the run, see
[19– 22]. The second way to achieve this aim is by using highly exploitative
local search algorithms by combining them with other algorithms and inte-
grating them within population based structures. In particular, a coordination
of multiple local search components is used to tackle LSOPs in [23]. This logic,
a part or a modification of it has been coupled and integrated within other
algorithmic frameworks in [24– 28]. It must be remarked that these algorithms
tend to use a simple local search component that exploits the decision space by
perturbing the candidate solution along the axes. Another interesting study
belonging to this category has been presented in [29], where a modified version
of Covariance Matrix Adaptation Evolution Strategy (CMA-ES) is proposed
for tackling separable problems. In this case, the proposed algorithm makes
use of a diagonal matrix to determine the newly sampled points and then the
search directions. Hence, this modified version of CMA-ES performs moves
along the axes to solve separable problems. It was shown that this algorith-
mic scheme appeared especially promising in high dimensional cases.

– Methods that decompose the search space. Some other papers propose
a technique, namely cooperative coevolution, originally defined in [30] and
subsequently developed in other works, see e.g. [31,32]. The concept of the
cooperative coevolution is to decompose a LSOP into a set of low-dimensional
problems which can be separately solved and then recombined in order to
compose the solution of the original problem. It is obvious that if the fitness
function is separable, then the problem decomposition can be trivial, while
for non-separable functions the problem decomposition can turn out to be
a very difficult task. However, some techniques for performing the decom-
position of non-separable functions have been developed, see [33]. Recently,
cooperative coevolution procedures have been successfully integrated within
DE frameworks for solving LSOPs, see e.g. [34– 38]. Another very successful
implementation of cooperative coevolution has been integrated within a PSO
framework in [39].
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Large Scale Problems in Practice 5

A common denominator in these approaches is that the algorithm attempts to
quickly achieve improvements by exploiting the search directions. In other words,
since the budget is very limited and there is a large margin of improvement with
respect to an initial sampling, every effective modern metaheuristic for LSOPs
gives up the search for the global optimum and simply tries to enhance as much
as possible upon an initial sampling.

3 Procedure for Estimating the Correlation Between
Pairs of Variables

The proposed correlation estimation procedure is performed in two steps: (1) a
preliminary sampling process, needed to sample a set of solutions in the search
space and evolve them for a given number of generations; and (2) an estimation
of the correlation among the variables in the final set of solutions obtained at
the end of the evolutionary process performed in the first step. In this paper
we use two different correlation measures, while the sampling mechanism is the
same for both measures.

3.1 First Step: Covariance Matrix Adaptation Evolution Strategy

During the preliminary step, the Covariance Matrix Adaptation Evolution Strat-
egy (CMA-ES) with rank-µ-update and weighted recombination, see [40], is
applied for n × 1000 fitness evaluations. Briefly, the CMA-ES consists of sam-
pling from a multivariate distribution λ points, computing their fitness values
and updating the shape of the distribution in order to progressively adapt to
the basins of attraction. The sampling rule of the individual k at the generation
g + 1 is given by:

x(g+1)
k ∼ N

(
⟨x⟩g

w, (σg)2 Cg
)

(1)

where N
(
m,σ2C

)
is a multivariate normal distribution of mean m, step size

σ, and estimated covariance matrix C. The mean value ⟨x⟩g
w is a weighted sum

of the µ candidate solutions (µ ≤ λ) displaying the best performance at the
generation g (those individuals that are associated to the lowest fitness values
f (x)). This vector corresponds to a recombination result, see [40] for details.
At each gth generation, the values of step size σ and covariance matrix C are
updated. The two update rules are determined by a vector pc, named evolution
path. The evolution path pc is updated first, according to the following rule:

pc
g+1 = (1 − cc)pc

g + Hσ

√
cc (2 − cc)

√
µeff

σg

(
⟨x⟩g+1

w − ⟨x⟩g
w

)

where µeff = 1∑µ
1 w2

i
, cc is a parameter, and Hσ is a discrete function that can

take either the value 0 or 1. The step size is then updated according to the
following rule:

σg+1 = σg exp
(

cc

dc

(
∥pc∥

E∥(N (∅, I))∥ − 1
))
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where dd is a damping factor, usually close to one, and ∥ . . . ∥ indicates the 2-
norm (see [41] for further explanations). Finally, C is updated according to the
following rule:

Cg+1 = (1 − c1 − cµ + cs)Cg + c1pc
g+1

(
pc

g+1
)T

+ cµ

µ∑

i=1

wi

(
xg+1

i:λ − ⟨x⟩g
w

σg

)(
xg+1

i:λ − ⟨x⟩g
w

σg

)T

where c1, cµ and cs are learning parameters. At the end of each generation, the
µ individuals displaying the best performance are selected and used to compute
⟨x⟩g+1

w . Implementation details about the CMA-ES structure and functioning
can be found in [40,42,43].

According to the philosophy of CMA-ES, the matrix C evolves and reliably
approximates the theoretical covariance matrix. A covariance matrix is a cor-
relation matrix, i.e. a matrix that describes the correlation between pairs of
variables and, at the same time, approximates the shape of the basins of attrac-
tion, i.e. those regions of the fitness landscape surrounding the fitness minima.
In this way, CMA-ES samples new points from a distribution that adapts to the
fitness landscape itself. In our tests, we empirically chose the CMA-ES budget
(n × 1000 fitness evaluations) so to have a reliable estimation of the covariance
matrix, even though the convergence condition is likely still to be met. In other
words, after this budget, the CMA-ES is likely to still sample points in a large
portion of the decision space and not only a local basin of attraction. Due to the
curse of dimensionality, this statement becomes progressively more true as the
problem dimensionality grows (since the complexity grows exponentially while
the CMA-ES budget is assigned by means of a linear formula).

3.2 Second Step: Correlation Estimation

Once the estimated covariance matrix C has been computed (i.e. after the given
number of fitness evaluations), we calculate the pairwise correlation among the
decision variables. Here we use, independently, two alternative correlation mea-
sures, namely the Pearson [44] and the Spearman correlation coefficients [45].
To calculate the Pearson coefficients, we take each element of the matrix Ci,j

and apply the following transformation:

ρi,j =
Ci,j√
Ci,iCj,j

. (2)

where ρi,j define the Pearson correlation coefficients. These coefficients vary
between −1 and 1 and measure the linear correlation between pairs of variables.
When ρi,j = 0, there is no correlation at all between the ith and jth variables.
When |ρi,j | = 1, there is a perfect correlation between the variables. More specif-
ically, when ρi,j = 1, it means that to an increase of the ith variable corresponds
the same (linear) increase of the jth variable; when ρi,j = −1, it means that
to an increase of the ith variable corresponds the same (linear) decrease of the
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Large Scale Problems in Practice 7

jth variable. The matrix ρ composed of elements ρi,j is the Pearson correlation
matrix. The Pearson correlation matrix is more intuitive than the covariance
matrix because its elements are limited and normalized within the [−1, 1] inter-
val, thus allowing an immediate interpretation. Since there is no interest, within
this study, to distinguish between positive and negative correlation, the absolute
value of the Pearson correlation matrix |ρ| is computed. Moreover, since the cor-
relation between variables is a symmetric relation and the self-correlation is the
maximum possible correlation, the Pearson matrix has the following structure:

|ρ| =

⎛

⎜⎜⎜⎜⎝

1 |ρ1,2| |ρ1,3| ... |ρ1,n|
X 1 |ρ2,3| ... |ρ2,n|
X X 1 ... |ρ3,n|
... ... ... ... ...
X X X X 1

⎞

⎟⎟⎟⎟⎠
.

Thus, only (n2− n)
2 elements of the matrix |ρ| are of interest. In order to

extract an index that performs an estimation of the average correlation among
the variables, we simply average the elements of the matrix |ρ|:

ς =
2

n2 − n

n− 1∑

i=1

n∑

j=i+1

|ρi,j |. (3)

The Spearman correlation estimate consists of the following. By means of
the covariance matrix C, m points are sampled within the decision space. Con-
sidering that each point x = (x1, x2, . . . , xn) is a vector having n elements, these
m points compose the following m × n matrix:

X =

⎛

⎜⎜⎝

x1,1 x1,2 x1,3 ... x1,n

x2,1 x2,2 x2,3 ... x2,n

... ... ... ... ...
xm,1 xm,2 xm,3 ... xm,n

⎞

⎟⎟⎠ =
(
X1,X2, . . . ,Xn)

where Xj is the generic jth column vector of the matrix X.
For each column vector, the elements are substituted with their ranking.

More specifically, for the generic column vector Xj the lowest value is replaced
with its ranking 1, the second lowest with 2, and so on until the highest value
is replaced with n. If l elements have the same value, an average ranking is
assigned. For example if three elements corresponding to the rank 3, 4, and 5
have the same value, the ranking 4 is assigned to all of them. This procedure
can be seen as a matrix transformation that associates to the matrix X a new
rank matrix R where the element xi,j is replaced with its rank ri,j :

R =

⎛

⎜⎜⎝

r1,1 r1,2 r1,3 ... r1,n

r2,1 r2,2 r2,3 ... r2,n

... ... ... ... ...
rm,1 rm,2 rm,3 ... rm,n

⎞

⎟⎟⎠ =
(
R1,R2, . . . ,Rn) .

From the rank matrix R, a new matrix T is calculated by computing the
Pearson correlation coefficients of the ranks. More specifically, the correlation
between the ith and jth variables is given by:
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8 F. Caraffini et al.

τi,j =
∑m

k=1

(
rk,i − R̄i

)∑m
k=1

(
rk,j − R̄j

)
√∑m

k=1

(
rk,i − R̄i

)2∑m
k=1

(
rk,j − R̄j

)2 (4)

where R̄i and R̄j are the mean values of the ith and jth column vectors, respec-
tively. τi,i = 1 define the Spearman coefficients.

Considering that ∀i, j, it results that τi,i = 1 and τi,j = τj,i, the matrix T
is symmetric and displays unitary diagonal elements. Since, analogous to the
Pearson coefficient, we are not interested in the sign of the correlation, the
absolute value of the matrix T is calculated:

|T| =

⎛

⎜⎜⎜⎜⎝

1 |τ1,2| |τ1,3| ... |τ1,n|
X 1 |τ2,3| ... |τ2,n|
X X 1 ... |τ3,n|
... ... ... ... ...
X X X X 1

⎞

⎟⎟⎟⎟⎠
.

We then compute the average Spearman correlation index ϕ as the average

value of the (n2− n)
2 elements of the matrix T under consideration:

ϕ =
2

n2 − n

n− 1∑

i=1

n∑

j=i+1

|τi,j |. (5)

Before discussing the results, it is worth mentioning why we use two different
correlation coefficients here. As explained in [46], the Pearson coefficient is more
accurate if the pairwise correlation can be approximated to be linear. This cir-
cumstance realistically occurs in several -but not all- cases, in which the Pearson
coefficient is reliable [47]. On the other hand, the Spearman coefficient is not a
measure of the linear correlation between two variables, but rather it simply
assesses how well the relationship between two variables can be described using
a monotonic (not necessarily linear) function. Moreover the Spearman coefficient
is non-parametric (distribution free), i.e. it does not require any assumption on
the statistical process, it is less sensitive to outliers than the Pearson coefficient,
but its calculation is computationally more expensive.

4 Numerical Results

We initially tested the procedure illustrated above over the 19 scalable test prob-
lems introduced in the Test Suite for the Special Issue of Soft Computing on
Scalability of Evolutionary Algorithms and other Metaheuristics for Large Scale
Continuous Optimization Problems [48], hereafter SISC2010. We calculated both
Pearson and Spearman correlation coefficients over these 19 test problems in 10,
30, 50, 100, 500 and 1000 dimensions. To obtain robust correlation indications
(which are affected by the stochastic nature of the sampling process), we cal-
culated each aggregate index (ς and ϕ) 50 times per problem/dimension. In
the following, we will explicitly refer to the dimensionality of the corresponding
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Large Scale Problems in Practice 9

problem every time we will mention an index. For example, to indicate the ς
value for a problem in 30 dimensions we will write ς30n.

In order to find the optimal number of samples to be drawn from the dis-
tribution to have a reliable calculation of correlation, we performed a prelimi-
nary experiment on SISC2010 in the aforementioned dimensionality values, with
sample sizes proportional to the dimensionality of the problem. We tested four
configurations, namely n, 5n, 10n and 100n, and for each of them we calculated
the corresponding index values ς and ϕ. We observed that, regardless of the
problem dimension, a set of 100 points, for the Pearson index, and 1000, for the
Spearman index, provide an index as stable and reliable as that obtained by a
higher number of points.

Following the indications of this preliminary experiment, we set the popu-
lation size for CMA-ES equal to 100, which also allowed us to keep the experi-
mental setup quite simple and computationally affordable. In case of Spearman
index, the final population is sampled 10 times.

Table 1 displays the average correlation indices (calculated over the 50 runs
available) and the corresponding standard deviation obtained on the entire
SISC2010 benchmark. As it can immediately be observed, both the proposed
indices appear to be closely related to the problem dimensionality. More specifi-
cally, regardless of the nature of the problem, the correlation amongst variables
appear to decay with the dimensionality. All the problems display the maximum
values of Pearson and Spearman indices in low dimensions, while these indices
tend to take small values in large scale cases being nearly null in 1000 dimensions.

Moreover, we can observe that the correlation between pairs of variables
appears somehow related to the separability of the problem, i.e. it tends to
be lower when the problem is separable, as also noted in [49]. Although we
admit that the concepts of correlation and separability are not strictly linked,
we have conjectured the following explanation for the relation between these
two concepts: since separable functions in n variables can be expressed as the
sum of n functions in one variable, the problem is somehow characterized by a
low correlation among variables. However, the opposite is not necessarily true: a
low correlation among variables does not implicate problem separability. Some
non-separable problems can still be characterized by a low variable correlation.

In order to confirm that the obtained results are not biased by the cho-
sen testbed, we performed the same tests also over the 2013 IEEE Congress
on Evolutionary Computation (CEC2013) testbed, see [50] and the 2010 Black
Box Optimization Benchmarking (BBOB2010) testbed, see [51]. The first is scal-
able only for a limited amount of dimensionality values, that is 10, 30, and 50
dimensions. The second testbed is scalable in 10, 30, 50 and 100 dimensions.
We performed the tests on the two testbeds over all problems in all the avail-
able dimensionality values, again with each test repeated 50 times. Numerical
results on the CEC2013 testbed, showing the correlation indices averaged over
the 50 runs available, are reported in Table 2 for both Pearson and Spearman
indices. Numerical results on the BBOB2010 testbed are given in Table 3. On
both testbeds and indices, it can be observed the same trend seen for SISC2010.
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10 F. Caraffini et al.

Table 1. Average Pearson (ς) and Spearman (ϕ) correlation indices ± standard devi-
ation values for SISC2010 over increasing dimensionality values

ς10n ς30n ς50n ς100n ς500n ς1000n Separable

f1 0.054 ± 0.006 0.032 ± 0.001 0.025 ± 0.001 0.015 ± 0.001 0.002 ± 0.000 0.001 ± 0.000 Y ES

f2 0.068 ± 0.008 0.043 ± 0.002 0.034 ± 0.001 0.021 ± 0.001 0.014 ± 0.0015 0.021 ± 0.001 −
f3 0.178 ± 0.077 0.072 ± .0190 0.035 ± 0.002 0.020 ± 0.002 0.002 ± 0.000 0.001 ± 0.000 −
f4 0.058 ± 0.014 0.036 ± 0.005 0.026 ± 0.001 0.019 ± 0.002 0.004 ± 0.000 0.002 ± 0.000 Y ES

f5 0.053 ± 0.007 0.033 ± 0.001 0.026 ± 0.001 0.017 ± 0.000 0.003 ± 0.000 0.001 ± 0.000 −
f6 0.058 ± 0.010 0.038 ± 0.002 0.030 ± 0.008 0.017 ± 0.004 0.003 ± 0.001 0.002 ± 0.000 Y ES

f7 0.059 ± 0.018 0.033 ± 0.001 0.035 ± 0.001 0.019 ± 0.001 0.003 ± 0.000 0.001 ± 0.000 Y ES

f8 0.146 ± 0.008 0.069 ± 0.002 0.067 ± 0.002 0.053 ± 0.004 0.007 ± 0.002 0.003 ± 0.000 −
f9 0.508 ± 0.428 0.073 ± 0.084 0.069 ± 0.064 0.094 ± 0.039 0.040 ± 0.015 0.025 ± 0.003 −
f10 0.051 ± 0.004 0.033 ± 0.001 0.024 ± 0.001 0.016 ± 0.003 0.004 ± 0.000 0.002 ± 0.000 −
f11 0.276 ± 0.272 0.092 ± 0.056 0.097 ± 0.066 0.068 ± 0.040 0.037 ± 0.0031 0.021 ± 0.006 −
f12 0.109 ± 0.029 0.055 ± 0.008 0.041 ± 0.006 0.032 ± 0.009 0.008 ± 0.0006 0.005 ± 0.001 −
f13 0.241 ± 0.077 0.075 ± 0.021 0.058 ± 0.003 0.046 ± 0.004 0.014 ± 0.0006 0.010 ± 0.001 −
f14 0.091 ± 0.010 0.055 ± 0.005 0.040 ± 0.004 0.031 ± 0.007 0.010 ± 0.0015 0.007 ± 0.001 −
f15 0.056 ± 0.008 0.040 ± 0.002 0.029 ± 0.000 0.025 ± 0.010 0.008 ± 0.0017 0.006 ± 0.001 −
f16 0.094 ± 0.011 0.092 ± 0.024 0.084 ± 0.028 0.048 ± 0.013 0.017 ± 0.0021 0.013 ± 0.004 −
f17 0.206 ± 0.121 0.144 ± 0.050 0.078 ± 0.011 0.061 ± 0.013 0.024 ± 0.0021 0.015 ± 0.002 −
f18 0.226 ± 0.224 0.074 ± 0.024 0.049 ± 0.021 0.053 ± 0.034 0.036 ± 0.0099 0.022 ± 0.001 −
f19 0.066 ± 0.006 0.063 ± 0.007 0.045 ± 0.007 0.027 ± 0.012 0.006 ± 0.0006 0.004 ± 0.001 −

ϕ10n ϕ30n ϕ50n ϕ100n ϕ500n ϕ1000n Separable

f1 0.093 ± 0.011 0.085 ± 0.003 0.084 ± 0.002 0.082 ± 0.001 0.080 ± 0.001 0.014 ± 0.000 Y ES

f2 0.099 ± 0.010 0.091 ± 0.003 0.089 ± 0.002 0.083 ± 0.001 0.082 ± 0.001 0.016 ± 0.001 −
f3 0.219 ± 0.062 0.113 ± 0.018 0.092 ± 0.005 0.084 ± 0.002 0.081 ± 0.002 0.014 ± 0.000 −
f4 0.127 ± 0.017 0.091 ± 0.004 0.085 ± 0.003 0.083 ± 0.001 0.080 ± 0.001 0.014 ± 0.000 Y ES

f5 0.103 ± 0.012 0.086 ± 0.002 0.083 ± 0.001 0.081 ± 0.001 0.080 ± 0.001 0.014 ± 0.000 −
f6 0.096 ± 0.009 0.089 ± 0.004 0.085 ± 0.004 0.082 ± 0.001 0.080 ± 0.001 0.014 ± 0.000 Y ES

f7 0.103 ± 0.018 0.086 ± 0.004 0.086 ± 0.002 0.083 ± 0.001 0.080 ± 0.001 0.014 ± 0.000 Y ES

f8 0.186 ± 0.019 0.116 ± 0.002 0.116 ± 0.003 0.097 ± 0.003 0.081 ± 0.003 0.014 ± 0.000 −
f9 0.675 ± 0.417 0.128 ± 0.061 0.112 ± 0.046 0.127 ± 0.029 0.096 ± 0.029 0.022 ± 0.002 −
f10 0.097 ± 0.010 0.088 ± 0.004 0.084 ± 0.002 0.082 ± 0.001 0.081 ± 0.001 0.014 ± 0.000 −
f11 0.577 ± 0.404 0.187 ± 0.101 0.112 ± 0.057 0.115 ± 0.010 0.098 ± 0.030 0.022 ± 0.001 −
f12 0.160 ± 0.020 0.102 ± 0.007 0.096 ± 0.005 0.093 ± 0.007 0.084 ± 0.007 0.017 ± 0.001 −
f13 0.237 ± 0.069 0.130 ± 0.014 0.130 ± 0.006 0.085 ± 0.004 0.089 ± 0.004 0.019 ± 0.001 −
f14 0.123 ± 0.011 0.101 ± 0.008 0.098 ± 0.005 0.093 ± 0.004 0.087 ± 0.004 0.018 ± 0.002 −
f15 0.105 ± 0.015 0.089 ± 0.036 0.089 ± 0.003 0.084 ± 0.003 0.081 ± 0.003 0.022 ± 0.000 −
f16 0.132 ± 0.014 0.142 ± 0.030 0.128 ± 0.021 0.105 ± 0.008 0.089 ± 0.008 0.020 ± 0.003 −
f17 0.210 ± 0.138 0.189 ± 0.067 0.123 ± 0.014 0.109 ± 0.011 0.088 ± 0.011 0.018 ± 0.001 −
f18 0.386 ± 0.229 0.134 ± 0.067 0.098 ± 0.015 0.106 ± 0.025 0.096 ± 0.025 0.020 ± 0.002 −
f19 0.108 ± 0.011 0.102 ± 0.009 0.102 ± 0.004 0.085 ± 0.009 0.081 ± 0.009 0.014 ± 0.001 −

Finally, we have taken into account the testbed for Large Scale Global Opti-
mization introduced at CEC2013 (CEC2013-LSGO), for a further check. This
testbed is available only at 1000 dimensions and its results are reported in
Table 4. Again, the displayed indices have been averaged over 50 independent
runs. As shown in Table 4, the results reported for the other testbeds are fur-
ther confirmed. In this large scale case, all the indices tend to take a low value
regardless of the fact the corresponding problem is separable or non-separable.
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Table 2. Average Pearson (ς) and Spearman (ϕ) correlation indices ± standard devi-
ation values for CEC2013 over increasing dimensionality values

ς10n ς30n ς50n ϕ10n ϕ30n ϕ50n Separable

f1 0.054 ± 0.007 0.032 ± 0.001 0.027 ± 0.001 0.099 ± 0.010 0.085 ± 0.005 0.084 ± 0.001 Y ES

f2 0.563 ± 0.036 0.256 ± 0.025 0.238 ± 0.024 0.543 ± 0.053 0.293 ± 0.038 0.242 ± 0.030 −
f3 0.271 ± 0.147 0.116 ± 0.019 0.059 ± 0.025 0.267 ± 0.108 0.127 ± 0.023 0.112 ± 0.027 −
f4 0.110 ± 0.028 0.085 ± 0.011 0.091 ± 0.009 0.154 ± 0.061 0.121 ± 0.006 0.121 ± 0.013 −
f5 0.072 ± 0.010 0.058 ± 0.008 0.045 ± 0.004 0.113 ± 0.015 0.100 ± 0.006 0.091 ± 0.007 Y ES

f6 0.601 ± 0.222 0.315 ± 0.045 0.164 ± 0.010 0.543 ± 0.224 0.305 ± 0.075 0.187 ± 0.015 −
f7 0.303 ± 0.208 0.100 ± 0.019 0.060 ± 0.006 0.176 ± 0.268 0.117 ± 0.013 0.098 ± 0.005 −
f8 0.413 ± 0.061 0.142 ± 0.011 0.076 ± 0.004 0.409 ± 0.086 0.158 ± 0.010 0.108 ± 0.005 −
f9 0.325 ± 0.106 0.119 ± 0.020 0.076 ± 0.013 0.372 ± 0.178 0.150 ± 0.020 0.107 ± 0.003 −
f10 0.187 ± 0.010 0.093 ± 0.001 0.065 ± 0.001 0.201 ± 0.021 0.120 ± 0.003 0.103 ± 0.004 −
f11 0.081 ± 0.047 0.038 ± 0.007 0.028 ± 0.002 0.132 ± 0.044 0.087 ± 0.003 0.084 ± 0.002 Y ES

f12 0.277 ± 0.075 0.085 ± 0.004 0.055 ± 0.001 0.257 ± 0.051 0.115 ± 0.007 0.097 ± 0.004 −
f13 0.235 ± 0.068 0.113 ± 0.029 0.066 ± 0.009 0.261 ± 0.066 0.121 ± 0.025 0.106 ± 0.005 −
f14 0.057 ± 0.011 0.037 ± 0.010 0.036 ± 0.010 0.093 ± 0.011 0.090 ± 0.013 0.092 ± 0.006 −
f15 0.194 ± 0.025 0.091 ± 0.005 0.065 ± 0.006 0.205 ± 0.031 0.119 ± 0.011 0.100 ± 0.010 −
f16 0.435 ± 0.110 0.345 ± 0.137 0.273 ± 0.162 0.354 ± 0.145 0.285 ± 0.022 0.245 ± 0.093 −
f17 0.210 ± 0.062 0.099 ± 0.015 0.051 ± 0.009 0.197 ± 0.069 0.117 ± 0.014 0.094 ± 0.005 −
f18 0.283 ± 0.032 0.120 ± 0.016 0.082 ± 0.021 0.264 ± 0.038 0.150 ± 0.019 0.115 ± 0.015 −
f19 0.255 ± 0.043 0.094 ± 0.011 0.073 ± 0.019 0.288 ± 0.059 0.124 ± 0.006 0.105 ± 0.010 −
f20 0.360 ± 0.127 0.140 ± 0.006 0.076 ± 0.003 0.319 ± 0.046 0.156 ± 0.008 0.109 ± 0.006 −
f21 0.075 ± 0.011 0.032 ± 0.002 0.031 ± 0.008 0.107 ± 0.012 0.088 ± 0.004 0.085 ± 0.002 −
f22 0.058 ± 0.011 0.046 ± 0.017 0.045 ± 0.010 0.100 ± 0.014 0.089 ± 0.009 0.091 ± 0.005 Y ES

f23 0.252 ± 0.147 0.097 ± 0.011 0.087 ± 0.052 0.219 ± 0.062 0.130 ± 0.029 0.122 ± 0.011 −
f24 0.224 ± 0.074 0.067 ± 0.016 0.057 ± 0.013 0.262 ± 0.131 0.110 ± 0.018 0.094 ± 0.010 −
f25 0.218 ± 0.122 0.115 ± 0.010 0.065 ± 0.008 0.197 ± 0.048 0.138 ± 0.010 0.102 ± 0.004 −
f26 0.253 ± 0.087 0.068 ± 0.009 0.082 ± 0.069 0.301 ± 0.010 0.152 ± 0.011 0.150 ± 0.075 −
f27 0.142 ± 0.093 0.082 ± 0.032 0.065 ± 0.021 0.138 ± 0.077 0.118 ± 0.032 0.105 ± 0.011 −
f28 0.084 ± 0.063 0.033 ± 0.001 0.028 ± 0.013 0.118 ± 0.012 0.086 ± 0.003 0.085 ± 0.002 −

For all the 86 problems considered in this study, it appears clear that the cor-
relation amongst variables (both Pearson and Spearman indices) tends to decay
when the dimensionality increases. As a general trend, optimization problems
with at least 100 dimensions seem characterized by a weak correlation. Opti-
mization problems in 500 and 1000 dimensions show a nearly null correlation
amongst the variables.

The phenomenon of the decrease of the correlation indices when the dimen-
sionality increases is depicted in Figs. 1 and 2. It can be observed that all the
trends decrease towards zero. In addition, we noticed that while for separable
functions the indices have comparatively low values already in 10 dimensions
and further become smaller with the increase of dimensionality, non-separable
functions are characterized by a major drop in the correlation indices when the
dimensionality increases (see Figs. 1 and 2).

Thus, our experimental study suggests that large scale optimization prob-
lems, regardless of the specific problem, have a lot in common with each other in
terms of correlation among the variables and that all the LSOPs appear always
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Table 4. Average Pearson (ς) and Spearman (ϕ) correlation indices ± standard devi-
ation values for CEC2013-LSGO in 1000 dimensions

ς1000n ϕ1000n Separable

f1 0.015 ± 0.001 0.085 ± 0.001 Y ES

f2 0.003 ± 0.000 0.080 ± 0.000 Y ES

f3 0.002 ± 0.000 0.080 ± 0.000 Y ES

f4 0.015 ± 0.001 0.085 ± 0.001 −
f5 0.003 ± 0.000 0.080 ± 0.000 −
f6 0.002 ± 0.000 0.080 ± 0.000 −
f7 0.015 ± 0.001 0.085 ± 0.001 −
f8 0.016 ± 0.001 0.085 ± 0.001 −
f9 0.003 ± 0.000 0.080 ± 0.000 −
f10 0.002 ± 0.000 0.080 ± 0.000 −
f11 0.015 ± 0.001 0.086 ± 0.001 −
f12 0.015 ± 0.002 0.085 ± 0.001 Y ES

f13 0.015 ± 0.001 0.085 ± 0.001 −
f14 0.015 ± 0.001 0.085 ± 0.002 −
f15 0.015 ± 0.001 0.085 ± 0.001 −

characterized by uncorrelated variables. This fact has an effect on the design
strategy since uncorrelated variables could be perturbed/optimised separately.

We are not concluding, however, that the nature of the problem changes
with its dimensionality. In other words, we are not concluding that LSOPs are

Fig. 1. Correlation indices for f13 of
SISC2010

Fig. 2. Correlation indices for f8 of
CEC2013.
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characterized by a weak correlation between pairs of variables. On the other
hand, the experimental conditions imposed by the computational restrictions
make LSOPs appear characterized by a low correlation since the search on this
problems has to be much more shallow (i.e., it can cover a much smaller portion of
the decision space) than the same problem in low dimensions. From a practical
viewpoint, our conclusion is that since we know that in high dimensions we
do not (and cannot) truly explore the decision space but we only attempt to
improve upon some solutions with a very modest budget, the most effective way
to quickly achieve an improvement would be to take into account this apparent
weak correlation between pairs of variables. Although a further investigation is
needed, the result of this study can be exploited during the algorithm design by
employing exploitative techniques which perturb the variables one by one.

5 Conclusion

This paper proposed a technique based on two statical tests, based Pearson
and Spearman correlation coefficients respectively, to measure the correlation
between pairs of variables. These tests have been applied to measure the corre-
lation between pairs of variables in different dimensionality scenarios. The stan-
dard experimental conditions used in the literature and popular competitions
have been reproduced.

We noted that, in practice, such experimental conditions impose a grow-
ing shallowness of the search with the increase of dimensionality, i.e. only a
very restricted portion of the decision space is explored in high dimensions. We
observed that under these conditions, problems tend to appear, regardless of
their nature, characterized by a weak correlation of variables.

Thus, if the budget is limited, a practically efficient approach could be,
according to our conjecture, to avoid the use of exploratory components and
simultaneous variations of multiple variables (diagonal moves). On the contrary,
the exploitation of the search along each variable can enhance in the short term
and for the limited budget the efficiency of the search. This conjecture is in
accordance with the most popular and successful methods for large scale opti-
misation.

Further studies will propose specific algorithmic components which will make
use of the knowledge gained in this study to leverage the (apparent) weak cor-
relation between pairs of variables within their search logic.
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19. Brest, J., Maučec, M.S.: Population size reduction for the differential evolution
algorithm. Appl. Intell. 29(3), 228–247 (2008)
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