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Abstract—In rich information spaces, it is often hard
for users to formally specify the characteristics of the
desired answers, either due to the complexity of the
schema or of the query language, or even because
they do not know exactly what they are looking for.
Exemplar queries constitute a query paradigm that
overcomes those problems, by allowing users to pro-
vide examples of the elements of interest in place of
the query specification. In this paper, we propose a
general approach where the user-provided example can
comprise several partial specification fragments, where
each fragment describes only one part of the desired
result. We provide a formal definition of the problem,
which generalizes existing formulations for both the
relational and the graph model. We then describe exact
algorithms for its solution for the case of information
graphs, as well as top-k algorithms. Experiments on
large real datasets demonstrate the effectiveness and
efficiency of the proposed approach.

I. Introduction
We are witnessing a great deal of work towards novel

query paradigms that better support both expert and non-
expert users in coping the increasing complexity of data
structures and schemas [1], [?]. User friendliness, language
independence, and lack of full schema awareness have
become fundamental factors in these efforts. There are
many real-world situations, where such paradigms found
applications, including the exploration of complex big data
collections like open data [2].

By-example methods have become a popular paradigm
in that category. They aim at simplifying information
access by facilitating the specification process of the user’s
need [8], [?], [9], [3], [6], [7], [10], [?], [?]. They do so by
having the user to provide an example of the elements of
interest instead of a query and letting the system infer
the conditions that such elements should satisfy. Existing
works in relational databases expect the user to present
some partially specified tuples that should be contained
in the desired result-set [11], provide examples that are
marked as relevant or irrelevant [3], specify tuples along-
side explanations [6], or desired entities [7]. For graph-
data, the user is expected to provide as an example a
subgraph that is part of the desired result set [9], [10].
There the example that the user provides does not contain
only information about components of interest, but also
information on how these components are connected.

A limitation of the aforementioned approaches is that
they assume there exists one example (structure or tem-
plate) that describes the user needs and they expect that

such example is known by the user. This is not always
the case. Some relational approaches have allowed for
incomplete examples [11], but partial examples in the case
of graphs have not been studied so far [9], [10]. This
becomes a limitation since users often are not aware of a
single example that fully characterize what they are look-
ing for. Previous work for relational databases [11] have
shown that in several domains it is often easier to provide
multiple partial examples, and expect the system to infer
the complete specification by combining the information
from the many examples.

The importance of combining and connecting distinct
examples in the context of a single query has also been
argued in a recent study on partial topology-based net-
work search [13], which focuses on finding the connections
between node-label isomorphic structures in an undirected
graph. The provided exact solution, unfortunately, does
not scale to large graphs [13].

Searching by providing multiple examples finds appli-
cation in many different real-world scenarios. When, for
example, lawyers are searching for similar court cases
that involve the combination of more than one complex
infringement, each example can refer to details of prior
judgments and results are other judgments where those
infringements appeared together. For biologists, the ability
to provide multiple examples facilitates the search for
complex molecular structures that contain certain sub-
structures of interest. As a third example, advertisers
could use friends, posts, and products from a network of
existing customers to identify the target audience for their
campaign. In all the above scenarios, it is not possible
for one to come up with a single example describing all
the desired specification, but even if this was possible, the
different ways that these specifications can be combined
are never considered from the existing approaches. The
conjunction of the specifications is the unique and default
option that has been considered.

In this work, we propose a novel method for query
answering that is based on the ability to identify elements
that were not known to the user, but share properties
with some user-provided examples. We refer to this kind of
queries as multi-exemplar queries, to emphasize its nature
as an extension of previous works on example-driven query
paradigms [9], [10], that required unique, complete and
complex examples as inputs. We focus specifically on
the case of large complex graphs. We assume that the
examples that the user provides are in the form of a graph,
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Fig. 1. Multiple examples, and some of the possible answers proposed with multi-exemplar query semantics.

and we look to find similar cases within a large knowledge
graph. Once these cases have been identified, parts of them
will have to be combined to form the final answers.

There are different challenges in performing the above
tasks successfully to implement a multi-exemplar query
mechanism. First, after the provided examples have been
identified in the knowledge base, combining parts of them
to form the final answers is a combinatorial problem
that requires similar structure identification. In the case
of graphs, similar structures are often identified through
isomorphic structure discovery [9], [10], [14]. This makes
the task exponential since all the possible combinations of
all the structures similar to those provided by the user will
have to be considered. Finally, the very nature of the graph
data and their size poses some additional performance
challenges. In certain cases, intermediate results may reach
the tens of millions of graphs when the technique is applied
to some real worlds knowledge bases.
An Illustrative Example. Consider a movie aficionado
consulting an online resource, such as the Google Knowl-
edge Graph1, for movies where directors and actors have
been nominated for, or won a prize. She is aware of
some examples that describe her interests (Figure 1,
left). She knows about George Lucas directing Star Wars,
with actors Carry Fischer and Harrison Ford. She re-
calls Russel Crowe being nominated for the Best Actor
Academy award for his role in A beautiful mind. Moreover,
she also remembers about Tom Hanks winning as Best
Actor with Forrest Gump.

Note that none of these examples by itself includes all
the information she is looking for. Although she could
perform a separate search for each one of them, and then
manually compare the three different result-sets to come
up with a list of movies, directors and actors with all the
required information, this would require an unacceptable
amount of work.

Instead, with a multi-exemplar query semantics, she
could provide all three as input, and the system would
retrieve various different answers (Figure 1, right). Those
are just some of the different ways in which the aspects
represented by the input could combine in a unique item
in the database. They comprise a movie with one actor
winning an award for another movie and the second one
being instead nominated for a similar award (Answer1).

1developers.google.com/knowledge-graph

The second answer presents a movie where the director
has received a prize instead, as well as one of the featured
actors (Answer2). The third answer (Answer3) represents
instead a movie where two actors have been nominated or
won an award for the very same movie.
Contributions. To cope with the above issues, we have
developed efficient algorithms that selectively construct
the solution by limiting the number of isomorphic searches
to be performed. Since the complete result-set may be too
large to be consumed by the user and still too costly to
compute, we developed a top-k solution based on a general
family of ranking functions that takes into account weights
on the nodes of the graph. In particular, our contributions
can be summarized as follows. (1) We introduce and
formalize the problem of answering multi-exemplar queries
(Section II). (2) We propose multi-exemplar queries on
graph-data with semantics that allow multiple combina-
tions of non-homomorphic examples (Section II). (3) We
describe an efficient exact method to answer exhaustively
a multi-exemplar query on heterogeneous information
graphs (Section III). (4) We present effective techniques
for finding top-k answers given a generic relevance function
defined on the nodes of the graph (Section III-D). (5) We
illustrate the efficiency and effectiveness of our solution at
scale through extensive experiments on large real world
information graphs (Section IV).

II. Multi-Exemplar Queries
An Exemplar Query [9] is an example member of the

answer set. The query engine infers the full set of answers
based on the example and any semantic annotation pro-
vided by the underlying database. Here, we assume that
the user presents a set of examples (also called samples) S
with |S|>1, where each one represents a partial instan-
tiation of the features that the intended results should
possess. A näıve solution for answering queries of this form
is to evaluate each sample individually and return the
union of the result-sets. However, this approach cannot
retrieve answers that match (at the same time) more than
one of the input query samples.

Therefore, we are in need of more expressive semantics:
by providing several different samples, the user tries to
describe results that match all their characteristics at once.
We then obtain the following definition, when considering
a set of (disjoint) user samples S in a database D:



Definition 1 (Multi-Exemplar Query: mExQ). The result
of a Multi-Exemplar query for the set of samples S on a
database D, i.e., mExQ(S), is the set {a | ∀s∈S.a≈s},
where a and s are elements in D, S ⊆ D, and the symbol
≈ indicates a congruence relation.

The above definition states that an answer to a multi-
exemplar query is congruent to all the elements in the
sample set S through a congruence relation (≈). Hence,
the choice of the congruence relation determines the char-
acteristics and the nature of the answers. Note that,
in the special case where ≈ is an equivalence relation
and all the samples have the same characteristics (i.e.,
∀si, sj ∈ S.si ≈ sj), the results are the same as those
obtained by searching for elements similar to (any) one of
the samples. Therefore, Definition 1 is a generalization of
the definition of Exemplar Query [9].

On the other hand, if the congruence relation adopted
is the strict equivalence relation, Definition 1 may produce
an empty result set when such condition among samples
does not hold. Consider the example in Figure 1: any
answer strictly equivalent (e.g., homomorphic) to the first
sample is not congruent to the second or the third. Con-
sequently, the choice for the congruence relation depends
on the employed data model and the intended results.

Following Definition 1, a multi-exemplar query requires
that all the elements in the sample set are congruent
to each result, thus enforcing the computation of all the
answers at once (i.e., AND semantics). Therefore, answering
such queries subsumes more flexible definitions, such as
the OR semantics, or constraints on values for the answers.
In this work, we aim at providing solutions for the most
onerous semantics (according to Definition 1). However,
we note that alternative semantics can also be captured
via minimal adaptations to the proposed methods. We
elaborate on this in Section III-E.
A. Multi-Exemplar Queries on Graphs

Multi-exemplar Queries can be applied to a variety of
data models and congruence relations. In this study we di-
rect our focus towards directed labeled graphs, which nat-
urally model relational data [15], semistructured data [16],
knowledge graphs [17], and many other networks [18], [19].
Formally, let L be a finite alphabet of vertex and edges
labels. A labeled graph is a tuple G = 〈V,E, `〉 where V
is a set of vertices, E ⊆ V × V is a set of edges, and
` : V ∪ E → L is a labeling function from each vertex in
V and edge in E to L.

The congruence relation adopted when querying graphs
through examples is the graph isomorphism between the
query-sample and the answer, which represents a strict
bijection between both node and edge labels. In the case
of knowledge graph search (refer to Figure 1), we are more
interested in finding entities and concepts that have a
specific relationship structure, i.e., that are connected by
specific edge labels, hence the adopted congruence relation
is usually edge-preserving graph isomorphism [10], [9].

However, in the case of multiple samples, this idea cannot
be directly applied, since answers need to be congruent
to query elements with different topologies. A more ap-
propriate choice for the congruence relation requires that
an answer contains structures edge-isomorphic to each
sample. Intuitively, an answer is a graph that reconciles
in itself all the user samples.

We first define edge-preserving graph isomorphism
(graph isomorphism in what follows) and subgraph iso-
morphism. Edge-preserving refers to searching for the
same structure as the samples, yet dropping the node
name identifiers. A graph isomorphism between two graphs
G1 = 〈V1, E1, `1〉 and G2 = 〈V2, E2, `2〉 is a bijective
function µ : V1 → V2 such that for every (u, v) ∈ E1,
(µ (u) , µ (v)) ∈ E2 and `1 (u, v) = `2 (µ (u) , µ (v)), and
viceversa. If a graph isomorphism exists between G1 and
G2, we say that G1 and G2 are isomorphic, and we
write G1 ≈ G2. A subgraph of G = 〈V,E, `〉 is a graph
G′ = 〈V ′, E′, `〉 such that V ′ ⊆ V and E′ ⊆ E. With a
little abuse of notation we denote subgraphs as G′ ⊆ G.
Therefore, a sample s in the sample set S is a subgraph
of G, i.e, s ⊆ G. If a graph isomorphism exists between
G1 and a subgraph G′2 of G2, we say that G1 is subgraph
isomorphic to G2, and we denote it by G1 v G2. Hence
G1 ≈ G′2 ⊆ G2 ⇐⇒ G1 v G2. We can now define a valid
answer to a multi-exemplar query on the user samples S.
Definition 2. An answer to a multi-exemplar Query
represented by the user samples S on the database G =
〈V,E, `〉 is a subgraph A ⊆ G, such that ∀s ∈ S, s v A.

By comparing Definition 1 and Definition 2, we see
that the latter satisfies the premises of the former: the
input query is a set of exemplar graphs and the output is
the set of answer graphs that are congruent by subgraph
isomorphism to all of them, i.e., they contain all the query
graphs as subgraphs.

B. Problem Definition

Note that Definition 2 does not constrain the subgraph
size. However, with no bounds, even the entire graph may
be a valid answer, which is obviously useless. On the same
token, answers should not include information (in terms
of nodes and edges) that is extraneous to the user request
and should represent a complete concept or situation.

Therefore, it is natural that the two properties below
are satisfied: first, connectedness, so as the subgraphs that
are isomorphic to each sample should be connected in
the answer graph; and second, consistency, so that no
additional node/edge is included into the answer graph,
apart from those matching the samples.

Formally, given an answer A : 〈VA, EA, `〉 on the sample
set S, the above two properties are stated as follows.

Property 1 (Connectedness). For each two nodes
nA, n̄A∈VA there exists an undirected path that connects
nA to n̄A. Also, for each sample si∈S, si:〈Vi, Ei, `〉, there



exists sj∈S, sj :〈Vj , Ej , `〉, si 6=sj, with subgraph isomor-
phism mapping function µi and µj respectively, such that
∃ni∈Vi∃nj∈Vj for which n′A=µi(ni) =µj(nj), for some
n′A∈VA. The node n′A is called a junction node.

Property 2 (Consistency). For each node nA ∈ VA there
exists a node sample ns ∈ Vs, s ∈ S, s : 〈Vs, Es, `s〉
with subgraph isomorphism mapping function µ, such that
µ(ns) = nA, and for each edge (n′A, nA) ∈ EA there exists
an edge (ns, ns) ∈ Es such that (µ(n′s), µ(ns)) = (n′A, nA).

Note that, by this definition, all answers are con-
sistent with the query samples, since apart from the
nodes/edges matching the samples, they contain no other
additional node/edge (see Figure 1). Also, since subgraph-
isomorphism is a bijection, each sample is matched by a
single substructure in the answer, i.e., it contains only the
minimal information to satisfy the user requirements.

Combining Definition 2 with the connectedness and
consistency properties, we can now define our problem.

Problem 1 (Find all mExQ answers). Given a set of
samples S on the database G : 〈V,E, `〉 find all connected
(Property 1) and consistent (Property 2) answers A ⊆ G
such that ∀s ∈ S, s v A.

Given a single query, the number of isomorphic graphs
that exists within a large knowledge base is usually ex-
treme. Oftentimes, the user is interested only in the top-k
answers, for a specific ranking function on the answers.
In this regard, we propose a definition that can employ
different ranking functions. We assume a weight function
on each vertex w : V 7→ R+. The weights can represent
user preferences, value, or query relevance, and can be
easily provided by contextual data, mined from query logs,
or computed using ad-hoc functions [20]. The score of an
answer is given by a function ρ : A 7→ R+, defined as an
average on the node weights.

ρ(A) = 1
|VA|

∑
v∈VA

w(v) (1)

For instance, assuming a weight function wdeg :V 7→N
that assigns to each node a score equal to that node’s out-
degree, in Figure 1, the score of Answer 1 would be 7/7,
while for Answer 2 would be 7/8.

Any function ρ similar to average may be used for rank-
ing (such as max, or a simple sum); however, the choice
in Equation 1 favors balanced answers in terms of their
relative size. Nonetheless, the solutions we study in this
work are efficient for the entire family of score functions
that are monotonically increasing with the weights of the
node scores(Section III-D). To find answers that respect
the multi-exemplar query semantics and retrieve only the
top-k solutions that match the user interest we define the
following problem.

Problem 2 (Find top-k mExQ answers). Given a set
of samples S on the database G:〈V,E, `〉, a user-defined
parameter k, a weight function w:V 7→R+ and the ranking

Algorithm 1 mQ-Naive
1: function Partial(G,S)
2: return G : {G} . Selectively pruned based on S
3: function Search(G,S)
4: A ← ∅
5: for each G ∈ G do
6: for each si ∈ S do . Find isomorphic subgraphs
7: Ãi ← {A ⊆ G|si ≈ A}
8: C← arg minÃi∈〈Ã1,...,Ã|S|〉

|Ãi|
9: while C 6= ∅ do

10: c← RemoveOne(C)
11: if ∀s ∈ S.s v c then . Check sample in c
12: A ← A∪ {c}
13: else C← C ∪ Connect(c,S, 〈Ã1, ..., Ã|S|〉)
14: return A

Algorithm 2 Connect+

Input: Candidate c : 〈Vc, Ec, `c〉; HashTable H
Output: Expanded candidates C+

1: C+ ← ∅
. Find candidate nodes contained in some answer

2: for each n ∈ Vc do
3: for each Ãi ∈ H(n) s.t. si 6v c do
4: C+ ← C+ ∪ Merge(c, Ãi)
5: return C+

function ρ, return the k connected (Property 1) and consis-
tent (Property 2) answersA:〈A1, ..., Ak〉, such that ∀Ai∈A,
all the following hold: (i) Ai⊆G, (ii) ∀s∈S.svAi, and (iii)
given any other answer A′ /∈A∧∀s∈S.svA′→ρ(A′)≤ρ(Ai).

III. Proposed Approach
We start with input a set of disconnected query-samples.

Note that there exist already a number of methods to ob-
tain graphs representations of the user requirements [21],
[22]. We design Multi-Exemplar Queries Answering as a
two step approach, using the Partial and Search func-
tions. The first step takes as input the graph and detects
a set of candidate subgraphs, or regions G, that most
probably contain multi-exemplar answers. The second step
searches for answers in such candidate regions. In what
follows, we describe algorithms for these two steps.

A. The Baseline Algorithm
As a baseline approach for Multi-Exemplar Query An-

swering (Problem 1), we extend the Exemplar Query
approach [9] and apply some additional optimizations.
We refer to this algorithm as mQ-Naive (shown in Al-
gorithm 1). Here, the Partial step returns only one
candidate subgraph that corresponds to the whole graph,
eventually pruned of edges that do not appear in the input.

The Search function, instead, first finds the partial
matches (line 7) and then joins them (line 13). In par-
ticular, it finds the graphs isomorphic to each sample
individually (line 7 can involve any graph isomorphism
algorithm and its optimizations [23], [24]), obtaining |S|
sets, which are the candidate partial answers 〈Ã1, ..., Ã|S|〉.
Subsequently, each individual graph is combined with the
others (lines 13) to fulfill the Connectedness Property
(Property 1, Section II), keeping only those that can be



merged into a complete answer (lines 11-12). To speed
up the computation, we avoid the Cartesian product
Ã1× Ã2...× Ã|S| of all possible combinations of individual
sample answers for verifying when Property 1 holds. In our
algorithm, instead, we progressively expand the smaller
set of answers from one single sample (line 8) and, by
enforcing Property 1, we merge answers 〈Ã1, ..., Ã|S|〉 from
other samples S = S\{si} until no other merge is possible.

Baseline Optimizations. We now describe some opti-
mizations we apply to our baseline solution. First, we
avoid checking the entire graph in the Partial function.
Instead, we selectively load only the portion that most
probably contains answers to the multi-exemplar query,
as follows. The edge-labels appearing in the samples are
sorted according to their frequency in the graph. The less-
frequent label is first considered, and the corresponding
edges in the graph are loaded. We then select neighbor
edges in the samples and in the graph such that the edges
selected in the graph have the same label as those in
the samples. The procedure stops when all the edges in
the samples have been considered. Only the connected
components that contain all the edge-labels are returned,
and we avoid loading portions of the graph that will not
match any sample. To further improve this procedure we
store in advance the set {x∈V |(x, y)∈E∧`(x, y) = l} of
nodes that are source of edges with any label l along with
the number of occurrences of l in the graph.

We also introduce a second optimization in the Con-
nect function (line 13, Algorithm 1). The role of Con-
nect is to expand a candidate answer c with all the
possible answers from individual samples that share a
node with c. A straight-forward implementation where we
check all partial graphs will lead to a very high compu-
tational cost. Algorithm 2 efficiently solves this problem,
employing a hash-map H on the nodes of the answers
to each sample. The hash-map is computed first: for all
nodes in the graphs that are isomorphic to (any of) the
samples, it maps to the set of graphs that contain this
node. That is, for a node n, H(n) = 〈Ã(n)

1 , ..., Ã
(n)
|S| 〉, such

that Ã(n)
i = {A : 〈VA, EA, `A〉|A ⊆ G,A ≈ si, n ∈ VA}.

The hash-map stores only those nodes that appear in at
least two graphs for two different samples. The algorithm
then retrieves for each node in the candidate c only those
answers that can be connected to it, and for which the
corresponding sample is not already subgraph isomorphic
to c (line 3). This is achieved by annotating c with the list
of matching samples.

Complexity Analysis. We have n=|S| samples, and
for each sample si∈S, |Ãi| is the number of isomorphic
answers to si. Then, the computational cost of the al-
gorithm is at least the cost of solving n times subgraph
isomorphism, which is NP-complete [?], and then the worst
case performance of all the calls to Connect sums up to
O(
∏n

i |Ãi|). Yet, with our optimization we reduce it to

O(|Ãmin|×|S|×
⋃n

i VÃi), where |Ãmin| is the smallest set of
partial answers, and VÃi the union of all the nodes among
all the partial answers for si, which is in turn bounded by
the set V of all the nodes in the graph..

B. Finding Answers Efficiently
mQ-Naive has two main bottlenecks: (1) the computa-

tion of all the individual sample answers, and (2) the need
to compute and store all the possible partial answers that
are built during the incremental expansion of candidates.

We propose here a more efficient (exact) algorithm
(Algorithm 3), called mQ-Fast, which first selects sub-
graphs matching one single sample, and then selectively
expands these subgraphs in search for complete answers.
This approach can reduce the number of isomorphism
evaluations, and the number of graphs kept in memory
at each step. In particular, we show here the modified
implementation of Partial function for the retrieval of
candidate subgraphs.

The expansion step starts from a sample (with the
minimum number of expected appearances in the graph,
line 2) and retrieves the nodes of its matching subgraphs
(line 3), these are partial answers. To select the initial
sample, we estimate the number of matching subgraphs
for a graph by exploiting edge statistics as explained later.

From the nodes of the partial answers computed, we
start a constrained expansion (Expand - line 11-25). The
expansion includes neighboring nodes, in a breadth-first
fashion, while retaining only those that potentially belong
to one of the partial answers for the other samples, until no
other neighbor node is added (line 5-8). This exploration
exploits a compact representation of the edge-labels in the
neighborhood of each node at some distance d (usually at
most 3 [9]), called node-vectors. The expansion procedure
compares the node-vectors of the samples to the node-
vectors in the current candidate. Thus, we can exclude
non-matching nodes by comparing vectors instead of graph
structures. The candidate subgraphs G obtained at the end
of this procedure are then passed to the Search procedure
in Algorithm 1 (which we described earlier for mQ-Naive).
Node-vectors. The node-vectors representations are
computed as follows. We assume the labels to be ordered,
i.e., l1, ..., l|L|. Given a node n, and a maximum distance
value d from n, we compute vector v(n) = [vn

1 , ..., v
n
M ],

where M=d|L| represents the number of entries in the
vector (i.e., one for each label at each distance). An entry
in the vector is set to vn

i = 1 iff there is at least one edge
labeled lt, where t = (i mod |L|) + 1 at distance bi/dc
(see the upper part of Figure 2, where 0s are replaced
by “−” for readability). We note experimentally that the
number of edge-labels in real large graphs with more
than 107 nodes is usually below 105, and, given the high
connectivity of the graph, considering distances above
three hops provides limited gain. Consequently, the size of
these vectors is also limited. Moreover, these vectors are
usually sparse, allowing for a considerable space reduction.
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For instance, in a real graph with 4k labels [25] each node
uses on average up to 10d bits.

The vectorial representation provides an effective way
to compare a node from a candidate answer with a node
from a sample. A graph node is a candidate matching
for a sample node if the two vectorial representations are
compatible. The vectorial representations are compatible if
the candidate matching node has a 1 in the same positions
as the sample node vector. This is assessed through fast
bitwise AND operations between the negation of the node
vector and the sample node vector. More formally, given
the vectorial representation v(n), we denote as v̄(n) the
bitwise-negated version of v(n), i.e., v̄n

i = 1− vn
i . We also

write v(n1,n2) = v(n1) ∨ v(n2) as the union vector between
n1 and n2, where ∨ is the bitwise OR (similarly ∧ indicates
the bitwise AND). Hence, a node n is a candidate node
matching the sample node n1 if v(n1) ∧ v̄(n) = 0 (i.e.,
the zero vector). Then, using the distributive property of
logical conjunction over disjunction we have an effective
method to assess if a node might connect two or more
samples. In particular, if a node n is a candidate node
shared between two samples nodes n1, n2 from sample s1
and s2, respectively, the following equation holds.

(v(n1) ∨ v(n2)) ∧ v̄(n) = 0 (2)
Hence, we check if a node can be a junction node without
any false negatives (i.e., we never discard nodes that are
part of an answer).

A simplified example is shown in Figure 2, with reference
to Figure 1. We see a vectorial representation, d = 2,
of the nodes George Lucas (GL) from Example1 (E1),
Tom Hanks (TH) from Example3 (E3), James Cameron
(JC) from Answer1 (A1) and Peter Jackson (PJ) from
Answer2 (A2). The union vector of GL and TH is GL∨TH.
We then see that node JC is not a joint for the two,
because it cannot match an edge labeled won for d = 1,
so the result of the bitwise operation (GL ∨ TH) ∧ JC
is not the zero vector 0. On the other hand, the node
vector for PJ can match all the necessary edge labels, thus
(GL∨TH)∧PJ = 0, and PJ is identified as a junction node.

We now formally prove that any matching node pos-
sesses the above property.

Theorem 1. Let A : 〈VA, EA, `A〉 be a multiple exemplar
answer for samples s1 : 〈V1, E1, `1〉, s2 : 〈V2, E2, `2〉 in a

Algorithm 3 mQ-Fast
1: function Partial(G,S)
2: s∗ ←Select(S) . Choose the best starting sample
3: C← {A ⊆ G|s∗ ≈ A}
4: G ← ∅
5: while C 6= ∅ do
6: c← RemoveOne(C)
7: if S \ {Sc} 6= ∅ then
8: C← C ∪ Expand(c,S \ Sc, G)
9: else G ← G ∪ {c}

10: return G
11: function Expand(c,S, G) . Add matching nodes to c
12: toV is← V is← Vc ← Maps(Vc,S)
13: LS ← {`(es) | ∀s ∈ S ∀es ∈ Es}
14: while toV is 6= ∅ do . Pruning BFS
15: nc ← RemoveOne(toV is)
16: Vt ← {x|(nc, x) ∈ E, `(nc, x) ∈ LS , x /∈ V is}
17: Vc ← Vc ∪ Maps(Vt,S)
18: V is← V is ∪ Vt; toV is← toV is ∪ Vt

19: Vt ← {v|v ∈
⋃

s∈S Vs, ∃n ∈ Vc s.t. v(v) ∧ v̄(n) = 0}
20: if

⋃
s∈S Vs \ Vt = ∅ then

21: return {G[Vc]} . Subgraph of G induced by Vc

22: return ∅
23: function Maps(Vt,S) . Filter non matching nodes in V
24: Vc ← ∅
25: for each v ∈ Vt do
26: for each ns ∈

⋃
s∈S Vs s.t. v(ns) ∧ v̄(nc) = 0 do

27: Vc ← Vc ∪ {v}
28: return Vc

database G : 〈V,E, `〉. If n ∈ VA is a matched node shared
among s1 and s2, then exist two nodes n1 ∈ V1, n2 ∈ V2
such that v(n1,n2) ∧ v̄(n) = 0.

Proof: (sketch) If n is the matching node between
n1 and n2 by Property 1 it belongs to the subgraph
isomorphism relations of s1 and of s2 to A. Therefore,
both the structures surrounding n1 and n2 are included in
the neighbors of n, i.e., we can follow any undirected-path
starting from either n1 or n2 in the respective samples, and
we will find, at any hop distance, a path with the same
labels starting from n in A. Consequently, given the binary
vectors v(n1) and v(n2), it holds that v(n1) ∧ v̄(n) = 0
and v(n2) ∧ v̄(n) = 0. Hence, it follows that it must
hold true ((v(n1) ∨ v(n2)) ∧ v(n)) = (v(n1) ∨ v(n2)) =⇒
(v(n1) ∨ v(n2)) ∧ v̄(n) = 0
Cardinality Estimation. We now describe our solu-
tion for cardinality estimation of isomorphic subgraphs
(Algorithm 3, Line 2), to return the sample with the
minimum number of expected matches. Existing models
for selectivity of graph queries and cardinality estimation
of their results [26], [27] are designed to capture complex
interdependencies between labels and nodes and to esti-
mate the size of the results of specific graph queries. Also,
these approaches heavily exploit attributes in nodes and
edges. Hence they do not easily adapt to our case, where
edge-label connectivity is the only information that we can
exploit.

To compute our estimation we first decompose a graph
into a set of star structures, as it is also done for graph



query answering [28], i.e., trees with a single node and n
children at depth 1. Computing cardinality-upperbounds
for those small trees is easy, as we can exploit the frequency
of co-occurrence of label-pairs. Given the maximum match
cardinality for each star, we approximate the number of
matching based on the combination of those upperbounds.

We maintain two cardinality indexes to quickly estimate
the selectivity of edge labels and their co-occurrence: Ipair

and Istar. The first one, Ipair, maintains the number
of occurrences of patterns composed by just two edges.
Thus, for each pairs of labels l1, l2 ∈ L the index stores
Ipair(l1, l2)={G′ ⊆ G|G′ : 〈V ′, E′, `〉, E′ = {(v1, v2),
(v2, v3)} s.t. `(v1, v2) = l1, `(v2, v3) = l2}|. The edge
labels are hashed to speedup retrieval, and the entire data
structure can fit in memory since its size is limited by
O(|L|2). Note that the number of pairs is usually much
smaller, as not all combinations exist in the graph. Also,
in real graphs |L| is less than 105.

The second index, denoted as Istar, stores the number
of occurrences of a star subgraph containing a label l ∈
L, having a predefined size c > 0. Therefore the index
Istar(l, c) = |{G′ ⊆ G|G′ : 〈V ′, E′, `〉 is a star ∧ |E′| = c
∧ ∃(v1, v2) ∈ E′ s.t. `(v1, v2) = l}|. The size of this index
is bounded by the number of labels |L| and the maximum
c, which in our case is determined by a parameter Cmax.
Hence, the index size is O(Cmax|L|), but for all practical
cases O(|L|), since usually Cmax � |L|2.

The cardinality estimation works as follows. If the sam-
ple is just an edge, then the frequency of the label is the
correct estimation. If the sample is a 2-edges path, then
the index Ipair(l1, l2) stores the correct frequency of such
graphs. To estimate an upperbound for the cardinality of a
star-shaped sample G∗ : 〈V ∗, E∗, `∗〉 we first compute the
maximum number of stars that can exists with |E∗| edges
and at least one of them with label l, which is computed
as follows Stars(l) =

∑Cmax

c=|E∗| Istar(l, c) ∗
(

c
|E∗|
)

The summation takes into account that Istar contains
values for different numbers of edges (c ∈ [1, Cmax]). For
c = |E∗| then Istar(l, c) is the number of stars with exactly
|E∗| edges. Then we take into account stars that are
formed by selecting a subset from a star with any c > |E∗|.
In this case, we consider the number of subsamples of size
|E∗| out of c elements.

By selecting a label l1 = arg minl∈LG∗
Stars(l), we

know that Stars(l1) is an upper-bound estimation for
the number of subgraphs isomorphic to G∗. To obtain
a much tighter upper-bound, although approximate this
time, we exploit pair-label frequencies once more. We
select a second label to be l2 = maxl∈LG∗ Ipair(l1, l),
i.e., the label that more often appears paired with the
previously selected. We estimate the selectivity of G∗ as
the number Stars(l1) scaled by the conditional probability
of finding l2 given l1. This is justified by the fact that not

2In our experiments, Cmax = 10 takes into account the
average node-degree and the structure of the expected queries.

all the stars that have the correct size and contain the
label l1 also contain l2, while both are required by G∗.
The final (estimated) selectivity of G∗ is then

Stars(l1) ∗ Ipair(l1, l2)∑
l∈L Ipair(l1, l)

. (3)

For more complex structures, we estimate the selectivity of
the graph as the lowest selectivity among its stars. We ex-
perimentally demonstrate the accuracy of this estimation
(Section IV).

Complexity Analysis. The mQ-Fast algorithm does not
discard any correct answers (Theorem 1). In terms of time
complexity, the most demanding tasks are Maps, Expand,
and subgraph isomorphism. Maps compares the node-
vectors in V with each sample node-vector, which takes
O(d|L|

∑
s∈S\S̄ |Vs|). The Expand procedure instead per-

forms a traversal of the graph for nodes matching a single
sample. This procedure is then repeated at every cycle. In
the worst case lines 5-10 in Partial scan the entire graph,
leading to a complexity of O(d|L|

∑
s∈S\S̄ |Vs| × |V |2|C|).

C. Avoiding Redundant Computations

We observe that the mQ-Fast algorithm performs several
expensive operations when generating candidate answers,
at the very beginning of the Partial function.

We now present the mQ-Fast+ algorithm (Algorithm 4),
which introduces further optimizations, while still pro-
ducing all answers. First, we observe that thanks to the
expansion process, retrieving all possible answers for a
sample is not necessary, as long as one single node on
the candidate sample is considered. In the mQ-Fast+

algorithm, the Partial function finds the (candidate)
node matchings between sample nodes of a selected sample
(line 3) and graph nodes using the node-vectors (line
4-5). In particular, it chooses the node of the selected
sample with the minimum number of matches (line 6-7)
and uses each on of those matching as seeds for expansion.
This allows avoiding performing the expensive isomorphic
search at the beginning. Second, we note that the candi-
date returned in the Expand function may be generated
multiple times, if some multi-exemplar answers overlap.
This occurs when one candidate includes the answers of
another candidate that has already been processed. To
prevent this, we add an extra condition, which removes
from the list a candidate that overlaps with another one
(line 11). The Expand function checks if we have found all
the matchings for all the samples as in mQ-Fast (line 23,
Algorithm 3).

Complexity Analysis. This optimization does not re-
quire any extra indices, but all the optimizations proposed
for mQ-Naive and mQ-Fast can be used in mQ-Fast+, as
well. The complexity remains the same as before, as lines 4
to 7 iterate over each node in the graph, with O(d|L|×|V |)
operations.



Algorithm 4 mQ-Fast+

1: function Partial(G,S)
2: G ← ∅
3: s∗ ← Select(S)
4: for each n ∈ Vs∗ do
5: M(n)← {v ∈ V |v(v) ∧ v̄(n) = 0}
6: n∗ ← arg minn∈Vs

|M(n)| . Node with min-matchings
7: C← M(n∗)
8: while C 6= ∅ do
9: c← RemoveOne(C)

10: c+ ← Expand(c,S, G)
11: C← C \ {c1 ∈ C| c1 v c+} . Remove redundancy
12: G ← G ∪ c+

13: return G

D. Finding Top-k Answers
In this section, we consider the problem of returning

only the k best answers to a multi-exemplar query, given
a generic scoring function on the graph nodes (Problem 2).
This is fundamental in the contex of large graphs, where
too many results would overload the user. Note that
the algorithm proposed in this section is exact, i.e., the
returned answers have the k highest scores.

In order to compute the score of an answer, Section II
describes a reasonable instance for the score function
that computes the average between the weights of the
elements to prevent the side effect of skewing the result-
set in favor of larger results. Yet, we note that any other
analogous function, which can be bounded by monotoni-
cally higher ranking scores for answers containing higher
scoring nodes, can be used. Here, we introduce an early
termination method, based on the upper bound for the
ranking function in Equation 1 that can be computed
in any given part of the graph. Thus, we avoid Search
computing isomorphic graphs in all the areas selected by
Partial where answers are bound to a ranking score that
is too low. The procedure can stop searching as soon as
the kth lower scoring answer Ak found has a score ρ(Ak)
higher than any upperbound ρ for the remaining portions
of the database. Therefore, given a portion of the graph
G, we aim at pairing each sample node with a graph node,
such that the resulting scoring function is maximized.
The optimization version of this problem can be seen as
weighted formulation of the hitting set problem [29], which
makes a tight estimation impractical. Instead, we propose
the upperbound ρ computed according to the following
theorem.
Theorem 2. Given the set of graph samples S, and
answers, A1 and A2, ∀s ∈S.s v Ai, via the isomorphism
function µs

Ai
, the node weight function w, and the ranking

ρ (Equation 1). It holds:

ρ(A2) =
∑S

s

∑Vs

v
w(µs

A2 (v))
maxs∈S |Vs| < ρ(A1) → ρ(A2) < ρ(A1) (4)

Proof: (sketch) (1) Some v ∈ VA2 are junction
nodes and match more than one sample, we have that∑S

s

∑Vs

v
w(µs

A2 (v)) >
∑VA2

v
w(v) . (2) Then, given that

an answer contains all samples, we know that ∀s ∈

S.|VA2 |≥|Vs|. It follows that ρ(A1)≥ρ(A2)≥ρ(A2)
Hence, given a portion of the graph G′for which to

estimate the upperbound of the scoring function, for each
node vs in each sample s ∈ S, we select the candidate
matching n ∈ VG′ with the highest weight w(n). Note that,
given Theorem 1, we can use the vector representation of
each sample and each candidate node to recognize which
node could be used for the mapping. We compute the score
for a node vs as maxv(vs)∧v̄(n)=0w(n)

We change the Search procedure described earlier to
compute in advance such upper bound, and search first
within the region that has the largest one. The optimiza-
tion proposed here is implemented in a modified Search
function. Note that, the difference between the exhaustive
solutions mQ-Fast and mQ-Fast+ is the implementation of
Partial. Hence, the Search, is applicable to both of them,
obtaining in this way mQ-Fast-topK and mQ-Fast-topK+.

Weight functions. Even though the study of the best
ranking is out of the scope of this paper, to showcase
the flexibility of our approach, we implemented a set
of traditional measures adopted in top-k algorithms for
different use-cases. In particular, we consider (1) a degree-
based ranking function, which uses the node degree as
the weight for each node so that the popular nodes are
those that are the highest probability to be found [30];
(2) structural similarity computing the jaccard similarty of
the sets of labels at distance d from each node, or alterna-
tively computing the maximum cosine similarity between
the vectorial representations of the neighborhood of each
node [20]; finally (3) a random-walk similarity measure
provides higher score to those nodes where most probably
a random surfer will end up when starting from the nodes
in the query. In other cases we readily exploit precomputed
weights, e.g., from query-logs or other statistics [31].

E. Alternative semantics
We previously focused on finding all, or top-k results

that are congruent to all the samples at the same time.
This section presents immediate adaptations to the pro-
posed techniques to accept alternative semantics, yet
preserving Connectedness (Property 1) and Consistency
(Property 2) of the answers. Although an exhaustive study
of alternative semantics is out of the scope of the current
work, we describe two extensions that fit a vast number
of use cases: optional samples, and fixed node labels.
Optional samples. Optional samples refer to the situ-
ation in which the user can specify whether the samples
should be part of the multi-exemplar answers, or not. This
case reflects the OR and the OPTIONAL clauses in SPARQL
queries [2]. The OR clause requires that at least one of
the samples in the clause is in the answer. The OPTIONAL
clause additionally allows the case that none of the samples
in the clause are in the answer. Moreover, any combination
of OR, OPTIONAL and AND (our proposed semantics) clauses
is also taken into account.



To adapt our current framework to these more flexible
semantics, we need to consider the logic formula ϕS ex-
pressed as AND and OR clauses over the samples S. For
instance, if the user requires sample s1 and one among
samples s2 and s3, the formula over S={s1, s2, s3} is
ϕS :=s1∧(s2∨s3). OPTIONAL clause are not considered in
the formula since they are not required for consistency.
Then, mQ-Naive (Algorithm 1) instead of considering valid
candidates (c, Line 11) that contain all samples, should
check whether they satisfy the formula ϕS . We change
mQ-Fast and mQ-Fast+ preventing an early pruning of
potentially good candidates (Algorithm 3, Line 20). A sim-
ple adaptation removes the pruning condition (Line 20),
while a more elaborate solution first converts the formula
into Conjunctive Normal Form (CNF), and then checks
whether the sample is at least in one AND clause.
Fixed node values. The fixed node semantics allow the
specification of fixed nodes, or edge values in the samples.
For instance, the user might be interested in movies, where
the director is always George Lucas. Such constraints
can be easily included in the current solution by means
of additional conditions in the graph isomorphism. More
specifically, the number of candidate answers for each
sample (refer to Algorithm 1, Line 7), is conditioned to the
values expressed by the user, exclusively. This additional
condition can substantially speed up the computation of
answers for multi-exemplar queries.

IV. Experimental Evaluation

Since the solutions presented in this work are exact, we
focus on the efficiency of the proposed optimizations, both
for the computation of the complete result set (Problem 1)
as well as for the top-k answers (Problem 2). We also
report on the quality of our selectivity estimation, compare
the efficiency of our optimization to a solution for partial
topology matching, and demonstrate the expressiveness of
the paradigm with results over a real knowledge graph.
Datasets: We tested our algorithm on two of the largest
existing knowledge graphs: Freebase [25] and Yago [32].
We downloaded both graphs in their latest version and
removed the unnecessary metadata (e.g., users information
and multilingual names). We obtained for Yago3 (YG from
now on) 2.9M nodes (comprising entities and taxonomy)
and 16.7M edges with 38 edge labels. Freebase (FB in
the following) instead is much larger, it contains a graph
of 76M nodes and 314M edges, with about 4.5K distinct
edge labels. We also compared to PANDA [13], on one of
the datasets used in their evaluation, Cit-HepPh [33]: a
citation network of papers, with a total of ∼ 30K papers
(nodes) and ∼ 35K citation links (edges). Each paper is a
node with the publication month and year as a label. The
original dataset had 122 node labels; we assigned to each
edge a label obtained by concatenating the two labels of
the edge vertices. In this way, we obtained 8114 distinct
edge labels without changing the structure of the graph.

Queries: Since no existing real-world benchmark is avail-
able for the problem of multiple-example graph queries, we
collected query samples via a user study asking 20 users
to create multiple-example queries on different topics, such
as movies, countries, politics, and so on. To this end, we
instructed the users on searching a prototype search engine
and looking for entities and connections among them.
The users were partially volunteers and partially hired
through a crowd-sourcing platform3. The queries obtained
as described represent the first real dataset for Multiple
Exemplar Query, which we now make available4.

Based on the structure and size of the obtained real
queries, we generated a workload of single connected
subgraphs of size 1 to 6 edges, based on both the YG and FB
knowledge graphs. Following previous works [9], [13], this
was done via random-walk sampling. We then combined
these subgraphs in sets of different multi-exemplar queries.
We generated multi-exemplar queries of each sample size
between 2 and five samples, starting from 5-samples
queries and repeatedly subsetting the samples to obtain
the smaller sets, resulting in 160 queries for FB and 120 for
YG. In our experiments, we report results based on a subset
of 100 queries (25 for each one of the four different sample
sizes) that all algorithms can fully process in memory.
The size of this query-workload is among the largest in
this field [9], [13], [10], and we make it available online4.
We did the same for the Cit-HepPh dataset, for which we
additionally built queries with 6 and 8 subgraphs.
Experimental Setup: All algorithms presented in this
paper were implemented in Java 1.8, on an Intel Xeon
E52440 (12 Cores 2.40GHz, 188Gb RAM) server running
Linux v3.13.0. Regarding PANDA [13], we obtained the
code from the authors, and with their feedback, we ap-
plied the changes described in their paper to allow also
for answers similar to our semantics. Similar to other
approaches, the knowledge graphs and all relevant indexes
are memory resident [9].

A. Results

Selectivity estimation: First, we evaluate our selectivity
estimation method (described in Section III-B) concerning
the real number of subgraph isomorphic structures, since
the selectivity estimation takes negligible time (< 10ms),
but is an important component in our optimizations. To
this end, we compare the cardinalities of all the gener-
ated samples to the estimates produced by our method.
Both estimated and actual cardinalities are sorted by
the number of answers. The closer the two rankings are,
the more likely a pairwise comparison between samples
provides the correct minimum. Therefore, we measure the
Spearman’s rank correlation [34] between the two ranked
lists: a high correlation value would mean that our method
obtains a ranking similar to the real one. The result of the

3www.crowdflower.com
4disi.unitn.eu/∼lissandrini/files/mexq-queries.zip

www.crowdflower.com
disi.unitn.eu/~lissandrini/files/mexq-queries.zip
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experiments (omitted for brevity) shows a Spearman rank
correlation of 0.81 with p-value < 10−50. This means that
in most cases our estimate can identify the best sample to
select for our algorithms.
Evaluation of Complete Search: Considering that
mQ-Naive retrieves all the subgraphs isomorphic to all
samples, we test how many of those mQ-Fast and
mQ-Fast+ computes. In Figure 3.a, we show the percent-
ages of queries (on FB) in which our optimized algorithms
compute fewer isomorphisms than mQ-Naive as a function
of the number of samples. The results show that mQ-Fast
computes the same (or more) number of isomorphisms
than mQ-Naive in 43% of cases, while mQ-Fast+ is more
efficient in > 90% of the cases. Those are cases in which
some structures are shared by many answers. Hence they
appear in many different candidate regions of G when
computed by Partial, in these particular cases mQ-Fast
is wasting some computations. Note that, despite more
subgraphs are computed, they are generated in differ-
ent iterations, so that, at any time, only a portion of
those is in memory. mQ-Fast+, on the other hand, will
never waste computation since the regions G identified
by the optimized Partial (Algorithm 4) never overlap.
Hence, it computes at most the same number of subgraphs
computed by mQ-Naive but never more proving that our
optimizations reduce the memory requirements of the
algorithms, leading to better scalability than mQ-Naive.

In Figure 3.b, we present the percentages of queries (on
FB) in which the two algorithms, mQ-Fast and mQ-Fast+

compute faster than mQ-Naive as a function of the ratio
between the number of all final answer (without top-k) and
the average number of isomorphic graph per sample. In the
presence of few multi-exemplar answers, even if there are
many candidate fragments, the optimizations are faster in
more than 50% of the cases, and can still be faster in less
favorable situations. Indeed, when there are more multi-
exemplar answers than fragments (and the ratio is >1),
it means that few fragments combine in many different
ways, so it is better to compute the few fragments and
then compute their combinations. This is also shown in
Figure 3.c, where we show the running time on FB as a
function of the sum of isomorphic subgraphs present in
the knowledge-base (here, points summarize intervals of
approximately 60K). Hence, our choice falls on mQ-Fast+

for large knowledge graphs with rich information, where
mQ-Naive would not cope with the number of candidates
to handle and mQ-Fast has a higher risk to waste compu-
tations. Also, this suggests that we could apply of strong-
simulation [35] in place of isomorphism as the congruence
relation, allowing for many solutions to be merged in one
single answer [9], [13].
Evaluation for Top-K Search: We first tested the
performance obtained to compute the top-3 answers in the
FB dataset with mQ-Fast and mQ-Fast+, and compared
that to the baseline mQ-Naive. We report values only for
the structural similarity weight function since the behavior
of the other functions is comparable. Figures 4.a and 4.b
show the median number of isomorphisms and the median
and average running-time as a function of the number of
samples, respectively. Note that the query time accounts
for the complete process of retrieval and ranking of the
answers. While query time is biased towards the specific
implementation, the number of isomorphisms is not.

The median number of isomorphisms (Figure 4.a) shows
that both optimizations reduce the number of compu-
tations most of the times. As seen before, on average
(not shown in the figure) mQ-Fast computes many more
isomorphisms than mQ-Naive. This is also reflected in the
average running time (Figure 4.b). The different behavior
of mQ-Fast on average and median reflects once again the
larger sensitivity of the method to the graph topology. As a
matter of fact mQ-Fast+, performs up to two times better
than mQ-Naive regarding the number of isomorphisms and
time. Therefore, for these queries mQ-Fast+ is the only
choice. Finally, we report that experiments on YG obtained
similar results (Figure 4.c). Yet, on YG, the difference
between mQ-Fast and mQ-Fast+ is rather negligible, while
the gain of mQ-Fast+ is much larger on FB. This shows
that (1) the algorithms keep similar performances on the
larger and the small graph, but also (2) that it is not just
the size of the graph but also the number of isomorphic
subgraphs to connect that makes the problem challenging.

Note that the query time reported, although impractical
for real-time scenarios, refers to multi-exemplar exact an-
swers. This points to the study of approximate schemes [9],
[13] as an interesting direction for future studies.
Comparison to PANDA [13]: We compared the run-
ning time of PANDA and mQ-Fast+ on Cit-HepPh. The
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experiment with queries containing between 2 to 8 samples
(Figure 5) showed that mQ-Fast+ is much faster for this
task. We also tried to run queries on YG and FB, but
since PANDA has to first build all isomorphic answers
(similar to mQ-Naive) without employing any optimization
for this task, the PANDA approach did not terminate
within 1 hour, and we were not able to compare on larger
datasets. Moreover, their approach does not enumerate all
the answers but instead stops when finding portions of
the graphs that contain them. Therefore, when considering
their running time, the time needed for this extra step
should be taken into consideration.
Expressive Power: Although an analysis of the quality
of the algorithms largely depends on the choice of the
weight function, we show some non-trivial result found
with multi-exemplar queries. In this case, multi-exemplar
queries can be employed for cinema journalism to quickly
retrieve facts on actors and movies and their biographical
information. For instance, in Figure 6 the samples describe
notable actors, movies, and facts like prize won, spouse,
or father-child relationships. We run this query on YG,
which is not complete, so the samples are not part of
the results since none of the examples have all the rela-
tionships required. Since none of the examples are part of
an answer, with only this information as input any other
query paradigms will fail. First we note that in YG the
notion of child and successor are somehow collapsed, so
that George H.W. Bush is listed as child of Ronald Reagan.
Nonetheless, we find the 40th president of the U.S. has
been an actor, and his wife as well acted in the same movie.
We retrieve a similar case for A. Schwarzenegger, and one
more for Ronald Reagan, now with the actual son Ron.
Note how the results are nonisomorphic one another.

V. Related Work

By-example methods. Query-by-Example (QBE) [36]
describes a query interface for relational databases by
means of a template tuple, where the attribute values
are partially specified by the user. Other approaches [11]
accept tuples that should be included in the final desired
result-set and the system infers the select-project-join
queries that result in such tuples. Variations of this idea
include the ability of the user to provide examples that
are marked as relevant or irrelevant [3], or tuples alongside

explanations [6]. Previous work on relational and textual
data has no straightforward adaptation to more complex
structures such as graphs, and assumes that the provided
examples must appear entirely in the answers.

By-example works in graphs are divided into entity-
based and structure-based. Entity-based approaches, like
QBEES [7], take entities (nodes) as examples and re-
turn other similar entities. Structured-based approaches
take as input more complex examples [9], [10]. Exem-
plar Queries [9] define a general paradigm for search-
ing by-example and is applied on knowledge graphs.
GQBE [10] instead considers tuples of entity mentions
(such as 〈Barack Obama, USA〉) as input and finds other
similar tuples. While in exemplar queries the user is able
to provide complex structures, in GQBE only a list of
entities forming a path is allowed as query. In this sense
GQBE is a sub-problem of exemplar queries with a non-
generic ranking function, and no solution for the case
where the multiple examples in the input are only partial
specifications. In contrast to the by-example works, in our
work, the structure of the returned results does not need
to be known in advance, and the input examples might
not be part of the query answer.
Multiple queries on graphs. There are numerous meth-
ods [38] dealing with the optimization of single queries, but
not for multiple small queries. A graph query can be seen
as a multi-join query on the single edges. This has been
considered especially in RDF databases [38]. The main
limitation is that they require a fully specified query as
input, which is not our case.

Other works consider the case of multiple query opti-
mization in SPARQL queries [39]. SPARQL queries allow
an optional part to be specified to generate queries with
different structure. However, while in their case the num-
ber of options is limited, here we consider any possible
structure combination in the results. The only solution
would be to generate beforehand all the combinations as
optional SPARQL parts, which is clearly impractical.

Finally, a recent work (PANDA) studies partial
topology-based network search [13]. That is, to find the
connections (paths) between structures node-label isomor-
phic to different user inputs. PANDA first materialize all
isomorphic graphs, then groups them into connected com-
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Fig. 6. Left: examples of actors and interesting biographical informations. Right: Answers using multi-exemplar paradigm.

ponents, and finally finds undirected shortest paths among
them. Such semantics is mostly related to other solutions
trying to find connections among disconnected nodes [21].
Moreover, as shown in the experiments (Section IV), the
proposed exact solution does not scale to large graphs.

VI. Conclusions
By-example methods have been proven useful, but are

limited to a single structure. In this work, we propose
multi-exemplar queries, a novel query paradigm that iden-
tifies elements that are similar to a set of examples
provided by the user, without enforcing the complete
structure of the answer in advance. We describe efficient,
exact solutions, and introduce a generic formulation to
efficiently return top-k answers. The experiments show
the efficiency and effectiveness of our approach. As future
work, we plan to explore approximate solutions that can
cater to online applications.
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