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AQ1

Abstract. One of the main reasons for the success of Evolutionary
Algorithms (EAs) is their general-purposeness, i.e. the fact that they
can be applied in a straight forward manner to a broad range of opti-
mization problems, without any specific prior knowledge. On the other
hand, it has been shown that incorporating a priori knowledge, such
as expert knowledge or empirical findings, can significantly improve the
performance of an EA. However, integrating knowledge in EAs poses
numerous challenges. It is often the case that the features of the search
space are unknown, hence any knowledge associated with the search
space properties can be hardly used. In addition, a priori knowledge
is typically problem-specific and hard to generalize. In this paper, we
propose a framework, called Knowledge Integrated Evolutionary Algo-
rithm (KIEA), which facilitates the integration of existing knowledge
into EAs. Notably, the KIEA framework is EA-agnostic, i.e. it works
with any evolutionary algorithm, problem-independent, i.e. it is not ded-
icated to a specific type of problems and expandable, i.e. its knowledge
base can grow over time. Furthermore, the framework integrates knowl-
edge while the EA is running, thus optimizing the consumption of com-
putational power. In the preliminary experiments shown here, we observe
that the KIEA framework produces in the worst case an 80% improve-
ment on the converge time, w.r.t. the corresponding “knowledge-free”
EA counterpart. AQ2

Keywords: Evolutionary algorithms · Knowledge incorporation · Land-
scape analysis · Evolutionary algorithm fingerprint

1 Introduction

Evolutionary Algorithms (EAs) are considered nowadays a valuable search and
optimization tool suitable for many real-world problems characterized by com-
plex multidimensional search spaces. Among the many applications of EAs, some
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2 A. Hallawa et al.

notable examples include the optimal design of electronic circuits [1], software
[2,3], and even antennas for satellites orbiting outer space [4,5].

Despite the EAs’ versatility, the theoretical limitations stated by the “No free
lunch” (NFL) [6] pose a limit to their efficiency and applicability. As a possible
mitigation for this problem, an EA can be made efficient and effective across a
wide range of problems by endowing it with adaptive behavior with respect to
the problem structure, thus with problem-specific mechanisms.

Such adaptation typically involves the EA’s operators and tunable parame-
ters, which play a pivotal role in the performance of the algorithm. In fact,
there are several methods that can be used to optimize the behavior of EA. In
a recent survey published by Črepinšek et al. [7], a number of approaches that
can be used for this purpose are presented. Traditionally, researchers have used
trial-and-error approaches in the attempt to find the best settings of the EA
operators that can solve optimization problems most efficiently [8,9]. However,
these approaches are typically computationally expensive, because they require
numerous iterations (and in many cases it is not feasible to try all possible
parametric combinations), and some are problem-specific, thus they can not be
generalized to use on problems other than the one for which the tuning was
performed. Furthermore, proposed frameworks which offer an adaptive behavior
such as in some modulated versions of Differential Evolution (DE) algorithms,
as in jDE [10] and JADE [11], does not offer a comprehensive strategy for all
tunable parameters. Other approaches uses hyper-heuristics, i.e. they find the
optimal EA settings by using an optimization algorithm [7,12].

One of the approaches that have not yet been explored, however, is to use
experiences from previous problems with similar population behavior in the EA
run [7]. In this work, we propose a framework that is a first attempt in this
direction, where we also combine the approaches of “following general guidelines”
accumulated in the literature, and “identifying the features of the landscape by
a classifier, in order to propose good control parameters” [7].

The framework we propose is dubbed as Knowledge Integrated Evolutionary
Algorithm (KIEA). Its main component is a knowledge base that maintains the
knowledge of how various functions, i.e. optimization problems can be efficiently
solved. These functions are named as pilot functions, and the associated knowl-
edge to optimally tune the EA for solving those functions is named a strategy.
The framework collects characteristics of the EA population behavior across
generations. These characteristics are named EA fingerprints, and they are used
to classify any unknown function under investigation w.r.t. each of the pilot
functions (under the implicit hypothesis that such fingerprints can be used to
assess the similarity between different functions). The strategy associated to the
classified pilot function is then reused on the unknown function at hand, in the
attempt of solving it in the most efficient way possible.

The approach we propose is novel in the following ways: Firstly, it allows
the incorporation of various types of knowledge into the EA, allowing the algo-
rithm to adjust its behavior based on the knowledge in the knowledge base.
Initially, experts can bootstrap the system with their knowledge on the pilot
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A Framework for Knowledge Integrated Evolutionary Algorithms 3

functions. Secondly, the experience gained by the EA by solving problems gen-
erates valuable empirical knowledge that can also be added to the knowledge
base for further use. This can be done by extending the pilot functions or chang-
ing the strategies associated with them. As a result, the knowledge base grows
by accumulating the experience gained by solving multiple problems. The accu-
mulated knowledge is then “plugged” into the problems that are similar to the
ones encountered before. Moreover, the KIEA approach is generalizable as it
conducts the problem classification only based on the behavior of the popula-
tion in the EA run, independently from what this population is representing, i.e.
the solution encoding and the genotype/phenotype mapping.

To assess the performance of KIEA, you see preliminary experiments on a
small set of benchmark optimization problems. More specifically, we measure
the fingerprint-based classification accuracy on different pilot functions by using
different fingerprint properties. In addition to that, we compare the difference in
terms of convergence time obtained in the experiments with and without KIEA.

The rest of the paper is organized as follows: Sect. 2 summarizes the previ-
ous works on knowledge integration in EAs, Sect. 3 presents the mathematical
foundation of the EA fingerprint and the classification process. Section 4 demon-
strates and discusses performance evaluations of our approach. Finally, Sect. 5
concludes with the paper.

2 Background

Different knowledge incorporation methodologies available in the literature aim
to optimize EAs in order to enhance their performance. One of the key elements
where knowledge plays a role is the balance between exploration and exploita-
tion, a crucial aspect for an efficient search [7,13]. If there is, for example, more
influence of exploration then the search becomes more like a random search; on
the other hand, if exploitation is stronger than exploration then the search space
could not be explored, and the behavior of the search becomes similar to the
behavior of hill climbing [7].

In EAs, the balance between exploration and exploitation is typically
adjusted by the evolutionary operators and their parameters. However, different
evolutionary operators and different parameter values influence the process dif-
ferently; and their combinations may have different, hard-to-analyze effects. One
general interpretation considers the mutation and crossover as exploration oper-
ators1, since they make (pseudo-)random changes in the genotype of individuals
and cause random jumps in the search space; on the other hand, the selection
operator is usually seen as an exploitation operator, because it focuses on spe-
cific places by selecting the individuals to reproduce. Moreover, the population
size plays an important role in the EA behavior. Generally, re-sizing population
1 It should be noted, however, that some literature considers the crossover operator

as an exploitation mechanism. Generally, mutation and crossover have an effect
on both exploration and exploitation, although this effect varies depending on the
implementation and the fitness landscape at hand.
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4 A. Hallawa et al.

can be used to direct evolution process towards exploration or exploitation [14–
16], this method is widely used in CMA-ES, DE, and PSO. In that regard, it
is also important to highlight that the increase of the population size does not
necessarily improve exploration. Conversely, it has shown that there is strong
link between population size and structural bias of the algorithm [17]. Con-
sequently, this component has to be taken into consideration when designing
self-adapting EA.

The performance of a search process is also closely dependent on the features
of the search space and the fitness landscape. There have been many works in
the literature that aim to classify the landscapes based on their geometrical and
topological features. Most of these works are linked to specific features such
as modality, symmetry, etc., such as in [18– 21]. There have also been several
studies that aim to suggest optimal algorithms, or optimal algorithm parame-
ters, based on the features of the landscape of the search space. For example,
Asmus et al. [22] proposed a system for recommending suitable algorithms for
a given black-box optimization problem. Muoz et al. [23] introduced a model
that links the landscape analysis measures and the algorithm parameters (used
CMA-ES) to predict the performance of the algorithm parameters. Picek and
Jakobovic [24] performed a thorough study focused on the correlation between
fitness landscapes and crossover operators.

Clearly, it would be extremely beneficial to leverage this wide range of knowl-
edge from the literature for tuning the evolutionary operators parameters based
on the landscape features. However, applying this knowledge often requires that
such features are captured first, in order to choose the proper strategies. Unfor-
tunately though, this is not always possible since either the search space is
completely unknown, or hard to characterize.

Moreover, many of the existing works offer knowledge that is problem-specific
and therefore hard to generalize and use with other problems. Another difficulty
arises from the fact that this knowledge is often scattered over different levels of
granularity, from too general to extremely detailed, which makes it hard to have
comprehensive strategies.

The objective of the presented work is to propose a way of integrating exist-
ing algorithmic knowledge into a single, comprehensive evolutionary framework,
and test the effect of such knowledge on the optimization performance. Here,
with “algorithmic knowledge” we generally refer to the knowledge encompassing
the categorizations of problems based on their landscape features, the types of
strategies related to the adaptation of evolutionary operators and parameters,
and the link between problem types and strategies, i.e. which strategies work best
on a specific type. In the next section a detailed description of the framework is
presented.

3 Methods

The KIEA methodology is straightforward and its implementation is relatively
simple (see Algorithm 1). For completeness, we also report a conceptual scheme
of the proposed KIEA in Fig. 1.
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A Framework for Knowledge Integrated Evolutionary Algorithms 5

Fig. 1. Conceptual scheme of KIEA

The whole process can be considered as a single run of an EA divided into
two stages: in the first stage, for a predefined number of generations, GC , the
unknown function under investigation undergoes an EA run with an arbitrary
parameter setting (basically, population size, mutation and crossover probabil-
ity). These settings are set as the initial EA strategy S0. In each generation
evolved in this first stage, a set of properties describing the population behavior
is calculated to be used later for classification. These population behavior prop-
erties are termed EA fingerprint (see Sect. 3.1 for details). The first stage stops
when the allotted number of generations GC is reached.

In the second stage, a classification based on the EA fingerprint is per-
formed as follows. The unknown function’s fingerprint produced from the first
stage is compared with the fingerprint obtained by the same initial strategy S0

on a set of pilot functions, i.e. benchmark functions that are chosen a priori as
representative of different categories of problems. Based on fingerprint similari-
ties, the unknown function is then classified as the most similar pilot function.
Detailed insights on the classification process are provided in Sect. 3.2.

Associated to each pilot function, the system maintains an EA strategy. Here,
we refer to “strategy” as a set of changes (adaptation rules) in the EA parameters
(e.g. a population size reduction/shrinking, mutation probability update rules,
etc.) and when these changes should be implemented within the evolutionary run
in order to enhance the optimization performance. These strategies are organized
in a knowledge base, such that for each pilot function, its associated strategy is
the one that according to our empirical experiments (see Sect. 4.1) showed the
best performance.
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6 A. Hallawa et al.

Therefore, after the classification phase, the settings of the algorithm, i.e.
mutation rate, population size, etc. are set according to the EA strategy that
is associated with the most similar pilot function. For the remaining of the
available generations, the EA runs with the chosen strategy. The hypothesis
is that similar strategies can enhance the performance of an EA on functions
with similar EA fingerprints; in other words, we expect the performance of the
optimization process to improve on the unknown function after adopting the
strategy associated with the most similar pilot function.

It is important to notice that the ability to classify problems based on the EA
fingerprint makes it possible to transfer the knowledge from the pilot functions
to any unknown function under investigation, without assuming any previous
understanding of its features or properties. Moreover, this mechanism allows
generalization of knowledge to a wide range of optimization problems without
the need of associating such knowledge to specific fitness landscape properties
such as modality, symmetry, etc. Therefore, it avoids the complexity due to
landscape analysis, and makes it possible for the system to work with functions
with complex, hard-to-analyze landscapes, since all that is required is to capture
the population behavior in the EA run.

Algorithm 1. High-level description of the KIEA framework
1: procedure KIEA
2: initialize total no. of generations G
3: initialize no. of generations for classification GC

4: initialize generation counter g = 0
5: set initial EA strategy S0

6: initialize population P
7: while g < GC do
8: F ← evaluate (P )
9: P ← select (P, F )

10: P ← reproduce (P, F, S0)
11: f ← getFingerprint(P, F ) ◃ Store fingerprint
12: g = g + 1
13: end while
14: Piloti ← classify(f) ◃ Classification
15: Si ← getStrategy(Piloti) ◃ Retrieve strategy
16: while g < RT do
17: F ← evaluate (P )
18: P ← select (P, F )
19: P ← reproduce (P, F, Si)
20: g = g + 1
21: end while
22: end procedure

In the following sections, we cover the mathematical details of the EA fin-
gerprints and the classification procedure. In Table 1, we summarize the main
symbols used in the text, with the related explanation.
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A Framework for Knowledge Integrated Evolutionary Algorithms 7

Table 1. Symbols used in the paper

Symbol Explanation

N Total number of individuals in population

G Total number of generations

GC Number of generations allocated for classification

igl ∈ Rn Individual belongs to cluster l at generation g

cg
l ∈ Rn Cluster l center individual at generation g

cmin Minimum number of individuals to form a cluster

rmax Maximum radius of the sphere Sn that a cluster can occupy

Cg
l Set of individuals in cluster l at generation g

|Cg
l | Number of individuals in cluster l at generation g

Cg
c Set of cluster centers at generation g

Pl A tuple with the number of individuals in cluster l

dg
ij Euclidean distance between cg

i and cg
j at generation g

Tl Population trend tuple of cluster l

Gg
dij,ϵ

Set of points that have equal Euclidean distance dij ± ϵ at generation g

Si EA Strategy i

3.1 EA Fingerprint

In the previous section we defined the EA fingerprint as a set of properties that
characterize the population behavior. While in principle this could be done at
individual level, in practice following all individuals in the population would be
extremely computationally expensive, especially in high dimensions. For exam-
ple, a simple task as finding the pair of points in a set with smallest distance
between them (known as closest pair of points problem) has time complexity of
O(n2D/log2D) for D dimensions and n points using a divide and conquer app-
roach [25]. Therefore, we define here EA fingerprints that are based on clustering
the population and following the resulting clusters properties.

A cluster emerges when a predefined minimum number of individuals cmin

from the population are grouped in a predefined maximum space rmax in the
search space. This minimum number of individuals constituting a cluster and
the corresponding maximum space used to designate it are set as a percentage
of the population size N , e.g. cmin = 5% of N .

An EA fingerprint is grouped into two main groups: Clusters Emergence
Characteristics (CEC) and Clusters Constellation Characteristics (CCC). CEC
is designed to capture 5 features: number of clusters, number of individuals in
each cluster, population trend in each cluster, fitness value of the fittest indi-
vidual of each cluster, and its position. On the other hand, CEC captures the
geometric properties of clusters, which include equidistant cluster topology and
the corresponding distances between equidistant clusters in the search space.
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8 A. Hallawa et al.

In CCC, the first step is recognizing emerging clusters. The procedures for
that are described as follows:

1. All individuals igl ∈ Rn ∀ l = 1 . . . N at generation g are sorted in descending
order with respect to fitness.

2. The highest value is designated as a potential cluster center cg
l forming the

first point in the potential cluster set Cg
l .

3. Going through all population, each individual igl is assigned to Cg
l with center

point cg
i if and only if:

∥igi − cg
j∥ < rmax, ∀j ̸= i ∧ j = 1 . . . N (1)

where rmax is the maximum radius of the sphere Sn that a cluster can occupy,
Sn={x ∈ Rn+1 : ∥x∥ = rmax}. rmax is chosen adequately, e.g. 5% of the
smallest search domain across all search variables.

4. A cluster Cg
l is designated with the center cg

i if and only if the number of
individuals assigned to it, |Cg

l |, is bigger than or equal to the minimum cluster
size cmin:

|Cg
l | ≥ cmin (2)

where cmin is chosen as a percentage of the total population size N , e.g. 5%.
5. All individuals that were previous assigned to a cluster or picked as a potential

cluster center are then discarded, steps (3) to (5) are repeated again until all
N individuals in the population are considered.

These procedures are executed for each generation, until GC is exhausted.
For each generation g, all cluster centers cg

l , l = 1, 2, . . . , are kept in a set Cg
c .

Furthermore, due to sorting population in the first step in the procedures, cg
l

are also the fittest points in cluster l. This will be used later for comparing
clusters with similar highest fitness points. In addition, for each generation the
corresponding fitness value of each cluster center cg

l are stored in a fitness set F g
c .

A tuple Pl with the number of individuals in cluster l through out all generations
until a given generation m is defined as follows:

Pm
l = < |C1

l |, |C2
l | . . . , |Cm−1

l |, |Cm
l | > (3)

where m can take any value from 1 to total number of generations G. In order to
capture the changes in each cluster throughout different generations until a given
generation m, for each Pm

l , there exists a population trend tuple Tm
l defined as:

Tm
l =

{
1, for |Ck

l | − |Ck+1
l | < 0

0, for |Ck
l | − |Ck+1

l | > 0
∀k = 1 . . . m − 1 (4)

Now, all the aforementioned CEC properties can be defined: the number of
clusters for each generation g in |Cg

l |, the number of individuals in each cluster l
in Pl, the population trend across all generations in each cluster in Tl, the fitness
value of the fittest individual (which is also the center) of each cluster in F g

c ,
and its position in Cg

c for each generation g.
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A Framework for Knowledge Integrated Evolutionary Algorithms 9

The second fingerprint component’s, CCC, is meant to capture the geomet-
ric properties of clusters. Firstly, we define the Euclidean distance between all
cluster centers in each generation g as:

dg
ij = ∥cg

i − cg
j∥ (5)

Then, we group equidistant cluster center points as follows:

Gg
dkl,ϵ

= {(cg
i , c

g
j ) ∈ Cg2

c ∀i ̸= j, dkl − ϵ < ∥cg
i − cg

j∥ < dkl + ϵ} (6)

where ϵ is a margin of tolerance adequately chosen as a percentage of the domains
of each search variable.

Both dg
ij and Gdkl,ϵ constitute the CCC properties. Now that we have defined

all the elements of the EA fingerprint, we can show how we use them for classi-
fication.

3.2 Classification

The objective of the classification process is to find the closest pilot function
to the unknown function under investigation. This is conducted by comparing
the EA fingerprints with the fingerprint of each pilot function. In the following
description, ψg

k indicates the comparison of feature k at generation g.
The first comparison ψg

1 is the difference in cluster numbers at each gen-
eration. This difference is multiplied by the ratio between the smallest cluster
number over the biggest, as follows:

ψ1 = ∥|Cg
l |u − |Cg

l |p∥ ×
min(|Cg

l |u, |Cg
l |p)

max(|Cg
l |u, |Cg

l |p)
(7)

where |Cg
l |u and |Cg

l |p are the numbers of clusters on the unknown function and
the pilot function, respectively.

The second comparison ψg
2 is the difference in the position between each

center point cg
l in the unknown function and the closest cluster center point

position in the pilot functions. Only points whose distance from cg
l is at most

rmax are considered, to ensure that the closest point found in the pilot function
cannot be chosen more than once, since there cannot exist two center cluster
points within the same cluster sphere Sn which has maximum radius rmax.
Consequently, ψg

2 is defined as the sum of all the minimum distances between cg
l

of unknown function and pilot function, as follows:

ψg
2 =

∑

cg
i ∈uCg

l

min
cg

j ∈pCg
l

∥cg
i − cg

j∥ with dij < rmax (8)

where uCg
l and pCg

l are sets with center points cg
l at generation g for the unknown

function and pilot function, respectively. The inequality dij < rmax is the mini-
mum distance condition explained earlier.
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10 A. Hallawa et al.

The third comparison is defined to capture the difference in population trends
between the unknown function and the pilot function for clusters with similar
fittest point values, i.e. clusters which have close center fitness values across all
generations. Center cluster points with similar fitness values are identified as
follows:

uT g
f0+kϵ = {fl ∈ F g

u |fl − ϵ ≤ f0 + kϵ ≤ fl + ϵ} ∀k ∈ N (9)

where f0 is the least fit cluster center cg
l in the unknown function at generation

g, and F g
u is the fitness set of the unknown function at generation g. uT g

f0+kϵ is a
set of all points within range f0 + kϵ, ∀k ∈ N. The analogous value for the pilot
functions, pT g

f0+kϵ is calculated similarly:

pT g
f0+kϵ = {fl ∈ F g

p |fl − ϵ ≤ f0 + kϵ ≤ fl + ϵ} ∀k ∈ N (10)

where f0 is least fit cluster center cg
l in the unknown function at generation g

(same as in Eq. 9), and F g
p is the fitness set of the pilot function at generation

g. Then ψg
3 is defined as:

ψg
3 =

∑

k∈N

min(|uT g
f0+kϵ|, |pT

g
f0+kϵ|)

max(|uT g
f0+kϵ|, |pT

g
f0+kϵ|)

×
min(|Cg

l |u, |Cg
l |p)

max(|Cg
l |u, |Cg

l |p)
(11)

where ψg
3 is the summation of the ratio of number of points in range fo + kϵ

in the unknown function and pilot function ∀k, normalized w.r.t. the ratio of
cluster sizes, exactly like in ψg

1 . The reason why the min and max operators
are used instead of simply having |uT g

f0+kϵ| in the numerator and |pT g
f0+kϵ| in

the denominator, is to ensure that the value of the fraction is always less than
one and therefore ψg

3 is comparable with other cases, regardless the fact that
|uT g

f0+kϵ| is greater than |pT g
f0+kϵ| or vice versa.

The fourth comparison is used to capture the difference between the equidis-
tant cluster center points, as follows:

ψg
4 =

min(|Gg
dij,ϵ

|u, |Gg
dkl,ϵ

|p)
max(|Gg

dij,ϵ
|u, |Gg

dkl,ϵ
|p)

with dkl − ϵ ≤ dij ≤ dkl + ϵ (12)

where Gg
dij,ϵ

is the set of equidistant cluster centers within the margin of tolerance
ϵ at generation g.

The fifth comparison captures the trend of the population within clusters.
Its definition reflects similarities in the change of population within clusters with
similar fitness values. fg

l is the highest fitness point in each cluster l at generation
g, and there might exist a fg

l in the pilot function at the same generation g with
fitness value that is within ϵ range from it, a set that includes all these pairs of
points is defined as:

Mg = {(i, j) ∈ N2| ∀fi ∈ F g
u , fj ∈ F g

p , ∥fg
i − fg

j ∥ ≤ ϵ} (13)

where F g
u and F g

p are the fitness sets of the unknown function and pilot function
respectively. Mg includes all cluster id pairs unknown function and pilot function
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A Framework for Knowledge Integrated Evolutionary Algorithms 11

that have highest fitness values difference less than ϵ. From Eq. 17, each item
at position k in the tuple reflects the change in population between generation
k and k + 1, its value be either zero for no change in population or one for
increase in population or negative one for a decrease in population. For each
pair identified in Mg, a comparison in the population number history up to
generation g is defined as follows:

ψg
5 =

∑

(i,j)∈M

T g
i ! T g

j (14)

where T g
i and T g

j are the trend tuples of the unknown function and pilot function
respectively and ! is defined here as an XNOR logic operator which produces 1
if operands are equal and 0 otherwise.

The sixth comparison captures the difference in the number of clusters per
generation, as follows:

ψg
6 =

G∑

g=1

min(|Cg
l |u, |Cg

l |p)
max(|Cg

l |u, |Cg
l |p)

(15)

Finally, the classification process is concluded based on ψ1 to ψ6, using a
weighted sum as follows:

ψTotal =
6∑

i=1

wiψi (16)

where wi is the weight of property i, which is set as follows:

wi =

{
1, for i = 3,

−1, otherwise
∀i = 1 . . . 6 (17)

as with exception to ψ3, the lesser the value the better the match with the pilot
function. Finally, the total value is then compared with each pilot function, and
the highest value leads to the winning pilot function, which then leads to the
unknown function adapting its strategy.

4 Results

As a proof-of-concept, we now present the numerical results obtained by KIEA on
a small set of benchmark functions. First, we explain the algorithmic setup and
the strategy initialization in Sect. 4.1. Then, in Sect. 4.2 we illustrate the effect of
different fingerprint properties on classification. Finally, Sect. 4.3 evaluates the
performance of KIEA in terms of convergence time.

4.1 System Setup and Strategy Initialization

Although the KIEA framework is algorithmically agnostic and can be used with
any EA, for testing purposes we use a classic Genetic Algorithm (GA). In the

A
u

th
o

r 
P

ro
o

f



12 A. Hallawa et al.

prototype we implemented, we focused on strategies expressed in terms of pop-
ulation size and mutation rates. Figures 2 and 3 show a preliminary perfor-
mance analysis for two simple benchmark functions, namely the Ackley and the
Gaussian function. It can be seen that for the Ackley function, population size
60 and mutation rate 0.01 is the most suitable strategy, while for the Gaussian
function population size 40 and mutation rate 0.1 offer a more suitable strategy.AQ3

Fig. 2. Strategy analysis on the Ackley function

4.2 Effect of Fingerprints

To test the ability to classify a function based on its fingerprint, we conducted
a four tests in total. In the first two, the objective was to classify the two pilot
functions (Ackley and Gaussian) as if they were unknown. Moreover, we con-
sidered two additional unknown functions (Rastrigin and Rosenbrock), different
from the pilot functions. Figures 4 and 5 show the classification of the Ackley,
Gaussian, Rastrigin, and Rosenbrock functions, respectively. Each classification
test was done by first extracting 50 different fingerprints for each pilot function,
and then comparing each of the 50 fingerprints from the unknown function, thus
with a total of 2500 comparisons (50 pilot functions fingerprints × 50 unknown
function fingerprints). It is important to highlight that each property in the fin-
gerprint contributes to the classification process, i.e. they are all needed and
their contribution varies depending on the function at hand, while keeping the
overall successful classification rate 90% to 98%. Moreover, their variance is rel-
atively small (3% on average), which shows the good reliability of the proposed
classification process (Fig. 6).AQ4
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A Framework for Knowledge Integrated Evolutionary Algorithms 13

Fig. 3. Strategy analysis on the Gaussian function

4.3 KIEA Performance

We conclude the experimental validation of KIEA by measuring the performance
gain in terms of convergence time. Table 2 summarizes the convergence time on
the Ackley and Gaussian function in 10 dimensions, with and without KIEA.
Tests are done 25 times per function and the 1st, 7th, 13th, 19th and 25th best
convergence times out of the 25 runs are captured. All runs are done with FES
= 103 and termination error = 10−6. It is clear that there a decrease across all
the best times when using KIEA, which reaches a 80% decrease in the worst
case. Moreover, there is a significant decrease in standard deviation across all
the runs, which suggests a more reliable performance when using KIEA (Fig. 7).

Fig. 4. Classification of the Ackley function
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Fig. 5. Classification of the Gaussian function

Fig. 6. Classification of the Rastrigin function

Fig. 7. Classification of the Rosenbrock Function
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Table 2. Convergence time T [s] with and without KIEA

Ackley
(w/o KIEA)

Ackley
(w/ KIEA)

Gaussian
(w/o KIEA)

Gaussian
(w/ KIEA)

1st 1.439 1.261 0.232 0.1179

7th 2.994 2.890 0.131 0.1194

13th 3.014 2.905 0.137 0.1200

19th 3.053 2.929 0.14 0.1283

25th 10.056 2.990 0.191 0.1658

Mean 3.677 2.791 0.1662 0.1303

Std 2.324 0.388 0.0439 0.0203

5 Conclusions

In this work, we have introduced a framework for knowledge integration in evo-
lutionary algorithms. The framework, named KIEA, is based on the concept of
EA fingerprint, i.e. a set of a properties that capture the population behavior
in the solution space while the EA is running. In addition to the algorithmic
description of the framework, we presented a mathematical formalization of the
properties constituting the fingerprint.

In the preliminary experiments conducted in this study, the framework pro-
totype showed a successful classification probability between 90% and 98%,
depending on the function to optimize. Furthermore, the comparison of the
convergence time on functions optimized with and without KIEA proved that
the presented framework consistently enhances the convergence time, reaching
a worst-case improvement of nearly 80%.

In addition to the improved numerical performance, the presented framework
has the advantage of being fully expandable, since it is possible to add new pilot
functions and strategies in a straightforward manner. Furthermore, KIEA is
suitable for any evolutionary algorithm as it is not strictly bound to any specific
EA implementation. In future works, we will test this framework on a wider
range of optimization problems, and we will expand our knowledge base of pilot
functions and corresponding strategies. Finally, we plan to perform tests with
different kinds of state-of-the-art EAs, to show the general applicability of KIEA.
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