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Abstract. A challenging aspect in open ad hoc networks is their
resilience against malicious agents. This is especially true in complex,
urban-scale scenarios where numerous moving agents carry mobile
devices that create a peer-to-peer network without authentication.
A requirement for the proper functioning of such networks is that all
the peers act legitimately, forwarding the needed messages, and concur-
ring to the maintenance of the network connectivity. However, few mali-
cious agents may easily exploit the movement patterns in the network to
dramatically reduce its performance. We propose a methodology where
an evolutionary algorithm evolves the parameters of different malicious
agents, determining their types and mobility patterns in order to mini-
mize the data delivery rate and maximize the latency of communication
in the network. As a case study, we consider a fine-grained simulation of
a large-scale disruption-tolerant network in the city of Venice. By evolv-
ing malicious agents, we uncover situations where even a single attacker
can hamper the network performance, and we correlate the performance
decay to the number of malicious agents.

Keywords: Disruption-tolerant network · Routing · Evolutionary algo-
rithm

1 Introduction

In a complex, open environment such as a city, pedestrians and motorized vehi-
cles are heavily mobile agents, and their movement is constrained to well-defined
paths and streets. Mobile communication devices carried by these agents are the
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nodes in such an urban network. The nodes’ communication range and band-
width are limited by their hardware platform and energy supply. Consider an
ad hoc message-routing protocol for these agents which, unlike the cellular net-
work, uses no centralized communication infrastructure. This protocol should
achieve both a good data delivery rate and a low latency of data messages sent
by any node to any other node, while only using as communication primitive the
peer-to-peer transmission of data between any two nodes (when these agents are
within communication range and can connect reliably). This class of data-routing
protocols form (Delay- or) Disruption-Tolerant Networks (DTNs) [1,2].

As a complete source-to-destination path may not always exist in a DTN,
intermediate nodes are required to store the data and wait for an opportunity
to forward the message to another node towards its final destination, thus creat-
ing a space-time communication path. Originally developed for solving routing
problems in space missions [3], DTNs have been applied, over the years, also
to terrestrial applications. Nowadays, DTNs are mostly used as a communica-
tion service in open urban environments [4] and several different DTN routing
protocols have been designed.

While much research has been devoted to optimizing the data delivery rate
and latency of DTNs, the security of DTN protocols is still an open problem.
This is a particularly serious issue, since urban DTNs must often remain open
to all willing participants (i.e., DTNs do not perform agent authentication).
In such scenarios, security attacks typically consist in one or more agents in
the network having malicious behavior; examples are black holes, i.e., agents
which route no messages to any other agents, and data flooders, i.e., agents
which inject an unusually large number of messages into the network. To assess
the vulnerabilities of DTN protocols to such attacks, one must first determine
how “badly” an attacker can affect realistic DTNs. However, the problem of
determining the optimal attack method for a fixed DTN environment (i.e., the
city map and the movement pattern of all honest agents) was proven NP-hard [4].

We propose an alternative solution: for a realistic urban DTN, we design
a DTN testing framework based on evolutionary algorithms (EAs), which can
highlight the vulnerabilities of any DTN protocol more effectively than existing
methods. As a case study, we focus on the classic First Contact (FC) protocol
for routing messages in a DTN [1]. FC adopts a simple logic in which an agent
forwards a message to the first agent with which a data connection is formed.
In FC, a single copy of each message in the network exists at a time, and it is
forwarded until the message reaches its destination. The results of our testing on
FC clearly demonstrate the potential of the approach: we found scenarios where
even a single attacker, purposely “evolved” by the testing framework to exploit
the movement patterns in a large network, can reduce the global data delivery
in the network to half that of the network with no attackers.

The rest of the paper is organized as follows: the next section summarizes the
main results from related literature and positions our work with respect to them.
Then, Sect. 3 describes our evolutionary-based methodology; Sect. 4 illustrates the
experimental setup and presents the numerical results. Finally, Sect. 5 concludes
this work.
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2 Related Work

Existing studies [5,6] propose a defense against data-flooding attackers, which
consists of embedding into the routing protocol heuristic rules such that agents
refuse to forward messages injected by flooders. On the other hand, an effective
defense against black holes is more difficult to design, and would require each
agent to maintain long-term trust relationships with other agents, thus compli-
cating the protocol logic.

On the other hand, very few studies focused on a thorough empirical analysis
of the vulnerabilities in existing DTN protocols. The most relevant work was
done by John Burgess et al. [7], who quantified the damages caused by a set of
attackers in a given application scenario. In their study, they model the town
of Amherst (US) with a sparse bus-and-pedestrian open DTN of 71 nodes. The
set of attackers is calculated either randomly or by using a greedy heuristic:
attackers are added to the network such that they minimize the number of data
connections that can be formed. Then, simulation repetitions are used to obtain
an average data delivery rate of the network with attackers present.

The greedy heuristic for node selection was found much more effective than
random selection at reducing the data delivery rate. For a protocol similar to
FC, the effects of any type of attack were found to be minor: compared to a
baseline of 33 % delivery rate without any attackers, only by turning malicious
half of all the nodes in the network did the network’s delivery rate fall to half
of the baseline, i.e., a rate of message delivery of 17 %.

From the results, the work understandably draws a very favorable conclusion
about the robustness of DTN routing to attacks; however, authors do admit that
other DTN scenarios may exist which “cause the DTN to perform extremely
poorly even with a small number of attackers. For instance, if node mobility is
extremely low, and one node forms a nexus for all routing paths, the DTN will
fail to deliver packets after corrupting that node. Similarly, if one attacker can
corrupt all nodes by flooding an area with RF noise, the DTN will also fail” [7].

Our results show the exact contrary: even with the ideal conditions of high
node mobility and no single-node bottlenecks, a small number of well-located,
“strong” attackers executing an unsophisticated attacker logic will lower the
delivery rate well under the thresholds found in [7].

3 Proposed Approach

The core idea of this work is to use an evolutionary algorithm to optimize the
parameters and movement of attackers, with the final goal to disclose vulnera-
bilities in the DTN. To validate the proposed evolutionary testing framework,
we simulate an urban environment composed of a map and a set of moving agents
(the network nodes). Depending on their type, agents are constrained to different
paths, and have different speeds. The building blocks of their movement patterns
are the points of interest (POIs) located on the map: agent i randomly chooses
a destination p from a set of points of interest Pi; travels to p at a realistic speed
on the shortest path; takes a break. Then, it repeats the whole process.
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Fig. 1. Representation of the problem: given a set of scenario parameters, calculate the
attackers (input) which will produce the most extreme situation in the DTN (output).

We assume two fixed groups of agents: “honest” and “malicious”. For any
honest agent i, the predetermined set Pi of points of interest includes all the
points on the map layer (see also the individual structure description in the next
section). For added realism, a small number of these points may be given a higher
probability of being selected as next destination. For any malicious agent i, the
optimal set Pi of points of interest (i.e. the parameters that would lead to a
maximum damage in the network) is instead free to evolve. All honest nodes
execute the FC routing protocol, while malicious nodes can act either as data
flooders or black holes.

The evolutionary optimization process can then be summarized as follows:
given a DTN of N total nodes, a fixed number of malicious nodes k < N , and
any parameters of the urban environment, find the attacker movement patterns
Pi, i = 1 . . . k which would lower the data delivery rate (DDR) of the DTN
the most, while maximizing also its average latency. A graphical representation
of this problem is shown in Fig. 1, which visually describes how our testing
framework finds those optimal inputs (attackers’ parameters) which trigger the
most “interesting” (i.e., bad) DTN performance in the outputs, namely lower
DDR and higher latency, prioritized in this order.

Evolutionary Framework. We adopt a general-purpose evolutionary frame-
work developed at Politecnico di Torino [8], µGP1, a toolkit that has been
successfully applied to a number of research projects, including the analysis
of protocols used in wireless sensor networks [9,10]. Three interesting prop-
erties influenced our choice: first, the design of this framework is based on
the notion of an external evaluator, which simplifies the integration with an
external network simulator; secondly, the algorithm available in µGP features a
built-in support for multiple fitness functions, that can be evaluated both in a
1 µGP is available from http://ugp3.sourceforge.net.
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lexicographical order and in a multi-objective approach; and finally, the evolu-
tionary engine available in µGP makes use of self-adaptation techniques, greatly
limiting the number of parameters that require to be set. The structure of the
proposed framework is reported in Fig. 2.

Fig. 2. Our DTN testing framework.

Individual Structure. In the problem under study, an individual represents
one or more malicious individuals trying to attack a DTN network. Each attacker
(as in Fig. 3) is defined by its type (here, pedestrian or boat) and a set of POIs
which effectively define a set of paths on the map.

It is important to notice that the same POIs have different meanings depend-
ing on the type of attacker: even if a boat and a pedestrian pass close to the
same coordinates, they may reach them using different paths, causing different
network disruptions along the way. Also, since most of the POIs are accessible
by certain types of attackers only (e.g., a point in open water cannot be reached
by a pedestrian, nor one on land by a boat), for each type we overlap a grid
layer onto the city map layer, and define the path of an attacker of that type as

Fig. 3. Individual structure for (left) single and (right) multiple attackers. Multiple
attackers are concatenated into a single individual. Each attacker is characterized by a
variable number of points of interest and a type (pedestrian, boat) which points to that
agent’s map layer. The initial numbers of points of interest are drawn from a Gaussian
distribution N (70, 602).
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a set of grid squares inside that grid. During the simulation, we then map each
grid square to the map point closest to the square; if a square contains more
than one map point, the attacker visits them all.

Fitness Functions. As shown in Fig. 1, the outputs of each simulation (i.e., the
fitness functions, in the evolutionary jargon), are:

– (f1) the data delivery rate, calculated as the percentage of messages originated
only from honest nodes, and which are delivered successfully;

– (f2) similarly, the average latency of message deliveries (in seconds).

They are evaluated in lexicographic order: f1 is minimized, and f2 is maximized.

Evolutionary Operators. The genetic operators employed by the evolutionary
framework include two crossover operators which are able to cross over individ-
uals at the level of their corresponding paths, namely onePointCrossover and
twoPointCrossover, and four mutation operators, namely insertionMutation,
removalMutation and replacementMutation, that respectively add, remove or
change a single POI in a path, and singleParameterAlterationMutation, that
changes either a single coordinate in a POI, or the type of attacker.

4 Experimental Evaluation

The approach is validated by coupling µGP with the ad hoc network simulator
The ONE [11]. As a case study, we consider a DTN with N = 200 mobile
agents “operating” in the dense, 5 km2 core of the city of Venice, Italy. For this
city, an agent is limited to either of two types: pedestrian, whose movements are
confined to the map layer containing only foot paths; boat, whose movements are
constrained to the map layer containing only waterways (see Fig. 4, left). Both
types of nodes can be either honest or malicious. The number of pedestrians and
boats is set, respectively, equal to 150 and 50. In each simulation, a small subset
of k < N nodes (of any combination of types, i.e. n pedestrians and k −n boats,
n = 0, . . . , k) is turned malicious and evolved by the evolutionary algorithm. The
number of malicious nodes is fixed for the duration of the experiment, and all
malicious agents perform the same kind of attack. Furthermore, each attacker’s
type is fixed, as shown by the genetic structure in Fig. 3.

Honest nodes are initially placed randomly on their map layer. The next point
of interest visited by each node is then selected randomly from those available
on that layer; a small number of map points (3 pedestrian, and 2 waterway
locations) situated at main commercial or touristic spots in the city, have a
higher probability of selection, at 10 % per map point. Then, the node travels
to this next point on the shortest valid path on its map layer. Finally, once the
target point of interest is reached, the node randomly selects a new one, and the
execution proceeds from that point. This movement model based on shortest-
path calculation quickly distributes the nodes non-uniformly on the map. As seen
in the snapshot of a sample simulation (Fig. 4, right), preferred paths “emerge”
on the map, as in real life. Unlike the honest nodes, attackers select their next

A
u

th
o

r 
P

ro
o

f



Black Holes and Revelations: Using Evolutionary Algorithms 7

destination only from their own list of points of interest, which is generated by
the evolutionary framework, as described in the previous section.

Each network is simulated for 12 h (simulated time), starting after a warm-up
simulated period of 1000 s. The warm-up helps to remove the transient effects due
to the initial random node placement, and allows the movement patterns natural
to this large-scale scenario to emerge. Also, to smoothen the fitness landscape
and reduce the effect of the random seed on the simulation, we replicate each
network simulation 10 times, initialized with different random seeds, and average
the measured DDR and latency over the repetitions.

Fig. 4. (left) Map of Venice, Italy: a pedestrian layer LP (drawn in black), and a
waterways layer LW (drawn in blue); the layers only overlap at bridges and boat
stops. (right) A snapshot of a simulation of shortest-path movement of 200 nodes at a
simulation time of 6 h: node identifiers (prefixed by P for pedestrians and W for boats)
are drawn in blue, and their communication range in green (Color figure online).

During each simulation, a new data message of size 10 kB is created every
30 s by a random honest node in the network, with another random honest node
as destination. All honest nodes have a message buffer of 5 MB, and execute the
FC protocol [1], while attackers behave in one of two ways:

– A black hole attacker executes another, “passive” protocol logic in which the
node offers to route data messages for other nodes, but in effect does nothing,
effectively ending the communication path of all messages that reach it.

– A data flooding attacker executes the correct FC protocol, but creates new
data messages of much larger size, aiming to overload the message buffers
of honest nodes. These malicious messages are generated every 3 s, their size
is set to 100 kB (a ten-fold increase with respect to a honest message) and
the size of the message buffer for honest nodes is decreased five-fold to 1 MB.
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8 D. Bucur et al.

These choices ensure that the flooding attack is sufficiently “heavy” to create
an interesting fitness landscape for the problem.

Table 1. Simulation settings for all nodes in the DTNs under test

Map settings Map: Figure 4 (left), size 2210m × 2340 m

Map layers: LP (pedestrian paths), LW (waterways)

No. of line segments: 4993 in LP , 362 in LW

No. of map points: 6910 in LP , 1354 in LW

Simulation
settings

Simulation time: 12 h

Types of nodes: 150 pedestrians (constrained to LP ),

50 boats (constrained to LW )

Movement
model

Next point: Chosen randomly from a map layer

Path choice: Shortest path to the next map point

Pedestrian speed: [0.5 . . . 1.5] mps

Boat speed: [1.0 . . . 5.0] mps

Wait time: [0 . . . 120] s at each destination point

Communication
interfaces

Bluetooth: Range 15 m, speed 250 kBps

High-speed: Range 100 m, speed 10 MBps

Pedestrians use: Bluetooth

Boats use: Bluetooth and High-speed

Data settings Message created: Every 30 s (honest node), 3 s (data flooder)

Message size: 10 kB (honest node), 100 kB (data flooder)

Message buffer: 5 MB (default), 1 MB (under flooding)

Message TTL: 5 h

A summary of the simulation configuration parameters is reported in Table 1,
while Table 2 shows the values for the parameters of the evolutionary algorithm.
The latter were chosen according to simple recommendations from [8].

Results. The proposed DTN testing framework (from Fig. 2) chaining the evo-
lutionary framework with the DTN simulator is run in separate evolutionary
experiments for a fixed number of attackers k ranging between 1 and 4, for

Table 2. µGP settings used during the experiments.

Parameter Description Value

µ Population size 30

λ Number of genetic operators applied at every step 5

τ Size of the tournament selection 2

§ Stagnation condition (generation) 50
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Black Holes and Revelations: Using Evolutionary Algorithms 9

Table 3. The best experiments obtained in this study. The number of evaluations and
wall-clock time vary, respectively, because of the stagnation stop condition and due to
different load on our computing facility ([16 ÷ 24] available cores).

Fitness functions Attacker No. of No. of Wall-clock Best

max. (↑) or min. (↓) type attackers evaluations time fitnesses

DDR ↓, Latency ↑ black holes 1 4645 ∼ 29 h 26.17 %, 5142

2 9074 ∼ 63 h 16.66 %, 3499

3 9418 ∼ 130 h 12.73 %, 2794

4 10285 ∼ 94 h 10.72 %, 2494

DDR ↓, Latency ↑ data flooder 1 5739 ∼ 98h 21.89 %, 2866

2 5813 ∼ 95 h 18.43 %, 3752

3 3743 ∼ 47 h 13.66 %, 3058

4 7859 ∼ 93 h 12.11 %, 2804

each attack methodology (black hole or data flooding). Each of the 8 result-
ing experiments is run twice, with different random seeds. We summarize the
configurations and best fitness of each experiment in Table 3 and Fig. 5. In the
figure, we also show the comparison of the best f1 obtained for each of the 8
experimental settings (k × attack method) with two baseline scenarios:

– A scenario in which all 200 nodes are honest (i.e., k = 0). In this case, given
a sample of 30 simulations, the average f1 (the delivery rate for the First
Contact protocol) is 47.57 % with a standard deviation of 1.15 %.

– A scenario in which k random attackers of the same attack method exist in the
network. Their lists of points of interest are generated randomly. This baseline
is calculated as the average and standard deviation of f1 over 30 simulations
(with different random seeds).

With reference to Fig. 5, it can be seen that, in each case, the evolutionary
experiment found that single attackers (of either type) exist which lower the
delivery rate to half that of the k = 0 baseline; also, there exist pairs of two
attackers (also of either type) which lower the delivery rate to a third of the
k = 0 baseline. The evolution of groups of attackers performs efficiently, lowering
by approximately 10% the delivery rate with respect to the baseline of k random
attackers with the same characteristics.

The progress of the evolutionary process for two of our experiments (with
k = 1 and different types of attackers) is shown in Fig. 6. Each experiment is
shown from the initial, random population until the stagnation condition is met.
For each generation in the sequence, both fitnesses are plotted: both the best
and worst data delivery rate (f1), which is minimized first, and the best message
latency (f2), which is then maximized. It is the data delivery rate which has the
most interesting evolution here: its smooth progress is likely sign of a generally
smooth landscape for f1. Also, we can observe that in both cases the latency
positively correlates to the minimization of DDR, despite evolutionary attempts
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to maximize it. This can be explained as follows. In the black hole case, the
latency of the few messages that are not intercepted by the attacker (and can
reach their destination) is not affected. On the other hand, in the flooding case,
the large number of messages injected by the flooder (sent to random honest
nodes) creates a network congestion which lets very few messages reach their
destination, likely only those destined to close neighbors; this explains why the
average latency of delivered messages is significantly lower with a single flooder
than with a single black hole attacker.
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Discussion of Results: Significance and Limitations. The numerical test
results (summarized in Fig. 5) clearly show that evolved attackers are more effi-
cient than random attackers. Also, the drop in delivery rate experienced in that
network which includes the optimized attackers is unexpectedly large, consider-
ing that only few nodes are malicious out of a large network of 200 nodes.

Fig. 7. (left) The best single black hole attacker. (right) The best single data flooding
attacker. Both attackers are boats and move among the respective points of interest
shown here on the waterways map layer.

We briefly present insights obtained from analyzing the movement patterns
of the best attackers obtained by our tests; further analysis is left for future work.
Figure 7 (left) depicts the best black hole attacker found. This attacker is a boat
which only travels on the shortest path between any two of the points shown,
and thus “covers” only the southern half of the main canal, and a small number
of the lesser canals. For the result to be explained, these points should be seen in
the context of the general mobility patterns of honest nodes (Fig. 4, right): many
lead to map areas where either honest pedestrians or honest boats have their
preferred routes. In contrast, the best data flooder (Fig. 7, right), which is also
a boat, also travels among crowded areas, yet maintains a much wider territory.
Interestingly, while the best attackers found are generally boats, the best group
of four attackers was found to be mixed, composed of one pedestrian and three
boats.

5 Conclusions

We introduced an evolutionary-driven testing framework for Disruption Toler-
ant Networks. The proposed framework uses an evolutionary algorithm to evolve
the most disruptive paths that attackers should take to reduce the network
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performance (expressed in terms of data delivery rate and latency) the most.
We showed the applicability of the approach with realistic in silico experiments
which simulated the movement of a large number of agents of different types
and networking behavior (“malicious” vs “honest”, black holes vs flooders) in
a complex urban environment. The evolution led us to discover the most mali-
cious movement patterns that attackers should follow. We quantified the damage
inflicted by groups of up to four attackers, and compared the resulting network
performance with baseline values obtained in absence of attackers and with ran-
domly generated attackers.

The study shows that single attackers can disrupt the network equally as
much as (in the related work, Sect. 2) turning half of the entire network into
attackers. This is partly caused by the fact that the scenarios (city map, move-
ment model, network size) considered there are different than ours. Even so,
our evolutionary testing method is more effective, and more generally applica-
ble to testing complex networked systems than the previous methods based on
heuristics: it requires no prior knowledge as to what an attacker type and loca-
tion have as effect upon the overall network. Thus, it is likely to uncover new
knowledge as to the cause-and-effect of security attacks.

Importantly, our methodology can be easily applied to assess the vulnerabil-
ities of virtually any ad hoc network, allowing network experts to identify the
weaknesses of protocols in large networks and, possibly, pro-actively find counter-
measures. In future works, we plan to extend this approach, scaling up to larger
networks and larger groups of attackers, studying alternative routing protocols,
and more advanced evolutionary schemes such as cooperative evolution.
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