
Ensembles of Incremental Learners to Detect Anomalies in Ad Hoc Sensor Networks

Hedde Bosmana,b,∗, Giovanni Iaccaa, Arturo Tejadaa, Heinrich Wörtchea, Antonio Liottab

aINCAS3, P.O. Box 797, 9400AT, Assen, The Netherlands
bDepartment of Electrical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600MB, Eindhoven, The Netherlands

Abstract

In the past decade, rapid technological advances in the fields of electronics and telecommunications have given rise to versatile,
ubiquitous decentralized embedded sensor systems with ad hoc wireless networking capabilities. Typically these systems are used
to gather large amounts of data, while the detection of anomalies (such as system failures, intrusion, or unanticipated behavior of the
environment) in the data (or other types or processing) is performed in centralized computer systems. In spite of the great interest
that it attracts, the systematic porting and analysis of centralized anomaly detection algorithms to a decentralized paradigm (com-
patible with the aforementioned sensor systems) has not been thoroughly addressed in the literature. We approach this task from
a new angle, assessing the viability of localized (in-node) anomaly detection based on machine learning. The main challenges we
address are: 1) deploying decentralized, automated, online learning, anomaly detection algorithms within the stringent constraints
of typical embedded systems; and 2) evaluating the performance of such algorithms and comparing them with that of centralized
ones. To this end, we first analyze (and port) single and multi-dimensional input classifiers that are trained incrementally online
and whose computational requirements are compatible with the limitations of embedded platforms. Next, we combine multiple
classifiers in a single online ensemble. Then, using both synthetic and real-world datasets from different application domains, we
extensively evaluate the anomaly detection performance of our algorithms and ensemble, in terms of precision and recall, and com-
pare it to that of well-known offline, centralized machine learning algorithms. Our results show that the ensemble performs better
than each individual decentralized classifier and that it can match the performance of the offline alternatives, thus showing that our
approach is a viable solution to detect anomalies, even in environments with little a priori knowledge.

Keywords: Anomaly Detection, Wireless Sensor Networks, Online Learning, Incremental Learning, Ensemble Methods

1. Introduction

The Internet of Things (IoT), a decade-long vision of a seam-
less networking where classic networked systems coexist with
ubiquitous devices, is becoming reality [1, 2]. Nowadays,
not only computers, tablets, and smart phones, but also ve-
hicles, white goods, and other internet-enabled industrial and
domestic apparatuses can be connected into a single, hetero-
geneous world-wide network. This opens up many possibil-
ities for context-aware applications, such as smart buildings,
smart cities, and autonomous distributed systems, among oth-
ers. Within this context, it is of great interest in many IoT ap-
plications to embed in the network the ability of detecting, in
an online, and decentralized fashion, anomalies in the sensed or
received information. This is the focus of this paper.

One of the first classes of IoT devices are the Wireless Sen-
sor Networks (WSN). These consist of a set of nodes, which
are (generally) resource-limited embedded platforms endowed
with sensors. Such nodes construct an ad hoc network to com-
municate with each other and with one or more sink nodes (i.e.,
nodes connected to a central facility for data storage and anal-
ysis). For over a decade, the community around WSN has fo-

∗Corresponding author
Email address: heddebosman@incas3.eu (Hedde Bosman)

cused mainly on the optimization of resource usage, e.g., net-
work protocol design. Recently, however, the community’s fo-
cus is shifting to the applications of WSN. Typical applications
can be found in agriculture, where WSN are used to provide de-
tailed insight on soil conditions [3], or in environmental moni-
toring, where they are used, for instance, to measure the effect
of global warming on glaciers [4]. Other application domains
include civil engineering (with various successful case studies
in infrastructural monitoring [5], optimal tunnel lighting con-
ditions control [6], water distribution network monitoring [7]),
and health care (with many applications such as the monitoring
of falls, medical intake or medical condition [8]). Lately, WSN
are slowly being adopted also in industrial settings [9], although
these applications are tightly controlled due to stringent relia-
bility, safety and security requirements.

In many such applications, as well as in other IoT scenar-
ios, the most compelling challenge is often to analyze, possibly
in real-time, the big datasets that are generated. For domain
specialists, such an analysis could provide new inferred knowl-
edge about the sensed environment/processes, that could in turn
be used to, for instance, improve their modeling. However, to
make this analysis possible, automated analysis strategies [10]
and big data analysis techniques [11] are needed, since such
large datasets cannot be processed manually.

One special case of data analysis is the detection of anoma-

Preprint submitted to Ad Hoc Networks July 9, 2015



lies, i.e., of specific events or patterns in the data that are un-
expected [12]. Although the generic notion of an anomaly is
rather intuitive, the specific cause (and nature) of such events
varies widely across application domains. For example, in en-
vironmental monitoring an anomaly can be due to a sensor fault
or an (unpredicted) environmental event [13], while in network
intrusion detection, an anomaly can be the result of an intruder
(often malicious) in the network [14]. Nevertheless, several
generic anomaly detection methods [15] have been designed to
find patterns in the data that and recognized when they are un-
expectedly broken. Depending on the quantity (and quality) of
a-priori information available about the environment or process
at hand, these methods include a combination of formal tech-
niques, rules, or data mining techniques from Computational
Intelligence [16], Pattern Recognition and Machine Learning
[17, 18]. One of the limitations of these techniques, though, is
that they often make use of statistical data models (possibly in-
ferred by unsupervised learning) or detection rules that are not
always available under limited information conditions. Further-
more, these techniques generally require large amounts of data
to be available and stored in memory, and considerable com-
puter processing power. Therefore, anomaly detection based
on these methods is typically performed in large, centralized
(data mining) computing systems.

Such methods are clearly not compatible with IoT applica-
tions for several reasons. On the one hand, there is no natu-
ral centralized processing location for the continuously growing
number of IoT devices connected to the Internet. Even if one of
these (or one powerful computer) were selected as the central-
ized processing node, the need to transport data from all devices
to this node would quickly overwhelm the network communi-
cation capacity and increase its response time. On the other
hand, most IoT devices are expected to have limited power and
computing resources (e.g., memory), so they could hardly take
the place of a central computing node (specially in WSN appli-
cations). For these reasons, the need and interest for decentral-
ized data processing (including anomaly detection) are steadily
increasing (see, e.g., [19, 20, 21]). Decentralization can take
place at the networking level (see, e.g., cognitive radio research
[22, 23]) or at the application level (e.g., probabilistic inference
and regression [24, 25, 26], decision making via fuzzy logics
[27] or voting techniques [28]).

In spite of these contributions, few attempts have been made
to develop methods for online learning of models in networked
embedded systems. Online learning is needed to provide net-
worked systems (e.g., WSN) with the ability to adapt to local
working conditions without using a priori information. This is
specially important for distributed anomaly detection. Among
the available methods, some require a hierarchical organization
of the network, such as in the multi-level clustering methods
proposed in [29, 30]; while others are limited only to a spe-
cific class of anomalies [31], or make assumptions on the inter-
node correlations and the underlying process under observation
[32]. In any case, what is offered by the current literature is
often based on a preliminary learning phase to build a model
of the monitored system. Such approaches require several of-
fline steps of adaptation to target a specific application domain.

To the best of our knowledge, no general-purpose (w.r.t. appli-
cations and anomalies), online (i.e., with continuous learning),
decentralized anomaly detection framework exists for WSNs.

In this paper, we fill this gap in two ways: 1) we present
a general-purpose, online learning, decentralized anomaly de-
tection framework that includes a heterogeneous set of local
anomaly detection algorithms (applicable on a node either in-
dependently or in the form of an ensemble), and whose compu-
tational requirements are compatible with the stringent limita-
tions of the embedded platforms typically used in WSNs. We
build upon previous preliminary works around individual clas-
sifiers [33, 34, 35], elaborate on the challenges and choices of
learning methodologies for limited-resource devices, and sub-
ject the methods to a significantly larger experimental cam-
paign. 2) We evaluate the performance of such algorithms in
contrast to centralized anomaly detection methods. For eval-
uation purposes, labeled datasets are required, which we ob-
tained through synthetic generation and from real-world appli-
cations, developed in-house or available through public sources.
Moreover, we review the evaluation methods, which are based
on the confusion matrix metrics, describing how we account
for false positives caused by anomalies in correlated sensors,
and for false positives caused by a delayed detection. Through
this broad experimental evaluation, we show that using machine
learning in an online decentralized approach is feasible in strin-
gent constraints of embedded systems, that it can provide an
automated adaptability to different application domains without
manual intervention, and that it can match (using an ensemble)
the performance of centralized alternatives.

The remainder of the paper is organized as follows: the next
section summarizes the related literature in the areas of data
mining and anomaly detection. Section 3 describes our pro-
posed anomaly detection methods, explains how these are com-
bined into an ensemble, and details how the learning algorithms
are ported onto resource-constrained sensor nodes. Section 4
illustrates the details (datasets and evaluation metrics) of the
experimental setup used to assess the anomaly detection per-
formance. Numerical results are shown in Section 5, together
with a thorough discussion of both the individual algorithms
and the ensemble performance. Finally, Section 6 presents our
conclusions.

2. Related work

Anomaly detection is not limited to WSN. It has also been
used in several other domains, as summarized next.

2.1. Overview of anomaly detection
Anomaly detection is increasingly and commonly used to de-

tect anomalous access [36] or fraud [37]; to detect problems in
data center performance and, through diagnosis, to provide po-
tential remedies [38]; to detect network intrusions [39]; and to
detect targets in military applications [40]. Also, anomaly de-
tection is often used in data-mining systems, e.g. to extract data
of interest from large databases of historical data [37, 41].

As noted in the previous section, in all these applications the
data processing typically takes place in a centralized system

2



with abundant processing and storage capacity. In spite of this,
the ever increasing amount of data that needs to be processed
poses a mayor challenge. Several possible solutions have been
advanced by the data mining research community, including
parallelization, distribution, and stream processing. Parallel
data mining partitions and distributes the global data to different
computing nodes, such that, when the node results are aggre-
gated, a global result of the mining process is formed. A well-
known example is the Map-Reduce algorithm [42], that maps
(partitions) the problem onto computing nodes, and reduces
(aggregates) the individual results to the global result. In con-
trast, distributed processing analyzes data from a local neigh-
borhood using, e.g., data mining techniques. The results can
then be aggregated into more global knowledge through hier-
archical or central aggregation methods. However, this method
does not always provide the same result as global analysis [43].
Finally, stream processing consists of updating a model of the
data that arrive at the processing system, while the data are ac-
quired. The model can be updated regularly, by training on
batches of new data, by incrementally improving the model to
account for the new data, or by other online methods. A good
example of this kind of methods is LASVM [44], where the
model is represented by support vectors, which are pruned after
updates. It is important to note that these methods can decrease
computational complexity and memory usage, albeit at slightly
reduced classification accuracy.

2.2. Anomaly detection in WSNs

Surprisingly, most anomaly detection methods available in
the literature are based on an offline, centralized data process-
ing paradigm, as evidenced in the recent surveys [10, 45, 46].
Under this paradigm, all sensor data are collected at a central
storage facility, where are processed via standard data mining
techniques, such as an ensemble of classifiers [47]. Only re-
cently, there have been some seminal investigations into dis-
tributed methods. We can distinguish methods that apply an
offline-trained model from those that learn the model online.
Using an offline training phase before deployment allows the
usage of relatively complex data-driven models. A good exam-
ple is given by Chang et al. [48], who train Echo State Net-
works to detect anomalies in time-series. Another example is
an offline-trained ARMA model which is used to detect anoma-
lies, such that the system compares new measurements with the
predictions of the model and classifies them as normal based on
a neighborhood voting system [49].

There have been some recent investigations into distributed
methods with online learning. Many of these are based on Least
Squares optimization, described by Gauss and Legendre in the
early 19th century [50]. In earlier work, we used the Recur-
sive Least Squares (RLS) method to create a model of linear
correlations between sensors for anomaly detection [33]. With
little computational complexity, such models can be learned,
and kept up to date, also in limited-resource systems. Another
option is Piecewise Linear Regression, where the Least Squares
technique is used to model a time-series into linear segments:
by comparing the current segment to historical segments of,

e.g., 24 hours before, anomalies can be detected [13]. How-
ever, this method does not take into account correlations be-
tween sensors or neighboring nodes.

Moreover, the Least Squares method allows for learning of
more complex models. A good example is Extreme Learn-
ing Machine (ELM), a method based on a Single Layer Feed-
Forward Neural Network (SLFN). Compared to RLS, ELM
also allows modeling non-linear relations between, for instance,
local sensors. In previous work, we have shown how Online
Sequential Extreme Learning Machine (OS-ELM) can success-
fully be used for anomaly detection on WSN nodes [34].

It should be noted that there are also other machine learning
approaches that can be learned online, such as Reinforcement
Learning (RL) and clustering [51]. However, an application
of these methods to online anomaly detection is not immedi-
ate. More specifically, RL, that is successfully used in con-
texts such as optimal on-off node scheduling [52], or optimal
routing [53], requires that the nodes have some active behavior
and that they get a reward from the interaction with the envi-
ronment. However, in monitoring applications, where nodes
are typically passive sensing entities, this is not always possi-
ble. As for clustering, well known examples include K-Nearest
Neighbors (KNN) and K-Means. While for K-NN one needs to
store all the data in memory (going beyond the hardware lim-
itations of WSNs), for K-Means one only needs to store the
cluster centroids (means). Combined with the possibility to in-
crementally update the model, K-Means is in fact a suitable
candidate for online data mining in WSNs [54], with successful
applications for instance in network topology adaptation [55].
On the other hand, in order to apply K-Means to anomaly detec-
tion, one needs to distinguish between different clusters (normal
vs anomalous) and provide suitable similarity measures, which
may require an offline preprocessing phase.

3. Implementation of learning algorithms on resource-
constrained embedded nodes

As mentioned before, there are various methods to detect
anomalies in WSNs. Here, we will focus on the typical use
case for WSNs: the monitoring of environments or processes
about which there is (presumably) little a priori information
and for which it is impossible to ascertain beforehand what
“normal” or “anomalous” is. Further, we concentrate on those
detection methods that can be applied online (i.e., without the
need of an offline learning phase) and that are characterized by
a limited computational footprint, so as to accommodate the
stringent hardware limitations found in ad hoc WSN nodes.
Thus, we will consider only data-driven anomaly detection
methods (based on learning, or self-adaptation), which are eas-
ier to apply in these situations than their model-driven coun-
terparts. More specifically, we consider incremental learning-
based modeling, as these method requires fewer resources such
as memory.

The trade-off, however, is that the methods presented here
are better suited for situation where the environment’s “normal”
state occurs (and is measured) much more often than its anoma-
lous states. In the sequel, we will assume that such conditions

3



Figure 1: Structure of a multi-dimensional classifier. The difference between a
prediction, based on inputs x \ x0, and the measurement in x0 is classified.

hold so that, provided that sufficient data are acquired, a robust
learning mechanism can, on average, learn (i.e., model) quite
reliably at least an approximation of the environment’s “nor-
mal” state. Note that, although this assumption is expected to
be met in practice, it makes the evaluation of the anomaly detec-
tion performance particularly difficult, since doing so requires
either a “skewed” test dataset (i.e., datasets with few anoma-
lies in them) or a very large test dataset that provides enough
anomalies to estimate the probabilities of detection (see Sec-
tion 4.4 for more details).

In the following, we first describe our overall approach (Sec-
tion 3.1). We detail four specific prediction methods (Sections
3.2-3.5), and then continue to explain how these predictions can
be analyzed such that a classification can be made (Section 3.6).
Then we explain how individual classifiers can be combined
into an ensemble (Section 3.7) and, finally, we define a number
of offline baseline methods in order to compare the results of
our online methods (Section 3.8).

3.1. Overall approach

The general anomaly detection procedure goes as follows:
after data are acquired and an approximate model of the en-
vironment has been learned (and adjusted online), the model
is used to predict the future state of the environment. A large
“deviation” between this prediction and the next measured state
signals a potential anomaly (or unmodeled dynamics of the sys-
tem). The deviation can be stated in several ways. For instance,
if the prediction error were to be modeled by a Gaussian ran-
dom variable ε with (unknown) mean µ and standard devia-
tion σ, then one could use statistical tests to ascertain whether
or not the measured state of the environment falls outside the
95% confidence interval for its expected value, indicating the
presence of an anomaly. Although this general approach to
anomaly detection is simple and follows closely the definition
of “anomaly” given in the previous section, it has a drawback:
its detection accuracy is limited by the quality of the learned
model (a “perfect” model of the environment is not available).
That is, the detection accuracy depends on the ability of the
learning mechanism to build a “good” model.

The approach described above constitutes the building block
of the proposed anomaly detection framework and can be de-
picted as in Figure 1. In this structure, we have a number of
inputs x , (x0, x1, · · · , xd), usually a time series of sensor mea-
surements, where x0 is the target value, that is, the value that we
want to classify as normal or anomalous. The remaining inputs
x1, x2, · · · , xd (that we indicate with x \ x0) form the basis on
which the prediction model creates an estimate of the target x̂0
and can be obtained from, for example, other sensors or historic

measurements. The prediction error ε = x0 − x̂0, is then fed to
a decision making component that can classify x0 as normal or
anomalous based on learned properties of the prediction error.

In our framework, the key feature to overcome the aforemen-
tioned drawback is the combination of several prediction mod-
els (described below) in two possible configurations. The first
is a fusion based combination, where not only sensor measure-
ments, but also the predictions from several other models, are
the inputs to another prediction model. The second combina-
tion configuration is that of an ensemble, where the output of
several classifiers (each employing different prediction models)
is combined to increase accuracy.

As said, in order to construct prediction models of the en-
vironment with little or no a priori information, we resort to
data-based learning methods. Of these though, only methods
whose memory and computational footprint fit within limited
hardware resources are suitable for implementation in embed-
ded systems. For example, memory resources available to wire-
less sensor nodes are in the order of kilobytes, and clock speed
is in the order of MHz (with 8 or 16 bit MCUs). Moreover, a
WSN node’s processing power is limited not only by the speed
of its MCU, but also by its capabilities. A common WSN plat-
form such as the TelosB1 does not have floating-point units.
The learning methods that can be adapted to fit these require-
ments are mostly incremental learning methods, where at each
iteration the model is updated to converge to the least squares
optimum. While incremental learning methods may incur more
computational costs compared to learning from the whole time-
series at once (the latter also requiring its storage), the compu-
tational and memory cost per new measurement are, in gen-
eral, low. That, combined with the real-time processing of data,
make incremental learning methods ideal for this application.

When a suitable incremental learning method has been
found, possible issues related to these limited resources have
to be identified. Common limitations are that of memory con-
sumption and integer or fixed-point computations. The former
limits, for instance, the number of input dimensions d that can
be used, or the number of historical measurement values that
can be stored. The fixed-point computations suffer from round-
ing errors, underflows and overflows, which can make the learn-
ing method unstable. Therefore, these problems have to be
identified and countered by, for instance, a reset when an over-
flow is detected, or a variable correction to prevent divisions by
zero. For the methods presented below, we have used two open-
source fixed-point calculation libraries, libfixmath [56] and
libfixmatrix [57], which allow for 16-bit precision both for
the integer and fractional part (denoted as Q16.16). In the next
sections, we will present the implementation details of several
incremental learning algorithms, addressing in particular the ef-
fects of the limited precision on the learning process and how
those effects can be overcome.

1TelosB is an 8-bit MSP430-based platform with 10KB ROM, 48KB RAM
and peripherals such as wireless 2.4 GHz radio (TI CC2420), temperature, hu-
midity (SHT11) and light sensors (Hamamatsu S1087 series).

4



3.2. Sliding window mean

The simplest prediction method is based on plain statistics.
In order to generate these statistics, we use a sliding window
approach that keeps in memory a short window of Lh data sam-
ples and use standard methods to determine the mean µ and
standard deviation σ of such data. The estimate of µ can then
be used as the prediction for x0. Note, however, that due to the
risk of overflow in the limited-precision environment, all sum-
mands in the sums required to estimate µ and σ are divided by
Lh while the sums are performed instead of dividing the results
after the sums are completed. That is, x̂0 =

∑Lh
i=0 x0,−i/Lh, where

x0,−i is the i-th historic measurement of x0.
Additionally, we propose a rule-based decision over the stan-

dard deviation σ. That is, we expect the system under mea-
surement to display slow changes, and to display noise in the
sensor measurements. This means that a series of consecu-
tive measurements should not have σ ≤ δ (where δ → 0, e.g.
δ = 1/216, the smallest number representable in Q16.16); oth-
erwise, this rule detects a specific type of anomaly, namely a
constant anomaly (see Sec. 4.1 for further details).

3.3. Recursive Least Squares

Recursive Least Squares (RLS) is a variant of the linear Least
Squares estimation method, which recursively attempts to mini-
mize the least square (prediction) error of a linear model y = βx,
as depicted in Figure 2. The inputs x can, for example, represent
measurements across different sensors taken at one or more in-
stances in time. These are then linearly mapped to the output y,
by the weighting of β. In our approach, we assume that the dif-
ferent sensors (e.g., for temperature or humidity as in a TelosB
node) exhibit a degree of correlation. Anomalies can then man-
ifest themselves as breaking this correlation, causing a strong
difference between predicted and measured sensor values.

y

x1 xi xd

output layer

input layer

β1 βi βd

Figure 2: Structure of Recursive Least Squares model.

In earlier work, we showed that RLS can be used as a very
lightweight form of learning [33]. As illustrated in Algorithm
1 (for more details consult the work by Bottomley [58]), the
method starts by initializing some parameters (the forgetting
factor α and the value δ needed to initialize the inverse auto-
correlation matrix P) and state variables (the weights β and P).
Then, for each new iteration, the size of the prediction error, ε,
is determined first. Following, the variables θ and µ express the
updated gain. Next, the direction in which to update β and P
is determined using variables K and κ. With these, finally, the
weights β and inverse auto-correlation matrix P are updated.

The algorithm complexity per iteration is in the order of
O(d2), where d is the dimension of the input vector x. This
constitutes a limitation of RLS in resource-constraint systems.
Moreover, as we showed in [33], in fixed-point environments

Algorithm 1 Recursive Least Squares
1: Init δ > 1, α > 1, β0,i = {0} , P0 = δI
2: for each sample step t do
3: εt ← yt − x>t βt−1
4: Kt ← Pt−1xt

5: µt ← x>t Kt

6: θt ←
1

α+µt

7: κt ← θtKt

8: βt ← βt−1 + κtεt

9: Pt ←
1
α

[
Pt−1 − θtKtK>t

]
this algorithm can be unstable due to aforementioned issues
with limited precision. The main problem is the underflow in
the computations regarding Pt, which can result in coefficients
for a certain xi to become zero. This has as effect that xi is not
used for correlations in future iterations. Moreover, overflows
can occur when the input values are too big, and therefore the
inputs have to be scaled. However, based on the work of Bot-
tomley [58], we found that the RLS algorithm can be stabilized
by taking a few simple measures:

• Truncating (instead of rounding) the computational re-
sults, to bias the error propagation towards stability.

• Use saturating math operators, such that overflows do not
wrap around (e.g. positive to negative).

• Biasing the diagonal values of the auto-correlation matrix
P to counter underflows which, otherwise, might prevent
a zero weight to be updated. That is, Pn = Pn + (1/216)I
(where I is identity matrix) after step 9 in Algorithm 1.

• Ensuring that the input is at most of 16 bit precision which,
together with the forgetting factor α and scaling after us-
ing the Q16.16 representation of libfixmath, prevents
overflows.

3.4. Extreme Learning Machine

Artificial Neural Networks (ANN), especially Feed-Forward
ANN, have been one of the most influential Artificial Intelli-
gence methods in the past decades, due to the universal function
approximation property [59]. Traditionally, ANN are trained
using the back-propagation method, a gradient descent method
that learns the weights and biases of the neurons, typically re-
quiring multiple iterations over a training dataset [60]. More
complex learning techniques are also capable of adjusting the
structure of the neural network, such as the number of neuron
layers and the number of hidden neurons in each layer. Unfor-
tunately, these learning procedures are extremely expensive in
computational terms.

In recent years, however, an efficient learning approach for
a specific type of ANN, the Single Layer Feed-Forward Neural
Network (SLFN), has been receiving more attention. A SLFN
has the following structure (see Figure 3):

y = fÑ(x) =

Ñ∑
i=1

βiG(ai, bi, x), x, ai ∈ Rd, bi ∈ R, (1)

5



y

1 i Ñ

x1 xd

output layer

hidden layer

input layer

β1 βi βÑ

a1,1
ai,1 aÑ,d

Figure 3: Structure of a Single Layer Feed-Forward Neural Network model.

where ai are the input neuron weights, bi the bias of the ith hid-
den neuron, G(ai, bi, x) is the output of that hidden neuron ac-
cording to activation function G(·), and Ñ is the number of hid-
den neurons. Also in this case, x ∈ Rd is a vector of input values
of dimension d, while βi is the weight connecting the ith hidden
neuron to the output node. The learning approach for an SLFN
is then based on a random choice of input weights and biases,
leaving only the output weights β to be learned. Given a large
enough number of hidden neurons Ñ, this approach performs
on par with other machine learning methods, such as Support
Vector Machines. While this approach can also be found in, for
example, random vector functional-link neural networks [61],
we have chosen to follow the implementation2 of the Extreme
Learning Machine algorithm provided by Huang et al. [62].

The main intuition behind ELM is that, if one sets input
weights and biases randomly and N training samples are con-
sidered, the hidden neuron outputs can be aggregated into a ma-
trix H of N × Ñ, where H j,i = G(ai, bi, x j). It is then possible to
rewrite eq. (1) as:

y = βH, (2)

thus allowing the output weights β to be determined analytically
using an ordinary Least Squares estimation approach. Over the
years, such an approach has shown to be a powerful non-linear
mapping method used in classification and regression [63].

Using the Moore-Penrose generalized inverse of the hidden-
layer output matrix H, one can find the hidden neuron weights
β, that is, β̂ = H†y is the least squares solution to Equation
2. However, the least squares solution can also be obtained se-
quentially using RLS. In [34], we have adapted the approach
taken by the Online Sequential ELM (OS-ELM) method, pro-
posed by Liang et al. [64]. We showed that this learning method
can also be implemented on WSN devices and applied to de-
tect anomalies, by identifying the following issues due to re-
source constraints. Firstly, as this method uses RLS, the same
measures counteract the fixed-point precision issues indicated
in Section 3.3 apply to OS-ELM. Next, the activation function
G(·) may pose limits on the input values due to the fixed-point
precision. In the simplest case, for example, a linear combina-
tion of all inputs may overflow the summation variable. To ac-
count for this, the inputs have to be scaled accordingly. Lastly,
the size of the hidden matrix H and the variables needed to up-
date this matrix are limited by the available memory, resulting

2http://www.ntu.edu.sg/home/egbhuang/elm codes.html

Figure 4: Structure of a single-dimensional time-series classifier. The differ-
ence between a prediction, based on a model from the signal delayed by N
samples, and the current measurement of the signal x0 is classified.

in a limited hidden layer size Ñ and a limited number of inputs
d. The algorithm’s pseudo-code, consisting of an initialization
and a sequential learning phase, is shown in Algorithm 2. For
an extensive ELM description, see the work of Liang et al. [64].

Algorithm 2 Extreme Learning Machine
1: function InitializeELM(x0,··· ,Ñ , y0,··· ,Ñ)
2: for node i ∈ 0, · · · , Ñ do
3: inputs weights ai ← random number between (-1,1)
4: inputs biases bi ← random number between (-1,1)
5: β← estimate coefficients from initial data x0,··· ,Ñ , y0,··· ,Ñ
6: using closed form least squares solution
7: function LearnSequentialELM(xt, yt)
8: Calculate partial hidden layer output matrix Ht

9: with hidden neuron outputs G(ai, bi, xt),
10: Determine the desired output yt,
11: Compute output weights βt using RLS, given Ht and yt

12: Apply stability correction for RLS

3.5. Function approximation
The final prediction method considered in our framework is

polynomial function approximation (FA). A polynomial func-
tion can be approximately fitted to a sliding window of data
and can be used in two cases. In the first case, one can use
the fitted polynomial to predict future measurement values. In
the second case, one can compare the coefficients of the poly-
nomial fitted to one segment to those from polynomials fitted
to other segments, yielding a piece-wise linear anomaly detec-
tion method [13]. Here, we have opted for the first case by
implementing a method called SwiftSeg3 on fixed-point em-
bedded systems, which uses bases of orthogonal polynomials
to incrementally fit a polynomial function to a data window
[65]. That is, given orthogonal basis pk(x), the fitted function
p(x) =

∑K
k=0 ak/‖pk‖

2 pk(x). The pseudo-code with fixed-point
corrections is shown in Algorithm 3. Its computational com-
plexity is in the order of O(deg2 + Ls), while the memory foot-
print is in the order O((deg + 2)2 + Ls) (where deg is the degree
of the polynomial used, and Ls the window size). Hence, this
method is suitable for online embedded function approxima-
tion.

The update step recursively calculates the coefficients of each
basis polynomial; the estimation step evaluates all the basis
polynomials with the current coefficients. In the latter, how-
ever, the accumulating variables that are used in this evaluation

3http://www.ies-research.de/Software

6



Algorithm 3 Function Approximation
1: function InitializeFA(K,N)
2: init update coefficients for Fk

3: based on max K and window size N
4: α← 0
5: function UpdateFACoefficients(yt+1)
6: for degree k ∈ 0, . . . ,K do
7: αk,t+1 ← αk,t + Fk(yt+1, yt, αk−1,t+1, . . . , α0,t+1)
8: if αk,t+1 is overflown then
9: reset variables and restart with buffered window

10: function Estimate(t)
11: q← 0
12: for degree k ∈ K, . . . , 0 do
13: q← combine(q, pk(t))
14: if q is overflown then
15: reset variables and restart with buffered window
16: return q

can run into the limits of the fixed-precision representation and
saturate (or overflow). In such case, the model is re-initialized
with the previously buffered values. Note that higher degree
polynomials require a higher number of accumulating variables
and run a higher risk of fix-precision overflow. Hence, here we
will limit our analysis to first degree polynomials.

In our earlier work, we showed that using such a function
approximation method, in combination with a decision compo-
nent to detect anomalies from prediction errors (depicted in Fig-
ure 4), performs on par with the aforementioned RLS approach
(that has only sensor values as inputs), if one-step-ahead predic-
tion is used [35]. Moreover, we showed that since this method
only models a single time-series, it can complement methods
such as RLS and OS-ELM, which instead accept multiple in-
puts that stem, for instance, from multiple sensors instead of
historical values.

3.6. Prediction error analysis

As mentioned before, a critical step in anomaly detection is
the analysis of the properties of the prediction error ε. If a per-
fect model of the environment were available, this prediction
error would be expected to be zero under normal environmental
conditions. In practice, however, perfect models are not avail-
able, particularly in the case of a limited-resource platforms
such as found in WSNs: often instead, the only characteris-
tics that can be estimated are the prediction error’s mean µ and
standard deviation σ, using an Exponentially Weighted Moving
Average (EWMA) [66]. Ideally though, good practical models
relying on simple statistics should still be able to yield high-
accuracy predictions, thus leading to “almost zero” or “low”
prediction errors under normal conditions.

Once the statistics of the prediction error are established (ei-
ther via analysis or by assuming that it is normally distributed),
one can calculate the prediction error’s p-value, that is, the
probability of obtaining a sample at least as far from the mean
as the current sample. Note that the lower the p-value, the more
likely the prediction error signals an anomaly. Thus, after ac-

quiring sufficient data to accurately estimate the prediction er-
ror’s statistical parameters, the decision component (see Fig-
ure 1) can determine the prediction error’s p-value, compare it
to a user-defined confidence level (e.g. 95%), and determine
whether or not it can be regarded as anomalous. In this way, the
end-user sets a fixed confidence threshold, while the p-value is
estimated adaptively, depending on the underlying distribution
of the prediction error.

In general, for algorithms such as EWMA, it is difficult to set
a single learning rate that is suitable for all applications. Thus,
in our framework we re-sample and smooth the standard de-
viation to account for anomalies of longer duration. That is,
after each Nresample (e.g., 128) new prediction errors, we take
the current σ and smooth it using a second EWMA, in order to
create a slower moving σl, that is more robust to changes. With
this slower changing σl we determine a second p-value, and we
choose the minimum of the p-values resulting from the normal
and slow adapting the probability density function. For com-
pleteness, we report the pseudo-code of the adaptive threshold
detection in Algorithm 4. Further details can be found in [33].

This simple, yet effective, adaptive decision-making scheme
can be easily applied to the prediction methods described be-
fore. Each of those four methods (sliding window mean, RLS,
OS-ELM, and function approximation), together with EWMA-
based decision making, form a one-class classifier, see respec-
tively the “Prediction model” and “Decision” blocks in Figures
1 and 4. The added benefit of classifying over prediction errors,
is that an anomalous value can be replaced by this prediction.

Algorithm 4 Adaptive Threshold Detection
1: initialize µt, σt,s, σt,l, Fs, Fl, λs and λl.
2: function AnalyzePredictionError(εt)
3: µt ← EWMA update(µt−1, εt)
4: if initializing or no anomaly then
5: σt,s ← EWMA update(σt−1,s, (εt − µt−1,s))
6: if t mod Nresample == 0 then
7: if initializing or no anomaly then
8: σt,l ← EWMA update(σt−1,l, σt,s)
9: if initializing then

10: determine multipliers Fs such that
11: all past ε are within 95% of N(µt, Fsσt,s)
12: determine multipliers Fl such that
13: all past ε are within 95% of N(µt, Flσt,l)
14: return 1.0
15: else
16: ps ← p-value of εt given N(µt−1, Fsσt−1,s)
17: pl ← p-value of εt given N(µt−1, Flσt−1,l)
18: return min(ps, pl)

3.7. Combining multiple predictors or classifiers
Although the above described prediction-based classifiers

can be applied individually, it is well established that an en-
semble of learners can improve the reliability and performance
of classification [67]. Moreover, multiple sources of informa-
tion can also be fused in a single model to increase its accuracy

7



Figure 5: Structure of prediction fusion classifier. The predictions of several
individual predictors are fused with sensor measurements in another prediction
model. A measurement is then classified w.r.t. this prediction using the same
decision making component as in Figure 1.

Figure 6: Structure of an ensemble of classifiers. The final decision on class is
based upon the outputs of the different classifiers.

[68]. In our framework, we consider two alternative combi-
nation schemes, based on fusion of predictors and ensemble
of classifiers, graphically visualized in Figure 5 and 6, respec-
tively.

The first scheme is composed of individual predictors (see
Sections 3.2-3.5), each connected to the same measurement in-
puts. These measurements and the predictions generated by the
individual predictors are then taken as the inputs of the second
stage composed of a multi-dimensional input predictor, such as
RLS or OS-ELM, which generates a new prediction, x̂0, given
a target sensor value x0. The second stage prediction error can
then be analyzed as described in Section 3.6.

Alternatively, the ensemble scheme takes into account the
classification based on multiple individual prediction errors. In
the simplest case, heuristics can be used. For instance, given
the a-priori knowledge that the rule-based constant classifier
shows quite good performance, one can heuristically determine
a simple ensemble decision, such that the output of the constant
classifier is preferred over that from another classifier, say, the
RLS-fusion classifier. This heuristic ensemble can be expressed
with a simple rule, as illustrated in Algorithm 5.

Algorithm 5 Heuristic ensemble
1: if constant anomaly then
2: p-value← Constant classifier p-value
3: else
4: p-value← RLS-fusion classfier p-value

A more generic approach is to assign to each individual pre-
dictor’s classification result an “outlier” score that reflects the
confidence level on the classification result, and then combine
the classification results in a meaningful way. This often re-
quires the normalization of the outlier scores and the selection
of an appropriate combination function [69]. Since in our ap-
proach each classifier outputs a p-value, which indicates clas-
sifier’s confidence that a sample belongs to the normal envi-
ronmental state, there is no need for normalization. Thus, we
can combine these p-values using several well-known ensem-
ble combination methods: majority voting, mean, median, min-

imum or maximum p-value selection. We expect that the me-
dian and majority voting ensemble produce very similar results
according to the median voter theorem [70], which states that
a majority vote will produce the preferred outcome of the me-
dian voter. Furthermore, because we are using the p-values as
outlier scores, we can directly use Fisher’s method [71] as a
combination method by computing the following sum:

−2
k∑

i=1

ln(pi) ∼ X2
2k,

where k is the number of classifiers, pi denotes p-value pro-
duced by classifier i, and ∼ X2

2k denotes that the sum has a Chi
square probability distribution with 2k degrees of freedom. Be-
cause we are using different learning techniques, underlying the
generation of the p-values from the classifiers, we have implic-
itly assumed that the tests are independent. However, attention
should be paid when dependent tests are combined. In turn,
Fisher’s method yields another p-value, which can be eventu-
ally used to classify the input as anomalous or normal.

In this work, we evaluate the performance of these ensem-
bles and that of each individual classifier, implemented in a
resource-limited wireless sensor network platform. The data
flow and methods under consideration are shown in Figure 7.
The constant rule, sliding window mean and function approxi-
mation classifiers act on a small window of historic data xwin,0,
while the RLS and OS-ELM classifiers use x \ x0 to predict and
classify x0. The RLS and OS-ELM fusion classifiers take as in-
puts not only the raw sensor data, but also the predictions gener-
ated by sliding window mean and function approximation. The
prediction errors are analyzed as described in section 3.6 yield-
ing p-values that can in turn be used to classify x0 or be used as
input for the ensemble combination methods.

Finally, the ensemble methods take p-values from the classi-
fiers and combine them into a final decision. In previous work,
we used the heuristic rule and Fisher’s method on a partial set of
classifiers. In this work, we extend this initial work by includ-
ing all the individual classifiers in the inputs for the ensembles
and by using the other combination methods mentioned earlier.
All these combinations are shown in Figure 7, where the red ar-
rows show the p-value/classification outputs of each individual
classifier and ensemble of classifiers.

3.8. Baselines

To compare the above online methods, we contrast them to
their offline counterparts. In particular, we have a rule-based
baseline, which combines the same constant classifier, as out-
lined above, with the computation of a p-value over the differ-
ence of the sensor signal (δx = x0,t − x0,t−1). With those, the
true mean µ and variance σ of δx can be computed, because we
have all data in memory, and with that the p-value.

Furthermore, we use the offline counterparts of RLS and OS-
ELM, being Linear Least Squares Estimation (LLSE) and ELM
in the same structure as displayed in Figure 1, to learn linear and
SLFN models of the relation between the target sensor and the
remaining sensors in the system. The prediction errors are then

8



Figure 7: The combination of online embedded methods used. Each p-value/class arrow indicates a classification. The ensemble “Fisher’s method (part)” refers to
the combination used in [35].

analyzed, similarly to the methods above, by computing the p-
value. However, since the prediction errors are known over the
whole time series, the true mean µ and variance σ of the predic-
tion error can be computed, instead of using EWMA. Moreover,
because all the data are available offline, a possible benefit can
be obtained by including delayed versions of the measurement
time-series in the model. Since the real-world data includes
day/night patterns, a logical choice for such a delay is that of
one day, or one period, earlier.

Both the normal and the delay-included LLSE and ELM
models, together with the offline prediction error analysis, are
used as baselines. Furthermore, the results of the rule-based,
the LLSE and the ELM baselines are combined into a minimum
p-value ensemble to give a baseline for the ensemble methods.

4. Experimental setup

In this section, we develop the setup used to evaluate the
methods introduced in Section 3. First, we define the categories
of anomalies we focus on, followed by a description of how
such anomalies are labeled. Then, we introduce the six datasets
(both from synthetic and real-world application domains) we
use for evaluating our methods. Finally, we describe the evalu-
ation metrics used to compare our online methods to the offline
baselines introduced in the previous section.

4.1. Categories of anomalies
As noted in Section 1, the kind of anomalies to be de-

tected (and their causes) can be very different across various
applications. Nevertheless, generic anomalous patterns can be
observed regardless of the underlying application. We con-
sider here a representative set of four well-known application-
independent anomalies [13, 72]: spike, constant, noise and drift
(see Figure 8). These anomalies are prevalent in several real-
world domains [73, 74], since they can be caused by numerous
environmental factors and system faults.

Spikes are short-duration (often single samples) positive or
negative peaks in data. They may be caused, for example, by
malfunctioning hardware connections or by bit flips. A noise
anomaly manifests itself as a sudden, unexpected, increase in
measurement variance. This is often caused by a nearly de-
pleted battery, but can also be caused, for instance, by the sud-
den appearance of an extra factor in the environment. When
the measured data reflect no changes present in the original sig-
nal or in the noise associated with the measurement process,
we classify this as a constant anomaly. Such anomalies may
occur, for example, when a sensor is blocked, either physi-
cally or by software, or when the connection to the sensor is
broken. Lastly, drift expresses an offset between the measured
values and the original signal. This might be caused by a de-
grading sensor or by unmodeled environment dynamics. From
the aforementioned anomalies, drift is the hardest one to detect
through online learning, since the latter may not be able to cap-
ture the drift over time and the difference from the real signal.

(a) (b) (c) (d)

Figure 8: Injected anomalies in noisy linear data: (a) spike, (b) noise, (c) con-
stant and (d) drift.

4.2. Labeling of data
Labeled datasets are of key importance to evaluate the results

of our unsupervised anomaly detection methods. In contrast
with the synthetic datasets, in real-world datasets the labeling
is not always exact and largely depends on expert knowledge,
which is often unavailable. Subjective or inconsistent labeling
can be improved by using multiple experts, in a procedure sim-
ilar to ensemble techniques. We can resort to semi-automated
techniques when experts are not available for a given dataset.

9



To generate labels, then, we can run several automated anomaly
detection techniques that are checked and corrected by hand
given the limited expertise of the person correcting the labels.

By manual analysis of the real-world data, we can observe
certain behavior that could be labeled by rule-based methods.
Such rules can, for instance, label a value that is not changing
for over 10 samples as a constant anomaly. Other behaviors
we observed to be anomalous were values that signify a fault in
the measurement, significant shifts in the variation of the sig-
nal, large unexpected increases in value, or abnormally large
readings. For our experiments, we capture these behaviors in
rules that are applied automatically to the real-world data. In a
next step, we then manually check, correct or add upon these
labels. This semi-automated labeling gives us a relatively ef-
ficient method to label available data, but still depends on our
human judgment.

4.3. Datasets
To assess our methods’ ability to detect the four aforemen-

tioned anomalies, we apply them to six datasets composed of
both synthetic and real-world data. The synthetic datasets con-
tain anomalies injected on purpose at specific moments in time.
Thus, each sample is known to be either normal or anoma-
lous (i.e., it is labeled) beforehand, which allows us to compute
precise anomaly detection statistics. In the real-world datasets
there is no a priori knowledge about the samples, so the de-
tection performance can be estimated only after a preliminary
offline manual analysis and labeling of the data, as described in
the previous section.

We consider first the synthetic datasets. The first synthetic
dataset, SyntheticL, consists of 3 signals per node that follow a
noisy line. That is, each signal can be described as s = at +

b + N(0, 0.1), where t is time, a is the slope, between −1 and
1, b is a constant intercept between 0 and 1, and N(0, 0.1) ia a
zero-mean Gaussian noise with variance 0.1.

The second synthetic dataset, SyntheticLS , is similar to the
first, but also includes a periodic signal that simulates periodic
environmental changes, such as those under day and night con-
ditions, or seasonal changes. This signal can be expressed as
s = at + b + sin(2πt/d) +N(0, 0.1), where a, b, t and N(0, 0.1)
are as before, and where sin(2πt/d) is the cyclic signal with a
period of d samples.

The last synthetic dataset, SyntheticRW , is inspired by real-
world temperature data that contains daily patterns and slowly
varying trends. A shared daily trend Rd(t) for each signal is
generated from a random walk. This daily value is then interpo-
lated using a cubic spline to generate d values per day, resulting
in a smooth temperature trend. Then, for each signal, we add
another random walk Rs(t) to generate individual signals. Fi-
nally, we add a cyclic component sin(2πt/d), that is amplitude
modulated by yet another random walk Rc(t) in order to reflect
the changes in temperature across and during the days. Further-
more, all random walks over the given length are normalized to
be in the range of −0.5 to 0.5. This results in signals expressed
as s = 4Rd(t) + Rs(t) + Rc(t) sin(2πt/d) + N(0, 0.1), where all
stochastic processes are re-evaluated per signal, apart from the
daily trend Rd that simulates a common environment.

Each synthetic dataset is composed of 50 groups of three
simulated signals, each containing 100 periods (also the non-
periodic signals) made of 288 samples, for a total of 28800
samples. Each group corresponds to a wireless node containing
three separate sensors. To each copy, a single type of anomaly
(see Section 4.1) was added, to allow us to evaluate the perfor-
mance of our methods per category. For the spike and noise cat-
egories, the amplitude is randomly chosen between two and five
times the standard deviation of the incremental (1-step back)
signal differences over a window surrounding the insertion of
the anomaly. The offset for a drift anomaly is defined as half
the amplitude of a total signal. A spike anomaly is a single
sample long, while the length of a noise or a constant anomaly
is randomly chosen between 10 samples and 1 period, i.e. 288
samples. The drift anomaly lasts 7 periods, where the first and
the last two periods are sinusoidal ramps to and from the offset
value, to provide a gradual transition to the anomalous offset.

Next to these synthetic datasets, we use three real-world
datasets. The first contains the measurement traces collected
from an indoor WSN setup consisting of 19 TelosB nodes, each
equipped with three sensors: temperature, humidity and light.
This setup collected data every 5 minutes for 5 months, result-
ing in 42112 samples per sensor. Because there is no ground
truth for these measurements readily available, we labeled these
using the semi-automated method described in the previous sec-
tion. This dataset mainly contains constant anomalies, and a
few instances of spikes and drift.

In addition, we consider two real-world datasets from two
known deployments of WSN, namely the Sensorscope project
[75] and the Intel Berkeley Lab [76]. As for Sensorscope, we
use the dataset from the Grand-St-Bernard WSN deployed in
2007. This deployment consisted of 23 nodes, each one having
9 sensors, measuring environmental parameters such as temper-
ature, humidity, solar radiation, soil moisture, rain and wind.
Due to varying energy consumption, the number of samples per
node ranges from 19800 to 30000 samples. We should note that
since we limit our fusion algorithms up to three sensors, due of
memory limitations (see Section 5.1), we split this dataset into
two datasets: temperature (including ambient and surface tem-
perature, and humidity sensors) and water (including humidity,
soil moisture and watermark sensors).

The Intel Berkeley Lab deployment consisted of 54 sensor
nodes deployed for over a month in 2004. During this time,
over 2.3 million readings were collected. Due to connectivity
issues, however, the data for individual nodes are not consis-
tently available. Therefore, we processed the sensor data into
measurements with 60 second intervals, where missing samples
were imputed by the previously known measurement, and la-
beled as anomalous. Again due to varying energy consumption,
the number of samples per node ranges from 6900 to 50800
samples. Similar to the indoor WSN dataset, both this dataset
and the aforementioned Sensorscope dataset contain predomi-
nantly constant anomalies, and relatively few instances of spike
and drift anomalies. Both these datasets were also labeled using
the semi-automated method described in the previous section.
The main properties (no. of samples, no. of nodes and percent-
age of anomalous samples) of the six datasets are summarized

10



Table 1: List of datasets and their properties. The three synthetic datasets are
considered as single dataset, with 4 copies for each anomaly category.

Dataset #samples #nodes % anomalous
Synthetic 17.2 M 3*50*4 2.2%
Indoor WSN 0.8 M 19 2.7%
Sensor Scope 0.58 M 23 5.1%
Intel Lab 2.30 M 54 19.9%

in Table 1.

4.4. Evaluation metrics

A common way to evaluate detection performance on labeled
datasets is through a confusion matrix [69]. This matrix indi-
cates the following four values: the true positives (TP), i.e.,
the anomalies that are detected; the false positives (FP), i.e.
the normal samples that are falsely detected as anomalous; the
false negatives (FN), i.e., the anomalous samples that are not
detected; and, finally, the true negatives (TN), i.e. the samples
that are normal and also classified as being normal.

These metrics give raw numbers of the detection perfor-
mance. However, we extend these measures to take into ac-
count possibly inexact labels (as mentioned in Section 4.2) and
to solve two particular issues which are due to the structure of
our classifiers (as depicted in Figure 1). The first issue is a con-
sequence of using sensor measurements x \ x0 to estimate and
classify the target sensor value x0 (see Section 3). Namely, the
prediction error could be classified as anomalous not because
there is an anomaly present in the data measured by the sensor
x0, but because there is an anomaly in one or more of the sen-
sors x\ x0 (which in turn leads to a mismatch between x0 and its
predicted value x̂0). The second issue is the presence of delayed
anomaly detections. These can occur when, for instance, a spike
anomaly is classified as normal based on a learned model, but
after the model is updated, with such anomalous data, the next
prediction is so erroneous that it is classified as anomalous.

To overcome the first issue, we extend the definition of a TP
in such a way that a detection is regarded TP when an anomaly
occurs in any of the input sensors. In other words, we argue
that a detection, caused by an anomaly in any of the sensors of
a node, but that is not caused by an anomaly in the sensor be-
ing classified, is correct and should be viewed as a valid, true
positive (TP), detection. To overcome the second issue, we as-
sume that if a true anomaly lies within a few samples of the
detection, this detection can still be considered valid (since it
might prompt the data analyst to investigate the data around the
flagged sample), therefore we extend the definition of TP to a
context window, in the form of a window of length Lb around
the detection. The effect of this mechanism is thoroughly eval-
uated in Section 5.4.

In addition to the raw (extended) measures, we also use more
insightful statistical measures of performance (that are based
upon these raw numbers), namely precision, recall, and the F-
measure [69]. Precision is the ratio of correct detections over all
detections, that is TP/(TP + FP), and indicates the percentage

of relevant detections. Recall is the percentage of anomalies
actually detected, or TP/(TP + FN). The F-measure is given by
(2 × precision × recall)/(precision + recall), indicating a single,
weighted average, measure of performance.

Finally, because we use predictors as the basis of our clas-
sifiers, we also evaluate the prediction accuracy under normal
conditions. We do this by analyzing the root-mean-square er-
ror (RMSE) of the prediction over a sequence of synthetic data
without anomalies. We assume that RMSE close to the standard
deviation of the noise of the data can indicate better detection
performance for a classifier than when it does not resemble the
standard deviation.

5. Results

We start this section by discussing the complexity of the
methods that were introduced in Section 3. Section 5.2 then
presents an analysis of the methods’ parameter values that yield
the best method performance (in terms of precision and recall).
This is followed by an evaluation of the predictions made by
all the methods. The next section evaluates the effect of the ex-
tension of the definition of a TP by a context window. Finally,
Section 5.5 presents a detailed comparison of the performance
of the online decentralized anomaly detectors with the baseline
methods.

5.1. Complexity

In earlier work, we analytically established and measured
the time complexity of the different anomaly detection meth-
ods [33, 34, 35]. This analysis is summarized in Table 2. Us-
ing MSPsim [77], a simulator for a WSN platform, the num-
ber of instruction cycles was empirically found to be compa-
rable to those indicated by the aforementioned analysis. How-
ever, we do have to note that the fixed point arithmetic from
libfixmath [56] and libfixmatrix [57] adds a significant
overhead (a constant scale factor) which is not taken into ac-
count in the analysis of complexity.

From Table 2, we particularly note that when RLS is used
in the fusion setup, where the predictions of other methods are
added as inputs to the models, its quadratic complexity becomes
significant. This is similar to the case of OS-ELM, where also
the number of hidden nodes influences complexity. In terms
of space complexity, we should note that both methods require
several matrices of size O(d2) to be kept in memory. This en-
tails that, due to the limited memory available on the TelosB
platform we use in our tests, in the fusion setup we must limit
the number of sensors (in our experiments, three).

Table 2: Comparison of order of complexity derived from algorithms. Here,
Lh is the window length of the window mean, d the number of inputs, Ñ is the
number of hidden nodes, deg the degree of the polynomial of the function ap-
proximation (FA), Ls the window length for FA, and c the number of classifiers.

Method Window RLS OS-ELM FA Ensemble
CPU O(Lh) O(d2) O(Ñd + Ñ2) O(deg2 + Ls) O(c)
Memory O(Lh) O(d2) O(Ñd + Ñ2) O((deg + 2)2 + Ls) O(c)

11



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Spike

Recall

P
re

ci
si

on

●●●
●

●

●

●

●

(a)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Noise

Recall
P

re
ci

si
on

●

●

●

●
●

●
●●

(b)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Constant

Recall

P
re

ci
si

on

●●●●●●

●●

(c)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Drift

Recall

P
re

ci
si

on

●●●●●●
●

●
● FA(1 step)

RLS fusion
OS−ELM fusion
RLS
OS−ELM
Baseline rule
Baseline LLSE
Baseline ELM

(d)

Figure 9: Precision-recall curves for several of the individual classification
methods. The different points on the curves represent the confidence inter-
vals from 68.27% (more recall) to 99.73% (more precision), for the anomaly
types (a) spike, (b) noise, (c) constant and (d) drift. The legend holds for all sub
figures.

5.2. Parameter analysis

A common parameter used in all the classifiers described in
Section 3 is the confidence interval. More specifically, each
classifiers outputs a p-value, that as we have seen indicates the
confidence with which a sample is classified as anomalous or
not. Indeed, in order to evaluate the anomaly detection perfor-
mance in terms of TP, FP, FN, and TN (see Section 4.4), a bi-
nary classification is needed, which can be obtained by assign-
ing a confidence interval to the data considered to be ”normal”.
To assess what is a “reasonably good” confidence interval, we
conduct a preliminary analysis on the synthetic datasets, where
we know the ground truth classification. We generate precision-
recall curves for the different anomaly detection methods and
confidence intervals of 68.27, 75.00, 80.00, 86.64, 90.00, 95.00,
99.00, and 99.73%.

Figure 9 shows the results divided by anomaly type. We can
immediately observe that the performance varies greatly with
the type of anomaly (see Section 5.5 for details). However, the
effect of selecting a specific confidence interval as threshold
behaves as expected from the definition of the p-value, being a
measure for how likely a sample belongs to the normal class.
That is, the higher the confidence interval, the more precise the
detection is, but the fewer anomalies are recalled. From these
results we conclude that a confidence interval of 95% (i.e., p-
value < 0.05), gives a reasonable trade-off between precision
and recall.

To show the effect of the confidence level on the ensemble
classifiers (both online and offline baselines), we repeat this
analysis also on them, including in this case a context window
around the anomalies of length Lb = 3, i.e., a context of data
that is close to the detection in terms of time: this means that
a detection on one sample prior or one sample after the actual
label of the anomaly is regarded TP (recalling the discussion

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Spike

Recall (windowed)

P
re

ci
si

on
 (

w
in

do
w

ed
)

●
●●

●●
●●
●

(a)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Noise

Recall (windowed)

P
re

ci
si

on
 (

w
in

do
w

ed
)

●●●●●●●●

● Fisher's method (part)
Fisher's method (full)
Ensemble (max)
Ensemble (min)
Ensemble (mean)
Ensemble (median)
Ensemble (majority)
Baseline ensemble

(b)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Constant

Recall (windowed)

P
re

ci
si

on
 (

w
in

do
w

ed
)

●●●
●●●●●

(c)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Drift

Recall (windowed)

P
re

ci
si

on
 (

w
in

do
w

ed
)

●●●●●●●●

(d)

Figure 10: Precision-recall curves for the ensemble methods, and sending a
window of data around the detection of length Lb = 3. The different points
on the curves represent the confidence intervals from 68.27% (more recall) to
99.73% (more precision) for the anomaly types (a) spike, (b) noise, (c) constant
and (d) drift. The legend holds for all sub figures.

in Section 4.4). We further discuss the effect of the context
window in Section 5.4 and the benefit of ensembles in Section
5.5. The resulting precision-recall curves can be seen in Figure
10. Once again we observe that the detection performance per
anomaly type varies, but using ensembles and accounting for
context has a positive effect on both recall and precision com-
pared to the individual methods presented in Figure 9. Most
importantly, however, also here a confidence interval of 95% re-
sults in a good balance between precision and recall for further
evaluation of the detection performance. That is, over all the
different types of anomaly categories, this confidence interval
results in a reasonable recall percentage, with reasonable preci-
sion. Nevertheless, depending on the application, an end user
might accept a different trade-off where, for instance, precision
is much preferred over recall.

Besides the confidence interval and the context length, there
are other classifier-specific parameters that influence the perfor-
mance of the methods presented here. In earlier work we estab-
lished the parameter setting for both RLS and ELM that gives
a good trade-off between performance and complexity [33, 34].
RLS has a single free parameter, the forgetting factor, α, with
should be set to α = 10. ELM, on the other hand, has several
free parameters, including the learning rate, the number of hid-
den nodes and the activation function. The method shows good
performance with a learning rate of 0.999985, Ñ = 4 hidden
nodes, and a sigmoid activation function. In addition to these
parameters, we can vary the window sizes of the function ap-
proximation (Ls) and the sliding window mean (Lh). To show
their effect, we have chosen a number of possible settings for
Lh and Ls that are applicable to the limited resources available
in WSN. Because we know that the labeling in the synthetic
data are correct, we aggregate the precision and recall of these
datasets. The resulting precision and recall (corresponding to a

12



95% confidence interval) are plotted in Figure 11. For the func-
tion approximation window, we see an average recall of around
20%, that slowly decreases as Ls increases. The effect on the
precision, however, is more significant. As Ls increases, the
precision increases too. This increase stabilizes after Ls = 20,
and given the marginal effect on the recall, this is a good choice
for Ls. A similar effect can be observed for the sliding window
length Lh in Figure 11d. The effect on recall is marginal, with
an average recall around 15%, but the increase of precision is
strongest up to Lh = 48.

●

●

● ● ● ●

20
30

40

Sliding window length

pe
rc

en
ta

ge

12 16 20 24 28 32

●
● ● ● ● ●

precision
recall

(a)

●

●
● ● ● ●

20
30

40

Sliding window length

pe
rc

en
ta

ge

12 16 20 24 28 32

● ● ● ● ● ●

precision
recall

(b)

●

● ● ●
● ●

20
30

40

Sliding window length

pe
rc

en
ta

ge

12 16 20 24 28 32

● ● ● ● ● ●

precision
recall

(c)

●

●

● ●

20
40

60
80

Sliding window length

pe
rc

en
ta

ge

16 32 48 64

● ● ● ●

precision
recall

(d)

Figure 11: Effect of window length on anomaly detection performance of
single-dimensional time-series classifiers, evaluated on the synthetic data. The
effect of Ls is shown for the (a) 1-step-ahead, (b) 2-step-ahead and (c) 3-step-
ahead classifier. The effect of Lh on the windowed statistics classifier is shown
in (d).

With these parameters established, we can analyze the accu-
racy of the predictions made by the methods, and the anomaly
detection performance based on these predictions, as shown in
the following sections.

5.3. Prediction errors
The prediction error analysis method, outlined in Section 3.6,

assumes errors to be normally distributed, although the parame-
ters of this distribution might change over time. Furthermore, it
also assumes that if the distribution has similar properties to the
Gaussian distribution (i.e., it is bell-shaped), the method should
still perform reasonably. If, however, the prediction error distri-
bution shows a mixture of distribution models or very distinct
peaks, which are not due to anomalies, the method might give
unreliable results.

We have performed an offline analysis of the prediction error
to get a general idea of its distribution. For each combination
of method, dataset, node and sensor within that node, we have
uniformly sampled the prediction error for that combination and
aggregated these prediction error samples per dataset. We then
analyzed the distribution of the resulting aggregation. Due to
the large number of combinations, we only show a few results
in Figure 12. These show that the error distribution does not
closely follow a normal distribution, but seems to be very much
centered within the fitted normal distribution and, therefore, the

Intel Lab − Window mean

Aggregated prediction error

D
en

si
ty

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

0
10

20
30

40

Histogram
KDE
Fitted norm

(a)

Intel Lab − RLS−fusion

Aggregated prediction error

D
en

si
ty

−0.5 0.0 0.5

0
2

4
6

8

Histogram
KDE
Fitted norm

(b)Drift − Window mean

Aggregated prediction error

D
en

si
ty

−0.6 −0.2 0.0 0.2 0.4 0.6

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Histogram
KDE
Fitted norm

(c)

Drift − RLS−fusion

Aggregated prediction error

D
en

si
ty

−0.4 −0.2 0.0 0.2 0.4

0
1

2
3

4 Histogram
KDE
Fitted norm

(d)

Figure 12: Comparison of different prediction error distributions with fitted nor-
mal distributions and Kernel Density Estimates (KDE) of the distributions. The
prediction error distribution depends on dataset and on the prediction method
used. (a) Intel Lab data, sliding window mean, (b) Intel Lab data, RLS-fusion.
(c) Synthetic Drift data, sliding window mean, and (d) Synthetic Drift data,
RLS-fusion.

Window mean
FA(1 step)
FA(2 step)
FA(3 step)

RLS fusion
		OS−ELM fusion

RLS
OS−ELM

0.0 0.2 0.4 0.6 0.8 1.0
Mean square prediction error

Figure 13: Comparison of the mean square prediction error of the different
methods on the synthetic data, who has zero mean Gaussian noise with a vari-
ance of 0.1.

p-values are expected to reflect a reasonable outlier score. Fur-
thermore, the distribution parameters vary greatly with dataset
and type of sensor, but in all cases the prediction error distribu-
tion does display a single peak with a bell-shaped curve.

As Figure 12 shows, the prediction errors generated by ap-
plying the detection methods to the synthetic data can exhibit
a close-to-normal distribution, which can be expected from the
synthesis method of this data, which uses Gaussian noise. Fur-
thermore, because in all synthetic datasets we have added a
Gaussian component with zero mean and 0.1 variance, we ex-
pect the average mean square error to be no better than 0.1 units.
This is shown in Figure 13 where, for each method, we have
summarized the mean square prediction error per node in a box
plot. Moreover, we can see that the performance of the slid-
ing window mean predictor varies most, which can be expected
from the short window over which the mean is estimated. The
larger difference in performance of OS-ELM fusion can be at-
tributed to the random initialization of input node weights, com-
bined with fixed-point precision.

13



5.4. Effect of a detection context window

We now turn our attention to the effect of context around the
detected anomalous measurement (i.e., if a labeled anomaly lies
within a context window around a classified anomaly, the latter
can be regarded a TP). As discussed in Section and Section 5.2,
here we assume the context window to include the data samples
right before and after a sample classified as anomalous (Lb = 3).

We have estimated the performance of the anomaly detection
methods when applied to the test datasets and compared the
results with and without using a context window. These results
are shown in Figures 14 to 17. Figures 14 and 15 show the
results based on the synthetic datasets. When we take a context
window into account, we obtain an almost doubling of the TP
ratio for all methods, and for all types of anomalies other than
the constant anomaly. The effect of the context window is less
noticeable on the real-world data shown in Figures 16 and 17.
Conceivably, this can mainly be attributed to the fact that most
of the anomalies in the real-world data are constant anomalies.
The constant classifier therefore has a high ratio of TP, which is
reflected in the performance of the ensemble methods. On the
other hand, the FP ratio of the constant classifier is much higher
for the real-world data than for the synthetic data, which can be
attributed to constant natural signals, such as low light intensity
signals at night.

The impact of using a context window over the anomaly de-
tection performance is, on the whole, significant. This is con-
sistent with our hypothesis that an anomaly does not only show
when it differs from a prediction, but it can also have an effect
on the model’s prediction after it is updated with the anomalous
data. Transmitting the context window has the added benefit
of allowing one to determine the system’s behavior before and
after an anomaly is detected. In addition, one could also apply
a post-processing step to identify the actual anomalous sample.
Overall, many anomalies are detected within the context win-
dow using this online decentralized approach.

5.5. Anomaly detection performance

Lastly, we evaluate the anomaly detection performance of
our methods by analyzing the results according to the metrics
described in Section 4.4. We measure those metrics on both the
online and offline (baseline) methods with application of the
context window, as described in the previous section. These re-
sults are presented in Figures 15 and 17 and Table 3 (it is worth
noting that the TP ratio shown in the figures is equal to the re-
call rate presented in the table, whereas the TP divided by the
sum of TP and FP ratio can be related to the precision). We
first evaluate the performance of the different methods for the
synthetic datasets. Then, the methods are evaluated on three
real-world datasets.

Synthetic datasets
As remarked in Section 5.2, there is a performance differ-

ence in detecting anomalies of different types, as clearly shown
in Figure 15. We observe, for instance, that the constant clas-
sifier, as expected from its nature, has very high performance

for constant anomalies in the synthetic data, with over 98% re-
call and zero FP, which is equal to 100% precision. This per-
formance is also reflected in some ensemble methods, mainly
the heuristic ensemble, those based on Fisher’s method and the
minimum p-value ensemble. These ensembles, however, do
have 1.6% to 12.0% FP due to the inclusion of other individ-
ual classifiers. Among the latter, the RLS and ELM classifiers
show over 20% TP ratio, but also a high amount of FP. Both
effects can be attributed to online learning, which adapts slowly
to constant anomalies. The FA classifier shows very few TP.
This, we suspect, is due to the window length (Ls = 20) over
which the function is approximated, which is almost as large
as the duration of the average constant anomaly. The RLS and
ELM fusion classifiers fuse the FA predictions together with
window mean predictions, as shown in the TP and FP ratios.
Compared to the baselines, the constant rules perform equally.
On the other hand, centralized offline analysis is advantageous
for the LLSE and ELM classifiers which, compared to RLS and
OS-ELM, have better precision, albeit with lower recall.

The spike detection results in Figure 15 show that function
approximation, RLS and ELM perform similarly, with around
77-83% recall. Increasing the length of the prediction horizon
in FA has a small negative effect on the recall ratio, because the
further ahead in the future a prediction is, the less relevant it
becomes, thus increasing the average prediction error and the
detection threshold. All methods have similar precision a little
over 50%. Here, again, heuristic, Fisher’s and minimum p-
value ensemble methods outperform the individual classifiers
in terms of true detection, gaining up to 7%. But, in the case of
Fisher’s method (part), which combines a partial set of classi-
fiers, and the minimum p-value ensemble, the precision is cut
by half. A similar performance can be observed for the base-
lines (other than the baseline rule), that also have low preci-
sion but high recall. The majority voting and median ensem-
ble behave equally (as expected from the median voter theorem
[70]), but have relatively low TP ratio, similar to the offline
rule baseline. The positive effect of voting, however, results
in the relatively high precision. Overall, if we calculate the
F-measure, the median/majority voting ensemble has the best
score for spike anomalies, outperforming even the baselines.

The detection performance for noise anomalies is similar to
that of spike anomalies for most methods. However, because
the number of samples affected by the noise anomaly is larger,
the resulting TP ratio (around 40%) is less than for spikes. The
FP ratio, on the other hand, is very low for all methods, im-
plying a high precision (over 97%). This could indicate that
the methods do signal the anomalies, although not all anoma-
lous samples are detected. Similar to the performance on spike
anomalies, the heuristic, Fisher’s and minimum p-value ensem-
bles also display a doubling in FP ratio, with respect to the in-
dividual classifiers, from 1.4% to 3.4% FP. But, in this case,
the increase in TP ratio from 44% to around 54 to 60% for
ensemble methods is more than the increase in detection for
spike anomalies. The maximum F-measure shows that the on-
line minimum p-value ensemble has the best average results,
although Fisher’s method shows similar performance. For the
noise anomaly, again, the online methods seem to outperform

14



0 50 100 150 200 250 300

Window mean
Window constant

FA(1 step)
FA(2 step)
FA(3 step)

RLS fusion
OS−ELM fusion

RLS
OS−ELM

Heuristic ensemble
Fisher's method (part)
Fisher's method (full)

Ensemble (max)
Ensemble (min)

Ensemble (mean)
Ensemble (median)
Ensemble (majority)

Baseline rule
Baseline LLSE

Baseline LLSE (d)
Baseline ELM

Baseline ELM (d)
Baseline ensemble

Spike

% anomalies
0 50 100 150 200 250 300

28.7

40.8
39.0
37.8
42.6
38.7
39.0
41.0
42.6
47.4
44.3

46.5

37.0
37.0
37.7
56.5
53.1
23.9
23.8
69.8

71.3
100.0

59.2
61.0
62.2
57.4
61.3
61.0
59.0
57.4
52.6
55.7

100.0
53.5

100.0
63.0
63.0
62.3
43.5
46.9
76.1
76.2
30.2

4.8
0.2

78.9
64.5
69.9
75.4
74.8
80.1
88.4
75.6

281.8
110.2

0.0
219.3

0.0
21.8
21.8

1.4
225.7
284.1
120.8
142.1
277.2

TP
FN
FP

TP
FN
FP

(a)

0 50 100 150 200 250 300

Window mean
Window constant

FA(1 step)
FA(2 step)
FA(3 step)

RLS fusion
OS−ELM fusion

RLS
OS−ELM

Heuristic ensemble
Fisher's method (part)
Fisher's method (full)

Ensemble (max)
Ensemble (min)

Ensemble (mean)
Ensemble (median)
Ensemble (majority)

Baseline rule
Baseline LLSE

Baseline LLSE (d)
Baseline ELM

Baseline ELM (d)
Baseline ensemble

Noise

% anomalies
0 50 100 150 200 250 300

20.4
18.6
18.4
19.2
19.3
15.9
19.1
19.2
29.5
24.8

30.6

14.5
14.5

99.9
100.0

79.6
81.4
81.6
80.8
80.7
84.1
80.9
80.8
70.5
75.2

100.0
69.4

100.0
85.5
85.5
97.1
90.7
89.4
96.4
96.4
87.9

0.1
0.0
0.9
0.8
0.8
0.8
0.8
0.8
0.9
0.8
3.5
1.3
0.0
2.4
0.0
0.3
0.3
0.0
3.2
3.5
1.5
1.9
4.2

TP
FN
FP

TP
FN
FP

(b)

0 50 100 150 200 250 300

Window mean
Window constant

FA(1 step)
FA(2 step)
FA(3 step)

RLS fusion
OS−ELM fusion

RLS
OS−ELM

Heuristic ensemble
Fisher's method (part)
Fisher's method (full)

Ensemble (max)
Ensemble (min)

Ensemble (mean)
Ensemble (median)
Ensemble (majority)

Baseline rule
Baseline LLSE

Baseline LLSE (d)
Baseline ELM

Baseline ELM (d)
Baseline ensemble

Constant

% anomalies
0 50 100 150 200 250 300

77.8
97.2

17.3
30.3
97.2
97.2
97.3

97.4

97.3

97.5

22.2

99.7
99.7
99.7
89.8
92.1
82.7
69.7

100.0

100.0
99.8
99.8

89.3
90.0
97.5
98.5

1.1
0.0
1.8
1.5
1.6
1.6
1.7

17.2
67.7

1.6
6.3
6.1
0.0

12.2
0.0
0.6
0.6
0.0
2.0
2.3
1.6
2.9
3.1

TP
FN
FP

TP
FN
FP

(c)

0 50 100 150 200 250 300

Window mean
Window constant

FA(1 step)
FA(2 step)
FA(3 step)

RLS fusion
OS−ELM fusion

RLS
OS−ELM

Heuristic ensemble
Fisher's method (part)
Fisher's method (full)

Ensemble (max)
Ensemble (min)

Ensemble (mean)
Ensemble (median)
Ensemble (majority)

Baseline rule
Baseline LLSE

Baseline LLSE (d)
Baseline ELM

Baseline ELM (d)
Baseline ensemble

Drift

% anomalies
0 50 100 150 200 250 300

100.0
100.0

99.6
99.6
99.6
99.5
99.4
98.7
99.4
99.5
98.3
97.7

100.0
95.2

100.0
99.9
99.9

100.0
90.7
90.1
96.6
95.8
90.2

0.1
0.0
0.7
0.6
0.6
0.6
0.7
0.8
0.6
0.6
2.6
1.3
0.0
3.3
0.0
0.2
0.2
0.0
0.7
1.4
0.7
1.2
1.3

TP
FN
FP

TP
FN
FP

(d)

Figure 14: True Positives (TP), False Negatives (FN) and False Positives (FP) as the ratio of number of anomalies in synthetic datasets. We can distinguish the
anomaly types (a) spike, (b) noise, (c) constant and (d) drift.

0 50 100 150 200 250 300

Window mean
Window constant

FA(1 step)
FA(2 step)
FA(3 step)

RLS fusion
OS−ELM fusion

RLS
OS−ELM

Heuristic ensemble
Fisher's method (part)
Fisher's method (full)

Ensemble (max)
Ensemble (min)

Ensemble (mean)
Ensemble (median)
Ensemble (majority)

Baseline rule
Baseline LLSE

Baseline LLSE (d)
Baseline ELM

Baseline ELM (d)
Baseline ensemble

Spike

% anomalies
0 50 100 150 200 250 300

57.4

80.9
77.1
74.7
85.3
77.3
78.2
82.7
85.3
91.4
87.3

91.1

73.7
73.7
46.3
89.3
93.3
46.4
46.3
91.5

42.6
100.0

19.1
22.9
25.3
14.7
22.7
21.8
17.3
14.7

100.0

100.0
26.3
26.3
53.7

53.6
53.7

4.8
0.2

78.4
64.1
69.5
72.6
72.1
75.0
78.8
72.8

274.4
108.3

0.0
203.4

0.0
21.7
21.7

1.4
177.1
246.5
110.9
133.4
217.4

TP
FN
FP

TP
FN
FP

(a)

0 50 100 150 200 250 300

Window mean
Window constant

FA(1 step)
FA(2 step)
FA(3 step)

RLS fusion
OS−ELM fusion

RLS
OS−ELM

Heuristic ensemble
Fisher's method (part)
Fisher's method (full)

Ensemble (max)
Ensemble (min)

Ensemble (mean)
Ensemble (median)
Ensemble (majority)

Baseline rule
Baseline LLSE

Baseline LLSE (d)
Baseline ELM

Baseline ELM (d)
Baseline ensemble

Noise

% anomalies
0 50 100 150 200 250 300

47.3
45.2
44.3
45.7
45.4
38.2
44.6
45.7
61.0
54.0

61.0

37.0
37.0

22.3
25.8

27.2

99.9
100.0

52.7
54.8
55.7
54.3
54.6
61.8
55.4
54.3
39.0
46.0

100.0
39.0

100.0
63.0
63.0
92.2
77.7
74.2
91.1
91.2
72.8

0.1
0.0
0.9
0.8
0.8
0.8
0.8
0.8
0.9
0.8
3.4
1.3
0.0
2.3
0.0
0.3
0.3
0.0
3.1
3.5
1.5
1.9
4.1

TP
FN
FP

TP
FN
FP

(b)

0 50 100 150 200 250 300

Window mean
Window constant

FA(1 step)
FA(2 step)
FA(3 step)

RLS fusion
OS−ELM fusion

RLS
OS−ELM

Heuristic ensemble
Fisher's method (part)
Fisher's method (full)

Ensemble (max)
Ensemble (min)

Ensemble (mean)
Ensemble (median)
Ensemble (majority)

Baseline rule
Baseline LLSE

Baseline LLSE (d)
Baseline ELM

Baseline ELM (d)
Baseline ensemble

Constant

% anomalies
0 50 100 150 200 250 300

78.3
98.1

21.1
35.1
98.1
98.2
98.2

98.3

98.3

98.5

21.7

99.1
99.2
99.2
88.5
91.0
78.9
64.9

100.0

100.0
99.5
99.5

87.8
88.2
96.9
97.7

1.1
0.0
1.8
1.5
1.6
1.6
1.7

16.6
64.4

1.6
6.2
6.1
0.0

12.0
0.0
0.6
0.6
0.0
1.9
2.3
1.6
2.8
3.1

TP
FN
FP

TP
FN
FP

(c)

0 50 100 150 200 250 300

Window mean
Window constant

FA(1 step)
FA(2 step)
FA(3 step)

RLS fusion
OS−ELM fusion

RLS
OS−ELM

Heuristic ensemble
Fisher's method (part)
Fisher's method (full)

Ensemble (max)
Ensemble (min)

Ensemble (mean)
Ensemble (median)
Ensemble (majority)

Baseline rule
Baseline LLSE

Baseline LLSE (d)
Baseline ELM

Baseline ELM (d)
Baseline ensemble

Drift

% anomalies
0 50 100 150 200 250 300

14.8
14.8

15.4

100.0
100.0

98.7
98.9
98.8
98.5
98.2
96.4
98.2
98.5
95.1
95.9

100.0
91.8

100.0
99.6
99.6

100.0
85.2
85.2
94.9
93.5
84.6

0.1
0.0
0.7
0.6
0.6
0.6
0.7
0.8
0.6
0.6
2.6
1.3
0.0
3.2
0.0
0.2
0.2
0.0
0.7
1.4
0.7
1.2
1.3

TP
FN
FP

TP
FN
FP

(d)

Figure 15: True Positives (TP), False Negatives (FN) and False Positives (FP) as the ratio of number of anomalies in synthetic datasets. The TP and FP are improved
due to a context window of length Lb = 3 around a detection, as discussed in Section 4.4. We can distinguish the anomaly types (a) spike, (b) noise, (c) constant
and (d) drift.

the offline baselines: while for the baseline the precision is high
(99% for the rule baseline), the recall is low compared to the
online methods.

The drift anomaly is the most difficult to detect, as we can
see from the performance results shown in Figure 15. Overall
the online detection methods seem to adapt to drift, but, if they
detect it, they do it only in the beginning of the anomaly. The
individual classifiers have a TP ratio of around 1% and a FP ra-
tio that is only a little lower, with a precision around 65%. The
ensemble methods do, also in this case, display an increased
TP, but also an increased FP ratio, giving them a small benefit
in recall but with equal precision. It is here that the offline base-
line methods have a clear advantage. Where the online learning
methods slowly adapt to the drift, the static model of LLSE
and ELM generate larger prediction errors, showing in a much
higher TP ratio, and a higher precision. This is reflected in the
maximum F-measure for drift, seen in Table 3, which is estab-
lished by the baseline ensemble with 92% precision and 15%
recall. If, however, we only evaluate the online methods, the
minimum p-value ensemble gives the best F-measure with 81%
precision and 8% recall.

Overall, the ensembles in general do have a positive benefit
on the performance. However, the max and mean p-value en-
semble do not perform well at all, as they are both affected too
strongly by the “least confident” classification. Another obser-
vation is that the majority voting and median ensemble schemes
perform equally, as expected from the median voter theorem
[70]. While their TP ratio (recall) is less than any other clas-
sifier, the number of FP produced by these ensembles is much
less than other classifiers, thus resulting in relatively high pre-
cision. If the target were, however, to detect (recall) the largest
number of anomalies, then the heuristic, Fisher’s or minimum
p-value methods are a better choice. Furthermore, these en-
sembles come the closest to matching the performance of the
baseline (offline) ensemble.

Real-world datasets
We have performed the same analysis for the three real-world

datasets, where as said we have split up the Sensorscope data in
temperature-related and water-related sensors due to memory
limitations. The results for these datasets are shown in Figure
17 and Table 3. From observations made after manually check-

15



0 50 100 150 200 250 300

Window mean
Window constant

FA(1 step)
FA(2 step)
FA(3 step)

RLS fusion
OS−ELM fusion

RLS
OS−ELM

Heuristic ensemble
Fisher's method (part)
Fisher's method (full)

Ensemble (max)
Ensemble (min)

Ensemble (mean)
Ensemble (median)
Ensemble (majority)

Baseline rule
Baseline LLSE

Baseline LLSE (d)
Baseline ELM

Baseline ELM (d)
Baseline ensemble

Intel Lab

% anomalies
0 50 100 150 200 250 300

92.9
93.8

75.6
93.9
94.2
94.3

94.4

94.0

95.4

99.6
99.6
99.6
97.6
98.6
93.1
24.4

100.0

100.0
99.6
99.6

93.1
93.5
92.8
93.5

145.9
85.9

0.1
0.1
0.1
0.0
0.0
2.2

65.6
85.9
87.0
88.1

0.0
88.2

0.0
0.0
0.0

85.9
1.8
2.4
1.8
2.3

85.7

TP
FN
FP

TP
FN
FP

(a)

0 50 100 150 200 250 300

Window mean
Window constant

FA(1 step)
FA(2 step)
FA(3 step)

RLS fusion
OS−ELM fusion

RLS
OS−ELM

Heuristic ensemble
Fisher's method (part)
Fisher's method (full)

Ensemble (max)
Ensemble (min)

Ensemble (mean)
Ensemble (median)
Ensemble (majority)

Baseline rule
Baseline LLSE

Baseline LLSE (d)
Baseline ELM

Baseline ELM (d)
Baseline ensemble

Indoor WSN

% anomalies
0 50 100 150 200 250 300

68.9
65.0

27.1
66.2
67.8
67.9

68.6

66.0

69.1

31.1
35.0
95.4
94.9
94.7
97.1
97.6
91.4
72.9
33.8
32.2
32.1

100.0
31.4

100.0
97.9
97.9
34.0
91.3
91.4
91.1
91.0
30.9

405.8
85.3
12.1
13.5
14.3

5.4
4.3

41.5
201.9

89.2
109.6
120.4

0.0
123.6

0.0
4.3
4.3

88.1
23.1
24.0
23.8
24.9

103.6

TP
FN
FP

TP
FN
FP

(b)

0 50 100 150 200 250 300

Window mean
Window constant

FA(1 step)
FA(2 step)
FA(3 step)

RLS fusion
OS−ELM fusion

RLS
OS−ELM

Heuristic ensemble
Fisher's method (part)
Fisher's method (full)

Ensemble (max)
Ensemble (min)

Ensemble (mean)
Ensemble (median)
Ensemble (majority)

Baseline rule
Baseline LLSE

Baseline LLSE (d)
Baseline ELM

Baseline ELM (d)
Baseline ensemble

Sensorscope temperature

% anomalies
0 50 100 150 200 250 300

83.3
88.0

13.2
14.3

26.5
90.6
91.5
91.4

91.8

89.9
15.4
16.1
14.5
13.9
92.3

16.7

93.5
93.6
93.6
86.8
85.7
98.6
73.5

100.0

100.0
95.1
95.1

84.6
83.9
85.5
86.1

365.0
25.1

7.9
8.4
8.5
6.4
5.1
1.3

14.5
30.5
34.4
31.7

0.0
36.0

0.0
3.1
3.1

27.3
23.3
28.1
27.7
31.4
49.2

TP
FN
FP

TP
FN
FP

(c)

0 50 100 150 200 250 300

Window mean
Window constant

FA(1 step)
FA(2 step)
FA(3 step)

RLS fusion
OS−ELM fusion

RLS
OS−ELM

Heuristic ensemble
Fisher's method (part)
Fisher's method (full)

Ensemble (max)
Ensemble (min)

Ensemble (mean)
Ensemble (median)
Ensemble (majority)

Baseline rule
Baseline LLSE

Baseline LLSE (d)
Baseline ELM

Baseline ELM (d)
Baseline ensemble

Sensorscope water

% anomalies
0 50 100 150 200 250 300

77.1
82.9

24.6

85.5
86.0
85.9

89.0

84.4

14.8

14.1
87.4

22.9
17.1
96.3
96.5
96.5
75.4
92.1
94.2
92.4
14.5
14.0
14.1

100.0

100.0
97.3
97.3
15.6
88.1
85.2
87.6
85.9

181.1
127.0

2.0
2.0
2.0
2.2
1.0
1.0

75.9
127.9
128.7
128.1

0.0
123.8

0.0
0.8
0.8

127.5
5.3
6.3
5.4
6.4

121.8

TP
FN
FP

TP
FN
FP

(d)

Figure 16: True Positives (TP), False Negatives (FN) and False Positives (FP) as the ratio of number of anomalies in real-world datasets. The constant anomaly
prevails, resulting in the good scores of the constant rule and Baseline rule (offline). We can distinguish the datasets (a) Intel Lab, (b) Indoor WSN, (c) Sensorscope
temperature and (d) Sensorscope water.

0 50 100 150 200 250 300

Window mean
Window constant

FA(1 step)
FA(2 step)
FA(3 step)

RLS fusion
OS−ELM fusion

RLS
OS−ELM

Heuristic ensemble
Fisher's method (part)
Fisher's method (full)

Ensemble (max)
Ensemble (min)

Ensemble (mean)
Ensemble (median)
Ensemble (majority)

Baseline rule
Baseline LLSE

Baseline LLSE (d)
Baseline ELM

Baseline ELM (d)
Baseline ensemble

Intel Lab

% anomalies
0 50 100 150 200 250 300

93.1
94.5

75.6
94.6
94.9
95.0

95.1

94.9

96.1

99.4
99.4
99.4
97.4
98.5
93.1
24.4

100.0

100.0
99.5
99.5

92.0
92.3
91.7
92.2

145.1
82.9

0.1
0.1
0.1
0.0
0.0
2.2

65.6
82.8
83.9
85.0

0.0
85.1

0.0
0.0
0.0

82.6
1.7
2.3
1.8
2.3

82.5

TP
FN
FP

TP
FN
FP

(a)

0 50 100 150 200 250 300

Window mean
Window constant

FA(1 step)
FA(2 step)
FA(3 step)

RLS fusion
OS−ELM fusion

RLS
OS−ELM

Heuristic ensemble
Fisher's method (part)
Fisher's method (full)

Ensemble (max)
Ensemble (min)

Ensemble (mean)
Ensemble (median)
Ensemble (majority)

Baseline rule
Baseline LLSE

Baseline LLSE (d)
Baseline ELM

Baseline ELM (d)
Baseline ensemble

Indoor WSN

% anomalies
0 50 100 150 200 250 300

70.3
66.5

27.6
68.4
70.5
70.3

71.2

68.4

71.3

29.7
33.5
91.7
91.3
91.2
94.9
96.2
90.3
72.4
31.6
29.5
29.7

100.0
28.8

100.0
96.0
96.0
31.6
89.0
89.2
88.5
88.4
28.7

396.5
80.0
11.7
13.1
13.8

5.3
4.2

41.2
200.1

82.7
101.8
112.4

0.0
115.3

0.0
4.2
4.2

81.6
22.6
23.5
23.2
24.3
96.1

TP
FN
FP

TP
FN
FP

(b)

0 50 100 150 200 250 300

Window mean
Window constant

FA(1 step)
FA(2 step)
FA(3 step)

RLS fusion
OS−ELM fusion

RLS
OS−ELM

Heuristic ensemble
Fisher's method (part)
Fisher's method (full)

Ensemble (max)
Ensemble (min)

Ensemble (mean)
Ensemble (median)
Ensemble (majority)

Baseline rule
Baseline LLSE

Baseline LLSE (d)
Baseline ELM

Baseline ELM (d)
Baseline ensemble

Sensorscope temperature

% anomalies
0 50 100 150 200 250 300

84.0
89.3

16.8
19.9

28.5
92.6
93.0
93.0

93.2

92.9
18.8
19.7
18.2
18.0
94.4

16.0

90.3
90.0
89.8
83.2
80.1
97.2
71.5

100.0

99.9
92.0
92.0

81.2
80.3
81.8
82.0

352.8
24.7

7.6
8.0
8.2
6.1
4.3
1.3

14.3
29.3
32.2
29.3

0.0
32.6

0.0
3.0
3.0

26.7
21.5
25.8
25.3
28.5
45.5

TP
FN
FP

TP
FN
FP

(c)

0 50 100 150 200 250 300

Window mean
Window constant

FA(1 step)
FA(2 step)
FA(3 step)

RLS fusion
OS−ELM fusion

RLS
OS−ELM

Heuristic ensemble
Fisher's method (part)
Fisher's method (full)

Ensemble (max)
Ensemble (min)

Ensemble (mean)
Ensemble (median)
Ensemble (majority)

Baseline rule
Baseline LLSE

Baseline LLSE (d)
Baseline ELM

Baseline ELM (d)
Baseline ensemble

Sensorscope water

% anomalies
0 50 100 150 200 250 300

78.1
84.2

27.2

88.1
88.4
88.4

91.3

87.0
14.3
17.4
15.1
17.3
89.9

21.9
15.8
94.1
94.3
94.2
72.8
89.8
91.4
90.0

100.0

99.9
95.3
95.3
13.0
85.7
82.6
84.9
82.7

179.1
126.7

2.0
2.0
2.0
2.2
1.0
1.0

75.0
126.7
126.8
126.2

0.0
121.5

0.0
0.8
0.8

127.2
5.2
6.2
5.2
6.2

118.8

TP
FN
FP

TP
FN
FP

(d)

Figure 17: True Positives (TP), False Negatives (FN) and False Positives (FP) as the ratio of number of anomalies in real-world datasets. The TP and FP are
improved due to a context window of length Lb = 3 around a detection, as discussed in Section 4.4. The constant anomaly prevails, resulting in the good scores of
the constant rule and Baseline rule (offline). We can distinguish the datasets (a) Intel Lab, (b) Indoor WSN, (c) Sensorscope temperature and (d) Sensorscope water.

ing the labels (according to the procedure outlined in Section
4.2), we know that the predominant anomalies are constants,
often resulting from missing values. This predominance is the
reason for the performance of the constant classifier, which has
very high TP ratios of 70% and higher. However, the FP ratio
of the constant classifier is much higher for the real-world data
than for the synthetic data, resulting in a precision from 40% to
78%. This is caused by stable natural signals, such as the low
light intensity readings at night.

The OS-ELM-based classifier performs well across most
real-world datasets, except for the Sensorscope water-related
data. Its performance matches or exceeds that of the baseline
ELM method in terms of recall. However, its precision is lower
(from 11% to 53%), resulting in a high number of FP. The latter
could be caused by the random initialization of the hidden node
weights and biases. The RLS classifier, on the other hand, has
slightly lower recall than its baseline counterpart, LLSE. On the
Sensorscope temperature data, for example, the RLS recall is
only 2.8%, while LLSE recalls around 19% of the data. How-
ever, for this dataset in particular its 68% precision is higher

than the 38% of LLSE. On the other datasets, the precision
is similar to LLSE. The recall performance of the FA-based
classifiers seems to be low compared to the other individual
classifiers, particularly for the Intel Lab data recalling less than
1%. However, their precision is on par with the other methods.
Moreover, for the Sensorscope temperature data, the FA-based
classifiers have better recall than RLS.

Combining the predictions of these classifiers, using the RLS
or OS-ELM fusion, shows varying results. For all the real-
world datasets, the precision of these fusion methods is the
highest of all classifiers (see the bold face numbers of Table
3). However, for the Intel Lab and Indoor WSN datasets, the
recall (with 1 to 5%) is much lower than the individual RLS
or OS-ELM methods (having 7 to 27% recall). On the other
hand, the fusion classifiers perform on par with the LLSE and
ELM baseline classifiers for the Sensorscope datasets in terms
of recall, and outperform them in terms of precision.

There are similarities in the datasets for the Intel Lab and
Indoor WSN data, in terms of type of sensors and environ-
ment. This also holds, to a lesser extent, for the Sensorscope

16



temperature and Sensorscope water sensors. These similari-
ties are evident from the results of the different methods where,
for instance, the baseline methods for the Sensorscope datasets
show higher recall than for the other real-world datasets (around
18% vs around 10%). Similarly, the individual classifiers, and
mainly the fusion classifiers, show better performance for the
Sensorscope data. This might be the result of the indoor (Intel
Lab, Indoor WSN) versus outdoor (Sensorscope) nature of the
data: changes in the signal for outdoor data may occur more
slowly than changes indoor, that are affected by human activity.

Overall, a proper choice of the ensemble method is beneficial
to the detection performance. However, similar to the results
from the synthetic datasets, the max and mean p-value ensem-
bles do not perform well on the real-world data. The majority
voting and median p-value ensembles perform equally, and out-
perform the baseline ensemble in terms of precision, as clearly
shown by the FP ratios. Their drawback, however, is the very
low TP ratio, or recall, which is the lowest across all methods.
A much better performance is achieved by the Fisher’s method,
the heuristic and the minimum p-value ensembles. Their results
are dominated by the constant classifier, but the other methods
do contribute extra TP, resulting in higher recall. The perfor-
mance of the heuristic ensemble is, according to the F-measure
shown by the dashed underlines in Table 3, often the best of the
online ensembles, closely followed by Fisher’s method and the
minimum p-value ensembles. On the whole, the performance
of the decentralized online learning methods in Fisher’s method
or minimum p-value ensembles is very close to the baseline en-
semble, showing that ensembles of classifiers are a viable ap-
proach to anomaly detection in resource-limited systems.

6. Discussion and conclusions

In this paper we introduced a lightweight, application-
independent, framework for online anomaly detection in IoT
applications, such as wireless sensor networks, based on incre-
mental learning. The framework addresses two key challenges:
1) the realization of decentralized, automated, online learning
methods to detect anomalies, individually or in an ensemble,
within extremely limited hardware resources; and 2) the perfor-
mance evaluation of these decentralized online learning meth-
ods.

Anomaly detection was realized in two steps. First, we de-
veloped a heterogeneous set of local online learning classifiers,
each one composed of a predictor and a decision making com-
ponent. All our local classifiers perform an incremental on-
line (unsupervised) learning, which allows them to automati-
cally recognize anomalies in (acquired or sensed) data with-
out any a priori knowledge, assumptions or pre-defined rules.
Second, we combined multiple and diverse individual classi-
fiers in an ensemble, which we hypothesized (and confirmed
through experimentation) would further improve the anomaly
detection accuracy, overcoming the limitations of the individ-
ual classifiers. In the ensemble, the individual classifiers act in
parallel on the same data, while their classifications can be ag-
gregated either by using simple heuristic rules (which order the
independent classifications according to the most likely kind of

anomaly), by applying algebraic combiners, such as the me-
dian, or by applying the Fisher’s method.

In order to assess the performance impact of decentralizing
anomaly detection, we extensively evaluated the proposed de-
centralized ensemble, as well as the individual online learning
methods, and compared to their centralized offline counterparts,
taken as baseline. The evaluation was performed using various
large synthetic and real-world datasets and was based on pre-
diction accuracy and confusion matrix metrics. In the latter we
have accounted for false positives caused by anomalies in corre-
lated sensors, and for false positives caused by a delayed detec-
tion. Our experiments verified the general viability of the local
classifiers and the ensemble. They also showed that the per-
formance of both the offline centralized and online decentral-
ized methods largely depends on the datasets and the kinds of
anomaly to be detected. A general trend is that individual online
learning methods are characterized by a reduced recall, while
their precision is often better than that of their offline counter-
parts. Considering known anomaly types (spike, noise, constant
and drift), offline centralized methods seem to be more suitable
for detecting slow long-term effects such as drift, while noise
anomalies are best detected with online decentralized methods.
Moreover, depending on the application goal (e.g., detecting the
most anomalies, detecting with few false positives, etc.), differ-
ent combinations of online classifiers might be appropriate. The
rule-based constant classifier is computationally cheap and per-
forms well. If the most frequent anomalies for an application
relate to spike, noise or, to a lesser extent, drift, then an efficient
choice might be the RLS-based classifier.

The main benefit of our proposed framework, however, de-
rives from the combination of classifiers as prediction fusion
or ensembles. By combining the classifications of the differ-
ent learning techniques, the average performance of the on-
line combinations is increased for all datasets, approaching that
of the offline ensembles. For instance, the bold-face num-
bers in Table 3 show that the RLS and OS-ELM-based predic-
tion fusion classifiers show the best precision across the real-
world data. And, notably, among the different tested com-
bination mechanisms, the Fisher’s and the minimum p-value
methods make the online ensembles match the performance of
their offline counterparts. However, in terms of recall, the sim-
pler heuristic or minimum p-value classifiers gives the best F-
measure, shown by the dashed underlines in Table 3. For the
most accurate detection precision, a majority voting or median
p-value ensemble scheme delivers the best precision (at the cost
of low recall), whereas the most reliable performance across all
datasets seems to be given by the ensemble based on Fisher’s
method. Overall, the online methods can provide a valid alter-
native to the offline baseline methods, to detect anomalies in an
online, decentralized manner.

These results show that online learning anomaly detection
methods can be implemented in a decentralized framework, and
achieve similar performance to offline centralized baselines.
While the latter often make use of large resources in terms of
storage, computation and (human) expert knowledge to opti-
mally configure the detection system, our proposed framework
constitutes a computationally cheap, completely autonomous

17



Table 3: The precision/recall results. Confidence level > 95%, Lh = 48, Ls = 20, Lb = 3. The baselines followed with (d) include a delayed version of the signal.
The bold-face numbers indicate the maximum precision or recall. The underlined numbers are the best combination of precision and recall, the dashed underlined
numbers are the best online embedded combinations (both calculated according to the F-Measure).

XXXXXXXXClassifier
Dataset

In
te

lL
ab

In
do

or
W

SN

Se
ns

or
sc

op
e

te
m

pe
ra

tu
re

Se
ns

or
sc

op
e

w
at

er

C
on

st
an

t

D
ri

ft

N
oi

se

Sp
ik

e

pr. re. pr. re. pr. re. pr. re. pr. re. pr. re. pr. re. pr. re.
Window mean 39.07 93.05 15.07 70.33 19.23 84.01 30.37 78.11 98.66 78.31 21.63 0.02 62.16 0.15 92.26 57.42

Window constant 53.29 94.54 45.39 66.50 78.35 89.26 39.93 84.23 100.00 98.09 48.28 0.00 23.08 0.00 0.00 0.00
FA(1 step) 88.37 0.58 41.40 8.27 56.15 9.67 74.72 5.91 33.61 0.92 65.95 1.29 98.15 47.25 50.78 80.91
FA(2 step) 88.00 0.57 39.98 8.74 55.38 9.98 74.35 5.73 34.41 0.81 66.66 1.11 98.34 45.19 54.59 77.09
FA(3 step) 85.36 0.60 38.98 8.83 55.43 10.20 73.97 5.78 34.45 0.84 65.88 1.15 98.20 44.27 51.80 74.69

RLS fusion 99.39 2.58 48.93 5.11 73.29 16.78 92.53 27.17 87.73 11.45 71.02 1.52 98.24 45.69 54.05 85.35
OS-ELM fusion 97.80 1.47 47.08 3.78 82.15 19.86 91.02 10.20 84.37 9.03 72.80 1.79 98.20 45.36 51.72 77.26

RLS 76.08 6.91 19.03 9.67 68.59 2.83 89.56 8.61 55.92 21.09 82.77 3.64 97.88 38.18 51.02 78.18
OS-ELM 53.55 75.63 12.12 27.60 66.58 28.51 11.74 9.97 35.27 35.09 74.24 1.84 98.04 44.64 51.21 82.67

Heuristic ensemble 53.32 94.61 45.27 68.43 75.99 92.58 41.01 88.07 98.39 98.14 70.97 1.52 98.23 45.69 53.98 85.35
Fisher’s method (part) 53.07 94.92 40.91 70.46 74.27 93.00 41.10 88.44 94.05 98.20 65.07 4.87 94.68 60.96 24.98 91.37
Fisher’s method (full) 52.78 95.02 38.49 70.31 76.04 92.97 41.18 88.35 94.17 98.20 75.51 4.11 97.65 53.97 44.64 87.32

Ensemble (max) 100.00 0.00 0.00 0.00 0.00 0.00 100.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Ensemble (min) 52.78 95.06 38.17 71.19 74.09 93.18 42.92 91.34 89.09 98.28 71.55 8.17 96.35 60.98 30.93 91.08

Ensemble (mean) 100.00 0.00 0.00 0.00 100.00 0.06 100.00 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Ensemble (median) 97.23 0.53 48.52 3.96 72.69 7.96 85.37 4.71 43.59 0.46 65.46 0.39 99.27 36.99 77.24 73.69

Ensemble (majority) 97.23 0.53 48.52 3.96 72.69 7.96 85.37 4.71 43.59 0.46 65.46 0.39 99.27 36.99 77.24 73.69
Baseline rule 53.47 94.89 45.62 68.42 77.68 92.90 40.62 86.98 99.97 98.32 37.20 0.01 99.69 7.80 97.15 46.34

Baseline LLSE 82.19 8.05 32.73 11.00 46.69 18.80 73.27 14.30 86.27 12.24 95.31 14.78 87.79 22.34 33.51 89.26
Baseline LLSE (d) 76.73 7.65 31.59 10.83 43.22 19.65 73.73 17.35 83.96 11.80 91.62 14.81 88.09 25.78 27.46 93.30

Baseline ELM 82.48 8.33 33.15 11.49 41.79 18.15 74.26 15.13 65.96 3.11 87.69 5.14 85.66 8.86 29.51 46.44
Baseline ELM (d) 77.25 7.78 32.40 11.63 38.72 18.00 73.64 17.27 45.07 2.33 84.58 6.45 81.99 8.80 25.75 46.26

Baseline ensemble 53.82 96.11 42.58 71.26 67.48 94.39 43.06 89.88 96.98 98.49 92.25 15.44 87.03 27.24 29.62 91.49

decentralized anomaly detection system, capable of obtaining
acceptable performance without much a priori knowledge of
the application or context.

Due to the limited-resource environment that is targeted by
our work, there are, of course, some limitations in the use of
these methods. These limitations mainly concern memory us-
age: as the memory complexity of the proposed methods grows
with the number of inputs (i.e., sensors), the number of inputs
that can be processed is inherently bounded by the amount of
memory that is available on the sensor platform. However, this
limitation is largely compensated by the reduced cost of com-
municating data over a WSN for central analysis.

Our work may be further developed in various directions.
The most obvious evolution would be to consider the decen-
tralization of other machine learning techniques, to pursue fur-
ther gains in terms of memory requirement and detection accu-
racy. Even more promising would be the incorporation of local
neighborhood data, in such a way that spatially-correlated infor-
mation can be combined to further improve the detection per-
formance. Collaborative learning techniques, such as transfer
learning among neighboring nodes, have considerable potential
since they will enhance the horizon of individual nodes and,
in turn, accuracy and prediction capability. We believe that, in
the context of IoT, such a distributed approach will eventually
enable the deployment of large-scale smart networks that will
be able to sense their environment and report to users only the
relevant information.

Acknowledgment

INCAS3 is co-funded by the Province of Drenthe, the Munic-
ipality of Assen, the European Fund for Regional Development
and the Ministry of Economic Affairs, Peaks in the Delta.

References

[1] D. Miorandi, S. Sicari, F. D. Pellegrini, I. Chlamtac, Internet of things:
Vision, applications and research challenges, Ad Hoc Networks 10 (7)
(2012) 1497 – 1516.

[2] J. Gubbi, R. Buyya, S. Marusic, M. Palaniswami, Internet of things (iot):
A vision, architectural elements, and future directions, Future Generation
Computer Systems 29 (7) (2013) 1645–1660.

[3] L. Bencini, F. Chiti, G. Collodi, D. Di Palma, R. Fantacci, A. Manes,
G. Manes, Agricultural monitoring based on wireless sensor network
technology: real long life deployments for physiology and pathogens
control, in: Sensor Technologies and Applications, 2009. SENSOR-
COMM’09. Third International Conference on, IEEE, 2009, pp. 372–377.

[4] K. Martinez, J. K. Hart, R. Ong, Deploying a wireless sensor network in
iceland, in: GeoSensor Networks, Springer, 2009, pp. 131–137.

[5] M. Reyer, S. Hurlebaus, J. Mander, O. Ozbulut, Design of a wireless
sensor network for structural health monitoring of bridges, in: S. C.
Mukhopadhyay, J.-A. Jiang (Eds.), Wireless Sensor Networks and Eco-
logical Monitoring, Vol. 3 of Smart Sensors, Measurement and Instru-
mentation, Springer Berlin Heidelberg, 2013, pp. 195–216.

[6] M. Ceriotti, M. Corrà, L. D’Orazio, R. Doriguzzi, D. Facchin, S. Guna,
G. P. Jesi, R. L. Cigno, L. Mottola, A. L. Murphy, et al., Is there light
at the ends of the tunnel? wireless sensor networks for adaptive lighting
in road tunnels, in: Information Processing in Sensor Networks (IPSN),
2011 10th International Conference on, IEEE, 2011, pp. 187–198.

[7] M. Lin, Y. Wu, I. Wassell, Wireless sensor network: Water distribu-
tion monitoring system, in: Radio and Wireless Symposium, 2008 IEEE,
2008, pp. 775–778.

18



[8] H. Alemdar, C. Ersoy, Wireless sensor networks for healthcare: A survey,
Computer Networks 54 (15) (2010) 2688–2710.

[9] J. Åkerberg, M. Gidlund, T. Lennvall, J. Neander, M. Björkman, Effi-
cient integration of secure and safety critical industrial wireless sensor
networks, EURASIP Journal on Wireless Communications and Network-
ing 2011 (1) (2011) 1–13.

[10] R. Jurdak, X. Wang, O. Obst, P. Valencia, Wireless sensor network
anomalies: Diagnosis and detection strategies, Intelligence-Based Sys-
tems Engineering (2011) 309–325.

[11] C. C. Aggarwal, N. Ashish, A. Sheth, The internet of things: A survey
from the data-centric perspective, in: Managing and mining sensor data,
Springer, 2013, pp. 383–428.

[12] S. Rajasegarar, C. Leckie, M. Palaniswami, Anomaly detection in wire-
less sensor networks, Wireless Communications, IEEE 15 (4) (2008) 34–
40.

[13] Y. Yao, A. Sharma, L. Golubchik, R. Govindan, Online anomaly detec-
tion for sensor systems: A simple and efficient approach, Performance
Evaluation.

[14] J. Cabrera, C. Gutiérrez, R. Mehra, Ensemble methods for anomaly de-
tection and distributed intrusion detection in mobile ad-hoc networks, In-
formation Fusion 9 (1) (2008) 96–119.

[15] V. Chandola, A. Banerjee, V. Kumar, Anomaly detection: A survey, ACM
Computing Surveys (CSUR) 41 (3) (2007/2009) 1–58.

[16] R. V. Kulkarni, A. Forster, G. K. Venayagamoorthy, Computational intel-
ligence in wireless sensor networks: A survey, Communications Surveys
& Tutorials, IEEE 13 (1) (2011) 68–96.

[17] A. Föerster, A. L. Murphy, Machine learning across the wsn layers
(2010).

[18] M. A. Alsheikh, S. Lin, D. Niyato, H.-P. Tan, Machine learning in wire-
less sensor networks: Algorithms, strategies, and applications, Commu-
nications Surveys & Tutorials, IEEE 16 (4) (2014) 1996–2018.

[19] J. Predd, S. Kulkarni, H. Poor, Distributed learning in wireless sensor
networks, Signal Processing Magazine, IEEE 23 (4) (2006) 56–69.

[20] D. Talia, P. Trunfio, How distributed data mining tasks can thrive as
knowledge services, Commun. ACM 53 (7) (2010) 132–137.

[21] G. Iacca, Distributed optimization in wireless sensor networks: an island-
model framework, Soft Computing 17 (12) (2013) 2257–2277.

[22] A. Liotta, The cognitive net is coming, IEEE Spectrum 50 (8) (2013) 26–
31.

[23] G. P. Joshi, S. Y. Nam, S. W. Kim, Cognitive radio wireless sensor
networks: Applications, challenges and research trends, Sensors 13 (9)
(2013) 11196–11228.

[24] M. Paskin, C. Guestrin, J. McFadden, A robust architecture for distributed
inference in sensor networks, in: Proceedings of the 4th international
symposium on Information processing in sensor networks, IEEE Press,
2005, p. 8.

[25] C. Guestrin, P. Bodik, R. Thibaux, M. Paskin, S. Madden, Distributed
regression: an efficient framework for modeling sensor network data, in:
Information Processing in Sensor Networks, 2004. IPSN 2004. Third In-
ternational Symposium on, IEEE, 2004, pp. 1–10.

[26] J. B. Predd, S. R. Kulkarni, H. V. Poor, Regression in sensor networks:
Training distributively with alternating projections, in: Optics & Pho-
tonics 2005, International Society for Optics and Photonics, 2005, pp.
591006–591006.

[27] L. Pirmez, F. Delicato, P. Pires, A. Mostardinha, N. de Rezende, Applying
fuzzy logic for decision-making on wireless sensor networks, in: Fuzzy
Systems Conference, 2007. FUZZ-IEEE 2007. IEEE International, 2007,
pp. 1–6.

[28] T. A. Nguyen, M. Aiello, K. Tei, A decentralized scheme for fault detec-
tion and classification in wsns, in: The 1st IEEE International Conference
on Cyber-Physical Systems, Networks, and Applications (CPSNA 2013,
Work in Progress session), 2013, pp. 1–4.

[29] S. Rajasegarar, C. Leckie, M. Palaniswami, J. Bezdek, Distributed
anomaly detection in wireless sensor networks, in: Communication sys-
tems, 2006. ICCS 2006. 10th IEEE Singapore International Conference
on, IEEE, 2006, pp. 1–5.

[30] H. Kumarage, I. Khalil, Z. Tari, A. Zomaya, Distributed anomaly detec-
tion for industrial wireless sensor networks based on fuzzy data mod-
elling, Journal of Parallel and Distributed Computing 73 (6) (2013) 790–
806.

[31] C. Lo, J. Lynch, M. Liu, Reference-free detection of spike faults in wire-

less sensor networks, in: Resilient Control Systems (ISRCS), 2011 4th
International Symposium on, IEEE, 2011, pp. 148–153.

[32] R. Rajagopal, X. Nguyen, S. C. Ergen, P. Varaiya, Distributed online
simultaneous fault detection for multiple sensors, in: Information Pro-
cessing in Sensor Networks, 2008. IPSN’08. International Conference on,
IEEE, 2008, pp. 133–144.

[33] H. H. W. J. Bosman, A. Liotta, G. Iacca, H. J. Wortche, Anomaly detec-
tion in sensor systems using lightweight machine learning, in: Systems,
Man, and Cybernetics (SMC), 2013 IEEE International Conference on,
IEEE, 2013, pp. 7–13.

[34] H. H. W. J. Bosman, A. Liotta, G. Iacca, H. J. Wortche, Online extreme
learning on fixed-point sensor networks, in: Data Mining Workshops
(ICDMW), 2013 IEEE 13th International Conference on, IEEE, 2013,
pp. 319–326.

[35] H. H. W. J. Bosman, G. Iacca, H. J. Wörtche, A. Liotta, Online fusion
of incremental learning for wireless sensor networks, in: Data Mining
Workshop (ICDMW), 2014 IEEE International Conference on, 2014, pp.
525–532.

[36] R. Biuk-Aghai, Y.-W. Si, S. Fong, P.-F. Yan, Individual movement be-
haviour in secure physical environments: Modeling and detection of sus-
picious activity, in: L. Cao, P. S. Yu (Eds.), Behavior Computing, Springer
London, 2012, pp. 241–253.

[37] C. Phua, V. Lee, K. Smith, R. Gayler, A comprehensive survey of data
mining-based fraud detection research, Arxiv preprint arXiv:1009.6119.

[38] C. Wang, K. Viswanathan, L. Choudur, V. Talwar, W. Satterfield,
K. Schwan, Statistical techniques for online anomaly detection in data
centers, in: Integrated Network Management (IM), 2011 IFIP/IEEE In-
ternational Symposium on, IEEE, 2011, pp. 385–392.

[39] C. Modi, D. Patel, B. Borisaniya, H. Patel, A. Patel, M. Rajarajan, A
survey of intrusion detection techniques in cloud, Journal of Network and
Computer Applications 36 (1) (2013) 42–57.

[40] K. Tiwari, M. Arora, D. Singh, An assessment of independent component
analysis for detection of military targets from hyperspectral images, Inter-
national Journal of Applied Earth Observation and Geoinformation 13 (5)
(2011) 730–740.

[41] S. Kao, A. Ganguly, K. Steinhaeuser, Motivating complex dependence
structures in data mining: A case study with anomaly detection in cli-
mate, in: 2009 IEEE International Conference on Data Mining Work-
shops, IEEE, 2009, pp. 223–230.

[42] J. Dean, S. Ghemawat, Mapreduce: simplified data processing on large
clusters, Communications of the ACM 51 (1) (2008) 107–113.

[43] L. Zeng, L. Li, L. Duan, K. Lu, Z. Shi, M. Wang, W. Wu, P. Luo, Dis-
tributed data mining: a survey, Information Technology and Management
13 (4) (2012) 403–409.

[44] A. Bordes, S. Ertekin, J. Weston, L. Bottou, Fast kernel classifiers with
online and active learning, The Journal of Machine Learning Research 6
(2005) 1579–1619.

[45] Y. Zhang, N. Meratnia, P. Havinga, Outlier detection techniques for wire-
less sensor networks: A survey, Communications Surveys & Tutorials,
IEEE 12 (2) (2010) 159–170.

[46] M. Xie, S. Han, B. Tian, S. Parvin, Anomaly detection in wireless sensor
networks: A survey, Journal of Network and Computer Applications.

[47] D.-I. Curiac, C. Volosencu, Ensemble based sensing anomaly detection
in wireless sensor networks, Expert Systems with Applications 39 (10)
(2012) 9087–9096.

[48] M. Chang, A. Terzis, P. Bonnet, Mote-based online anomaly detection
using echo state networks, in: Distributed Computing in Sensor Systems,
Springer, 2009, pp. 72–86.

[49] T. A. Nguyen, D. Bucur, M. Aiello, K. Tei, Applying time series analysis
and neighbourhood voting in a decentralised approach for fault detection
and classification in wsns, in: Proceedings of The 4th International Sym-
posium on Information and Communication Technology, ACM, 2013, pp.
234–241.

[50] H. Sorenson, Least-squares estimation: from Gauss to Kalman, Spectrum,
IEEE 7 (7) (1970) 63–68.

[51] W. Barbakh, Y. Wu, C. Fyfe, Online clustering algorithms and rein-
forcement learning, in: Non-Standard Parameter Adaptation for Ex-
ploratory Data Analysis, Vol. 249 of Studies in Computational Intelli-
gence, Springer Berlin Heidelberg, 2009, pp. 85–108.

[52] M. Mihaylov, K. Tuyls, A. Nowé, Decentralized Learning in Wire-
less Sensor Networks, Lecture Notes in Computer Science (Springer

19



Berlin/Heidelberg) 5924 (2010) 60–73.
[53] P. Wang, T. Wang, Adaptive routing for sensor networks using reinforce-

ment learning, in: Computer and Information Technology, 2006. CIT’06.
The Sixth IEEE International Conference on, IEEE, 2006, pp. 219–219.

[54] G. D. Fatta, F. Blasa, S. Cafiero, G. Fortino, Fault tolerant decentralised
K-Means clustering for asynchronous large-scale networks , Journal of
Parallel and Distributed Computing 73 (3) (2013) 317 – 329, models and
Algorithms for High-Performance Distributed Data Mining.

[55] P. Sasikumar, S. Khara, K-means clustering in wireless sensor networks,
in: Computational Intelligence and Communication Networks (CICN),
2012 Fourth International Conference on, 2012, pp. 140–144.

[56] B. Brewer, libfixmath - cross platform fixed point maths library (2012).
URL http://code.google.com/p/libfixmath/

[57] P. Aimonen, libfixmatrix - c library for fixed point matrix, quaternion and
vector calculations (2012).
URL https://github.com/PetteriAimonen/libfixmatrix

[58] G. E. Bottomley, A novel approach for stabilizing recursive least squares
filters, IEEE Transactions on Signal Processing 39.

[59] G. Cybenko, Approximation by superpositions of a sigmoidal function,
Mathematics of Control, Signals and Systems 2 (4) (1989) 303–314.

[60] R. Hecht-Nielsen, Theory of the backpropagation neural network, in:
Neural Networks, 1989. IJCNN., International Joint Conference on,
IEEE, 1989, pp. 593–605.

[61] Y.-H. Pao, G.-H. Park, D. J. Sobajic, Learning and generalization charac-
teristics of the random vector functional-link net, Neurocomputing 6 (2)
(1994) 163–180.

[62] G.-B. Huang, Q.-Y. Zhu, C.-K. Siew, Extreme learning machine: a new
learning scheme of feedforward neural networks, in: Neural Networks,
2004. Proceedings. 2004 IEEE International Joint Conference on, Vol. 2,
IEEE, 2004, pp. 985–990.

[63] S. Ding, H. Zhao, Y. Zhang, X. Xu, R. Nie, Extreme learning machine:
algorithm, theory and applications, Artificial Intelligence Review (2013)
1–13.

[64] N.-Y. Liang, G.-B. Huang, P. Saratchandran, N. Sundararajan, A fast and
accurate online sequential learning algorithm for feedforward networks,
Neural Networks, IEEE Transactions on 17 (6) (2006) 1411–1423.

[65] E. Fuchs, T. Gruber, J. Nitschke, B. Sick, Online segmentation of time se-
ries based on polynomial least-squares approximations, Pattern Analysis
and Machine Intelligence, IEEE Transactions on 32 (12) (2010) 2232–
2245.

[66] S. Roberts, Control chart tests based on geometric moving averages,
Technometrics 1 (3) (1959) 239–250.

[67] L. K. Hansen, P. Salamon, Neural network ensembles, IEEE transactions
on pattern analysis and machine intelligence 12 (1990) 993–1001.

[68] D. Hall, J. Llinas, An introduction to multisensor data fusion, Proceedings
of the IEEE 85 (1) (1997) 6–23.

[69] A. Zimek, R. J. Campello, J. Sander, Ensembles for unsupervised out-
lier detection: challenges and research questions a position paper, ACM
SIGKDD Explorations Newsletter 15 (1) (2014) 11–22.

[70] A. Downs, An economic theory of political action in a democracy, The
Journal of Political Economy 65 (1957) 135–150. doi:10.1086/257897.

[71] R. A. Fisher, Statistical methods for research workers, Genesis Publishing
Pvt Ltd, 1925.

[72] K. Ni, N. Ramanathan, M. Chehade, L. Balzano, S. Nair, S. Zahedi,
E. Kohler, G. Pottie, M. Hansen, M. Srivastava, Sensor network data fault
types, ACM Transactions on Sensor Networks 5 (3) (2009) 25.

[73] A. Sharma, L. Golubchik, R. Govindan, On the prevalence of sensor faults
in real-world deployments, in: Sensor, Mesh and Ad Hoc Communica-
tions and Networks, 2007. SECON’07. 4th Annual IEEE Communica-
tions Society Conference on, IEEE, 2007, pp. 213–222.

[74] A. B. Sharma, L. Golubchik, R. Govindan, Sensor faults: Detection meth-
ods and prevalence in real-world datasets, ACM Transactions on Sensor
Networks 6 (3).

[75] Sensorscope project (2014).
URL http://lcav.epfl.ch/op/edit/sensorscope-en

[76] P. Bodik, W. Hong, C. Guestrin, S. Madden, M. Paskin, R. Thibaux, J. Po-
lastre, R. Szewczyk, The intel lab, berkely dataset (2004).
URL http://db.csail.mit.edu/labdata/labdata.html

[77] J. Eriksson, A. Dunkels, N. Finne, F. sterlind, T. Voigt, Mspsim – an
extensible simulator for msp430-equipped sensor boards, in: Proceed-
ings of the European Conference on Wireless Sensor Networks (EWSN),

Poster/Demo session, 2007, p. 27.

20


