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Abstract—Tracing and integrating security requirements
throughout the development process is a key challenge in security
engineering. In socio-technical systems, security requirements for
the organizational and technical aspects of a system are currently
dealt with separately, giving rise to substantial misconceptions
and errors. In this paper, we present a model-based security
engineering framework for supporting the system design on the
organizational and technical level. The key idea is to allow the
involved experts to specify security requirements in the languages
they are familiar with: business analysts use BPMN for procedu-
ral system descriptions; system developers use UML to design and
implement the system architecture. Security requirements are
captured via the language extensions SecBPMN2 and UMLsec.
We provide a model transformation to bridge the conceptual
gap between SecBPMN2 and UMLsec. Using UMLsec policies,
various security properties of the resulting architecture can be
verified. In a case study featuring an air traffic management
system, we show how our framework can be practically applied.

I. INTRODUCTION

The vast majority of today’s software systems are part of
Socio-Technical Systems (STSs) that involve a rich interplay
of organizational (humans and organizations) and technical
(software and hardware) components to accomplish shared ob-
jectives [1]. Examples include air traffic management (ATM),
smart cities, and healthcare systems. STSs open up a new
class of security challenges. Since STSs are decentralized and
their components are autonomous and loosely controllable, a
security issue in a single component may affect other com-
ponents, leading to unpleasant consequences such as privacy
violations, law infringements, and safety risks. For instance, in
an ATM system, unauthorized modification of the flight plan
of a flying plane can threaten the safety of passengers, with
severe consequences for the airline and airport companies.

For the effective engineering of a secure STS, it is im-
portant to consider both organizational and technical security
requirements right from the start of the development process.
Therefore, various approaches have been proposed to incorpo-
rate security engineering into the early stages of the system
development life cycle.

A number of BPMN-based approaches [2], [3] rely on busi-
ness process modeling for organizational security requirements
as early as during the design of the business processes for the
target STS. These approaches abstract from technical details

to allow the specification of high-level security requirements
by non-technical stakeholders, such as business analysts [4].

Moreover, a number of UML-based approaches [5], [6]
allow the system developers to design a secure architectural
model for the target system. This model is enriched with low-
level technical details to support the validation against pre-
defined technical security policies. The system architecture
model is a cornerstone for further development stages, such
as generating code for the implementation [5], [7].

Model-based approaches for the engineering of secure sys-
tems are widely believed to be useful [8]. However, since the
existing BPMN- and UML-based approaches address security
in distinct development phases and from the perspectives of
different stakeholders, they deal with security requirements
separately; therefore, an alignment of security requirements
across the different phases is not guaranteed [9]. Since building
secure systems is a sensitive task, it is important to manage
security consistently, so that the introduction of vulnerabilities
during the development process is avoided.

A main source of vulnerabilities are misunderstandings
between expert stakeholders, as triggered by their implicit
knowledge about terminology. For instance, one of the most
common uses of swimlanes is to express internal roles in an
organization, while the BPMN 2.0 standard leaves their seman-
tics undefined [10]. Without this implicit knowledge about the
usage of swimlanes, system developers may forgo the use of
an appropriate role enforcement mechanism (e.g., role-based
access control), resulting in security loopholes. Worse, such
loopholes may be notoriously hard to detect due to lack of a
traceability mechanism for security requirements across the
different phases. Support for an integrated management of
organizational and technical security requirements throughout
the entire development process is generally lacking.

To address these shortcomings, in this paper, we pro-
pose a framework for designing secure STSs by integrating
existing BPMN-based and UML-based security engineering
approaches. In particular, our framework suggests to iteratively
(i) model organizational requirements and security require-
ments using SecBPMN2 [3], (ii) transform the SecBPMN2
model to a preliminary architectural model enriched with
security policies using UMLsec [5], (iii) refine the generated
UMLsec model manually with additional design decisions, and



(iv) verify the resulting UMLsec model against their contained
security policies by using an automated tool, called CARiSMA
[11]. Specifically, our contributions are:

• a semi-automated process for enforcing an integrated
security management throughout the development process
(Sect. 3),

• a model transformation supporting the translation of
security-annotated business models to secure architectural
models while establishing traceability (Sect. 4), and

• a case study featuring an ATM system, showing how
our framework can be used to establish an integrated
management and traceability of security requirements
(Sect. 5).

The novelty of our framework is that we automatically
establish traceability between high-level security requirements
and verifiable technical security policies. Doing so, we inte-
grate the views of business analysts and system developers, the
two main kinds of expert stakeholders during the development
of STSs. Earlier automated transformation approaches used
UML as sole modeling language throughout the entire process
[12], thereby leaving the role of business analysts unaddressed,
or focused on representing security “at the business analyst
views” ([13], p.2), leaving technical security concerns and the
verification of security aspects to future work [13]. These and
other, non-automated, transformation approaches are discussed
in Sect. VI.

II. FOUNDATIONS

In this section, we briefly describe necessary foundations for
modeling and validating security requirements and policies,
focusing on the approaches SecBPMN2 and UMLsec, which
we illustrate with example models from our case study.

BPMN-based security engineering allows business an-
alysts to express and reason with organizational security
requirements using the Business Process Modeling Nota-
tion (BPMN, [10]). These approaches hide technical details
of STSs, while permitting non-technical stakeholders to spec-
ify high-level security requirements in an intuitive way [4].

We selected SecBPMN2 [3] as a basis for our framework
due to its expressiveness and the ability to model both busi-
ness processes and security requirements. To specify security
requirements in business process models, SecBPMN2 provides

11 security annotations, such as Accountability, Confidential-
ity, and Integrity, that can be added and linked to BPMN 2.0
elements such as tasks, data objects, and message flows. A
number of alternative approaches have been proposed in the
literature where specific annotations are introduced to extend
BPMN with security aspects [2], [14], [15]. However, these
approaches are not designed to express security requirements
[14], or they permit to represent only a restricted set of
security aspects [2], [15]. More details about SecBPMN2 and
its expressiveness can be found in [3].

Example Fig. 1 shows a SecBPMN2 diagram representing
a business process for flight plan negotiation in an air traffic
management system. Executors of a business process are
represented by Pools such as Airplane and Local authority.
Communications between pools are represented by message
flows; the content of such communications are messages:
Notify local authority sends the message Flight plan to Local
authority. Atomic activities are represented with tasks, for
example Take off. Events are represented with circles. Start
events and End events mark the initial and terminal points
of business processes. Catch events represent points in a
business process where an event needs to to happen, for
example 20 minutes before new aerospace. Gateways are
used to specify deviations of the execution sequence: exclusive
gateway specify decisions points: the gateway Flight plan
created? allows the upper or lower branch to be executed,
depending on whether the question is answered Yes or No.

Security concepts are represented with orange solid circles.
In particular, Integrity and Confidentiality are associated to
the message flow meaning respectively that the content of
the message is preserved and it will not be accessed by
unauthorized users. Accountability is associated to Check
flight plan meaning that any user who will mis-execute such
activity will be traced.

UML-based security engineering allows system develop-
ers to express and reason about security policies using the
Unified Modeling Language (UML, [16]). The idea is to first
construct a security-annotated architecture model of a system.
In a second step, the implementation is derived from the
model, either automatically or manually.

Many UML-based security approaches have been proposed
in the literature such as misuse cases [17], mal-activity [18],
UMLsec [5], SecureUML [6], SECTET [19]. Most of these

Fig. 1: Example of a SecBPMN2 diagram.



approaches are either not designed to automatically verify
the designed models against security concerns [17], [18] or
only focus on specifying access control mechanisms (e.g. role-
based access control) [6], [19].

UMLsec [5] is a UML profile that can be used to enrich
UML diagrams with security-relevant information. This paper
focuses on deployment and class diagrams, which are typi-
cally used to define a system architecture. UMLsec extends
UML with security-specific stereotypes and tags, that, when
attached to UML element, add three kinds of security-relevant
information: (i) assumptions on the physical environment of
the system, such as «Internet» or «encrypted», (ii) security
requirements on the logical structure of the system (such
as «secrecy», «integrity») or on security-critical parts (such
as «critical»), (iii) security policies that system parts are
supposed to obey, such as «secure links» to ensure that security
requirements on the communication are met by the physical
layer, «secure dependency» to ensure that dependent parts
in the architecture model preserve the security requirements
relevant to the part they depend on, and «abac» to define
central elements of the Role Attribute-Based Access Control
(RABAC) [20] mechanism such as roles and permissions and
verify them against the designed architecture. UMLsec has
shown its usefulness in several industrial applications [21],
[22], [23], in-house training courses exist at several companies.

The upper part of Fig. 2 is a deployment diagram annotated
with the «secure links» policy and its related annotations.
The «secure links» policy is specified in relation to a specific
adversary pattern, showing the potential threats that can be
posed by certain types of attacker with respect to the type
of the communication path. Table I shows the threats posed

TABLE I: UMLsec Adversary Patterns [5].

Stereotype Threatdefault(S) Threatinsider(S)
«Internet» {delete,read,insert} {delete,read,insert}
«encrypted» {delete} {delete,read,insert}
«LAN» ∅ {delete,read,insert}
«wire» ∅ {delete,read,insert}

by two examples adversaries, called default (i.e., outsider) and
insider (i.e., one of roles involved , such as sender or recipient).

The lower part of Fig. 2 is a class diagram annotated with
«abac» and «secure dependency» policies along with their
related annotations. In the «secure dependency» policy, the
«critical» stereotype labels classes with sensitive data and
operations, and the associated tags {secrecy} and {integrity}
specify security requirements on these data and operations.
More specifically, each class specifies the stipulated require-
ments of its own members, and the fulfilled requirements of
other classes’ members. Verifying «secure dependency» entails
checking whether all requirements stipulated by a class are
fulfilled by all dependent classes, which can be done automat-
ically by the CARiSMA tool [11]. UMLsec implements the
RABAC access control model via the policy «abac», which
uses two tags called {role} and {right} to assign roles to
subjects and rights to roles, respectively. Operations in need of
an access restriction can be annotated with the «abacRequire»
stereotype along with its associated {right} tag. An account
and a formal foundation of the UMLsec stereotypes and tags
is given in [5]; the RABAC extension was introduced in [24].

III. PROCESS

Integrating and tracing security requirements from business
process models to the system architecture is a complicated

Fig. 2: Deployment and class diagrams of SecBPMN2 example



Fig. 3: The process proposed in this paper.

task. Business processes are mainly about behavior, tasks,
and flows, which which specify how a system achieves its
goals, while architectural deployment and class diagrams fo-
cus on structural elements such as components, classes, and
operations, which specify how the system should be built to
achieve its goals. Therefore, it is not possible to automatically
specify all the architectural details based on a given business
process. For example, while a task in the business process
can be transformed to an operation in the architectural model,
a one-to-one mapping is not always possible, as it might be
preferable to represent the task by a set of operations rather
than one. For this reason, our framework proposes the semi-
automated process shown in Fig. 3.

Roles: At a minimum, our process involves a team of
SecBPMN2-trained business analysts and UMLsec-trained
system developers. Our assumptions on the skills of these
involved stakeholders are light-weight, as they do not have to
be security experts. Still, to ensure correct use of SecBPMN2
and UMLsec, some additional instruction on top of their
regular training is appropriate.

With these assumptions, our aim is to address the common
situation in which security experts are absent [25]. In this
situation, we aim to make the software more secure than it
would be when ignoring security from the start. However, even
in presence of security experts—which is clearly the preferable
situation—, our process can still be helpful, as the involved
expert and non-expert stakeholders may benefit from the trace-
ability of security requirements across development phases.

Input/Output: As input, the process receives a require-
ments document containing organizational, technical, and se-
curity requirements. During the requirements elicitation, the
business analysts produce this document in interaction with
the customer. The output is a secure system architecture and
a verification report, showing the results of validating the
architectural model against the UMLsec security policies.

Phase 1. In this phase, business analysts model the business
processes of the target STS with respect to security needs. As
a first step, they derive business processes from the provided
requirements document to create a BPMN 2.0 model. In a
second step, they use SecBPMN2 to specify organizational
security needs, again based on the requirements document.

Phase 2. Business process models deal with organizational
aspects in a high level, abstracting from technical details.

Consequently, they are not sufficient for generating the system
implementation directly. To this end, business processes and
their included security requirements are now transformed to a
secure system architectural model. We provide an automated
model transformation from SecBPMN2 to UMLsec models.
As a byproduct, this transformation creates a trace model of
mappings to source and target elements, allowing us to keep
processes model and system architecture aligned and bridge
the gap between organizational requirements and technical
ones. Sect. IV elaborates on the transformation implementation
using the Henshin transformation language [26]. Since it is
infeasible to foresee all desirable architectural details from the
input business process, the generated output from this phase
can be seen as a preliminary architecture model that needs to
be revised by the system developers.

Phase 3. In this phase, system developers can refine the pre-
liminary architecture model in two ways. First, missing details
can be inserted, such as the associations names, attributes,
and permissions of certain roles generated during Phase 2.
Second, a UML element can be refined into multiple ones.
For instance, classes with many contained operations can be
split into several ones.

Phase 4. The architectural model enriched in phase 3
can be verified against the included security policies using
CARiSMA [11]. While explaining the internal workings of the
verification is outside the scope of this work, a short summary
for the «secure dependency» case is found in Sec. II. The
output final report contains the result of the check of each
verified policy. If the architectural model does not satisfy all
security policies, the architectural model needs corrections;
the process then jumps back to step 3. If all security policies
are correctly enforced, the security requirements engineers
have evidence that the architecture is secure and meets the
organizational security requirements specified in the business
processes model. Therefore, one can guarantee that the system
architecture is aligned with the business processes and can
serve as basis for a secure implementation.

IV. SECBPMN2 TO UMLSEC TRANSFORMATION

The specification of system architectural model from busi-
ness processes model is not straightforward in real-world
STSs, which are large and complex. To address this chal-
lenge, we define an automated model transformation from



(a) SecBPMN2 elements to UML elements. (b) SecBPMN2 security annotations to UMLsec security policies.

Fig. 4: Mapping Specification of SecBPMN2 to UMLsec structural diagram.

SecBPMN2 models to UMLsec structural diagrams (i.e., de-
ployment and class diagrams), using the model transformation
language Henshin and its associated toolset [26], [27]. Henshin
is based on the Eclipse platform and the Eclipse Modeling
Framework (EMF). It supports a graph-based specification
of model transformation rules for arbitrary EMF-based meta-
models. The rationale for using Henshin was its convenient
application to our setting with respect to our goals, including
the possibility to create a trace model during the transforma-
tion in order to manage traceability.

We focus on the part of SecBPMN2 that can be translated to
an architectural model expressed using deployment and class
diagrams. These diagrams enable the specification of security
policies in different design views of the system.

Mapping schema. To specify the transformation rules
systematically, we first define a mapping schema from
SecBPMN2 to UMLsec elements. In Fig. 4a, the considered
business model elements are linked to suitable types of de-
ployment and class diagrams as follows:

• Since one cannot automatically identify from the
SecBPMN2 model whether a set of processes is to be run
on one node or a set of nodes, as a simple heuristic, we
assume that each Process is running on a separate node,
and therefore, is mapped to a Node. The node name is
the name of the process, followed by "_Subsystem".

• A role played by a participant (i.e., Pool or Swimlane) is
mapped to a Node. The name of each node is the name
of the corresponding participant followed by "_Client".

• A Message Flow in SecBPMN2 is used to pass messages
between two processes. Since the processes are mapped to
nodes in deployment diagram, a Message Flow is mapped
to a Communication Path that carries the communications
between the corresponding nodes.

• Each Data Object, identified by a name, is mapped to an
Artifact1. The artifact name is the name of the data object
followed by "_Database".

• A role played by a participant (i.e., Pool or Swimlane) is
mapped to a Class. The name of each class will be the

1In earlier UMLsec versions, this information was expressed using compo-
nents in deployment diagrams, which is not supported in UML2. We mapped
the data objects to artifacts which are used to manifest system components.

name of the corresponding participant.
• In SecBPMN2, a security annotation is linked to a specific

element by using a Security Association. In UMLsec, a
dependency between the communicated nodes or classes
is used to show the corresponding security requirements.
Therefore, Security Association is mapped to a depen-
dency in UMLsec diagrams.

• A role played by a participant (i.e., Pool or Swimlane) is
mapped to a Class. The name of each class will be the
name of the corresponding participant.

• Each Data Object is mapped to a Class of the same name.
SecBPMN2 uses data objects to specify dataflow. To
support a technical realization of this dataflow, the ar-
chitectural class diagrams needs to provide appropriate
classes, which are instantiated by objects in the running
system. There can be multiple of these objects as repeated
executions of the process require fresh objects.

• Each Task or Message Event owned by a participant is
mapped to an Operation in the corresponding class of the
participant.

• A Data Association in SecBPMN2 is used to link a task
or an event to a data object. The Data Association is
mapped to an (1 : n) association between the class that
represents the participant owning the task/event, and the
class representing the data object.

The underlying background for our mapping schema ben-
efits from related works aiming to relate BPMN with UML
structural diagrams [28], [29], [30], [13]. However, we ex-
tended the mapping specifications proposed in these works
for supporting the transformation to other UML elements
that are needed for specifying security requirements, such
as dependencies, communication paths, and artifacts. More
details about the mapping specifications are provided as part
of the transformation rule descriptions in [31].

In what follows, we explain our rationale for the mapping
of SecBPMN2 security annotations, as shown in Fig. 4b.

Confidentiality/Integrity (Data Object/Message Flow).
When attached to a data object or a message flow,
Confidentiality and Integrity denote that the contents of
data object or the message can be accessed or modified
only by authorized users [3]. A UMLsec model aligned with



these requirements needs to include three policies: First, a
«secure links» policy in a deployment diagram, to check if
confidentiality and integrity of the data is preserved during
transmissions. As per Table I, encrypting the data on the
communication links can guarantee the confidentiality and
integrity of the data against default adversary, but it does not
shield against insider attackers. Integrity and confidentiality
of the corresponding data can be ensured via access control.
To this end, second, the «abac» stereotype enforces the use
of Role-centric Attribute-Based Access Control. Third, classes
in a class model have dependencies via operation calls. To
ensure that the dependencies between UMLsec classes respect
the security requirements on the data communicated between
them, the «secure dependency» can be used.

Accountability/Integrity (Task): The Accountability and In-
tegrity security SecBPMN2 annotations can be applied to
tasks. In this case, they express the need of monitoring a set of
users when executing the task, and that the functionality of task
should be protected from intentional corruption, respectively.
These notations can be enforced by employing an access
control mechanisms. Therefore, we transformed this security
annotation to the UMLsec «abac» policy.

Transformation rules. Given the mapping schema and the
existing EMF implementations of SecBPMN2 and UMLsec,
we define a set of Henshin transformation rules. The rules
are defined graphically and applied to the input model via an
interpreter engine provided by Henshin. Each rule is specified
in terms of a graphs pattern, where nodes and edges represent
source and target models elements and their connections,
respectively. Fig. 5 shows one of these rules, in which a Confi-
dentiality annotation attached to a message flow is transformed
to a «abacRequire» UMLsec stereotype. Each rule element has
an associated action, such as «preserve» or «create». Elements
with a «preserve» action must be matched in the model to
trigger the rule’s application; elements with a «create» action
describe modifications. Trace elements allow correspondences
between source and target models elements to be maintained,
as is key for establishing traceability of security requirements.
Rule AddAbacRequire adds a «abacRequire» stereotype and
its tagged value right to a given operation if a match for
the whole preserved part is found. The trace element created
together with the «abacRequire» is stored as part of a trace
model, thus establishing traceability between the models. Our
example models in Sect. II illustrate how this rule is applied.

The rules are divided into set of rule groups, being devoted
to particular goals. For space reasons, an abbreviated account
of all transformation rules are given in textual form. A full
textual account is found in [31].

A. Deployment diagram transformation rules (DR):
Based on the mapping specification in Fig. 4, the transfor-
mation to deployment diagrams includes the transformation to
deployment diagram elements, and to stereotypes related to
the UMLsec «secure links» policy. For better readability the
rules are divided into set of groups:

Nodes and Communication paths (DR1). Based on the
mapping schema in Fig. 4a, this set is responsible for produc-
ing nodes, their deployed artifacts and communication paths
from the respective SecBPMN2 elements.

Security (DR2). This set is responsible for transforming
SecBPMN2 security annotations to «secure links» policy based
on the mapping schema in Fig. 4b.

• DR2.1 If a participant carries out a task or an event
that manipulates a Confidentiality- or Integrity-annotated
data object, the communication path between the cor-
responding client and subsystem node is stereotyped as
«encrypted».

• DR2.2 If a participant carries out a task manipulating
a data object that is linked with a security association
to a Confidentiality or Integrity annotation, the Secu-
rity Association is transformed to a «call,secrecy»- or
«call,integrity»-annotated Dependency from the GUI ar-
tifact of the participant to the corresponding artifact of
the data object.

• DR2.3 If two participants are communicating with each
other via a Confidentiality- or Integrity-annotated Mes-
sage Flow, the communication path between the cor-
responding subsystem nodes of the communicated par-
ticipants is stereotyped as «encrypted». In addition, the
communication path between the client and the subsystem
node corresponding to each participant is stereotyped as
«encrypted».

• DR2.4 If two participants communicating with each other
via a message flow that is linked with a security asso-
ciation to a Confidentiality or Integrity annotation, the
Security association is transformed to a «call,secrecy»-
or «call, integrity»-annotated Dependency between the
application artifacts which are deployed on the corre-
sponding subsystems nodes to the participants. In ad-

Fig. 5: Henshin rule for adding «abacRequire» UMLsec stereotype.



dition, a «call,secrecy»- or «call, integrity»-annotated
dependencies are added between the GUI artifact and the
application artifact corresponding to each participant.

• DR2.5 A generated UML deployment model is anno-
tated with «secure links» being tagged with {adver-
sary=default}, if it has the at least two nodes communi-
cated over an «encrypted»- or «Internet»-annotated paths
with «secrecy»- or «integrity»-annotated dependency be-
tween their artifacts.

B. Class diagram transformation rules (CR): Based on
the mapping schema, the transformation to class diagrams
includes the transformation to class diagram elements, and to
stereotypes related to UMLsec’s «abac» and «secure depen-
dency» policies. The rules are divided into a set of groups:

Initialization (CR1). This set is responsible for creating the
UMLsec class diagram with some important core classes to
aggregate information recurring across security requirements,
thus improving readability.

Classes (CR2). Based on the mapping schema in Fig. 4a,
this set is responsible for producing classes and their opera-
tions from the respective SecBPMN2 elements.

Relationships (CR3). This set is responsible for producing
the relationships between the created classes, based on the
mapping schema defined in Fig. 4a.

Security (CR4). This set is responsible for transforming
SecBPMN2 security annotations to UMLsec «abac» and «se-
cure dependency» security policies based on the mapping
specification in Fig. 4b. In the following, we use the TN, DN
and MN as abbreviations for Task Name, Data Object Name
and Message Name respectively.

• CR4.1 If a task is Accountability- or Integrity-annotated,
the corresponding operation to the task is stereotyped
with «abacRequire», being tagged {right=access_TN} or
{right=modify_TN} in case of Accountability or Integrity,
respectively.

• CR4.2 If a participant carries out a task or an event
manipulating a Confidentiality- or Integrity-annotated
data object, (i) the classes for the participant and the
data object are stereotyped as «critical» along with
{secrecy=TN} or {integrity=TN}, (ii) the operation rep-
resenting the task is stereotyped with «abacRequire»,
tagged {right=read_DN} or {right=modify_DN} in case
of Confidentiality or Integrity, respectively, and (iii) a
«call,secrecy»- or «call,integrity»- annotated Dependency
between the classes for the data object and the participant
is created.

• CR4.3 If a participant carries out a task or an event
being the source or the target for a Confidentiality-
or Integrity-annotated message flow, the class for the
participant is stereotyped with «critical» along with {se-
crecy=TN} or {integrity=TN} , (ii) the operation rep-
resenting the task is stereotyped with «abacRequire»,
tagged {right=read_MN} or {right=modify_MN} with
respect to the SecBPMN2 security annotation, and (iii)
a Dependency stereotyped with «call,secrecy» or «call,

integrity» between the classes for the participants is
created.

• CR4.4 If the generated class model has at least one
«abacRequire»-annotated operation, «abac» stereotype is
attached to the generated class "RBAC", along with two
tags {role} and {right}. The former specifies a set of roles,
where roles are the names of all subclasses for "RBAC"
class. The latter needs to specified by the user after the
transformation; it specifies the permissions associated to
each role.

• CR4.5 If the generated class model has at least one an
«critical»- annotated class that is being the source for a
«secrecy»- or «integrity»-annotated dependency, «secure
dependency» stereotype will be attached class model.

Following CR4.3, the example rule AddAbacRequire in
Fig. 5 is used for producing the «abacRequire» stereotype
with the {right=read_MN} tag .

Trace model. As a prerequisite for managing traceability,
our transformation rules create a trace model, consisting of
traceability links between the input and output models. Fig. 6
represents the trace model generated as a result of applying
the Henshin transformation rule in Fig. 5. The trace model
links the SecBPMN2 and UMLsec models. Using the trace
models, one can check whether a UMLsec security stereotype
is in place for each security annotation specified in the
SecBPMN2 model. For example, in Fig. 6 one can see that
the Confidentiality-SecBPMN2 annotation is transformed to
«abacRequire»-UMLsec stereotype.

V. CASE STUDY

To study if the proposed approach satisfies the specified
goals of integrated management and traceability, we applied
it in a case study featuring the System Wide Information
Management (SWIM, [32]) of the Federal Aviation Admin-
istration of the United States. SWIM is a technology program
focusing on information sharing for Air Traffic Management
(ATM) systems. ATM systems consist of a large number of
autonomous and heterogeneous components that interact with
each other to enable ATM operations: pilots, airports per-
sonnel, national airspace managers, weather forecast services,
radars, etc. In such a complex information system, ensuring
security is critical, for security leaks may result in severe

Fig. 6: Example of the generated trace models (excerpt).



consequences on safety and confidentiality. Below, we first
describe and exemplify our application of the approach and
then discuss if the goals are satisfied. The models created for
the case study are provided online at https://figshare.
com/s/051baa54ee849eca8d4e.

SecBPMN2 models. In the first step, we assumed the role
of a business analyst in our process. Therefore, the task was
to create SecBPMN2 models from the given requirements de-
scription. To this end, we analyzed the documentation provided
with the case study focusing on three aspects: (1) Flight plan
negotiation. Every time an airplane enters a new aerospace,
a new flight plan is negotiated with the local authority. To
model the set of procedures which regulate such negotiation
we defined a SecBPMN2 model with 74 elements (data
objects, tasks, events and data associations), 3 participants,
and 22 security annotations (accountability, confidentiality and
integrity). (2) Landing. Landing procedures are executed to
negotiate the last part of the flight plan, which includes the
approach to the airport and the waiting trajectory. We defined
a SecBPMN2 model containing 84 elements, 4 participants,
and 19 security annotations. (3) External services. The new
ATM SWIM architecture permits to use external services for
providing information such as the weather forecast. Services
are selected based on a trust value which is updated every time
a service is used and evaluated. For readability, we created
two separate SecBPMN2 models for this aspect, containing
164 elements, 9 participants, and 30 security annotations in
total.

UMLsec models. We applied our transformation to the
three aspects of the ATM case study described above. The
Flight plan and Landing aspects are each represented by a
SecBPMN2 model, the External services aspect is represented
by two models for readability. Based on the rules in Sect. IV,
a UMLsec deployment and class models are automatically
generated for each SecBPMN2 model.

To illustrate the outcomes, Fig. 2 shows the output model
produced from the input model in Fig. 1. In the deployment
diagram, following the specifications in DR1 the processes
have become subsystem nodes each with an application de-
ployed artifact, while the participants are now client nodes,
each with, GUI as a deployed artifact. For example, Airplane,
a process with one participant, is transformed to two nodes;
the first is the Airplane_Subsystem node with a deployed
artifact called Airplane Process_Application, while the other
is the Airplane_Client node with Airplane_GUI as a de-
ployed artifact. Following the same specification in DR1,
three communication paths are added and the Flight plan
has become a Flight plan_Database artifact deployed on
the Airplane_Subsystem node. Based on DR2.3, each of
Communication Path1, Communication Path2 and Com-
munication Path3 are stereotyped as «encrypted». Follow-
ing the specification of DR2.4, a «call,secrecy,integrity»-
annotated dependency is added between Local authority
Process_Application and Airplane Process_Application.
Accordingly, two «call,secrecy,integrity»-annotated dependen-

cies are added, one is between Airplane_GUI and Airplane
Process_Application, while the other is between Local au-
thority_GUI and Local authority Process_Application. As
a final step for the transformation to the deployment diagram
a «secure links» with {adversary=default} is added to the
diagram based on DR2.5. Due to the fact that most UML
modeling tools do not display tagged values of stereotypes in
the diagram view, we show the tagged value as a note linked
to the corresponding stereotype. The resulted diagram can be
automatically verified against the «secure links» policy.

In the class diagram, following the specifications in CR2,
each participant and data object has become a class. Classes
are annotated with security annotations. For instance, as per
CR4.3, both the Confidentiality and Integrity SecBPMN2
annotations linked to the Flight plan message flow in Fig. 1
are transformed to «abac» and «secure dependency» UMLsec
security policies. First, the transformation to «abac» involved
the attachment of «abacRequire» stereotype along with a
tag {right=read_Flight plan, modify_Flight plan} to Notify
local authority() operation. Again, we show the tagged values
as notes connected to the corresponding stereotype. Second,
following the same specification in CR4.3, the transformation
to «secure dependency» stereotype involved the attachment
of «critical» stereotypes to the corresponding classes of the
participants along with {secrecy=Notify local authority()} and
{integrity=Notify local authority()} as tags. Subsequently, the
Message Flow is transformed to UML «call» Dependency
stereotyped with «secrecy» and integrity. Finally, based on
CR4.1 the transformation of SecBPMN2 Accountability se-
curity annotation involved the attachment of «abacRequire»
along with {right=access_check flight plan} to the check flight
plane() operation. Finally, based on CR4.4-CR4.5 «abac»
and «secure dependency» stereotypes are add to the generated
RBAC class and to class diagram respectively.

Refinement and validation. Since the BPMN-based ap-
proaches do not contain the information required to generate
complete UML models, our framework suggests a refinement
phase where the system developers can split large classes
and specify missing details, such as attributes and association
names. Finally, once the refinement phase is completed, the
system developers can verify the designed UMLsec class dia-
gram against the specified security policies using CARiSMA.
For instance, the deployment diagram in Fig. 2 allows the
secrecy and integrity of the data communicated between
Airplane_Client and Local authority_client nodes to be
preserved against the default attacker pattern, see Table I.
Moreover, as shown in Fig 2, using the «abac» policy, system
developers can specify a list of rights for each role, and
thereby, they can define the set of operations that can be
accessed by a certain subject who plays a specific role in the
system. For example, a given subject plays an airplane role has
an access to the Notify local authority() operation. One can
also observe that the Airplane class and «call» dependency
provide the security level on the Notify local authority()
operation that is required by Local authority class, and thus,



TABLE II: SecBPMN2 and UMLsec Models With the Numbers of: Participants, Data Objects, Message Flows and
Accountability, Confidentiality, and Integrity annotations; Nodes, Classes, and Encrypted Paths, and Abac, AbacRequire,
Critical, Secrecy, and Integrity annotations and Dependencies.

SecBPMN2 UMLsec
Model Pa. DO. MF. Ac. Cf. Ig. No. Cl. EP. Ab. AR. Cr. ST. IT. Dp.
Flight plan 3 6 14 5 7 10 6 12 5 1 10 3 17 26 11
Landing 4 5 15 5 5 9 8 12 7 1 10 4 16 24 16
External services 1 4 4 5 3 2 4 8 11 7 1 6 4 6 11 10
External services 2 5 5 17 4 3 14 10 13 10 1 18 5 8 42 21

the security dependency is preserved. Per comparison between
the source and target models in Figs. 1 and 2 respectively,
one can guarantee that the security requirements are correctly
traced and both models are aligned.

For space reasons, we summarize the overall transforma-
tion results in terms of metrics. Table II denotes the source
and target models of each transformation. Each row rep-
resents one of the four model pairs Flight plan, Landing,
External services 1 and 2. For example, the Flight plan
model contains 3 processes, each with one participant, and
5 Accountability, 7 Confidentiality and 10 Integrity secu-
rity annotations. All artifacts used for the evaluation are
archived at http://www.remodd.org/v1/content/
models2017-bpmn2uml-artifacts.

In our Flight plan input model, the Confidentiality and
Integrity annotations are linked to 10 out of 14 message flows,
where the sources of message flows were generally tasks,
while the targets were message-receive events. To transform
the security annotations, a «encrypted» stereotype is assigned
to the communication paths between the corresponding com-
municated nodes. Based on DR1 and DR2.3, our target
model should include 6 nodes, and 5 «encrypted»-annotated
communication paths as it is matched by the number in the
table. In the class diagram, a «abacRequire» stereotype is
assigned to the linked task (in case of Accountability CR4.1)
and to the source and target task (in case of Confidentiality and
Integrity CR4.3). In contrast to the tasks, the message-receive
events are not human-controlled and, therefore, are not subject
to access control in our transformation rules. 10 out of 23
tasks are a source of a Confidentiality- or Integrity-annotated
message flow, and 5 of them are also Accountability-annotated
tasks. Therefore, we should have in total 10 «abacRequire»
stereotypes for the tasks and 1 «abac» stereotype attached to
RBAC class, as it is matched by the numbers in the table.
Again based on CR4.3, for each Confidentiality or Integrity,
two «critical» stereotypes must be generated each with same
tag type (i.e., secrecy or integrity) and values; the first will
be assigned to the corresponding class of the sender while the
second will be assigned to the recipient class. Since we have in
total 3 classes for the participants, we expect the target model
to have 3 «critical» stereotypes each with one secrecy and
one integrity as tags. In total, the secrecy tags should have 17
values, while the integrity tags should have 26. Table II shows
that this is the case.

In the input model, the annotated message flows can be
grouped into four sender-receiver pairs: (1,2), (2,1), (2,3), and

(3,2). Following the specifications of CR4.3, the number of
«secrecy»-and «integrity»-annotated dependencies in the target
class diagram depends on the number of these pairs: we should
have 4 dependencies in the class diagrams. Conversely, via
DR2.4, the deployment diagram should include 7 «secrecy»-
and «integrity»-annotated dependencies; 4 between the subsys-
tems nodes and 3 between the clients and subsystem nodes.
Therefore, our target model should have in total 11 «secrecy»-
and «integrity»-annotated dependencies, as is the case in the
table. Therefore, we can conclude that the SecBPMN2 security
requirements are enforced in the UMLsec model.

Discussion. This case study demonstrates how our ap-
proach allows security requirements to be managed and traced
throughout the development process.
Integrated management of security requirements across dif-
ferent phases is established via our automated transformation
that integrates the involved languages. As business analysts,
we focused on expressing the organizational requirements
and security requirements. As system engineers, we could
concentrate on designing and implementing the system ar-
chitecture securely, without having to learn the specifics of
business process modeling. From Table II, we can infer that
the automated transformation saved us from re-implementing a
large number of security annotations, which would have been
daunting and error-prone.
Traceability is established via the trace models generated by
our transformation rules. The trace models contain traceability
links from source to target model elements. As one possible
use for these links, an interested stakeholder could check
whether a UMLsec security mechanism is in place for each
security annotation specified in the SecBPMN2 model. There-
fore, trace models are a promising means to increase trust in
the produced models. Altogether, our case study highlights the
potential benefits of integrating SecBPMN2 and UMLsec via
our framework.

Threats to validity and limitations. Two main threats to
external validity are that we emulated the involved expert
stakeholders, rather than involving actual ones, and that we
focus on a single case study. While a key benefit of our
process is its reliance on notations familiar to the involved
users, an empirical usefulness study is left to future work. We
also aim to apply our process to a broader selection of cases.
A threat to internal validity is the lack of a formal validation
of the correctness of our transformation. Our transformation
benefits from the capability to check the output models against



UMLsec security policies, which, however, does not ensure
that the intention of the business analyst is accurately re-
flected. Due to the large variability of possible SecBPMN2
models, our transformation could still be affected by errors.
Finally, we focus on a subset of SecBPMN2 of those security
annotations with an equivalent on the architectural level. We
intend to increase coverage in the future. For instance, the
Non-Repudiation SecBPMN2 annotation can be mapped to
«provable» in UMLsec activity diagrams. Generating activity
diagrams from BPMN models for this purpose would be a
straightforward extension of our transformation.

VI. RELATED WORK

Model-based security analysis. There has been a signif-
icant amount of work in the area of Model-based security
analysis. An overview can be found in [33], which reviews
existing approaches for the safety and security analysis of
model-based object-oriented software designs, and identifies
ways in which these approaches can be improved and made
more rigorous. Some research addresses linking the model to
the code level within model-based security through model-
driven reverse engineering [34], [35]. Other work addresses
the model-based use of security patterns [36], [37]. Further
research makes use of aspect-oriented modeling for model-
based security [38]. [39] proposes an approach for model-
based security verification.

The specification of a UML system architecture model
based on business processes represented by BPMN or UML
activity models has been subject of previous works [28],
[29], [30], [13]. However, except for the following ones,
none of these works considered security aspects during the
transformation.

Automated transformation. In [13], the authors used
QVT [40] to specify a mapping from security-annotated
UML activity models to UML class diagrams. The mapping
is of a one-to-one kind, where each security requirement
is transformed to a class or annotation with same name.
Hence, as stated by the authors, the resulting security policies
remain at a high level of abstraction, representing the view
of business analysts. As result, security experts are needed
for manually refining the security annotations to a technical
security aspects. In contrast, our framework (i) supports the
transformation to two UML structural diagram types in which
security requirements at different design-level views of the
system are captured, and (ii) does not require the involve-
ment of security experts, since high-level security needs are
transformed to verifiable security policies that encapsulate
security knowledge. However, the presence of a security expert
is still preferable. Conversely, the authors in [12] proposed
a method to systematically develop UMLsec design models
from security-annotated requirements models. The require-
ments models in their approach were UML models with secure
problem frame annotations. While this approach makes the
formal validation of UMLsec applicable, it is not tailored
to business analysts, one of the main stakeholder types in
socio-technical systems. In [18], the authors presented the

transformation from misuse-cases [17] to mal-activity models
[41]. Different from UMLsec, mal-activity models are not
verifiable against the specified activities and represents the
view of business analysts.

Manual transformation. Other works have provided in-
formal guidelines for addressing security while transitioning
between stages in the development process. The authors in [42]
proposed an approach to engineer the secure design of a sys-
tem, using UMLsec [5], starting from organizational security
requirements, using Secure Tropos [43]. For the same purpose,
the authors in [44] proposed an approach to generate a UML
class diagram represented by SecureUML [6] from organiza-
tional requirements represented by the KAOS [45] method.
In [25], the authors connects UMLsec security policies with
elicited requirements based on heuristics. This approach takes
as input a set of requirements to predict a suitable UMLsec
security policy for each security-related requirement. However,
in these approaches, the system models must still be built
manually and enriched with security stereotypes, a non-trivial
and error-prone task.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we present a framework for tracing high-level
security requirements to verifiable technical security policies
and, as a result, for bridging the conceptual gap between them.
The main benefit is the management of security needs from
the views of the involved expert stakeholders, in particular,
business analysts and systems engineers, in an integrated
manner. To this end, we integrate the two well-known model-
based security approaches SecBPMN2 and UMLsec via model
transformation. We illustrated the aforementioned benefits in
a case study, in which our framework was suitable to render
the early development stages of an air traffic management
system less error-prone and more systematic. Our results are
not restricted to any particular security extension of BPMN or
UML, but can be applied to other ways of using BPMN and
UML to address security requirements.

In the future, we aim to extend our approach to legacy
situations, in which the UML design models are already given,
rather than developed from scratch. Our mapping between
SecBPMN2 and UMLsec security concepts can provide a
foundation for addressing such legacy scenarios. Moreover, we
aim to generalize our approach to the remaining SecBPMN2
annotation types by mapping them to various UMLsec dia-
grams. We also intend to extend the framework to incorporate
the semantics of both languages, which would allow us to
formally guarantee the correctness of our transformation.
Finally, we also plan to perform a user study to study the
usability of our framework.
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