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Abstract

In this paper we introduce a new method for evaluating the in-
consistency level of a pairwise comparison matrix. The classical Chi-
square index suggests an interesting formal similarity for a consistent
pairwise comparison matrix and, as a consequence, a method for mea-
suring the relative deviation of the elicited preferences from a set of
consistent preferences defined on the basis of the similarity mentioned
above. Contrary to some previously introduced Chi–square–based ap-
proaches, no optimization problems are involved. We verify that the
new index satisfies some recently introduced characterizing properties
of inconsistency indices. Then, by means of numerical simulations, we
compare our index with some other well-known inconsistency indices
and we focus, in particular, on the comparison with Saaty’s consis-
tency index. We discuss some numerical results showing that the new
index is closely related with Saaty’s one but it is more stable with
respect to the number of alternatives.

Keywords: analytic hierarchy process, pairwise comparison matrices,
consistency indices.

1 Introduction

Pairwise comparison is a well established and popular method for ranking
alternatives. The well-known Analytic Hierarchy Process (AHP) by T. Saaty
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(Saaty, 1977), in particular, is based on pairwise comparisons on a ratio
scale and a hierarchical structure of the decisional problem. The eigenvector
method is used to derive the weight vector for the alternatives from each
Pairwise Comparison Matrix A = (aij), PCM in the following.

Measuring the inconsistency of the elicited preferences is a crucial point
of the methodology, since consistency of the decision maker’s judgements is
closely related to their reliability and, as a consequence, to the reliability of
the obtained weights. In order to evaluate how far from consistency a PCM
is, Saaty proposed, in his seminal paper (Saaty, 1977), the first and still
most popular inconsistency index. Saaty’s index is based on the principal
eigenvalue of the PCM and refers to the Frobenius theorem. Nevertheless,
Saaty’s approach was criticized by many authors (Peláez and Lamata, 2003;
Barzilai, 2005; Bana e Costa and Vansnick, 2008; Bozóki and Rapcsák, 2008;
Grzybowski, 2012, 2016) and numerous different approaches to inconsistency
evaluation have been proposed in the literature with many different defini-
tions for inconsistency indices. The majority of the indices introduced so far
are closely related with a particular prioritization procedure and reflect the
global deviation of the elicited preferences aij from the estimated ratio of
weights wi/wj. A comprehensive discussion of all the already known indices
is beyond the scope of this paper. The reader may refer to the introduction
of (Grzybowski, 2016) for a concise and up-to-date description. The relevant
attention and interest of the scientific community on this topic evidences that
no satisfactory agreement has yet been reached on inconsistency evaluation,
but a deeper understanding on the problem is in progress.

We mention some few recent contributions that introduce new points
of view in the debate. Temesi (Temesi, 2011) introduced the distinction
between consistent and error-free matrix. Grzybowski (Grzybowski, 2016)
studied the relationship between inconsistency indices and the quality of
priority vector estimation. Cavallo et al. introduced a consistency index
in the general algebraic framework of an abelian group, see (Cavallo et al,
2012) and other preceding papers by the same authors. Bozóki and Rapcsák
(Bozóki and Rapcsák, 2008), Brunelli et al. (Brunelli et al, 2013a), Kaz-
ibudzki (Kazibudzki, 2016), and Grzybowski (Grzybowski, 2016) proposed
numerical studies aimed at investigating and comparing different inconsis-
tency indices. Sets of axioms for inconsistency indices have been proposed
and discussed by Koczkodaj and Szwarc (Koczkodaj and Szwarc, 2014),
Brunelli and Fedrizzi (Brunelli and Fedrizzi, 2015), Brunelli (Brunelli, 2017)
and Mazurek (Mazurek, 2017). A set of axioms characterizing an incon-
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sistency ranking was proposed by Csató (Csató, 2016). It is interesting to
observe that the studies mentioned above show that some indices behave
very differently from each other, whereas some other indices, even if defined
starting from completely different points of view, share the same proper-
ties and a very similar numerical behavior. This latter case, in our view,
strengthens the reliability of the involved indices and is not at all trivial. A
coherent behavior of seemingly different indices means that they are mutu-
ally supportive as they can bring separate but confirming evidence on the
consistency evaluation.

Our proposal is motivated by the preceding remarks, as we start from a
point of view that is different from the previous approaches. We are con-
fident that our work will help a better understanding of some aspects of
inconsistency evaluation. The starting point of our paper is a technical re-
mark pointed out by Lipovetsky and Conklin in (Lipovetsky and Conklin,
2002). These authors proposed a new interpretation of a pairwise compar-
ison matrix with the aim of identifying what they called ‘unusual and false
observations’. In our opinion, the remark of Lipovetsky and Conklin can
also lead to an interesting new approach to inconsistency evaluation of pair-
wise comparison matrices. Unlike Lipovetsky and Conklin’s approach, our
proposal describes some results we obtained by developing their formal in-
terpretation without assuming any statistical meaning or acknowledgment.
We define our inconsistency index Iχ2(A) of a pairwise comparison matrix A
by means of the corresponding χ2 value associated to A by means of the for-
mal interpretation introduced in (Lipovetsky and Conklin, 2002). Then, we
study index Iχ2(A) both from the theoretical point of view and by means of
numerical simulations. The paper is organized as follows. Section 2 describes
the necessary basic notions and notations on pairwise comparison matrices,
AHP and inconsistency indices. In Section 3 the new inconsistency index is
defined and commented. Then, other known indices referring to Chi–square
are briefly recalled in order to highlight the differences of the various ap-
proaches. In Section 4, some relevant properties of our index are studied
referring to six axioms recently introduced in (Brunelli and Fedrizzi, 2015;
Brunelli, 2017). Numerical results are given in Section 5, where we study
our index in comparison with Saaty’s consistency index as well as with some
other inconsistecy indices. Some final remarks are discussed in Section 6. We
note that an index which estimates the deviation from consistency is often
referred to as ‘consistency index’. Nevertheless, in this paper the term ‘in-
consistency index’ is used, since we consider it more suitable to measure the
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deviation from consistency, taking into account that consistency is always
identified by a single optimal value of the index.

2 Background

Given a set of alternatives X = {x1, . . . , xn} (n ≥ 2), a pairwise comparison
matrix A = (aij)n×n (PCM in the following) is a positive and reciprocal
matrix of order n, i.e. aij > 0, aijaji = 1, ∀i, j. The positive real value aij is
a numerical estimation of the ratio wi/wj, where wi and wj are the weights of
xi and xj respectively (Saaty, 1977). A pairwise comparison matrix is defined
to be consistent if and only if the following transitivity condition holds:

aik = aijajk ∀i, j, k. (1)

If and only if A is consistent, then there exists a priority (or weight) vector
w = (w1, . . . , wn) such that

aij =
wi
wj

∀i, j. (2)

If A is consistent, then the components of the priority vector w can be
obtained by using the eigenvector method (Saaty, 1977) or, more simply, by
using the geometric mean method (Crawford and Williams, 1985):

wi =

(
n∏
j=1

aij

) 1
n

∀i. (3)

Note that some authors pointed out the difference between a ‘consistent
PCM’ and an ‘error–free PCM’ (Temesi, 2011; Grzybowski, 2016). Normal-
ization condition

∑n
i=1wi = 1 is often imposed in order to have uniqueness

of the weight vector. Since it is known that ‘in making paired comparisons
people do not have the intrinsic logical ability to always be consistent’ (Saaty,
1994a), a violation of (1) is to some extent necessarily accepted. Nevertheless,
coherent judgements are clearly considered more preferable and reliable than
contradictory ones and, thus, a satisfactory consistency level has commonly
been regarded as a desirable property. Therefore, a correct inconsistency
evaluation is regarded as a crucial task, and several indices have been pro-
posed in order to quantify the deviation from the condition of full consistency
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(1) or (2). We omit, for brevity, the description of the numerous inconsis-
tency indices proposed in literature (Saaty, 1977; Crawford and Williams,
1985; Golden and Wang, 1989; Koczkodaj, 1993; Duszak et al, 1994; Salo
and Hämäläinen, 1995; Barzilai, 1998; Shiraishi et al, 1998; Fedrizzi et al,
2002; Peláez and Lamata, 2003; Stein and Mizzi, 2007; Fedrizzi and Brunelli,
2009; Cavallo and D’apuzzo, 2009; Ramı́k and Korviny, 2010; Cavallo et al,
2012; Wu and Xu, 2012; Brunelli et al, 2013b; Kou and Lin, 2014; Grzy-
bowski, 2016). The reader can see the references. We only briefly recall the
first introduced and best known index, i.e. the ‘Consistency Index’ by T.
Saaty (Saaty, 1977),

CI(A) =
λmax − n
n− 1

. (4)

In (4), λmax ≥ n denotes the principal right eigenvalue of A. It was proved by
Saaty that λmax = n if and only if A is consistent, whereas all the remaining
n− 1 eigenvalues equal to zero. As a consequence, the rank of A is one and
all columns (rows) are proportional. Index (4) has been normalized by Saaty
as follows, thus obtaining the ‘Consistency Ratio’ CR ,

CR(A) =
CI(A)

RI
. (5)

RI denotes the ‘random index’, which is the mean CI computed over a large
number of randomly generated pairwise comparison matrices of the same
order of A. Saaty computed the random index in his seminal paper (Saaty,
1977) using 50 random matrices for each n. Then, Alonso and Lamata refined
his results (Alonso and Lamata, 2003). Saaty proposes to accept a pairwise
comparison matrix as sufficiently consistent if the consistency ratio CR is
below the threshold 0.1.

Among the most popular indices, we also cite the Geometric Consistency
index (Crawford and Williams, 1985) and the Koczkodaj index (Koczkodaj,
1993).

3 Chi–square based inconsistency index

It was proved in (Lipovetsky and Conklin, 2002) that the entries of a consis-
tent matrix W = (wij) can be written in the form

wij =
(
∑n

k=1wik)(
∑n

h=1whj)∑n
h=1

∑n
k=1whk

. (6)
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Therefore, Lipovetsky and Conklin (Lipovetsky and Conklin, 2002) pointed
out that matrix W can formally be interpreted as a contingency table. Nev-
ertheless, we do not assume any statistical setting and we simply consider
(6) as one of the possible characterizations of a consistent PCM.

Let us now assume that a PCM A = (aij) is obtained by means of the
subjective judgements of an expert. Matrix A is, in general, inconsistent and
we will refer to this matrix as to an ‘empirical’ matrix. Table 1 represents
such a matrix by evidencing the margins which refer to expression (6). In
fact, although property (6) is not satisfied by an inconsistent matrix A, we
can associate to A a consistent matrix E = (eij) which elements eij are
defined similarly to (6),

eij =
(
∑n

k=1 aik)(
∑n

h=1 ahj)∑n
h=1

∑n
k=1 ahk

. (7)

If the values eij are close to the empirical data aij, then matrix A = (aij)
is close to consistency. As noted in the previous section, a pairwise compar-
ison matrix, i.e. a positive reciprocal matrix, is consistent if and only if all
its columns (rows) are proportional. Matrix E = (eij) clearly satisfies this
requirement.

1 2 . . . . n row total
1 a11 a12 . . . . a1n

∑n
j=1 a1j

2 a21 a22 . . . . a2n
∑n

j=1 a2j
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
n an1 an2 . . . . ann

∑n
j=1 anj

column total
∑n

i=1 ai1
∑n

i=1 ai2 . . . .
∑n

i=1 ain
∑n

i=1

∑n
j=1 aij

Table 1: Empirical pairwise comparison matrix

The previous remarks suggest that the χ2 index is a suitable tool to evaluate
the deviation of empirical data aij from the associated consistent ones eij.
Therefore, we define the χ2 index of A as

χ2(A) =
n∑
i=1

n∑
j=1

(aij − eij)2

eij
. (8)
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We remark again that expression (8) is only formally taken from the known
χ2 formula, but we do not assume here any statistical setting. Similarly to
(4), index (8) depends on the order n of matrix A. Then, following Saaty, we
define the χ2−RandomIndex RIn(χ2) as the mean value of χ2(A) computed
over a large number of randomly generated pairwise comparison matrices of
the same order n of A. Values of RIn(χ2) are reported in Table 2 for n from
3 to 8.

n RIn(χ2)
3 6.552
4 21.022
5 43.150
6 72.258
7 108.759
8 151.197

Table 2: Random Index RIn(χ2)

The values in Table 2 are obtained by means of 50,000 randomly generated
PCMs using Saaty’s scale, i.e. aij ∈ {1/9, ..., 9}. We finally define the nor-
malized χ2–based inconsistency index of a matrix A of order n as

Iχ2(A) =
χ2(A)

RIn(χ2)
. (9)

and we call it ‘χ2–based inconsistency index’.

Example 1. Let us consider a pairwise comparison matrix A = (aij) of
order 4,

A =


1 4 5 7

0.25 1 2 4
0.2 0.5 1 2

0.143 0.25 0.5 1

 . (10)

The Chi-square value (8) for (10) is χ2(A) = 0.7399 and the normalized
index (9) is Iχ2(A) = 0.0352. Numerical simulations presented in Section
5, will show that such value can classify matrix (10) as satisfactorily consis-
tent. In order to make a comparison, we compute for (10) also the Saaty’s
Consistency Ratio (5). Since it is CR(A) = 0.0246, matrix A is considered
satisfactorily consistent by both indices.
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3.1 Other Chi–square related inconsistency indices

Other methods referring to Chi squares have been proposed in order to derive
weights from a pairwise comparison matrix and to evaluate its inconsistency.
They are meaningful and correctly justifiable, but they are intrinsically dif-
ferent from our approach. We briefly describe some of these methods, while
the reader can find details in the references. The first four methods described
in the following are based on the optimization of a deviation function. Jensen
(Jensen, 1983) proposed to determine the weight vector w = (w1, ..., wn) by
solving the optimization problem

min
∑n

i=1

∑n
j=1

(
aij−

wi
wj

)2

wi
wj

(11)∑n
j=1wj = 1 , wj > 0, j = 1, ..., n ,

where the value of the objective function in (11) computed in the optimal
solution of the problem is taken as an inconsistency index of matrix (aij).
Jensen’s method was extended by Wang et al. in (Wang et al, 2007) by
allowing the preferences to be expressed both in the multiplicative (aij) and
in the additive (rij) representation and by considering a group of k = 1, ...,m
decision makers with possibly different a priori importance weights hk. Then,
the weight vector w = (w1, ..., wn) is obtained by solving the optimization
problem

min

∑m1

k=1

∑n
i=1

∑n
j=1 hk

(
a
(k)
ij −

wi
wj

)2

wi
wj

+ (12)

∑m
k=m1+1

∑n
i=1

∑n
j=1 hk

(
r
(k)
ij −

wi
wi+wj

)2

wi
wi+wj


∑n

j=1wj = 1 , wj > 0, j = 1, ..., n ,

see reference for details. Z.S. Xu (Xu, 2000) proposed a generalization of
Jensen’s method by considering the following optimization problem

min
∑n

i=1

∑n
j=1

aαij−
(
wi
wj

)α
(
wi
wj

)α (13)∑n
j=1wj = 1 , wj > 0, j = 1, ..., n .
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Recently, Y. Xu et al. proposed a method for priority derivation in the
framework of group decision making (Xu et al, 2015). This method is similar
to Jensen’s one, but refers to incomplete reciprocal preference relations. The
approach proposed in (Lin et al, 2013) by Lin et al. is different from the
four described above since it is based on statistical inference. The authors
estimate the sample variance of the errors between the elicited preferences
aij and the expected ones wi

wj
with a maximum likelihood test.

4 Properties of index Iχ2(A)

In this section we consider a set of six properties introduced in (Brunelli and
Fedrizzi, 2015) and in (Brunelli, 2017) in order to characterize an inconsis-
tency index and we study the satisfaction of these properties by the index
Iχ2 . For sake of brevity, we recall only briefly the six properties. The reader
can refer to (Brunelli and Fedrizzi, 2015; Brunelli, 2017) for a more detailed
description.

The first characterizing property (P1) requires that there exists a unique
real number, say ν, such that the inconsistency index of a matrix is equal
to ν if and only if the matrix is consistent. As remarked in Section 3, it is
aij = eij ∀i, j if and only if A is consistent. Then, index Iχ2(A) given by (9)
is null if and only if A is consistent. Therefore, Iχ2(A) satisfies (P1) with
ν = 0.

The second characterizing property (P2) requires that an inconsistency
index should be independent from the order of the alternatives. More for-
mally, the inconsistency of A must be equal to the inconsistency of PAPT for
any permutation matrix P. From (8) and (9) it follows directly that Iχ2(A)
satisfies also (P2).

The idea underlying property (P3) is the following: if inconsistent pref-
erences are intensified, then a better value of an inconsistency index can-
not be obtained. By ‘preference intensification’ we mean going farther from
complete indifference aij = 1 ∀i, j, which leads clearly to a fully consistent
matrix. Going farther from this uniformity means having stronger judgments
and this should not make their possible inconsistency less evident. The only
transformation aij → f(aij) which can intensify preferences and preserve the
necessary reciprocity structure, namely aijaji = 1, ∀i, j, is

f(aij) = (aij)
k, k > 1. (14)
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This properties was tested by means of numerical simulations and it emerged
that (P3) was always satisfied by Iχ2(A). The simulation framework is the
same described in Sections 5.1 and 5.2. More precisely, we tested property
(P3) for Iχ2(A) on two types of PCMs. The first type is randomly generated
PCMs. The second type is obtained by starting with consistent PCMs and
by applying a perturbation which intensity depends on a parameter σ. We
considered n = 3, ..., 8 and numerous different values of σ. See Sections 5.1
and 5.2 for more details.

The property (P4) is based on the idea that an inconsistency index is
non–decreasing with respect to an elementary modification of a consistent
matrix. More formally, given a consistent pairwise comparison matrix A,
let us modify the single entry apq and, accordingly, its reciprocal aqp. The
property (P4) requires that the larger the change of apq from its consistent
value, the more inconsistent will be the obtained matrix. We tested (P4)
numerically for Iχ2(A) on the same set of matrices as for property (P3),
evidencing that Iχ2(A) satisfies (P4) too.

Property (P5) requires the continuity of an inconsistency index. Conti-
nuity of Iχ2(A) directly follows from continuity of the functions involved in
its definition, see (8) and (9).

The last property, (P6), was recently introduced in (Brunelli, 2017) in
order to complete the set of the first five properties introduced in (Brunelli
and Fedrizzi, 2015). Property (P6) requires the invariance under inversion of
preferences. More formally, the inconsistency of a PCM A must be equal to
the inconsistency of its transpose AT . From the expressions of (8)and (9), it
is straightforward to prove that Iχ2(A) = Iχ2(AT ). Therefore, Iχ2 satisfies
(P6).

To summarize, it is possible to prove that Iχ2(A) satisfies properties (P1),
(P2), (P5) and (P6), whereas properties (P3) and (P4) have been verified by
means of numerical simulations but not formally proved. The satisfaction of
(P3) and (P4) remains, therefore, a conjecture.

5 Numerical results

In this section we present two numerical studies in order to compare the new
index Iχ2 with some other well-known inconsistency indices. Other inter-
esting numerical comparisons between inconsistency indices are proposed in
(Choo and Wedley, 2004; Lin, 2007; Bozóki and Rapcsák, 2008; Grzybowski,
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2012, 2016). First, in Subsection 5.1, we follow an approach similar to that
of Golden and Wang (Golden and Wang, 1989) in order to investigate the
agreement between Iχ2 and Saaty’s consistency ratio CR. The problem of
determining a rigorously justified acceptance threshold for the various in-
consistency indices is an important and non easy question that has been
investigated by several researches. For a deeper discussion on the topic, see
(Bozóki and Rapcsák, 2008; Grzybowski, 2012; Dijkstra, 2013; Grzybowski,
2016). We are aware of the fact that the acceptance threshold 0.1 fixed by
Saaty has no formal justification, since it is purely heuristic. In the follow-
ing, we will refer to this frequently adopted threshold only for comparison
purpose. Then, in Subsection 5.2, we select four other inconsistency indices
among the most relevant ones and we investigate numerically their relation-
ships with index Iχ2 . To this aim, we use three different statistical tools:
scatter plots, Pearson’s correlation coefficient (Pearson, 1920) and Spear-
man’s rank correlation coefficient (Spearman, 1904; Snedecor and Cochran,
1980).

5.1 Index Iχ2(A) versus Saaty’s Consistency Ratio

In order to compare our index Iχ2 with Saaty’s CR (5), we first constructed
the numerical data set with a method similar to the one proposed in (Brunelli
et al, 2013a).

• We generated a set S = {B1, ...,BN} with N = 10, 000 PCMs of order
n obtained by means of a random perturbation on consistent PCMs.
More precisely, the following procedure was repeated N = 10, 000
times: first, a consistent PCM B = (bij) is constructed by setting

(bij) =
(
wi
wj

)
, where (w1, ..., wn) is a randomly generated vector with

wi ∈ [1, 9], so that bij ∈ [1/9, 9]. Then, each consistent PCM is modi-
fied by means of a random perturbation on single elements above the
diagonal bij → bije

β, where β is a random variable with normal distri-
bution, β ∼ N(0, σ). The elements below the diagonal of the PCM are
modified accordingly to preserve reciprocity, bji = 1/bij.

• We computed the inconsistency indices Iχ2(Bj) and CR(Bj) for every
PCM Bj ∈ S.

• We repeated the points described above for n = 3, ..., 8 and for different
values of σ. The larger is the value of σ, the larger is the mean deviation
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from the initial consistent matrix and, as a consequence, the more
inconsistent is, on average, the obtained PCM.

For sake of space, we report in Table 3 the results of a single significant
example of the performed numerical simulations. Upon request, we may pro-
vide the interested reader with other similar results in tabular form. Table 3
reports the acceptance or rejection frequencies for 10, 000 perturbed matrices
with σ = 0.4 as for their satisfaction of the consistency thresholds. For both
indices (5) and (9) the frequently adopted Saaty’s threshold 0.10 is assumed.
Following the well-known approach of Golden and Wang (Golden and Wang,
1989), in the columns of Table 3 the following results are reported.

• Column F(A,A) contains the number of PCMs, out of the original
10, 000, that satisfy both the consistency threshold of CR and Iχ2 ,
so that they are classified as sufficiently consistent by the two indices.

• Column F(A,R) contains the number of PCMs, out of the original
10, 000, that satisfy the consistency threshold of CR but not the one
of Iχ2 , so that they are classified as sufficiently consistent by CR but
rejected by Iχ2 .

• Column F(R,A) contains the number of PCMs, out of the original
10, 000, that satisfy the consistency threshold of Iχ2 but not the one
of CR, so that they are rejected by CR but classified as sufficiently
consistent by Iχ2 .

• Column F(R,R) contains the number of PCMs, out of the original
10, 000, that do not satisfy the consistency threshold of CR neither
the one of Iχ2 , so that they are rejected by both indices.

• Column F(A,*) contains the total number of PCMs, out of the original
10, 000, that satisfy the consistency threshold of CR, no matter the
result for index Iχ2 .

• Column F(*,A) contains the total number of PCMs, out of the original
10, 000, that satisfy the consistency threshold of Iχ2 , no matter the
result for index CR.

• Column ‘agreement’ contains the total number of PCMs, out of the
original 10, 000, that are classified in the same way by CR and Iχ2 ,
that is F(A,A) + F(R,R).
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n F(A,A) F(A,R) F(R,A) F(R,R) F(A,*) F(*,A) agreement
3 8361 0 669 970 8361 9030 9331
4 9059 30 506 405 9089 9565 9464
5 9547 43 245 165 9590 9792 9712
6 9833 36 76 55 9869 9909 9888
7 9921 28 36 15 9949 9957 9936
8 9955 20 15 10 9975 9970 9965

Table 3: Comparing acceptance/rejection frequencies of CR and Iχ2

Let us make some observations and comments from the results in Table
3:

• There is a good agreement between CR and Iχ2 in classifying con-
sistency of PCMs, as it emerges from the data in the last column of
the table. Note that other known indices behaves differently from CR
(Brunelli et al, 2013a), whereas other indices show even a more closer
relationship (Grzybowski, 2016).

• The behavior of Iχ2 is more stable than CR with respect to n: the
coefficient of variation of elements in column F(A,*) is 0.067 whereas
the corresponding value for column F(*,A) is 0.037. From this point
of view, index Iχ2 is more fair than CR in classifying consistency of
PCMs with respect to different dimensions n. To support the previous
findings, we report in Table 4 the mean values µCR, µIχ2 and the stan-
dard deviations σCR, σIχ2 of CR and Iχ2 respectively, as obtained from
the data set S described above.

n µCR σCR µIχ2 σIχ2
4 0.0462 0.0382 0.0357 0.0306
5 0.0443 0.0266 0.0361 0.0230
6 0.0444 0.0204 0.0379 0.0200
7 0.0437 0.0166 0.0378 0.0160
8 0.0439 0.0138 0.0393 0.0142

Table 4: Mean and standard deviation of CR and Iχ2 in set S

The same conclusion on the stability with respect to n holds also for
different values of σ, that is for different inconsistency levels.

• An interesting finding emerges from the comparison of the results in
Table 3 with other similar results obtained with different values of σ.
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It concerns a shortcoming of the CR which may occur for small values
of n, in particular for n = 3. It is known that some 3× 3 matrices with
apparently large inconsistency may have a CR below the threshold
0.1 and are therefore accepted as sufficiently consistent. In fact, Saaty
himself refined the 0.1 rule by suggesting 0.05 threshold for 3×3 PCMs
and 0.08 threshold for 4×4 PCMs (Saaty, 1994b). This remark induced
the common opinion that CR is less demanding for PCMs with small
n than it is for large n. From our study it emerges that this is not true
in general, since the behavior depends on the set of matrices which
is considered. More precisely, this behavior is limited to the case of
matrices with large inconsistency, i.e. to the case of large values of σ.
In this case, data show that the percentage of matrices accepted as
sufficiently consistent decreases as n increases. On the contrary, in the
case of nearly consistent matrices, i.e. small values of σ, the percentage
of matrices accepted as sufficiently consistent increases as n increases.
As an example, see column F(A,*) of Table 3.

5.2 Numerical comparison with other inconsistency in-
dices

Since the seminal work of Saaty in the 70’s, a large number of inconsistency
indices has been proposed in the literature. Recent studies were devoted
to compare numerically some of these indices (Bozóki and Rapcsák, 2008;
Grzybowski, 2012; Brunelli et al, 2013a; Kazibudzki, 2016). It is beyond the
scope of this paper to present a detailed comparison between our new pro-
posed index Iχ2(A) and all the already known inconsistency indices. There-
fore, we chose only few of them, selected among the most relevant ones, in
order to have the possibility of making some comments and remarks on nu-
merical comparison examples. In particular, we selected Saaty’s consistency
ratio CR, the index CI∗ of determinants by Peláez and Lamata (Peláez and
Lamata, 2003), the index GW by Golden and Wang (Golden and Wang,
1989) and the geometric consistency index GCI by Crawford and Williams
(Crawford and Williams, 1985; Aguarón and Moreno-Jiménez, 2003). The
detailed definitions of the cited indices can be found in the corresponding
references.

As in (Brunelli et al, 2013a), we consider two classes of matrices: consis-
tent PCMs perturbed with small random noise, like in the previous subsec-
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tion, and randomly generated PCMs. Clearly, the former class emulates a
real world case, whereas the latter is a neutral benchmark case.

In both cases, we first compare Iχ2 with the other indices graphically, by
means of scatter plots. Then, we compute Pearson’s correlation coefficient
between Iχ2 and each one of the selected indices in order to highlight the linear
correlation between them. Finally, by means of Spearman’s rank correlation
coefficient, we study the comonotonicity of the association between Iχ2 and
each one of the selected indices.

Case 1: consistent PCMs perturbed with small random noise We

consider a set of PCMs generated as described in Subsection 5.1, with n = 6
and σ = 0.4. Nevertheless, in order to have a better graphical rendering, the
number of PCMs is reduced to 1, 000. We chose to generate PCMs perturbed
by σ = 0.4 since this corresponds to a reasonably low level of inconsistency, as
could be found in a real-world case (see Table 3). The graphical comparisons
between Iχ2 and the other indices are presented in Figure 1. Let us describe,
as an example, the scatter plot in Figure 1a. Each point in the plot represents
a PCM, say Bj, the coordinates being respectively the inconsistency values
Iχ2(Bj) and CR(Bj) for that matrix. The plots in Figures 1b, 1c and 1d are
constructed analogously.

A simple look into the four plots suggests that there is a good linear cor-
relation between Iχ2 and CR, GCI, CI∗ respectively, whereas a weaker linear
correlation is evidenced between Iχ2 and GW . In order to precisely evaluate
this correlation, we computed Pearson’s correlation coefficient ρ between Iχ2

and each one of the remaining indices. We used the set S = {B1, ...,BN}
of PCMs described in Subsection 5.1, with N = 10, 000. Given two incon-
sistency indices, say Ii and Ij, let us consider the two associated sets of
inconsistency values {Ii(B1), ..., Ii(BN)} and {Ij(B1), ..., Ij(BN)}. We com-
puted the corresponding Pearson Correlation Coefficient ρ(i, j) for different
values of n and σ,

ρ(i, j) =

∑N
p=1(Ii(Bp)− Īi)(Ij(Bp)− Īj)

(N − 1)sisj
, (15)

where Īi and si are the mean and the standard deviation of Ii(Bp), respec-
tively. Analogously, Īj and sj are the mean and the standard deviation of
Ij(Bp). As an example, the results for n = 6 and σ = 0.4 are reported in
Table 5.
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Figure 1: Graphical comparison between Iχ2 and four other indices, case 1.

ρ CR CI∗ GW GCI
Iχ2 0.9264 0.9238 0.8333 0.9255

Table 5: Pearson’s correlation coefficient ρ between Iχ2 and the other four indices,
case 1.

Clearly, the numerical values in Table 5 confirm the previous remarks on the
linear correlations between the indices.

Pearson’s correlation coefficient ρ measures the linear correlation between
pairs of observations. Nevertheless, two sequences of data may be strongly
related even if the relationship is highly non linear. Spearman’s rank corre-
lation coefficient, for example, measures to which extent the pairs of obser-
vations are comonotone, no matter the linearity of the relationship. More
precisely, Spearman coefficient compares the way two indices rank the ma-
trices of a fixed set of PCMs. If two indices produce the same ranking, from
the best matrix to the worst one, then Spearman coefficient reaches its max-
imum value 1. This means that the two indices are related by a monotone
increasing function. Let r(Ii(Bp)) be the rank of matrix Bp according to
inconsistency index Ii and r(Ij(Bp)) be the rank of matrix Bp according to
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inconsistency index Ij. Note that each index Ii (or Ij) induces a ranking, or
ordering, in the set S. For example, r(Ii(Bp)) = 1 means that index Ii put
matrix Bp at the first place, i.e. it considers Bp the most consistent one in
the set. Spearman coefficient is defined as

%(i, j) = 1−
6
∑N

p=1 d
2
p

N(N2 − 1)
, (16)

where d2p = [r(Ii(Bp))− r(Ij(Bp))]
2. For the set S of PCMs described above,

we computed Spearman coefficient (16) between Iχ2 and the other four in-
dices. As an example, we again report the results for n = 6 and σ = 0.4 in
Table 6.

% CR CI∗ GW GCI
Iχ2 0.9473 0.9469 0.8659 0.9470

Table 6: Spearman’s coefficient % between Iχ2 and the other four indices, case 1.

From the data in Table 6, it can be observed that also for what concerns
comonotonicity, there is a good agreement between Iχ2 and CR, CI∗, GCI,
respectively. Similarly to what has been noted for linear correlation, there is
a weaker relationship between Iχ2 and GW .

Case 2: Randomly generated Pairwise Comparison Matrices

We repeated the same study as in case 1, but with a set of randomly generated
reciprocal PCMs. More precisely, we generated a set T = {A1, ...,AN} with
N = 10, 000 PCMs of order 6 by randomly sampling the upper diagonal
entries from Saaty’s scale

{1/9, 1/8, . . . , 1/2, 1, 2, . . . , 8, 9},

and consequently we computed the lower diagonal entries according to reci-
procity, aji = 1/aij. On this matrix set T we performed the graphical com-
parisons by means of scatter plots, we computed Pearson’s correlation coeffi-
cients and Spearman’s rank correlation coefficients similarly to what we did
in case 1. The results are reported in Figure 2, Table 7 and Table 8.

By comparing Figure 1 and Figure 2, we can observe that the numerical
values in the latter are obviously much larger than the ones in the former.
Nevertheless, the reported shapes are sufficiently similar to confirm the type
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Figure 2: Graphical comparison between Iχ2 and four other indices, case 2.

ρ CR CI∗ GW GCI
Iχ2 0.9534 0.8764 0.8522 0.9348

Table 7: Pearson’s correlation coefficient ρ between Iχ2 and the other four indices,
case 2.

of relationship between indices even for different sets of PCMs. Note that
in Figure 2 the mean values of Iχ2 and CR are both equal to 1. This is
coherent with definitions (5) and (9) where the indices are normalized with
their random value. The results in Tables 5, 6, 7 and 8 confirm a strong
relationship between Iχ2 and CR. The relationship between Iχ2 and GCI is
slightly weaker but still good. The same holds for CI∗, whereas the weakest
relationship is between Iχ2 and GW .

6 Final remarks and future work

The interest of the scientific community on the problem of consistency eval-
uation is evidenced by the large number of papers recently published on this
topic in highly rated journals. Our proposal of an alternative way of measur-
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% CR CI∗ GW GCI
Iχ2 0.9533 0.9054 0.8529 0.9362

Table 8: Spearman’s coefficient % between Iχ2 and the other four indices, case 2.

ing inconsistency through the newly introduced index Iχ2 is not focused on
proving that the already known indices behave worse than ours. The aim of
our paper is to contribute to a more deep understanding of some important
aspects of the problem, being aware that all the proposed indices have pros
and cons. We consider as particularly interesting the fact that inconsistency
indices defined with completely different approaches share very similar prop-
erties. As an example, we verified this fact by considering Iχ2 and Saaty’s
CR. Nevertheless, this interesting outcome apply also to the index studied
in (Grzybowski, 2016). In our view, this coherent behavior supports from
independent points of view what can be considered a common way of mea-
suring inconsistency. Future research could clarify this point. The proof that
Iχ2 satisfies properties (P3) and (P4) still remains an open problem that we
will investigate in future. In our future research work, we also aim to study
the computational complexity of index (9) and to compare it with that of
other indices. We plan to extend the comparison study described in Section
5.2 to other inconsistency indices too, in order to have more complete and
reliable outcomes.
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