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Abstract. Let X(R) be a geometrically connected variety defined over R and

such that the set of all its (also complex) points X(C) is non-degenerate. We

introduce the notion of admissible rank of a point P with respect to X to be the
minimal cardinality of a set of points of X(C) such that P ∈ 〈S〉 that is stable

under conjugation. Any set evincing the admissible rank can be equipped with

a label keeping track of the number of its complex and real points. We show
that, in the case of generic identifiability, there is an open dense euclidean

subset of points with certain admissible rank for any possible label. Moreover

we show that if X is a rational normal curve than there always exists a label
for the generic element. We present two examples in which either the label

doesn’t exists or the admissible rank is strictly bigger than the usual complex
rank.

Introduction

A very important problem in the framework of tensor decomposition is to under-
stand when a given real tensor T can be written as a linear combination of real rank
1 tensors with a minimal possible number of terms; that number is called the rank
of T . Applications are often interested in knowing which are the ranks for which
is possible to finding an euclidean open set of tensors with that given rank (typical
ranks). For the specific case of tensors, computing the rank of T corresponds to
finding the smallest space spanned by points on the real Segre variety that contains
the projective class of T (multiplications by scalars does not change the rank). One
can clearly define all these concepts for any variety X and saying that the real rank
of P ∈ 〈X〉 is the minimal cardinality of a set of points of X whose span contains
P . In order to be as much as general as possible we will always work with a real
field K instead of over R and its real closure R. We will indicate with C := R(i)
the algebraic closure of R. The reader not interested in abstract fields may take R
instead of R and C instead of C.

We introduce the notion of admissible rank rX,R(P ) of a point P (see Definition
12) to be the minimal cardinality of a set S ⊂ X(C) that is stable under the
conjugation action and such that P ∈ 〈S〉. Any such a set can be labelled with the
number of its the real points. Clearly the label of such an S is also a label for P .

A very initial result that one can show on admissible rank and label of a de-
composition regards the case in which a point has a unique decomposition where
clearly the label is uniquely associated to it. In this case it is possible to prove that
if the generic element is identifiable, then the set of all real points with that rank
is dense for the euclidean topology (see Theorem 3).
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A “ partial particular case ” of this situation is the case in which X is a rational
normal curve. When the curve has odd degree, then the generic homogeneous
bivariate polynomial of that degree is identifiable, so in this case we can apply
the result just described. But if the rational normal curve is of even degree, then
Theorem 3 does not apply. Anyway we can completely describe the situation for
rational normal curves with the following theorem.

Theorem 1. Let X ⊂ Pd, d ≥ 2, be a rational normal curve defined over R. Then
there is a non-empty open subset U ⊂ Pd(R) such that Pd(R) \ U has euclidean
dimension < d and each q ∈ U has admissible rank d(d+ 1)/2e.

After the initial result for the admissible rank in the identifiable case, it is possible
to handle the cases in which there is a finite odd number of decompositions for the
generic element and prove that there is an open set for the euclidean topology made
by points having the admissible rank of the generic element (see Proposition 3 and
Example 1).

The behavior of rational normal curves is peculiar. In fact it is not always true
that if we don’t have generic identifiability then we can find a label for the generic
element (remark that the identifiability of the generic element is quite rare). In
Section 3.4 we show an example of this phenomenon that uses an elliptic curve:
we can explicitly build an euclidean neighborhood of a generic point of P3(R) such
that no points in that neighborhood have a label with respect to the Variety of
Sum of Powers V SP (P ) (see Definition 16). However in this case V SP (P ) is finite
and we do not have a positive dimensional example that could be very interesting
if it exists.

The last question that we like to address is what happens when the complex
rank is smaller than the admissible rank. For a given P ∈ Pr(R) consider the set
S(P,X, C) of all finte sets of points S ⊂ X(C) evincing the rank rX(C)(P ) of P (cf.
Definition 1). Notice that such an S is a constructible subset of Pr(C) invariant
by the conjugation action, hence it is defined over R and S ∈ S(P,X, C)(R) if and
only if S is fixed by the conjugation action, i.e. if and only if S has a label (s, a)

for some a with 0 ≤ a ≤
⌊
rX(C)(P )

2

⌋
. In this case P has admissible rank rX(C)(P ) if

and only S(P,X, C)(R) 6= ∅. Hence if rX(C)(P ) < rX,R(P ) then S(P,X, C)(R) = ∅.
In Example 3 we show this behavior by constructing a very special homogeneous
polynomial in n ≥ 2 variables and even degree d ≥ 6 such that rX(C)(P ) = 3d/2 <
rX,R(P ), ](S(P,X, C)) = 2 and S(P,X, C)(R) = ∅.

Acknowledgments: We want to thank G. Ottaviani for very helpful and con-
structive remarks.

1. K-dense and K-typical ranks

Let K be any field with characteristic zero and let K denote its algebraic closure.
Let X be a geometrically integral projective variety defined over K such that X(K)
is Zariski dense in X := X(K). We fix an inclusion X ⊂ Pr defined over K and
such that X spans Pr, i.e. no hyperplane defined over K contains X(K). Since
X(K) is assumed to be Zariski dense in X, the non-degeneracy of X is equivalent
to assuming that X(K) spans Pr(K) over K.
Now, Pr(K) and Pr(K) have their own Zariski topology and the Zariski topology
of Pr(K) is the restriction of the one on Pr(K).
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Definition 1. [X-rank and X(K)-rank] For each point P ∈ Pr(K) (resp. P ∈
Pr(K)) the X-rank rX(P ) (resp. the X(K)-rank rX(K)(P )) of P is the minimal

cardinality of a subset S ⊂ X (resp. S ⊂ X(K)) such that P ∈ 〈S〉, where 〈 〉
denotes the linear span. We say that S evinces rX(P ).

Definition 2. For each integer a > 0 let

(1) UK,a :=
{
P ∈ Pr(K) | rX(K)(P ) = a

}
be the subset in Pr(K) of the points of fixed X-rank equal to a as in (1). We say
that a is a K-dense rank if the set UK,a is Zariski dense in Pr(K).

Since Pr(K) is Zariski dense in Pr(K), then UK,a is a dense subset of Pr(K).

Definition 3 (Generic X(K)-rank). The generic X(K)-rank of Pr(K) is the X-
rank of the generic element of Pr(K).

The minimal K-dense rank is just the generic X(K)-rank of Pr(K) (Lemma 1).

Definition 4. A field K is real if x1, . . . , xn ∈ K are such that
∑n

i=1 x
2
i = 0 then

xi = 0 for all i = 1, . . . , n.

We recall that a field K admits an ordering if and only if −1 is not a sum of
squares ([10, Theorem 1.1.8]). It is possible to prove (cf. [10, Chapter 4]) that
when K admits an ordering, then the filed K is real.

In the real field R the notion of typical rank has been introduced by various
authors (see e.g. [3], [5], [6], [7], [14]): An integer r is said to be an X-typical rank
if the set UR,r contains a non-empty subset for the euclidean topology of Pr(R).

We can also introduce this notion of typical rank into our setting, but we have
to assume that K is real closed.

Definition 5. A real field is closed if it does not have trivial real algebraic exten-
sions.

We recall that for any ordering ≤ of K, there is a unique inclusion K → R of
ordered field with R real closed ([10, Theorem 1.3.2]).

If K is real closed, then the sets X(K) and Pr(K) have the euclidean topology
in the sense of [10, p. 26] where the euclidean topology of Kn comes from the
ordering structure of K, i.e. the euclidian topology on Kn is the topology for which
open balls form a basis of open subsets (cf. [10, Definition 2.19]).

Definition 6 (Typical X(K)-rank). We say that a is a typical X(K)-rank if UK,a

contains a non-empty subset for the euclidean topology of Pr(K).

As in the case K = R the minimal typical rank is the generic rank ([7, Theorem
2]). The set of all typical ranks has no gaps, i.e. if a and b ≥ a + 2 are typical
ranks, then c is typical if a < c < b ([3, Theorem 2.2]).

Notation 1. If K is contained in a field F and S ⊆ Pr(K), let 〈S〉F denote the
linear span of S in Pr(F ).

Lemma 1. Each set UK,a is constructible. If K is real closed, then each set UK,a

is semialgebraic.



4 EDOARDO BALLICO AND ALESSANDRA BERNARDI

Proof. Since UK,1 = X(K) is Zariski closed, we may assume a > 1 and that
G := ∪c<aUK,c is constructible.

There is an obvious morphism from the set E ⊂ X(K)a of all a-uple of linearly
independent points to the Grassmannian G(a− 1, r)(K) of all (a− 1)-dimensional
K-linear subspaces of Pr(K):

φ : E → G(a− 1, r)(K).

As usual let I := {(x,N) ∈ Pr(K) × G(a − 1, r)(K) |x ∈ N} be the incidence
correspondence and let π1 : I → Pr(K) and π2 : I → G(a − 1, r)(K) denote the
restrictions to I of the two projections.
Now U(K, a) is the intersection with Pr(K) \ G of π1(π−12 (φ(E)). Obviously the
counter-image by a continuous map for the Zariski topology of a constructible set
is constructible. The image of a constructible set is constructible by a theorem of
Chevalley [16, Exercise II.3.19]. If K is real closed, it is sufficient to quote [10,
Proposition 2.2.3], instead of Chevalley’s theorem. �

Proposition 1. If K is a real closed field, then an integer is K-typical if and only
if it is K-dense.

Proof. Since UK,a is semialgebraic (Lemma 1), it is Zariski dense in Pr(K) if and
only if it has dimension r (or, equivalently, if and only if it contains a non-empty
open subset in the euclidean topology). Since K is infinite, Pr(K) is Zariski dense
in Pr(K). Hence UK,a is Zariski dense in Pr(K) if and only if it is Zariski dense in
Pr(K). Thus a is K-dense if and only if it is K-typical. �

Remark 1. Assume K real closed and let L ⊃ K be any real closed field containing
K. By Proposition 1 the K-typical ranks of X(K) ⊂ Pr(K) and of X(L) ⊂ Pr(L)
are the same (this also may be proved directly from the Tarski-Seidenberg principle).
In particular this means that the typical ranks of real tensors and the typical rank of
real homogeneous polynomials are realized over the real closure of Q. Moreover, if
a is typical, then UK,a is dense in the interior of U(L, a) for the euclidean topology.

A very important result (see [10, Chapter 4]) is that for any real field K, there
exists a unique real closed field R such that K ⊆ R.

Theorem 2. Assume that K admits an ordering, ≤, and let R be the real closure
of the pair (K,≤). Assume that X(K) is dense in X(R) in the euclidean topology.
Then every R-typical rank of X(R) is a K-dense rank for X(K).

Proof. Let U ⊂ Pr(R) be an open subset for the euclidean topology formed by
points with fixed X(R)-rank equal to a. Let E ⊂ X(R)a be the set of all linearly
independent a-ples (Q1, . . . , Qa) of distinct points. For each (Q1, . . . , Qa) ∈ E, we
have an (a− 1)-dimensional R-linear space 〈{Q1, . . . , Qa}〉R. By assumption there
is an open subset F ⊂ E in the euclidean topology such that the union Γ of all
〈{Q1, . . . , Qa}〉R contains all points of U . Since X(K) is dense in X(R) for the
euclidean topology, the set E(K) is dense in E for the euclidean topology. Hence
the subset Γ′ of Γ formed by the R-linear spans of elements of E(K) is dense in Γ
and hence its closure in the euclidean topology contains U . Since the closure in the
euclidean topology of the set Γ′′ ⊂ Γ′ formed by the K-linear spans of elements of
E(K) contains Γ′, every R-typical rank is a K-dense rank. �
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Remark 2. The condition that X(K) is Zariski dense in X(K) is very restrictive
if K is a number field and X has general type. For example if X is a curve of
geometric genus ≥ 2, then it is never satisfied. But it is not restrictive in the two
more important cases: tensors (where X is a product of projective spaces with the
Segre embedding) and degree d-homogeneous polynomials (where X = Pn, and the

inclusion X ⊂ P(n+d
n )−1 is the order d Veronese embedding). It applies also to

Segre-Veronese embeddings of multiprojective spaces (the so-called Segre-Veronese
varieties).
If K has an ordering ≤ and R is the real closure of (K,≤), then X(K) is dense
in X(R) for the euclidean topology, because Kn is dense in Rn for the euclidean
topology. The set of typical X-ranks may be very large ([5], [6, Theorem 1.7] and
[3, Theorem 2.2]).

2. Join, set-theoretic K-join and K-join

We describe now the situation of more than only one variety. First of all we
need to distinguish if the join of two ore more varieties is defined over Pr(K) or
over Pr(K). This will allow to introduce the notion of rank with respect to join
varieties and the “ label ” associated to a decomposition of an element. We will
label a decomposition of a point with the number of its Pr(K) elements.

Definition 7 (Join). Let X,Y ⊂ Pr(K) be integral varieties over K. We define
the join [X;Y ] of X and Y to be the closure in Pr(K) of the union of all lines
spanned by a point of X(K) and a different point of Y (K) (if X and Y are the
same point Q we set [X;Y ] := {Q}).

The set [X;Y ] is an integral variety of dimension at most min{r, dim(X) +
dim(Y ) + 1}.

Definition 8. If we have s ≥ 3 integral varieties Xi ⊂ Pr(K), with 1 ≤ i ≤ s, we
define inductively their join [X1; · · · ;Xs] by the formula

[X1; . . . ;Xs] := [[X1; . . . ;Xs−1];Xs].

The join is symmetric in the Xi’s. If X and Y are defined over K, then [X;Y ]
is defined over K and [X;Y ](K) contains the closure (in the Zariski topology) of
[X;Y ] ∩ Pr(K), but it is usually larger (even if K is real closed and X(K) and
Y (K) are dense in X(K) and Y (K)).

Definition 9 (Set theoretic K-join and K-join). Assume that Xi(K) is Zariski
dense in Xi(K) for all i. The set-theoretic K-join ((X1; . . . ;Xs))K ⊆ Pr(K) of
X1, . . . , Xs is the union of K-linear subspaces spanned by points Q1, . . . , Qs with
Qi ∈ Xi(K) for all i.

The K-join [X1; . . . ;Xs]K is the Zariski closure in Pr(K) of ((X1; . . . ;Xs))K .

Take geometrically integral projective varieties Xi, i ≥ 1, defined over K and
equipped with an embedding Xi ⊂ Pr defined over K. We allow the case Xi = Xj

for some i 6= j (in the case Xi = X for all i’s we would just get the set-up of
Proposition 1 and Theorem 2). We assume that each Xi(K) is Zariski dense in
Xi(K) and that ((X1; . . . ;Xh))K = Pr(K) for some h. The latter condition implies
that [X1; . . . ;Xh] = Pr(K).
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Definition 10 (Rank and label with respect to join). Fix a point Q ∈ Pr(K). The
rank rXi,i≥1(Q) is the minimal cardinality of a finite set I ⊂ N\{0} such that there
is Qi ∈ Xi(K) ⊂ Pr(K), i ∈ I, with Q ∈ 〈{Qi}i∈I〉. Any I as above will be called
a label of Q.

In this new setup we can re-define UK,a of (1) more generally.

Notation 2. Let UK,a denote the set of all points of Pr(K) with fixed rank a with
respect to the sequence of varieties Xi, i ≥ 1 as in Definition 10.

With this extended notion of UK,a the Definitions 2 and 6 of K-dense and typical
rank respectively can be re-stated here verbatim.

Remark 3. The statements and proof of Proposition 1 and Theorem 2 work ver-
batim in this more general setting. For the generalization of Theorem 2 we require
that each Xi(K) is dense in X(R) in the euclidean topology.

The more general set-up clearly covers the tensor cases where X is the Segre or
the Segre-Veronese variety. For example it applies to any Xi being closed subvari-
eties of Pn1 × · · · × Pnk and then considering the Segre embedding of the multipro-
jective space Pn1 × · · · × Pnk into Pr with r+ 1 = Πk

i=1(ni + 1). For instance, each
Xi may be a smaller multiprojective space (depending on less multihomogeneous
variables). If Xi = Pn1×· · ·×Pnk for sufficiently many indices, any rank is achieved
by a set I such that Xi = Pn1 × · · · × Pnk for all i, but even in this case there may
be cheaper sets J ’s (i.e. with ](J) = ](I), but Xi ( Pn1×· · ·×Pnk for some i ∈ J).
The case of Segre-Veronese embedding of multidegree (d1, . . . , dk) of Pn1 × · · ·Pnk

(here r + 1 =
∏k

i=1

(
ni+di

ni

)
), is completely analogous.

3. On the “ generically identifiable ” case

Let R be a real closed field as in Definitions 4 and 5 and take C := R(i) to be the
algebraic closure of R (for these fundamental facts we always refer to [10]). Now X
is a geometrically connected variety defined over R with a fiexd embedding X ⊂ Pr

and we assume that X(C) is non-degenerate, i.e. X(C) spans Pr(C).

Definition 11 (X-rank). For each P ∈ Pr(C) the X-rank of P is a minimal
cardinality of a set S ⊂ X(C) such that P ∈ 〈S〉.

We want to consider the “ conjugation action ” on the elements appearing in a
decomposition of P .

Notation 3. Let σ : C → C be the field automorphism with σ(x) = x for all x ∈ R
and σ(i) = −i.

Remark that the map σ just introduced acts (not algebraically) on X(C) and
Pr(C) with σ2 as the identity and with X(R) and Pr(R) as its fixed point set.
Note that if dim(X) = n and R = R, then dim(X(C) \ X(R)) = 2n and hence,
topologically, a pair of complex conjugate points of X(C) \X(R) “ costs ” as two
points of X(R). It seems to us that the same should be true for the algorithms
used in the case of the tensor decomposition or the decomposition of degree d
homogeneous polynomial as a sum (with signs if d is even) of d powers of linear
forms.
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Definition 12 (Admissible rank). The admissible rank rX,R(P ) of a real point
P ∈ Pr(R) is the minimal cardinality of a possibly complex set S ⊂ X(C) such that
P ∈ 〈S〉 and σ(S) = S.

As we did in Definition 10, we can again keep track of the elements appearing
in a decomposition of a point by labeling those that are real.

Definition 13 (Label of S). In any finite set S ⊂ X(C) such that σ(S) = S there

are a pairs of σ-conjugated points of X(C) \X(R), with 0 ≤ a ≤
⌊
](S)
2

⌋
(the other

(](S)− 2a) points of S are in X(R)).
We say that (](S), a) is the label of S. If S evinces the admissible rank of P ,

then we say that (rX,R(P ), a) is a label of P .

Remark 4. Fix a finite set S ⊂ X(C). The set σ(S) is finite and ](σ(S)) = ](S).
It is very natural to say that S is defined over R if and only if σ(S) = S. Clearly
if σ(S) = S, then σ sends bijectively S onto itself and the label a of Definition 4 is
the number of pairs {p, σ(p)}, p ∈ X(C) \X(R), contained in S, while ](S)− 2a =
](X(R) ∩ S).

As already remarked in the Introduction, if P ∈ Pr(R) has a unique decomposi-
tion, then we can directly associate a unique label to P itself.

Notation 4 (Label of P ). Fix P ∈ Pr(R) such that there is a unique set S ⊂ X(C)
evincing the X-rank, s, of P . Since σ(P ) = P , the uniqueness of S implies σ(S) =
S. Hence S has a label (s, a) and we say that P has label (s, a). If X(R) = ∅, then
each label is of the form (2a, a).

Definition 14. For every integer t ≥ 1 the t-secant variety Sect(X(C)) of X(C) is
the closure in Pr(C) of the set of all points with X-rank t.

The set Sect(X(C)) is an integral variety defined over R and we are interested
in its real locus σt(X(C)) ∩ Pr(R).

Definition 15. We say that Sect(X(C)) is generically identifiable if for a general
P ∈ Sect(X(C)) there is a unique S ⊂ X(C) such that ](S) = t and P ∈ 〈S〉 (this
notion has been already widely introduced in the literature, see e.g. [9], [12], [13]).

We have C = R +Ri and hence we may see Pr(C) as an R-algebraic variety of
dimension 2r. Hence Pr(C) has an euclidean topology and this topology is inherited
by all subsets of Pr(C). This topology on Sect(X(C)) is just the euclidean topology
obtained seeing it as a real algebraic variety of dimension twice the dimension of
Sect(X(C)).

Theorem 3. Fix an integer t > 0 and assume that Secs(X(C)) is generically
identifiable. Then the set of all real points P ∈ Secs(X(C))∩Pr(R) with one of the
labels (s, a), 0 ≤ a ≤ bs/2c is dense in the smooth part Secs(X(C))∩ Pr(R) for the
euclidean topology and its complementary is contained in a proper closed subset of
Secs(X(C)) ∩ Pr(R) for the Zariski topology.

Proof. We may assume s ≥ 2, because Sec1(X(C)) = X(C). Since Secs(X(C)) is
generically identifiable, it has the expected dimension (s+ 1) dim(X)− 1.
Let E be the set of all subsets of X(C) formed by s linearly independent points. For
each S ∈ E, the map S 7→ 〈S〉 defines a morphism φ from E to the Grassmannian
G(s − 1, r)(C) of all (s − 1)-dimensional C-linear subspaces of Pr(C). Let I :=
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{(x,N) ∈ Pr × G(s − 1, r) | x ∈ N} be the incidence correspondence and let
π1 : I → Pr(C) and π2 : I → G(s − 1, r)(C) denote the restriction to I of the two
projections. The set UC,a of all points with rank exactly equal to s is the intersection

with {P ∈ Pr(C) | rk(P ) ≥ s} with π1(π−12 (φ(E)) and hence it is constructible.
Since X is real and the embedding X ⊂ Pr is defined over R, we have σ(UC,a) =
UC,a. By assumption there is a non-empty open subset VC,s of UC,s for the Zariski

topology such that each P ∈ VC,s comes from a unique point of π1(π−12 (E)) and in
particular it is associated to a unique SP ∈ E. Since the embedding is real, each
point of σ(VC,s) has the same property. Since VC,s is Zariski dense in Secs(X(C)),
VC,s ∩ Pr(R) is Zariski dense in Secs(C) ∩ Pr(R). Fix any P ∈ VC,s ∩ Pr(R). Since
SP is uniquely determined by P and σ(P ) = P , we have σ(SP ) = SP . Hence SP

has a label. Let U ′C,s be the subset of U ′C,s corresponding only to sets S ⊂ Xreg(C)
and at which the map π1 has rank s(dim(X) + 1)− 1. Note that U ′C,s is contained

in the smooth part of Secs(C). Set V ′C,s := U ′C,s ∩ VC,s. Since V ′C,s is smooth,

V ′C,s ∩ Pr(R) is a smooth real algebraic variety. We saw that each point of V ′C,s
has a label (s, a). V ′C,s is dense in the smooth part of the real algebraic variety

Secs(X(C))(R) = Secs(X(C)) ∩ Pr(R) for the euclidean topology and hence it is
Zariski dense in Secs(X(C)) and Secs(X(C)) ∩ Pr(R). �

Remark 5. When the set S(P,X, C) of all S ⊂ X(C) evincing rX(C)(P ), is finite,
in order to have S(P,X, C)(R) 6= ∅, it is sufficient that ](S(P,X, C)(R)) is odd (we
use this observation to prove Theorem 1 for d odd).

There are many uniqueness results for submaximal tensors (see for example [9],
[12], [13]) and so Theorem 3 applies in many cases.

A first interesting case where to study the admissible rank is the one of rational
normal curves. If the degree of the curve is odd, then a general point is identifiable
so Theorem 3 assures the existence of a dense set of points with any label (1+d/2, a),
while if d is even, the euclidean dimension of points with admissible rank d(d+1)/2e
has to be studied. This is the purpose of Theorem 1. We need to recall the following
definition.

Definition 16. Fix any P ∈ V and let V SP (P ) denote the set of all S ⊂ X(C)
such that P ∈ 〈S〉C and ](S) = ρ.

Proof of Theorem 1: If d is odd, then a general P ∈ Pd(C) has rank b(d+1)/2c and
Secb(d+1)/2c(X(C)) is generically identifiable ([19, Theorem 1.40]). Thus we may
apply Theorem 3 in this case.

Now assume that d is even. In this case a general q ∈ Pd(C) has rank 1 + d/2
and the set V SP (q) has dimension 1. Fix p ∈ X(R).

Claim : There is a non-empty open subset U of Pd(R) such that Pd(R) \ U
has euclidean dimension < d and each q ∈ U has admissible rank 1 +d/2 with label
(1 + d/2, a) and 2a ≤ d/2, computed by a set S with σ(S) = S and p ∈ S.

Proof of the Claim: If d = 2 we can simply take as U the subset of P2(R) \
X(R) formed by the points that are not on the tangent line to X(R) at p.

Therefore assume d ≥ 4. Let ` : Pd(C) \ {p} → Pd−1(C) denote the linear
projection from p. Let Y (C) denote the closure of `(X(C) \ {p}). Since p ∈ Pd(R),
` is defined over R and Y (C) is defined over R. By construction the curve Y (C) is
a rational normal curve of degree d− 1 and Y (C) \ `(X(C) \ {p}) is a unique point,
p′, corresponding to the tangent line of X(C) at p. Since p ∈ X(R) and ` is defined
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over R, then p′ ∈ Y (R).
Now d − 1 is odd, so Secbd/2c(Y (C)) is generically identifiable and we can use

Theorem 3 to find a non-empty open subset V ⊂ Pd−1(R) such that Pd−1(R) has
euclidean dimension ≤ d−2, each q ∈ V has admissible rank d/2 and ](V PS(q)) = 1
for all q ∈ V. Since d/2 > 1, there is an open subset V ′ of V such that p′ /∈ Sq

for all q ∈ V ′, where Sq is the unique element of V SP (q). Note that V \ V ′ has
euclidean dimension ≤ d− 2 and so Pd−1(R) \ V ′ has euclidean dimension ≤ d− 2.
Now we have simply to lift V ′ up. Consider U ′ := `−1(V ′), the set Pr(C) \ U ′ has
clearly euclidean dimension ≤ d − 1. Fix any a ∈ U ′, call b := `(a) and take
{Sb} := V PS(b). We have σ(Sb) = Sb and p′ /∈ Sb. Since p′ /∈ Sb, there is a unique
set Sa ⊂ X(C) \ {p} such that `(Sa) = Sb. Now the set S we are looking for is
nothing else than S := {p} ∪ Sa. In fact since σ(Sb) = Sb, ` is defined over R and
p ∈ X(R), we have σ(S) = S. Hence each q ∈ U ′ has admissible rank ≤ 1 + d/a.
To get U it is sufficient to intersect U ′ with the set of all q ∈ Pr(R) with C-rank
1 + d/2. �

Landsberg and Teitler gave an upper bound concerning the X-rank over C ([20,
Proposition 5.1]). Several examples in [6] show that over R this upper bound is not
always true, not even for typical ranks. The case for labels is easier and we adapt
the proof of [20, Proposition 5.1] in the following way.

Proposition 2. Let X be a geometrically integral variety defined over R and
equipped with an embedding X ⊂ Pr defined over R and of dimension m.

• If either r −m + 1 is even or X(R) is Zariski dense in X(C), then each
P ∈ Pr(R) has a label (s, a) with s ≤ r −m+ 1.

• If r −m + 1 is odd and X(R) is not Zariski dense in X(C), then P has a
label (s, a) with either s ≤ r −m+ 1 or s = r −m+ 1 and a = 0.

Proof. Fix P ∈ Pr(R). If P ∈ X(R) it has (1, 0) as its unique label.
Now assume P /∈ X(R). Let U be the set of all linear spaces H ⊂ Pr(C) defined over
C, containing P and transversal to X(C). By Bertini’s theorem, U is a non-empty
open subset of the Grassmannian GC := G(r−m−1, r−1) of all (r−m)-dimensional
linear subspaces of Pr(C) containing P . Since X and P are defined over R, GC is
also defined over R.
By definition of U , for each H ∈ U we have that P ∈ H and H intersects X(C) in
deg(X) distinct points. There is a non-empty open subset V of U such that every
H ∈ V has the following property: any S1 ⊆ H ∩ X(C) with ](S1) = r − m + 1
spans H. Since GC is a Grassmannian, this implies that V (R) is Zariski dense in
V and in particular V (R) 6= ∅. Take H ∈ V (R). The set S := H ∩X(C) is formed
by deg(X) points of X(C) and σ(S) = S.
Assume for the moment that either r −m + 1 is even or S ∩X(R) 6= ∅. We may
find S1 ⊆ S such that ](S1) = r −m+ 1 and σ(S1) = S1. Hence S1 is a set with a
label (r −m+ 1, a) for some integer a.
If r−m+1 is odd andH∩X(R) = ∅, then we have a set S2 ⊆ S with ](S2) = r−m+2
with σ(S2) = S2 and hence P has a label (r −m+ 2, (r −m+ 2)/2).
Finally if r − m + 1 is odd and X(R) is Zariski dense in X(R), the set of all
H ∈ V (R) with H ∩X(R) 6= ∅ is non-empty (and Zariski dense in V ). �

3.1. Odd perfect cases. The idea of Theorem 1 is not limited to rational nor-
mal curves but it can be extended to cases where maybe there is not the generic
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identifiability but there is a finite odd number of decompositions for the generic
element.

Definition 17. A variety X ⊂ Pr with X(C) is non-degenerate is said to be s-
perfect, if there exist an integer s ≥ 2 such that r + 1 = s(dim(X) + 1) and if X is
not s-defective, i.e σs(X) = Pr.

Remark 6. Notice that if X is an s-perfect variety, then the map

φ : X(s) := {(P, 〈P1, . . . , Ps〉) |P ∈ 〈P1, . . . , Ps〉, P1, . . . , Ps ∈ X} → σs(X)

from the abstract secant variety X(s) to the s-secant variety is generically finite
(clearly this excludes again the defective secant varieties). The degree deg(φ) is
sometime called the generic s-secant degree and it gives the number of sets S ⊂ X
evincing the X-rank of a generic element of Pr (by definition this number has to
be finite). For example, if deg(φ) = 1 there is the generic X-identifiability.

Proposition 3. Let X ⊂ Pr be an s-perfect variety. Let φ : X(s) → σs(X) be the
map of Remark 6. If the generic s-secant degree deg(φ) is odd, then there is a dense
subset U of Pr(R) for the euclidean topology such that rX,R(p) = s for all p ∈ U .

Proof. There is a hypersurface ∆ ⊂ Pr defined over R and such that the restriction
ψ of φ to X(s) \ φ−1(∆) is a smooth map ψ : X(s)(C) \ φ−1(∆)(C)→ Pr(C) \∆(C)
with all fibers of cardinality deg(φ). Set U := Pr(R) \ ∆(R). Fix any p ∈ U .
Since φ is defined over R and p ∈ Pr(R), complex conjugation acts on the set
φ−1(p) ⊂ X(s)(C). Since deg(φ) is odd, at least one element η of φ−1(p) is fixed by
complex conjugation. Therefore η is a label for p and gives rX,R(p) = s. �

It is worth to remark that s-perfect varieties are rare, moreover, those with odd
generic s-secant degree are even more rare. Anyway some cases are known. For
example, Proposition 3 may be applied in the following cases:

Example 1.

• X rational normal curve of odd degree d and s = d+1
2 , deg(φ) = 1, cf. [25];

• X the Veronese variety of P3 embedded with O(3) and s = 5, deg(φ) = 1,
Sylvester’s Pentahedral Theorem, cf. [25];
• X a Veronese surface embedded with O(d) such that d 6≡ 0 (mod 3) and

deg(φ) is odd: the first example is d = 5 where s = 7 and deg(φ) = 1, cf.
[18, 21, 22] (very recently F. Galuppi and M. Mella in [15] proved that the
three cases above are the only identifiable ones for the polynomial case);
the next case is d = 7 where s = 12 and deg(φ) = 5, cf. [23];
• X the Veronese variety of P3 embedded with O(5) and s = 14, deg∗(φ) =

101, cf. [17] (with the notation “ deg∗(φ) ” we indicate that the s-secant
degree was computed numerically);
• X the Grassmannian of planes in P5 and s = 2, deg(φ) = 1, cf. [24]

(notice that the next perfect case for Grassmannian is σ6(Gr(P3,P8)) '
σ6(Gr(P4,P8)) = P(

∧4
(C9)) where the 6-secant degree is bigger than 7000

but nowadays it has been estimated only numerically, cf. [4]);
• X the Segre variety of P2 × Pn × Pn and s = n + 1, deg(φ) = 1, this is

classically known as “ Kronecker normal form ”, cf. [11];
• X the Segre variety of P2 × P4 × P8 and s = 9, deg(φ) = 5005, cf. [9];
• X the Segre variety of P1 × P1 × P2 × P7 and s = 8, deg(φ) = 495, cf. [9];
• X the Segre variety of P2 × P3 × P4 and s = 6, deg(φ) = 1, cf. [17];
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• X the Segre variety of P1 × P1 × P1 × P2 and s = 4, deg(φ) = 1, cf. [17];
• X the Segre variety of P1×P2×P2×P3 and s = 8, deg∗(φ) = 471, cf. [17];
• X the Segre variety of P1 × P2 × P2 × P4 and s = 9, deg∗(φ) = 7225, cf.

[17];
• X the Segre variety of P1 × P1 × P1 × P1 × P3 and s = 8, deg∗(φ) = 447,

cf. [17];
• X the Segre-Veronese variety of P7×P2 embedded with O(1, 3) and s = 8,

deg(φ) = 9, cf. [1];
• X the Segre-Veronese variety of P16×P3 embedded with O(1, 3) and s = 17,

deg(φ) = 8436285, cf. [1].

Clearly, this is not an exhaustive list (for example in [1] there are other perfect
examples with odd secant degree where X is the scroll P(E) over Pn with E '
⊕iOPn(ai)).

3.2. Typical a-ranks. As above, let X ⊂ Pr be a geometrically integral non-
degenerate variety defined over R and with a smooth real point, i.e. with X(R)
Zariski dense in X(C).

Notation 5. We use either 〈 〉 or 〈 〉C to denote linear span over C inside Pr(C). For
any S ⊆ Pr(R) let 〈S〉R be its linear span in Pr(R). Note that 〈S〉C∩Pr(R) = 〈S〉R.

Here we consider the case in which Secs(X) = Pr and hence almost never we
have generic uniqueness and we won’t be able to apply Theorem 3. The notion of
typical rank may be generalized in the following way.

Fix an integer a ≥ 0. For any set of complex points P1, . . . , Pa ∈ X(C) \X(R)
the linear space L := 〈{P1, σ(P1), . . . , Pa, σ(Pa)}〉C is defined over R and hence
L ∩ Pr(R) is a linear space with dimR L ∩ Pr(R) = dimC L and L = (L ∩ Pr(R))C .

Definition 18 (a-X(R)-rank). For any P ∈ Pr(R), the a-X(R)-rank of P is the
minimal integer c such that there are P1, . . . , Pa ∈ X(C) \X(R) and Q1, . . . , Qc ∈
X(R) such that P ∈ 〈{P1, σ(P1), . . . , Pa, σ(Pa), Q1, . . . , Qc}〉C .

The a-typical X(R)-ranks are the integers occurring as a-ranks on a non-empty
euclidean open subset of Pr(R).

Note that 0 is typical if and only if Seca(X(C)) = Pr(C). The proof of [3,
Theorem 1.1] easily prove the following result.

Proposition 4. All the integers between two different a-typical ranks are a-typical
ranks.

One may wonder if a label for a general element in Pr(R) of certain typical rank
always exists. The answer is “ no ” and we present an example in the following
section by using varieties of sum of powers.

3.3. Variety of Sum of Powers. We indicate with ρ the generic X-rank of Pr(C)
and with U ⊂ Pr(C) a non-empty open subset of Pr(C) of points of generic rank:
rX(C)(P ) = ρ for all P ∈ U . Since X is defined over R, also all point P ∈ σ(U)
have the same generic rank. Now if

U := U ∩ σ(U) and V := U ∩ Pr(R),

then the real part V of U is a non-empty open subset of Pr(R) whose complement
has dimension smaller than ρ. For all the points P of generic rank, the variety of
sum of powers V SP (P ), recalled in Definition 16, is non-empty. Since P ∈ Pr, we
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have σ(V SP (P )) = V SP (P ) and hence the constructible set V SP (P ) is defined
over R. Now the real part V SP (P )(R) of V SP (P ) is non empty if and only if
there is an integer a with 0 ≤ a ≤ ρ/2 and P has a label (ρ, a). In a few cases
V SP (P ) is known (see e.g. [8], [9], [13]).

The following example says that V SP (P ) may not have a label for a general P ∈
Pr(R) with generic rank over C. However in this case V SP (P ) is finite and we do not
have positive dimensional examples. If V SP (P ) is finite, we have V SP (P )(R) 6= ∅
(and so P has a label) if ](V SP (P )) is odd.

Example 2. Let C be a smooth elliptic curve defined over R. Take two points
P ′1, P

′
2 ∈ C(C) \ C(R) and set P ′′i := σ(P ′i ). By assumption P ′′i 6= P ′i . For general

P ′1, P
′
2, we have P ′′1 6= P ′2 and so P ′1 6= P ′′2 .

Let E be a geometrically integral curve of arithmetic genus 3 and with exactly 2
singular points O′ and O′′, both of them ordinary nodes, where C has its normaliza-
tion and with O′ obtained gluing together the set {P ′1, P ′2} and O′′ obtained gluing
together the set {P ′′1 , P ′′2 }. The involution σ acts on E with σ(O′) = O′′. For gen-
eral P ′1, P

′
2 the divisors P ′1 + P ′2 and P ′′1 + P ′′2 are not linearly equivalent and hence

E is not hyperelliptic. Hence ωE is very ample and embeds E in P2(C) as a degree
4 curve with 2 ordinary nodes, Q1, Q2, and no other singularity. Since σ(O′) = O′′

and O′ 6= O′′, we have that for i = 1, 2, σ(Qi) = Q3−i and Qi ∈ P2(C) \ P2(R).
Let u : C → E denote the normalization map. Set OC(1) := u∗(ωE). Since

ωC
∼= OC , we have P ′1 + P ′′1 + P ′2 + P ′′2 ∈ |OC(1)|. Thus OC(1) is a degree 4 line

bundle on C defined over R and the complete linear system |OC(1)| induces an
embedding j : C → P3(C) defined over R and with X := j(C) a smooth elliptic
curve of degree 4. The pull-back by u of the linear system |ωE | is a codimension 1
linear subspace of the 3-dimensional C-linear space |OC(1)|, the one associated to
the C-vector space of all rational 1-forms on C with poles only at the points P ′1, P ′2,
P ′′1 , P ′′2 , each of them at most of order one and such that the sum of their residues at
the 4 points P ′1, P ′2, P ′′1 , P ′′2 is zero. Since σ({P ′1, P ′2, P ′′1 , P ′′2 }) = {P ′1, P ′2, P ′′1 , P ′′2 },
this 2-dimensional linear subspace of |OC(1)| is defined by one equation ` = 0 with
σ(`) = `, i.e. it is defined over R. Since this is the linear system |ωE | whose image
is the curve that we indicate with D, then D is defined over R. Since D is defined
over R, the curve D is the image of X(C) by the linear projection from a point
P ∈ P3(R)\X(R). By construction X has exactly 2 secant lines passing through Q
and they are the lines L′, L′′ with L′ spanned by j(P ′1) and j(P ′2) and L′′ spanned
by j(P ′′1 ) and j(P ′′2 ). Now, since L′ 6= L′′, we get that Q has no label. Now take
P ∈ P3(R) near Q in the euclidean topology. The linear projection from Q is a
geometrically integral curve Dp defined over R, with C as its normalization and
near D and so with two ordinary nodes Q1(P ) and Q2(P ) near Q1 and Q2. Thus
none of these nodes is defined over R. Therefore there is an euclidean neighborhood
V of Q in P3(R) such that no P ∈ V has a label.

Remark 7. If V SP (P ) is finite, we have V SP (P )(R) 6= ∅ (and so P has a label)
if ](V SP (P )) is odd. If r = 3 and X is a smooth curve of genus g and degree
d the genus formula for plane curves gives ](V SP (P )) = (d − 1)(d − 2)/2 − g.
When S(P,X, C) is infinite, it is not clear that at least one irreducible component
of S(P,X, C) is σ-invariant and hence defined over R.

3.4. Polynomials with admissible rank bigger than complex rank. We use
elliptic curves and [8, Example 3.4] to construct an example of a pair (X,P ) with
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](S(P,X, C)) = 2 and S(P,X, C)(R) = ∅ with P a symmetric tensor and with

X a d-Veronese embedding of Pn, n ≥ 2 and d even (here r =
(
n+d
n

)
− 1) and

rX(C)(P ) = 3d/2.

Example 3. We consider the Veronese variety X of dimension n ≥ 2 embedded

into P(n+d
n )−1 with the complete linear system |O(d)| with d ≥ 6 and d even. Set

k := d/2. The projective space Pn and the embedding are defined over R.
Let E be a smooth curve of genus 1 defined over R and with E(R) 6= ∅ (so if

R = R, then E(R) is homeomorphic either to a circle or to the disjoint union of 2
circles). Fix O ∈ E(R). By Riemann-Roch the complete linear system |OE(3O)|
defines an embedding j : E → P2 defined over R and with j(E) a smooth plane
cubic. With an R-linear change of homogeneous coordinates x, y, z we may assume
that j(O) = (0 : 1 : 0) and that j(E) = {y2z = x3+Axz2+Bz3} for some A,B ∈ R.
The restriction to j(E) \ {O} of the linear projection P2 \ {O} → P1 induces the
morphism φ : E → P1 which is induced by the complete linear system |OE(2O)|.
Since O ∈ E(R), φ is defined over R. If t ∈ R and −t � 0, then t3 + At+ B < 0
and so y2 = t3 +At+B has two solutions q′, q′′ ∈ C with q′′ = σ(q′). Hence we may
find S′ = {q1, . . . , q3k} ⊂ E(C)\E(R) such that ](S′∪σ(S′)) = 6k and qi +σ(qi) ∈
|OE(2O)| for all i. Note that

∑3k
i=1 qi +

∑3k
i=1 σ(qi) ∈ |OE(6kO)| = |OE(3dO)|.

Now fix a plane M ⊆ Pn defined over R and identify the P2 where j(E) is
embedded with M so that j(E) ⊂ Pn. If νd is the Veronese embedding that maps Pn

to X, we can now embedd E into X ⊂ Pr:=(n+d
n )−1 and define C := νd(j(E)), Q :=

νd(j(O)), S := νd(S′) and consider the space spanned by C: ΛC := 〈C〉C . Since the
smooth plane curve j(E) is projectively normal, the embedding E → ΛC is induced
by the complete linear system |OC(3dQ)| and so dimC ΛC = 3d− 1 = 6k− 1. Since
νd, the inclusion M ⊆ Pn and j are defined over R, ΛC ∩ Pr(R) is an R-projective
space of dimension 6k − 1. Let Z ⊂ C(C) be any set with a := ](Z) ≤ 6k. Since C
is embedded in ΛC by the complete linear system |OC(6kQ)|, Riemann-Roch gives
that dimC(〈Z〉C) = a − 1, unless a = 6k and Z ∈ |OC(6kQ)|. If Z ∈ |OC(6kQ)|,
then 〈Z〉C is a hyperplane of ΛC . Hence dimC(〈S〉) = dim(〈σ(S)〉) = 3k − 1 and
dimC(〈S ∪ σ(S)〉) = 3k − 2. By the Grassmann’s formula the set 〈S〉 ∩ 〈σ(S)〉 is a
unique point, P . Since σ(P ) ∈ 〈S〉 ∩ 〈σ(S)〉, we have σ(P ) = P , i.e. P ∈ Pr(R).
Since P ∈ 〈S〉C and C ⊂ X, we have rX(C)(P ) ≤ 3k. Over C this is the construction
of [8, Example 3.2]. In [8, Example 3.2] it is proved that rX(C)(P ) = 3k and
that ](S(P,X, C)) = 2. Hence S(P,X, C) = {S, σ(S)}. Since S 6= σ(S), we have
S(P,X, C)(R) = ∅ and hence P has admissible rank > 3k.
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