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Abstract We analyse an SIR epidemic model in a closed population subdivided in
n groups. Population mixing occurs at two levels: within each group, and uniformly
in the population. We prove that, if within-group transmission rates are large enough
and not all identical to each other, then the final attack ratio is lower than what would
occur in a population mixing homogeneously with the average transmission rate. We
also show that the opposite may hold for certain parameter values and explore numer-
ically the parameter regions in which the final attack ratio is higher or lower than in
the corresponding homogeneous model. Finally, we analyse simulations of the cor-
responding stochastic model with finite group size, studying how well final attack
ratio is approximated by the deterministic outcome and its relations with exponential
growth rate.

Keywords Epidemic metapopulation model · Epidemic attack ratio · Epidemic
model with two levels of mixing
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1 Introduction

The progress of epidemic modelling has stressed the importance, among other fea-
tures, of the structure of contacts in the population, going beyond the simple ho-
mogeneous mixing [30]. A very popular approach, helped by the advancement of
computing power, has been the use of agent-based models based on a synthetic pop-
ulation, in which individual contacts are kept track of [19,24,35]. While this class of
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models makes it possible to reach a very satisfying description of actual epidemics, to
perform scenario analysis and predict the impact of control measures, they are hardly
amenable to theoretical analysis.
A different approach, aiming at obtaining theoretical insights on the effect of contact
structures on epidemic dynamics, has been to consider simple models in which the
population is partitioned into groups [6]. Some models of this type are deterministic,
starting from the work by Hethcote and Yorke on gonorrhea [25] and generalised in
many different ways, modelling social groups, as in [25,34], or spatial spread [41,
28,23], in which case they are often called metapopulation models. Other models are
stochastic, where often the groups being modelled represent households [7], while
more recently the presence of different and intertwining mixing groups (for instance,
households and workplaces) has been allowed [9]. Here, we restrict the analysis to
models of a single epidemic, in which there is no replacement of susceptibles; results
on stochastic models for the endemic case are much more scarce [6].
A general question that can be asked in this type of models concerns the effect of
heterogeneities. It was proved, in the context of HIV/AIDS modelling with propor-
tional mixing, that heterogeneities in contact rates increase the reproduction number
R0 relatively to the corresponding model in which each group has the average contact
rate [34], and thus make an epidemic outbreak easier. On the other hand, it has been
proved by Andreasen [3] that, with proportional mixing, heterogeneities in contact
rates decrease the final attack ratio relatively to the corresponding model with homo-
geneous contact rates and the same value of R0. The final attack ratio is the proportion
of the population that gets infected by the end of the epidemic, a quantity that is also
named ‘epidemic final size’, ‘epidemic impact’ or ‘attack rate’; we will use here the
term ‘final attack ratio’, as it is a ratio and not a rate.

Such conclusions appear intuitive, but, as far as we know, have not been estab-
lished in more general contexts. Here, we analyse the conditions under which het-
erogeneity in contact rates decreases the epidemic impact in a class of deterministic
metapopulation models for an SIR epidemic. The models are similar to the multi-
group models with preferred mixing introduced by Nold [37] and extend previous
results [3] in a different direction. The idealized situations to which the model could
apply are different towns and villages within a region, or different schools and work-
places within a city. Especially in the latter case, it is reasonable to expect that young
children in a kindergarten will have a very different mixing behaviour from teen-
agers in a high school or workers in an office or a factory, and thus that within-groups
contact rates may vary between each other.

It follows from well-known limit theorems [18] that stochastic metapopulation
models will converge to deterministic systems, as the size of each group tends to in-
finity. Through stochastic simulations, we investigate the group size around which
the attack ratio predicted by the deterministic model becomes a good approxima-
tion of the outcome of the stochastic model, at least for simulations that avoid early
extinctions.

The analysis of stochastic simulations lets us explore also whether the final attack
ratio can be reasonably predicted from measurements performed at the beginning of
an epidemic, in particular from the exponential growth rate, parameter that is often
estimated in the early phase of an epidemic [36,31]. Indeed, in epidemic models
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for a homogeneously mixing populations, both final attack ratio z and exponential
growth rate r are (as long as recovery rate γ is kept fixed) increasing functions of
the reproduction number R0, so that from an estimate of r one can infer an estimate
of z. One may wonder whether a relationship, perhaps somewhat different from the
one holding in the homogeneous case, can also be found for simple metapopulation
models.

2 The SIR meta-population model

We consider an epidemic model with an SIR structure, in which the individuals are
classified according to their disease state, as susceptible (S), infectious (I) or re-
covered (R). Heterogeneity is introduced by subdividing the population in n groups
representing geographic regions or social structures (e.g., schools and workplaces).
Transmission may occur through a contact with an infectious individual of the same
group or of a different group. In other words, we have two levels of mixing, one
local between individuals of the same group i, regulated by a transmission rate β̃i
(i = 1, . . .n), and one global, between individuals of different groups, regulated by
the transmission coefficient βg, constant and independent of the groups involved.

The model is described by the following set of differential equations:
Ṡi =−Si

(
βi

Ii

Ni
+λg

)
İi = Si

(
βi

Ii

Ni
+λg

)
− γIi

Ṙi = γIi

(1)

with

λg =
βg

n

n

∑
j=1

I j

N j
. (2)

In system (1), Ni represents the number of individuals in group i, and it is assumed
that global contacts are taken at the same rate with all groups. From (1) and (2), one
may note that the contact rate within group i is actually equal to β̃i = βi +βg/n; the
use of βi, instead of β̃i makes the notation simpler.

An alternative assumption for global contacts is to assume that such contacts are
proportional to the size of each group, i.e.

λg =

βg
n
∑
j=1

I j

n
∑
j=1

N j

. (3)

Most of the following analysis will be performed using expression (2) for λg; results
with (3) are qualitatively the same, but there are some differences in the computations,
that will be briefly sketched.
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Finally, γ is the rate at which individuals recover. By changing the time unit, we
can set γ = 1, as will always be assumed in what follows [3].

This model is very similar (but not identical, because here βg is assumed to be the
same for all groups, while βi may differ) to the preferred mixing model first proposed
by Nold [37], and generalized and analysed by several authors [25,12,4].

This structure of infection transmission has been used many times in stochastic
setting [7], initially assuming that groups correspond to households, but then general-
izing to more complex structures (see for instance [9,38,8]). In these models, groups
are generally assumed to be small, so that the dynamics of within-group epidemics
have a strongly stochastic component, which makes deterministic models such as (1)
not appropriate (different deterministic models may be appropriate [26], but they are
difficult to analyse).
On the other hand, time to extinction in a stochastic version of model (1) has been
studied by Hagenaars et al. [23] and Lindholm and Britton [32], using approxima-
tions valid for somewhat larger groups, thus modelling a setting similar to the one
analysed here.

2.1 The basic reproduction number

The basic reproductive number provides an aggregated measure of the transmissi-
bility of an infection. In a simple homogeneous model, it is defined as the average
number of individuals infected by a newly infected individual over the entire infec-
tious period in a completely susceptible population and it is directly related both to
the initial growth rate and to the final attack ratio (see below). Moreover it determines
the threshold between an infection that can spread and one that cannot.

From a theoretical point of view, a rigorous definition is given in [17], where R0
is defined as the dominant eigenvalue of the next generation matrix, whose i j entry is
the expected number of secondary cases in group i caused by an infectious individual
in group j. In the case of system (1)–(2), it can be easily seen that the elements of the
next-generation matrix are

Ki j = βiδi j +
βg

n
Ni

N j
, i, j = 1 . . .n (4)

so that R0 = ρ(K). R0 represents the threshold between an infection that can spread
and one that dies out spontaneously [17], and is also related to the fraction of indi-
viduals that needs to be vaccinated in each group to stop the disease invasion.

When the internal transmission rate is the same in all groups (βi ≡ β ), the leading
eigenvalue of K can be easily computed and does not depend either on the number of
groups or on their dimension. Specifically, we find

R0 = β +βg. (5)

Remember that (4) has been obtained assuming a rescaling of time so that γ = 1; in
normal time units, one should divide (5) by γ .
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If βi are not identical, a simple computation shows that the eigenvalues of K are
the roots of

H(λ ) :=
βg

n

n

∑
j=1

1
λ −β j

= 1. (6)

It can be easily seen that H is a decreasing, continuous function on (βmax,+∞) where
βmax = maxi βi with

lim
λ→β

+
max

H(λ ) = +∞, lim
λ→+∞

H(λ ) = 0.

Hence there exists a unique real root of (6) in (βmax,+∞).
Since K is a positive matrix, Perron-Frobenius theory implies that ρ(K) is an

eigenvalue; hence R0 is the only root of (6) in (βmax,+∞). While it is impossible,
unless n = 2, to have an explicit expression for R0, it is possible, as shown in [4,17],
to have an explicit threshold condition. Indeed, from (6) it is easy to see that R0 > 1
if and only if one of the following conditions hold:

– maxi βi ≥ 1;

– maxi βi < 1 and H(1) =
βg

n

n
∑
j=1

1
1−β j

> 1.

Furthermore, we see that

H(βmax +βg)≤
βg

n

n

∑
j=1

1
β j +βg−β j

= 1

with a strict inequality, unless β j = βmax for all j. Hence, we obtain

max
i

βi < R0 < max
i

βi +βg. (7)

This last inequality shows that the value of R0 is high if we have high intra-group
transmission, even if this occurs only in one small group and the inter-group trans-
mission rate remains low. However, in extreme situations with high transmission only
in one small group, we do not expect this to actually dominate and determine the
spread of the infection. This phenomenon is explored numerically in the next Sec-
tion. Note further that, when global contact rates are much smaller than within-group
ones, the interval in (7) is relatively narrow, and the relative error in the simple esti-
mate R0 ≈maxi βi is small.

A natural question is how R0 compares with the value (5) found when all groups

have identical contact rate. Thus, we define β̄ =
1
n

n

∑
i=1

βi, and show that, unless all βi

are identical,
R0 > β̄ +βg, (8)

i.e. the expression (5) found for the case when all groups have the average within-
group contact rate.
In fact, in the case (that we think would be empirically likely) that β̄ +βg ≤maxi βi,
this follows immediately from (7).
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If we instead assume β̄ +βg >maxi βi, we can apply Jensen inequality to the function

q(x) =
1

β̄ +βg− x
that is continuous and convex in [0, β̄ +βg). Then

H(β̄ +βg) =
βg

n

n

∑
j=1

1
β̄ +βg−β j

= βg
1
n

n

∑
j=1

q(β j)> βgq(β̄ ) =
βg

βg
= 1.

Because of the properties of the function H(·) in (βmax,+∞), this inequality implies
(8), as required.

If (2) is substituted by expression (3) in λg, we get

Ki j = βiδi j +
βgNi
n
∑

k=1
Nk

.

It follows that R0 is still the only root of (6) in (βmax,+∞), but with H(·) given by

H(λ ) =
βg

n
∑

k=1
Nk

n

∑
j=1

N j

λ −β j
.

Still, the same conclusions, for instance (7), hold.

Also (8) still holds but with β̄ =

n
∑

i=1
Niβi

n
∑

i=1
Ni

.

2.2 The final attack ratio of the epidemic

Equations (1) represent epidemic spread in a closed population without recovery from
infection, or entry of new susceptibles. Hence, the epidemic is going to finish anyway,
and the interesting question is what will be the final attack ratio, i.e. the proportion
of the population that eventually will have been infected.
Assuming that the epidemics has been going forever with lim

t→−∞
Si(t) = Ni, the attack

ratio zi in group i is given by

zi =
Ri(∞)

Ni
=

1
Ni

∫ +∞

−∞

Ii(s)ds. (9)

The final size problem for an epidemic in a subdivided population has been stud-
ied by several authors [11,5]. Recently, Andreasen [3] studied this problems assum-
ing a general mixing patterns among subgroups. He obtained a system of equations
necessarily satisfied by zi, and showed that it has no positive solution if R0 < 1 and
that, under a generic assumption, it has a unique solution for R0 > 1.

He further studied the problem under the assumption of proportional mixing with
groups differing uniquely in susceptibility and/or infectiousness and showed that the
final attack ratio is smaller in a heterogeneous population than in a homogeneous
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population with the average susceptibility or infectiousness. We study here whether
the same conclusion holds under the assumption of heterogeneity in within-group
contact rates, as in system (1).

Specializing equations (7) of [3] to the case of system (1), one obtains the follow-
ing equations for the final attack ratios

log(1− zi)+βizi +
βg

n

n

∑
j=1

z j = 0 i = 1 . . .n. (10)

Indeed, these can be easily obtained by integrating (for t from−∞ to +∞)
d
dt

log(Si(t))
in (1) and using

lim
t→−∞

Si(t) = Ni, lim
t→−∞

Ii(t) = lim
t→+∞

Ii(t) = 0.

The following result holds.

Theorem 1 If the internal transmission rates βi are all equal to each other, then
the proportion of infections at the end of the epidemic is the same in each group.
Moreover the final attack ratio of model (1) does not depend either on the number of
groups, or on their dimension.

Proof If βi ≡ β̄ , equations (10) do not depend on i; hence their solutions zi ≡ z̄.
Substituting this in (10) yields

G(z̄) := log(1− z̄)+(β̄ +βg)z̄ = 0. (11)

This is the equation for the final attack ratio in the ODE version of Kermack-McKendrick
model [30]. It is well known that it has a unique positive solution z̄, 0 < z̄ < 1 if and
only if β̄ +βg > 1; otherwise, if β̄ +βg ≤ 1, (11) has no positive solutions. Recalling
(5), one sees that the condition for existence of positive attack ratios is R0 > 1, as
shown in [3] for the general case.

We found that the attack ratio is the same in each group. Consequently, the attack
ratio for the whole population

Z =

n
∑

i=1
Ri(∞)

n
∑

i=1
Ni

=

z̄
n
∑

i=1
Ni

n
∑

i=1
Ni

= z̄.

If expression (3) is used for λg, equation (10) is modified into

log(1− zi)+βizi +

βg
n
∑
j=1

N jz j

n
∑
j=1

N j

= 0. (12)

All the conclusions of Theorem 1 hold word by word, including equation (11) for the
attack ratio in each group.

In general we have
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Theorem 2 Equations (10) have a unique positive solution if and only if R0 > 1. If
R0 ≤ 1, the only solution of (10) is zi ≡ 0.

This result was already proved by Andreasen [3] in a more general context. We state
it here as a Theorem and provide a proof because it introduces tools that are needed
in the following result concerning the case where group-specific transmission rates
are not all equal to each other.

Theorem 3 Assume R0 > 1 and that at least one of the following conditions holds:

a) βi > 9/8 for all i = 1 . . .n;
b) βi > 1 for all i = 1 . . .n and βg small enough;
c) βg +βmin ≥ 3

2 log(3).

If the internal transmission rates βi are not all identical, then the average (among
groups) attack ratio using model (1)–(2) is lower than the attack ratio obtained with
βi all equal to the average value β̄ and thus lower than the final attack ratio obtained
with the simple homogeneous SIR model with β = β̄ +βg.

In order to prove the Theorems, we collect some useful properties in a few lemmas.

Lemma 1 Let us define the function

F(z,β ,A) = log(1− z)+β z+βgA for 0 < z < 1, A,β ≥ 0. (13)

For each A > 0, β ≥ 0, there exists a unique solution z = ϕ(β ,A) of F(z,β ,A) = 0.

Furthermore, ϕ(β ,A)> 1− 1
β

.

Proof As a function of z, F is a concave function that tends to −∞ when z→ 1−

and equals βgA when z = 0. From these properties, it is easy to see that there exists a
unique intersection z = ϕ(β ,A) between F and the x-axis.
Concerning the last clause, it is easy to see that, if β > 1, then F has a maximum in
z = 1−1/β ; the intersection with the x-axis will be to the right of this point, proving
the conclusion. Otherwise, if β ≤ 1, the conclusion is obvious.

For ease of reference, we rewrite the equation satisfied by ϕ(β ,A):

log(1−ϕ(β ,A))+βϕ(β ,A)+βgA = 0. (14)

Lemma 2 The derivatives of ϕ(β ,A) have the following signs:

∂ϕ

∂A
(β ,A)> 0

∂ 2ϕ

∂A2 (β ,A)< 0
∂ϕ

∂β
(β ,A)> 0.

Furthermore,
∂ 2ϕ

∂β 2 (β ,A)< 0 if one of the following conditions holds:

a’) β > 9/8;
b’) β > 1 and ϕ(β ,A) sufficiently close to 0;
c’) ϕ(β ,A)> 2/3



Final attack ratio in SIR epidemic models for multigroup populations 9

Proof To prove the first property, from F(ϕ(β ,A),β ,A)≡ 0 one has

0 =
d

dA
F(ϕ(β ,A),β ,A) = (− 1

1−ϕ(β ,A)
+β)∂ϕ

∂A
(β ,A)+βg = 0.

Hence
∂ϕ

∂A
(β ,A) =

βg(1−ϕ(β ,A))
1−β (1−ϕ(β ,A))

> 0 (15)

given that ϕ(β ,A)> 1− 1
β

.

Differentiating (15), we have

∂ 2ϕ

∂A2 =−
βg

∂ϕ

∂A
(1−β (1−ϕ(β ,A)))2 < 0.

As for the third inequality, from the implicit function theorem we have

∂ϕ

∂β
=

ϕ(β ,A)(1−ϕ(β ,A))
1−β (1−ϕ(β ,A))

> 0.

Finally, using again of the implicit function theorem, one obtains

∂ 2ϕ

∂β 2 =−
Fββ +2Fzβ ϕβ +Fzz(ϕβ )

2

Fz
.

By computing the partial derivatives of F and inserting them into the previous ex-
pression, one arrives after some computations at

∂ 2ϕ

∂β 2 =

∂ϕ

∂β

(1−β (1−ϕ(β ,A)))2 g(β ,ϕ(β ,A)) (16)

with

g(β ,x) =−2(β −1)+(4β −3)x−2βx2.

(16) shows that
∂ 2ϕ

∂β 2 has the same sign as g(β ,ϕ(β ,A)). As a function of x, g is a

quadratic:
if β > 9/8, its discriminant is negative, so that g(β ,x) is negative for all x, proving
the last clause in case a’).
If 1 < β < 9/8, g(β ,x) has two roots x− and x+ in (0,1);
if ϕ(β ,A)< x−, g(β ,ϕ(β ,A))< 0, proving the Lemma in case b’).
For all β ≥ 0, the larger root of g(β ,x) = 0, x+ ≤ 2/3; hence, if ϕ(β ,A) > 2/3,
g(β ,ϕ(β ,A))< 0, proving the Lemma in case c’).
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Fig. 1: The qualitative shape of the function y = Q(A) (solid lines) in the three cases.
Left panel: maxi βi > 1 so that Q(0) > 0; centre panel: maxi βi ≤ 1 and R0 > 1, so
that Q(0) = 0, Q′(0)> 1; right panel: R0 ≤ 1 so that Q(0) = 0, Q′(0)≤ 1; the dashed
lines represent the bisectrix y = A.

Proof (of Theorem 2) Fix A > 0, define the function

Q(β1 . . .βn,A) =
1
n

n

∑
j=1

ϕ(β j,A). (17)

A fixed point of Q, i.e. a solution of the equation Q(β1 . . .βn,A) = A, corresponds to
a solution of (10).
Indeed, if A is a fixed point of Q, let zi = ϕ(βi,A) be the solution of the equation

F(z,βi,A) = 0; from (17) we have A =
1
n

n
∑
j=1

z j, while (14) yields log(1− zi)+β zi +

βgA = 0. The two equations together are exactly (10).

Vice versa, from a solution (z1, . . . ,zn) of (10), one defines A =
1
n

n
∑
j=1

z j and sees that

zi = ϕ(βi,A) and that A is a fixed point of Q.
From the results of Lemma 2, one sees that, as a function of A, Q(β1, . . . ,βn,A) is

positive, increasing and concave. Furthermore Q(β1, . . . ,βn,1)< 1, since ϕ(β j,A)<
1 for all j and A.

The behaviour of Q at A= 0 then determines whether the equation Q(β1 . . .βn,A)=
A has a positive solution.
Note that ϕ(β ,A) has not been defined at A = 0; however, one sees that

lim
A→0+

ϕ(β ,A)> 0 if β > 1 ; lim
A→0+

ϕ(β ,A) = 0 if β ≤ 1. (18)

Hence, if maxi βi > 1, limA→0+ Q(β1, . . . ,βn,A)> 0 and we conclude that there exists
a unique A∗ > 0 such that Q(β1, . . . ,βn,A∗) = A∗.
If maxi βi ≤ 1, limA→0+ Q(β1, . . . ,βn,A) = 0, and one needs to compute its derivative
at A = 0. Using (15), one has

d
dA

Q(β1, . . . ,βn,A)
∣∣∣∣
A=0

=
βg

n

n

∑
j=1

1
1−β j

. (19)
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If the expression in (19) is greater than 1 (including the case of maxi βi = 1 where
formally it is infinite), there exists a unique A∗ such that Q(β1, . . . ,βn,A∗) = A∗.
Otherwise Q(β1, . . . ,βn,A)<A for all A> 0. The three possible cases for the function
Q are depicted in Figure 1.

Notice that we had shown before that R0 > 1 if either maxi βi ≥ 1, or the expres-
sion in (19) is greater than 1. Thus, a solution A∗ exists if and only if R0 > 1, a special
case of the result proved in [3].

For further use, note that, when a solution A∗ > 0 exists,

Q(β1, . . . ,βn,A)> [< ] A ⇐⇒ A < [> ] A∗. (20)

Proof (of Theorem 3) First of all, note that the assumptions of the Theorem imply
β̄ +βg > 1. Then, there exists a solution z̄ of (11) with z̄ > 0.

We now prove that, under the assumptions of the theorem,
∂ 2ϕ

∂β 2 (β , z̄) < 0 for

βmin ≤ β ≤ βmax.
Condition a) obviously implies a’) in the assumptions of Lemma 2.

As for case b), by looking at the proof of Lemma 2, one notices that
∂ 2ϕ

∂β 2 (β , z̄) < 0

holds if, for all β ≥ βmin, g(β ,ϕ(β , z̄))< 0 with g defined in that proof. As g(β ,x)< 0
for all x if β > 9/8, the claim holds if one can prove that, for all β ∈ [βmin,9/8],
ϕ(β , z̄) < x−(β ), the smaller root of g(β ,x) = 0, existing for β ≤ 9/8. By choosing
βg sufficiently small, ϕ(β , z̄) can be made arbitrarily close to ϕ(β ,0+); hence, it is
enough proving that ϕ(β ,0+)< x−(β ) for all β such that 1 < β ≤ 9/8.
Since ϕ(β ,0+) is the positive root of F(z,β ,0) (Lemma 1) with F concave, ϕ(β ,0+)<
x−(β ) is equivalent to F(x−(β ),β ,0+)< 0. Now

x−(β ) = 1− 3
4β
−
√

9−8β

4β

and

F(x−(β ),β ,0) = β

(
1− 3

4β
−
√

9−8β

4β

)
+ log

(
3

4β
+

√
9−8β

4β

)

= β −
√

9−8β

4
+ log(3+

√
9−8β )− log(β )− 3

4
− log(4)

= β −
√

9−8β

4
− log(3−

√
9−8β )+ log(2)− 3

4
.

Simple computations show that the last expression computed in β = 1 is equal to
0, and that its derivative with respect to β is negative. Hence for all β ∈ (0,9/8],
F(x−(β ),β ,0)< 0, showing that ϕ(β ,0+)< x−(β ). This proves that b’) of Lemma
2 holds for all β .
Finally, using c) in (11) yields

G(2/3) =− log(3)+
2
3
(
β̄ +βg

)
≥− log(3)+

2
3
(βmin +βg)≥ 0
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hence z̄≥ 2/3.
Now

F(2/3,β , z̄)≥F(2/3,β ,2/3)=− log(3)+
2
3
(β +βg)≥− log(3)+

2
3
(βmin +βg)≥ 0

implying ϕ(β , z̄)≥ 2/3, i.e. c’).

As either a’), b’) or c’) is satisfied, Lemma 2 shows that
∂ 2ϕ

∂β 2 (β , z̄) < 0 for all

β ≥ βmin. We can then apply Jensen inequality to the function ϕ(·, z̄) and obtain

1
n

n

∑
i=1

ϕ(βi, z̄)≤ ϕ(1
n

n

∑
i=1

βi, z̄) = ϕ(β̄ , z̄)

where β̄ =
1
n

n
∑

i=1
βi is the average value of the βis.

Therefore

Q(β1, . . . ,βn, z̄) =
1
n

n

∑
i=1

ϕ(βi, z̄)≤ ϕ(β̄ , z̄) (21)

with a strict inequality, unless βi ≡ β̄ , the case discussed in the previous Theorem.
As z̄ solves (11), it follows that z̄ = ϕ(β̄ , z̄).
Hence, (21) implies Q(β1, . . . ,βn, z̄)< z̄. It follows from (20) that A∗ < z̄.

Finally, by the definition of the function Q, A∗ = Q(A∗) =
1
n

n
∑
j=1

ϕ(β j,A∗) is the av-

erage attack ratio in the groups and is lower than the attack ratio z̄ that would have
been obtained with βi ≡ β̄ .

Remark 1 It is interesting to note that Theorem 3 shows that, under the assumptions
of the Theorem, the average attack ratios in the groups is lower than the attack ra-
tio caused by the average β . The same does not necessarily hold for the averages
weighted by population size:

zw =

n
∑

i=1
Niϕ(βi,A∗)

n
∑

i=1
Ni

and βw =

n
∑

i=1
Niβi

n
∑

i=1
Ni

. (22)

On the other hand, if expression (3) holds for λg, repeating (with obvious modifica-
tions) the proof of Theorem 3 leads to the conclusion that the average attack ratio zw
is lower than the attack ratio obtained with all βi ≡ βw.

2.3 Numerical results

The thesis of Theorem 3 has been proved under alternative conditions, of which the
simplest one is that βi > 9/8 for all i = 1 . . .n. The assumptions of the Theorem have
been used in order to be able to apply Jensen’s inequality, a key step that leads to
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the result. Indeed, the exact numbers appearing in the assumptions are derived from
purely technical arguments, and do not seem to have any clear biological interpreta-
tion. It is possible that, using a different approach, weaker conditions could be found
that ensure that the average attack ratio is lower in the heterogeneous model than in
the homogeneous model.

However, it is clear that some conditions are necessary to ensure the result. In-
deed, in the extreme case where β̄ +βg ≤ 1 but some βi > 1, there would be no epi-
demic (hence 0 attack ratio) in the homogeneous model, while even a single βi > 1
ensures that R0 > 1 in the heterogeneous model, and thus a positive attack ratio would
result. In general, when β̄ is low, we expect that the attack ratio would be larger in
the heterogeneous model than in the homogeneous one.

This issue has been explored through numerical computations in the simplest
case, namely n = 2. In Fig. 2 we show how the attack ratio depends on the contact
rates β1 and β2 in the two groups. As anticipated, for large values of βi attack ratios
are higher in the homogeneous model, while for lower values of βi, the situation is
reversed. When βg is large (panel d), the threshold between the two regions seems to
depend on the value of β̄ only, while for βg closer to 0, the boundary has a less trivial
shape.

3 Comparison with stochastic simulations

As mentioned in the Introduction, a reason for considering models like (1) is the ac-
knowledgment that the dynamics of actual epidemics can be captured only in models
that allow for population mixing at different levels.
As the detailed mixing structure may be however hard to ascertain, one may ask
whether aggregate estimates such as the reproduction ratio R0 can be useful to gauge
the predicted impact of an emerging epidemic.
The immediate answer arising from the analysis in the previous Section is negative:
if within-group transmission rates are heterogeneous in the different groups, R0 will
be higher than with homogeneous transmission rates, while Theorem 3 shows that,
under many assumptions on the parameters, the average attack ratio will be lower.
Furthermore, equations (7) and (5) show that the numerical difference in the value
of R0 may be large, and so can be the difference in attack ratios (see panel (a) of
Fig. 2). Thus, the relation between the value of R0 and final attack ratio z holding for
the simple SIR model [30,17], assuming that γ is known, breaks down for model (1)
when within-group transmission rates are heterogeneous.
Note however that, in actual epidemics, one generally does not attempt to estimate
the true value of R0 by solving equation (6) or something similar. Rather, the expo-
nential growth rate r is estimated from aggregated data, and is then converted into an
estimate of R0 through a theoretical relation between the two quantities [42,36]. One
may then be interested in studying the relation between this estimate and final attack
ratio.
Moreover, it is clear that (1) represents only an approximation of more complex trans-
mission structures, and that stochastic events may play a relevant role in infection
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Fig. 2: Comparison between average attack ratios in the models with heterogeneous
or homogeneous transmission, depending on the parameters β1 and β2. (a) Lines of
constant average attack ratio in the parameter plane (β1,β2); in black those for the
homogeneous model with β̄ = (β1 + β2)/2 (hence straight lines), in red those for
the heterogeneous model. Value of βg = 0.05. (b) Using the values from panel (a),
subdivision of the parameter space into a region where attack ratio is lower with
heterogeneous transmission, one in which the opposite happens, one in which R0 > 1
only with heterogeneous transmission, and finally one (‘No epidemics’) with R0 < 1
for both types of transmission. (c) like (b) with βg = 0.01. (d) like (b) with βg = 0.5.
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transmission, especially if groups are small.
There are then two questions that we wish to address:

– does the solution of equation (10) approximate the final attack ratio obtained
in stochastic simulations, so that the conclusions of Theorem 3 hold also in a
stochastic setting?

– If R0 is estimated from aggregated data through an estimate of the exponential
growth rate, would it have a relation with average attack ratio similar to that hold-
ing for the homogenous model?

We examine these questions through simulations tailored for groups of intermediate
size (such as schools, for instance, or informal community groups) for which it is
plausible that within-group transmission can be described through differential equa-
tions.
Precisely, stochasticity has been modelled as a continuous-time Markov chain whose
rates have been specified consistently with the rates of the SIR deterministic model.
The algorithm for implementing the Markov chain follows the so-called Gillespie al-
gorithm [20] that was actually already proposed in [29]; it consists of the repetition
of three steps that update the state of the population and time (see also [40]):

1. Update time: the time interval between two subsequent events is exponentially
distributed with average T−1 with

T =
n

∑
i=1

n

∑
i=1

γIi +
n

∑
i=1

βiSi
Ii

Ni
+

n

∑
i=1

βg

n
Si

n

∑
j=1

I j

N j
;

2. Randomly select an event which can be the infection of a susceptible individual

(with probability (∑i βiSi
Ii

Ni
+∑i

βg

n
Si ∑ j

I j

N j
)/T or the removal of an infected

individual (with probability ∑i γIi/T );
3. Update the state of the population according to the event occurred.

As reference values for the simulations considered here, we took the case where in a
homogeneous model, R0 would be between 1.4 and 1.8, close to the values considered
for influenza [22,15,13], and varied the levels of heterogeneity and of connection
between groups. Precisely, we used R = 1.4, 1.6 and 1.8; set global transmission rate
to βg = εR with either ε = 0.03125 or ε = 0.3125. For each such value, we randomly
sampled the values of βi from a log-normal distribution with mean R(1− ε) (so that
according to (5) R0 = β̄ +βg ≈ R) and variance either 0 (homogeneous case), 0.5 or
2.5.

For each scenario, we repeated 10 times the random sample of transmission rates
βi; for each (random) choice of parameters, we ran a number of stochastic simula-
tions, seeded by 1 infectious individual, randomly placed in one of the groups. As in
all stochastic models, disease fadeout can happen after the first few cases; we defined
‘major’ epidemics the simulations resulting in at least 10% of the total population
having been infected. While the threshold is somewhat arbitrary, it is well known
that, if population size is large enough, the number of cases generated by a stochastic
epidemic has a bimodal distribution [2] and indeed almost all simulations ended up
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Fig. 3: (a) On the x-axis average attack ratios in the deterministic model (1) for dif-
ferent parameter values; on the y-axis average attack ratios of stochastic simulations
with the same parameter values. In black, values obtained with ε = 0.03125 and βi
sampled from a lognormal with mean 1.6(1−ε) and variance 2.5; in red, same except
that ε = 0.3125; blue, same as black but variance of lognormal equal to 0.5; purple,
same as black but variance of the lognormal equal to 0. (b) On the x-axis variance
(among groups) of attack ratios in the deterministic model (1); on the y-axis variance
(among groups) of attack ratios in stochastic simulations. Parameters and legend as
in (a).

very far from the threshold. Thus, for each parameter sample, we ran enough simula-
tions to obtain 10 ‘major’ epidemics. We varied also the number of groups and their
size, but in what follows we show only the case with n = 100 and Ni ≡ 1,000, thus
with a total population size of 100,000.

A comparison between the final attack ratio in the deterministic model (1) and
stochastic simulations is shown in Fig. 3. It can be seen that the correspondence
is very good: different parameter samples yield different values for the predicted
attack ratio in model (1) and for the variance in attack ratios between groups. The
results of the stochastic simulations are all very close to the deterministic predictions.
Comparing black, blue and purple dots in panel a) of Fig. 3, one can also see that
overall attack ratio tends to decrease with increasing variance in the within-group
transmission rates, as long as other parameters are kept constant.

It must be remembered that only stochastic simulations leading to a ‘major’ epi-
demic are shown, while many others result in early extinction of the epidemic. The
probability of early extinction in homogeneous models is equal to 1−1/R0 [2], but in
heterogenous models it is necessary to take into account the properties of the group
in which the first introduction occurs [10,33,14], and there does not seem to be a
simple formula for the case considered here. Relationships of the probability of ex-
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tinction in more complex stochastic model with several possible predictors have been
extensively explored in [16].

In principle, the initial growth rate of an epidemic r could be obtained by lin-
earizing (1) near (N,0) and computing the largest eigenvalue of the resulting matrix,
i.e. Kt − I with K defined in (4) (remember that γ = 1); hence, we would obtain
r = R0−1. However, this derivation neglects the fact that, with finite population, the
infection will initially be present in a single group, and then will spread (faster or
slower depending on the strength of global transmission) to other groups. If group
transmission rates differ significantly among each other, R0 will be dominated by the
group with highest transmission, while patterns of epidemic growth will depend on
transmission rates within many groups, and on the speed of transmission between
groups.

Hence, from individual simulations we estimated the exponential growth rate r in
an empirical way, mimicking what is often performed on actual data [31]. Namely,
we fitted a line to the logarithms of simulated incidence values over different intervals
in their initial growth part, keeping only the fits over intervals that included at least
4 points and yielded an R2 of the regression above 95%. Finally, we averaged the
estimated slopes to yield an estimate of r for that simulation. In Fig. 4(a) we show the
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Fig. 4: (a) Estimated exponential growth rate r (x-axis) vs. average attack ratio (y-
axis) in the different simulations obtained with βg = Rε and βi sampled from a log-
normal with mean R(1− ε) and variance σ2. Solid triangles correspond to R = 1.4,
open circles to R= 1.6, crosses to R= 1.8; in black, points obtained with ε = 0.03125
and σ2 = 2.5; in red, ε = 0.3125 and σ2 = 2.5; blue, ε = 0.03125 and σ2 = 0.5. (b)
R0 from formula (6) (x-axis) vs. R0 = 1+ r, using the estimated r in the different
simulations. Point symbols as in (a); the solid line is the bisectrix R0,est. = R0,theor.

estimates of r compared to the attack ratios in the same simulations. It can be seen
that both r and the attack ratios increase with R; moreover the estimated exponential
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growth rate is higher when groups are more connected (ε = 0.3125, red points in
Figure (4)). On the other hand, for a given estimated r, attack ratio tend to be higher
when between-group variance in transmission rate is lower (blue points in Figure
(4)). Overall, one can see a (statistically significant) relation between the estimates
of r and final attack ratios, even if one restricts the analysis to different samples of
βi within the same simulation scenario. However, the relationships strongly depend
on the simulations included in the analysis; thus, it appears to be difficult to infer a
general rule connecting estimated exponential growth rate and epidemic impact.

We finally compare (Fig. 4(b)) the values of R0 obtained from the theoretical
formula (6) to those obtained from the estimated exponential growth rate using the
formula R0 ≈ 1+ rTI [42]. It can be seen that the values of R0 obtained from (6) are
extremely large, especially when transmission rates βi are sampled from the lognor-
mal with higher variance and groups are weakly connected (black points in Figure 4,
where a point with R0 ≈ 35 is not shown) and are very weakly correlated to the values
of R0 obtained from the estimated values of r. Hence, while R0 correctly determines
the reduction in transmission rate necessary for bringing an epidemic below thresh-
old, the epidemic dynamics is definitely very different from that of a homogeneous
model with that value of R0. Note that in the simulations we used n = 100 groups; if
the value of n were smaller, or the variance in contact rates were smaller, the values
of the theoretical R0 would presumably be smaller.
We remark that different concepts of R0, each catching a relevant aspect of the trans-
mission process and potentially more useful for populations stratified into (relatively
small) groups with different mixing patterns, have been proposed and analysed [21,
38,8]. We are not discussing these here.

To summarise, we found that the final attack ratio predicted from the determinis-
tic model (1) is an extremely good predictor of the outcome of stochastic simulations
that survive early extinction, at least when groups are rather large, as it happens in our
simulations. On the other hand, even in the simple context of the models examined
here, although there is a correlation between the estimated exponential growth rate
and final attack ratio, there does not seem to be a simple relationship between them,
mimicking the one existing in homogeneous models.
Several properties of the model (for instance, the level of connection among groups;
the variance in transmission rates) affect the final attack ratio, beyond what can be
gathered from initial growth. An open question, to which the present work may give
at best preliminary insights, is whether some summary measures of contact struc-
ture can be built that help in predicting final attack rates. Presumably, the analytical
approximations obtained for effective early exponential growth rate [39] or final at-
tack ratio [27] could help towards that. However, it has also be remembered that final
attack rates predicted by metapopulation models (like the ones examined here) can
be rather different from those obtained by corresponding agent-based models where
individual contacts are kept track of [1].
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