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Binary black hole (BBH) mergers provide a prime source for current and future interferometric
gravitational wave observatories. Massive BBHmergers may often take place in plasma-rich environments,
leading to the exciting possibility of a concurrent electromagnetic (EM) signal observable by traditional
astronomical facilities. However, many critical questions about the generation of such counterparts remain
unanswered. We explore mechanisms that may drive EM counterparts with magnetohydrodynamic
simulations treating a range of scenarios involving equal-mass black-hole binaries immersed in an initially
homogeneous fluid with uniform, orbitally aligned magnetic fields. We find that the time development of
Poynting luminosity, which may drive jetlike emissions, is relatively insensitive to aspects of the initial
configuration. In particular, over a significant range of initial values, the central magnetic field strength is
effectively regulated by the gas flow to yield a Poynting luminosity of 1045 − 1046ρ-13M8

2 erg s−1, with
BBH mass scaled to M8 ≡M=ð108 M⊙Þ and ambient density ρ-13 ≡ ρ=ð10−13 g cm−3Þ. We also calculate
the direct plasma synchrotron emissions processed through geodesic ray-tracing. Despite lensing effects
and dynamics, we find the observed synchrotron flux varies little leading up to merger.
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I. INTRODUCTION

One of the more provocative developments associated
with the recent detections of gravitational waves (GWs)
from mergers of stellar-mass black holes (BHs) by
Advanced LIGO [1,2] was the subsequent announcement
of a possible electromagnetic (EM) counterpart signal, 0.4 s
after the GW150914 signal was observed. Fermi found a
sub-threshold gamma-ray source in a region of the sky that
overlapped the ∼600-square-degree LIGO uncertainty
region for GW150914 [3]. Though it may be impossible
to confirm that the events are indeed physically related, the
EM observation has inspired a number of papers exploring
potential scenarios linking EM counterparts to stellar-mass
black hole mergers [4–10]—mergers that theorists had
expected to be electromagnetically dark.
These events draw attention to the high potential value of

multimessenger observations of GW events. While GW
observations can provide extraordinarily detailed informa-
tion about the merging black holes themselves, they may
not provide any direct information about the black holes’
environment. Even the location of the event will be poorly
determined unless an associated EM event can be identi-
fied. Such localization could also deepen our understanding

of the astrophysical processes that form and influence BBH
systems.
Unlike the situation for stellar-mass black holes, astron-

omers have long recognized the potential for EM counter-
parts to binary supermassive (106–109 M⊙) black hole
(SMBH) mergers occurring in the millihertz GW band.
These mergers are a key target of future space-based GW
observatories such as the LISA mission, which was
recently approved by the European Space Agency [11].
Premerger GWs from these systems are a key target of
nanoHertz GW searches with pulsar timing arrays [12].
The large cross section of SMBHs interacting with the

ample supplies of gas common in galactic nuclear regions
allows them topower someof thebrightest,most long-lasting
EM sources in existence, including active galactic nuclei
(AGN), quasars, or radio jet emissions. A number of
mechanisms may provide signals associated with these
sources across a broad range of time scales from
∼109 years before merger to ∼109 years after merger
[13]. Considerable evidence for binary SMBH systems
has already been observed, but is restricted to those either
well before merger [14–21], or well after merger [22–28].
The greatest potential for direct association with

BBH mergers would come from strong EM emissions or
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modulations coincident with the GW event. Since LISA
will observe GW emission from BBH mergers for an
extended period of time, direct EM counterparts may be
caused by interaction of the BBH with a circumbinary disk,
perhaps during the final ∼103 orbits prior to merger. Our
objective, however, is to explore the mechanisms that may
potentially drive EM signals directly associated with the
strongest GW emissions within hours of the merger event
itself. Such emissions could be crucial, for example, in
LISA-based redshift-distance studies [29].
Unlike the clean GW predictions that numerical relativity

provides, one challenge of understanding EM counterpart
signatures is their potential dependence on myriad details of
the gas distribution, its properties, and the structure and
strength of associated magnetic fields. For prompt merger-
associated signals, the challenge is enhanced because the
merger occurs on avery short time scale.Accretiondisks, and
indeed circumbinary disks, are characterized by variation
over a wide range of time scales [30]; after “decoupling,” the
gravitational-radiation-induced infall time scale becomes
shorter than the disk accretion time scale, leading to amerger
in amagnetizedmatter environment whose detailed structure
may be impossible to predict. Even though binary torques
tend to evacuate much of the surrounding region, studies in
2D and 3D reveal that dense infalling streams persist,
maintaining accretion rates at levels comparable to that of
a single-BH disk [31,32].
The most valuable sort of counterpart prediction would

be insensitive to these details, and have distinguishing
features that clearly identify the source as a binary SMBH.
While one approach to exploring this could be to seek
universal features in a large number of full circumbinary-
disk-plus-merger simulations, our approach here is to
explore robust EM counterpart signatures from BBHs
embedded in a number of simple plasma configurations.
In this paper, we employ a new tool—the

ILLINOISGRMHD code [33]—to study potential EM sig-
nals deriving from perhaps the simplest such initial
configuration: a plasma with uniform density and magnetic
fields, in which the magnetic fields are aligned with the
orbital angular momentum vector.
The rest of this paper is laid out as follows. In Sec. II, we

summarize relevant numerical results obtained with various
methods and codes. In Sec. III, we briefly introduce our
numerical code and MHD diagnostics, and compare with
results from earlier work that used the WHISKYMHD code
[34]. Section IV presents the results of our new simulations:
the global state of the MHD fields (IVA), the rate of mass
accretion into the premerger and postmerger BHs (IV B),
the detailed behavior of the resulting Poynting luminosity
(IV C), and possible direct emission of observable photons
(IV D). We summarize our conclusions and discuss future
work in Sec. V. The Appendices contain more detail on the
calculation of the Poynting luminosity, effects of varying
numerical resolution, and conversion between code and
cgs units.

II. GRMHD SIMULATIONS

As dynamical, strong-field gravitational fields may drive
EM counterparts to GW mergers, it is essential to build our
models using the techniques of numerical relativity.
Building on a revolution in methodology [35–37], numeri-
cal relativity simulations provided the first predictions [38]
of astrophysical GW signals like GW150914 almost ten
years before the observation. Moving beyond GW pre-
dictions in vacuum spacetimes and into EM counterpart
predictions requires physics-rich simulation studies that
couple the general relativistic (GR) field equations to the
equations of GR magnetohydrodynamics (GRMHD), so
that magnetized plasma flows in strong, dynamical gravi-
tational fields may be properly modeled.
Over the last decade several research teams have

gradually and systematically added the layers of physics
necessary to begin to understand the potential for counter-
part signals. Studies of test particle motion (i.e., non-
interacting gases) during the last phase of inspiral and
merger of MBHs showed that a fraction of particles can
collide with each other at speeds approaching the speed of
light, suggesting the possibility of a burst of radiation
accompanying black hole coalescence [39]. Other studies
investigated possible EM emission from purely hydro-
dynamic fluids near the merging BHs [40–45].
These studies neglected the important role that magnetic

fields are likely to have in forming jets, driving disk
dynamics, or in photon emission mechanisms. EM fields
were first included in ground-breaking GR force-free
electrodynamics (GRFFE) simulations [46–48], investigat-
ing mergers in a magnetically dominated plasma, indicating
that a separate jet formed around each BH during the
inspiral. At the time of the merger, these two collimated
jets would coalesce into a single jet directed from the
spinning BH formed by the merger [49–51]. Based on
the black hole membrane paradigm, analysis of these
studies suggested a simple formula relating the binary
orbital velocity to the Poynting flux available to drive EM
emissions [52]: LPoynt ∼ v2orbital.
More recent studies have begun to explore the behavior

of moderatelymagnetized plasmas around BBH systems in
an ideal GRMHD context, finding that significant EM
signatures may be produced by these systems. Studies of
circumbinary disk dynamics [53–55] have used initially
circular binary BH orbits to reach a pseudosteady state in a
circumbinary disk before allowing the binary to inspiral
and merge. In [56], the final merger of an equal-mass BBH
was modeled in full GR, and the observed Poynting
luminosity declined gradually through inspiral, only to
rise significantly some time after merger.
In [34] we first studied the physics of moderately

magnetized plasmas near the moment of merger, using
the WHISKYMHD code. Though that study was limited to
just a few orbits because of technical challenges, it showed
a rapid amplification of the magnetic field of approximately
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two orders of magnitude. This contributed to the creation,
after merger, of a magnetically dominated funnel aligned
with the spin axis of the final BH. The resulting Poynting
luminosity was estimated to be ∼1048 erg s−1 (assuming an
initial BBH system mass of 108 M⊙, an initial plasma rest-
mass density of 10−11 g cm−3, and an initial magnetic field
strength of ∼104 G). In comparison, the force-free simu-
lations of [49–52] produced peak luminosities of
≲1044 erg s−1, four orders of magnitude lower than what
we obtained with ideal GRMHD, despite similar initial
magnetic field strengths.
These results indicate that the dynamics of BBH inspirals

and mergers play an important role in driving the magnetic
fields in their environment. When the BBH is embedded in
an initially nonmagnetically dominated plasma, accretion
onto the merging BHs compresses and twists the magnetic
field lines, which may strongly amplify the magnetic fields.
Strengthened magnetic fields may then influence gas
inflow, powering a strong EM energy (Poynting) outflow
through a magnetically dominated funnel. As noted in [34],
such a mechanism cannot exist in the force-free regime.
Despite the ability to track GRFFE/GRMHD flows, there

have been no fully GR simulations of EM counterparts to
BBH mergers that actually track photons, or that could
produce spectra. Instead, EM luminosity estimates have
often been based on Poynting flux measurements provided
directly from GRMHD fluid variables. A first step in
bridging this gap was made in [57] using the PANDURATA
code [58] to postprocess theMHD fields around themerging
binary, but assuming a fixed Kerr BH background instead of
the dynamical spacetimeof theGRMHDevolution itself, and
also assuming a fixed electron temperature. Synchrotron,
bremsstrahlung, and inverse-Compton effects combined to
produce a spectrum that peaked near 100 keV. As described
in Sec. IVD, we apply a slightly more sophisticated
spacetime procedure with PANDURATA to obtain estimates
of synchrotron luminosity and spectra from simulations
presented here.

III. NUMERICAL METHODS

We revisit the scenario studied in [34] with fully 3D
dynamical GRMHD evolutions carried out with the
Einstein Toolkit [59,60] on adaptive-mesh refinement
(AMR) grids supplied by the Cactus/Carpet infrastructure
[61], adopting a fully general-relativistic, BSSN-based
[62–64] spacetime metric evolution provided by the
Kranc-based [65] MCLACHLAN [66,67] module, and cru-
cially, fluid and magnetic field evolution performed with
the recently released ILLINOISGRMHD code [33]. Initial
metric data was of the Bowen-York type commonly used
for moving puncture evolutions [68,69], conditioned to
satisfy the Hamiltonian and momentum constraints using
the TWOPUNCTURES code [70].
The ILLINOISGRMHD code is a complete rewrite of (yet

agrees to roundoff-precision with) the long-standing

GRMHD code used for more than a decade by the
Illinois Numerical Relativity group to model a large variety
of dynamical-spacetime GRMHD phenomena (see, e.g.,
[56,71–74] for a representative sampling). It evolves a set

of conservative MHD fields E≡ fρ�; ~τ; ~⃗S; ~⃗Bg, derived from
the primitive fields ρ (baryonic density), p (fluid pressure),
vi (fluid three-velocity ≡ui=u0, where uμ is the fluid four-
velocity), and Bi (spatial magnetic field measured by
Eulerian observers normal to the spatial slice).
For an ideal gas with adiabatic index Γ, the pressure p

obeys

p ¼ ρϵðΓ − 1Þ; ð1Þ

where ϵ is the specific internal energy of the gas. The fluid
specific enthalpy is

h ¼ ð1þ ϵÞ þ p
ρ
¼ 1þ Γϵ: ð2Þ

More specifically, we choose the gas to initially obey a
polytropic equation of state:

p ¼ κρΓ; ð3Þ

with Γ ¼ 4=3, consistent with a radiation-dominated
plasma.
We also use the magnetic four-vector bμ given by (see

e.g. Sec. II B of [75]):

bμ ¼ 1ffiffiffiffiffiffi
4π

p
α

�
umBm;

Bi þ ðumBmÞui
u0

�
; ð4Þ

where repeated Latin indices denote implied sums over
spatial components only. We define a specific magnetic +
fluid enthalpy by

h� ¼ hþ b2

ρ
: ð5Þ

The total stress-energy tensor of the magnetized fluid is
the sum of fluid and EM parts:

Tμν ¼ Tμν
fluid þ Tμν

EM; ð6aÞ

Tμν
fluid ¼ ρhuμuν − pgμν; ð6bÞ

Tμν
EM ¼ b2

�
uμuν þ 1

2
gμν

�
− bμbν: ð6cÞ

GR provides that the stress-energy tensor is equal to a
multiple of the Einstein tensor, containing information
about the spacetime geometry. However, the low-density
fluids we study possess negligible self-gravity, so as in
[34], we ignore the plasma contribution to the GR field
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equations. In this case we are then free to rescale Tμν ≈ 0
(and thus an appropriate combination of the plasma field
variables) independently of the scaling of geometric prop-
erties, represented by the total black hole mass M. To
justify this approach more quantitatively, we note that in
[76], the authors found plasma densities of around
106 g cm−3 were necessary to noticeably affect the binary’s
coalescence dynamics—17 orders of magnitude larger than
the densities considered here.
The original simulations of [34] were carried out with an

equal-mass binary with initial separation d ¼ 8.4M,
where M is the sum of Arnowitt-Deser-Misner (ADM)
masses [77] of the pre-merger black holes. As reviewed in
Sec. III B, in this work we explore a variety of additional
separations, better resolve the spacetime fields near the
black holes, allow for plasma shock-heating, and adopt the
new ILLINOISGRMHD code for modeling the GRMHD
dynamics.
To each BBH configuration, we add an initially uniform,

radiation-dominated polytropic fluid: p0 ¼ κρΓ0 , with
κ ¼ 0.2, Γ ¼ 4=3. This fluid is threaded by an initially
uniform magnetic field, everywhere directed along the z
axis (i.e. parallel to the orbital angular momentum of the
binary). Our canonical initial fluid density and magnetic
field strengths are ρ0 ¼ 1, b0 ¼ 10−1 in code units; this is
equivalent to B0 ¼ 3.363 × 104 G for a physical density
of 10−11 g cm−3, or B0 ¼ 3.363 × 103 G for a physical
density of 10−13 g cm−3.

A. Diagnostics

To better interpret the results of our simulations, we rely
on several diagnostics of the plasma and the black hole
geometry. For completeness, we describe these here.
To assess the extent of induced rotation for the system,

we measure the fluid’s angular velocity Ωfluid about the
orbital axis, defined as

Ωfluid ¼
xvy − yvx

ðx2 þ y2Þ : ð7Þ

For a test particle moving around a Kerr black hole of
mass M and spin parameter a ¼ J=M, the Keplerian
angular frequency is (see, e.g. [78])

ΩK ¼ 1

M

��
rKBL
M

�
3=2

þ a
M

�
−1
; ð8Þ

where rKBL is the areal radius1 of Kerr-Boyer-Lindquist
coordinates.

Another angular frequency of interest is that of a zero-
angular-momentum particle infalling from infinity in a Kerr
spacetime:

Ωinfall ¼
2Ma

ðr3KBL þ a2rKBL þ 2Ma2Þ : ð9Þ

The relativistic Alfvén velocity of the magnetized fluid is
defined as [81]

vAlf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2

ρð1þ ϵÞ þ pþ b2

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

ρð1þ ΓϵÞ þ b2

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2

ρþ 4pþ b2

s
; ð10Þ

where the second line holds for a polytrope with Γ ¼ 4=3,
as we use here.
To make contact with the results of [34], we look

primarily at the Poynting vector. In terms of the MHD
fields evolved, this can be calculated as

Si ≡ αTi
EM;0 ¼ α

�
b2uiu0 þ

1

2
b2gi0 − bib0

�
: ð11Þ

We frequently use Szð1;0Þ, the (l ¼ 1, m ¼ 0) spherical
harmonic mode of Sz, as a measure of Poynting luminosity:

LPoynt ≈ lim
R→∞

I
R2Sz cos θdΩ ¼ lim

R→∞
2R2

ffiffiffi
π

3

r
Szð1;0Þ: ð12Þ

In Appendix A, we justify this choice, and relate it to the
EM flux measured by [50,52].
To estimate the rate of accretion of fluid into the black

holes, we use the OUTFLOW code module in the Einstein
Toolkit. OUTFLOW calculates the flux of fluid across each
apparent horizon S via:

_M ¼ −
I
S

ffiffiffi
γ

p
αD

�
vi −

βi

α

�
dσi; ð13Þ

where D≡ ραu0 is the Lorentz-weighted fluid density, and
σi is the ordinary (flat-space) directed surface element of
the horizon. BH apparent horizons are located using the
AHFINDERDIRECT code [82].

B. Comparison with Whisky 2012 Results

In this paper we apply recent advances in numerical
relativity techniques encoded in ILLINOISGRMHD to
achieve longer-duration simulations covering a broader
variety of simulation scenarios than those studied in [34]
using WHISKYMHD. As a preliminary step, we first make
contact with those earlier results, treating the same scenario
with the new numerical methods.

1When working in simulation coordinates we deduce the areal
radius from the form of a curvature invariant evaluated on the
equatorial plane on the same time slice, as was done for the
“Lazarus” procedure [79,80].
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While ILLINOISGRMHD is a newer code than
WHISKYMHD, its lineage traces back more than a decade
to the development of the Illinois Numerical Relativity
group’s original GRMHD code [83–85] The algorithms
underlying WHISKYMHD and ILLINOISGRMHD were
chosen through years of trial and error to maximize
robustness and reliability in a variety of dynamical space-
time contexts: the piecewise parabolic method [86] for
reconstruction, the Harten-Lax-van Leer approximate
Riemann solver, and an AMR-compatible vector-potential
formalism for both evolving the GRMHD induction equa-
tion and maintaining divergenceless magnetic fields.
Despite their algorithmic similarities, WHISKYMHD

and ILLINOISGRMHD were developed independently
and as such, adopted formalisms and algorithmic imple-
mentations are different. Most of these differences should
largely result in solutions that converge with increasing
grid resolution. For example, ILLINOISGRMHD recon-
structs the 3-velocity that appears in the induction equa-
tion, vi ≡ ui=u0 and WHISKYMHD chooses to reconstruct
the “Valencia” 3-velocity viðnÞ ≡ ðui=u0 þ βiÞ=α. Also,
WHISKYMHD defines the vector potential at vertices on
our Cartesian grid, while ILLINOISGRMHD adopts a
staggered formalism [87].
Beyond algorithmic implementations, two key choices

made in the 2012 WHISKYMHD paper [34] may result in
significant differences with this work. First, in [34],
WHISKYMHD actively maintained the exact polytropic
relationship (3), while with the new ILLINOISGRMHD
evolutions, the value of κ is allowed to change. This means
that in the principal simulations of [34], no shock heating
was allowed.
Second, the electromagnetic gauge condition adopted in

[34] was later found to exhibit zero-speed modes that
manifest as an accumulation of errors at AMR grid
boundaries [85]. The impact of these gauge modes was
somewhat mitigated by the choice of very large high-
resolution AMR grids near the binary. ILLINOISGRMHD
adopts a generalization of the Lorenz gauge [54] that
removes the zero-speed modes, and thus enables us to
select a more optimal AMR grid structure for the problem.
To this end, Fig. 1 presents the initial set of refinement
“radii” (actually cube half-side) and associated resolutions
for both the WHISKYMHD and the standard low-resolution
ILLINOISGRMHD runs. While the WHISKYMHD runs
have a higher resolution throughout the wider region of
radius 1M ≲ r≲ 7M centered on each puncture, the
new ILLINOISGRMHD runs better resolve the region
immediately around (r≲ 1M) each black hole. The
lowerWHISKYMHD resolution around the horizons had a
significant impact on the BH dynamics: with the grids used
in the original WHISKYMHD runs, the black holes merge at
tmerge ∼ 350M, compared with tmerge ∼ 450M for grids used
in the ILLINOISGRMHD runs presented here.
In Fig. 2, we show the resulting Poynting luminosity from

both the WHISKYMHD run and the new ILLINOISGRMHD

run.2 The peak luminosity is very similar in both cases, but
the rise to this peak is sharper in the WHISKYMHD case
because under-resolved horizon regions result in a consid-
erably earlier merger time of the black holes in the
WHISKYMHD run. We have verified that the different treat-
ment of the polytropic coefficient κ between WHISKYMHD
and ILLINOISGRMHD has minimal effect on the luminosity,
by performing amodified ILLINOISGRMHD simulation with
fixed κ (i.e., with shock-heating disabled) (blue curve
in Fig. 2).

IV. RESULTS

Our simulations are designed to explore the MHD
physics that may give rise to EM counterparts to black
hole mergers. These simulations, however, are not appro-
priate over the large temporal and spatial scales required to
simulate the emission of EM radiation to a very distant
observer (“at infinity”); the black hole region is fully
enshrouded by an infinite region of finite-density gas
which would soon block any radiation or other outflows.
Our focus instead is to examine near-zone mechanisms that
could drive EM outflows. Two broad channels of emission
are considered. First, the development of familiar jetlike
structures leading to strong Poynting flux on the axis can
provide a significant source of energy, which can be
converted to strong EM emissions farther downstream.

FIG. 1. Initial numerical mesh refinement structure for original
WHISKYMHD run of [34] (black, solid), and lowest-resolution
ILLINOISGRMHD runs (red, dashed), expressed as local grid
spacing dx as a function of “radial distance” x from the puncture
at the center of the grid. Both grids have 11 refinement levels,
with similar outer resolutions. The ILLINOISGRMHD run is
better-resolved in the regions immediately around the individual
horizons, but the WHISKYMHD run maintained uniformly high
resolution for all points within 6M of each puncture.

2Note that Fig. 5 from [34] computes the luminosity only for
z > 0; we multiply the 2012 result by two here to compensate.
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Second, we also consider mechanisms for direct emission
from the fluid flows near the black holes, ignoring the
absorbing properties of matter farther out.
Our canonical configuration is an equal-mass BBH with

initial coordinate separation d ¼ 14.4M, initial fluid den-
sity ρ0 ¼ 1 in a polytrope with κ ¼ 0.2, Γ ¼ 4=3, and
initial magnetic field strength b0 ¼ 0.1. We present these
and derived parameters in Table I.

A. Large-scale structure of fluid and fields

We begin by presenting an overview of the major field
structures that develop through MHD dynamics during the

merger process, using our canonical case as a representative
example.
The canonical simulation begins about 3500M before

merger, with an initially uniform fluid and a uniform
vertical magnetic field. After some time the fluid has fallen
mostly vertically along the field lines, concentrating in a
nearly axisymmetric thin disk (h ≪ M) of dense material
about each black hole. Figure 3 shows a snapshot of
the fluid density ρ on the x-y (orbital) and x-z planes
during the late inspiral (about 1100M before merger) for
the d ¼ 14.4M configuration.
By late times, those disks have merged into a common

disk around the final, spinning black hole. The structure of
the post-merger disk is shown in Fig. 4, where we again
plot ρ on the x-y and x-z planes. By this time fluid has
fallen in to form a thin disk (h ≪ M) of dense material with
radius of 2–3 gravitational radii (the BH horizon radius is
approximately 1M here). Above and below the disk, gas is
largely excluded by magnetically dominated regions.
Focusing just on the x-y plane, the top panel shows that
some asymmetric structure persists long after merger.

FIG. 2. LPoynt for original WHISKYMHD run of [34] (black,
solid), compared with the new ILLINOISGRMHD runs for the
same initial separation (red, dashed). All luminosities have been
time-shifted by the time of merger for that run, and scaled to
reflect the canonical case in [34]: a plasma of uniform initial
density ρ0 ¼ 10−11 g cm−3 and magnetic field strength
B0 ¼ 3.363 × 104 G, in the vicinity of a black-hole binary of
total mass M ¼ 108 M⊙. An ILLINOISGRMHD simulation keep-
ing the polytropic coefficient κ fixed to its initial value every-
where (i.e., disabling shock heating) shows very similar behavior
(blue, dotted).

TABLE I. Initial parameters and derived quantities for the
canonical configuration: initial puncture separation d, puncture
mass mp, Bowen-York linear momentum components Ptang &
Prad, finest grid spacing dx, merger time tmerge, initial fluid
density ρ0, magnetic field strength b0, polytropic constant κ0,
fluid pressure p0, specific internal energy ϵ0, ratio of magnetic to
fluid energy density ζ0, specific enthalpy h�0, and ambient Alfvén
speed vAlf .

dðMÞ mp PtangðMÞ PradðMÞ dxðMÞ
14.384 0.4902240 0.07563734 −0.0002963 1=48

tmergeðMÞ ρ0 b0 κ0 p0 ϵ0 ζ0 h�0 vAlf

3514.333 1.0 0.1 0.2 0.2 0.6 5.0e-3 1.81 0.07433

FIG. 3. Fluid density ρ during inspiral at time t ¼ 2400M
(about 1100M before merger) for the d ¼ 14.4M configuration.
At this time the holes are centered at ðx; yÞ ≈�ð5.53M; 0.08MÞ.
The regions inside the BH horizons have been masked out. Note
that in all configurations the BHs are orbiting in a counter-
clockwise motion around the positive z axis
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Though these premerger and postmerger disks super-
ficially resemble familiar black hole accretion disks, there
are important differences. Traditional disks are centrifugally
supported outside the innermost stable circular orbit. Our
fluid distribution, on the other hand, is initially at (coor-
dinate) rest with low specific angular momentum. While
these flows are stirred first by binary motion and later by
frame-dragging near the final spinning black hole, this does
not produce a Keplerian flow. This can be seen in Fig. 5,
which shows the fluid orbital frequency Ωfluid (7) about
1100M after merger. The region around the horizon exhibits
a spin-up of the fluid material for r≲ 4M to an angular
frequency of up toMΩfluid ∼ 0.1. This can be compared with
two other angular velocity profiles of interest: the Keplerian
angular velocityΩK (9) for a rotationally supported disk, and
the “infall angular velocity” (9) for equatorial infall geo-
desics with vanishing specific angular momentum. Each is
evaluated for the same Kerr BH (a ¼ 0.69M). The velocity
profile of our disk more closely resembles the profile of
infalling geodesics.

During evolution, the initially parallel, z-directed
magnetic field lines evolve to resemble the structure of a
black-hole jet. The field lines are pinched in the orbital plane
as the matter falls in through the disk region, and become
twisted into a helical structure—see Fig. 6—through the
rotational motion in the orbital/infall plane. This structure
originates in the strong-gravitational-field region and prop-
agates outward at the ambient Alfvén speed vAlf (10).
This process also enhances the magnetic field strength in

the region above and below the orbital plane. In Fig. 7, we

FIG. 4. Fluid density ρ approximately 1500M after merger for
the d ¼ 14.4M configuration. The region inside the BH horizon
has been masked out.

FIG. 5. Top panel: Post-merger fluid orbital frequencyΩfluid for
the high-resolution d ¼ 14.4M configuration. The black-hole
interior has been masked out. Bottom panel: MBHΩfluid as
function of cylindrical radius q, averaged over orbital azimuthal
angle (red dashed), with the corresponding relativistic Keplerian
angular frequency MBHΩK (black solid), and the angular fre-
quency induced for a zero-angular-momentum (l ¼ 0) infalling
test particle (blue solid). The shaded region marks the interior of
the black-hole horizon.
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show the state of the evolved (squared) magnetic field
strength b2 1100M after merger, evaluated on the x-z plane.
As seen in the top panel, b2 is greatly amplified at and near
the polar axis of the post-merger hole. The lower panel
shows that this region is dominated by magnetic pressure.
This region shares some features of a relativistic jet, as both
are magnetically dominated and contain a helical magnetic
field structure. We show in Fig. 8 that the structures we
observe yield a strong Poynting flux directed outward. As
with our disk however, through the course of these
simulations the fluid flow through these jetlike structures
is predominantly inward-directed. Nonetheless, over longer
temporal and larger spatial scales and in plausible astro-
physical environments, the strong Poynting flux could
drive relativistic outflows and strong EM emissions. We

further explore this as a source of energy to eventually
power EM counterparts in the next section.3

FIG. 6. Magnetic field streamlines in the polar region, around
1100M after merger. The field lines are twisted into a helical
pattern, concentrated at the origin. This helical structure prop-
agates outward at the ambient Alfvén speed vAlf ¼ 0.07433,
replacing the initially vertical B fields (still visible at large z).

FIG. 7. Top panel: Magnetic field squared magnitude b2 about
1100M after merger for the high-resolution d ¼ 14.4M configu-
ration. Bottom panel: Magnetic-to-gas pressure ratio β−1 ≡
b2=2pgas for the same time and configuration.

3There is no direct contradiction between inward fluid flows
and outward Poynting flux. A simple expression relating Poynt-
ing flux to velocity is Lz

Poynt ¼ B2vz⊥, where vz⊥ ¼ vz − vz∥ is the
component of fluid velocity perpendicular to the magnetic field
lines. For a specified Poynting flux, the parallel component of
velocity vz∥ is not directly constrained and may be negatively
directed and large enough to overcome a positive vz⊥.
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B. Mass accretion rate

Although the initially static fluid in our simulations does
not develop the rotational support necessary for an accre-
tion disk (as Fig. 5 indicates), the rate of accretion _M onto
the black holes provides a measure of the energy available
for EM outflows during inspiral and merger. In Fig. 9, we
show the development of this quantity over the bulk of the
d ¼ 14.4M evolution, calculated using (13).
We note the main features of this accretion rate estimate:

(i) _M slowly declines through the late inspiral, with the

drop-off steeper just before merger when a common
horizon forms; (ii) _M jumps when the black hole apparent
horizons join discontinuously at merger; (iii) after some
settling in, the post-merger _M resumes the slow decline
seen before merger.
The numbers in Fig. 9 are in code units where M ¼ 1,

ρ0 ¼ 1. Since _M generically scales as ρM2, we convert to
physical units using a factor G2=c3. Scaling for our
canonical initial fluid density and system mass, we obtain
the rate in cgs units as

_Mcgs ¼ 6.54 × 1023ρ-13M2
8
_M g s−1; ð14Þ

where ρ-13 ≡ ρ0=ð10−13 g cm−3Þ, and M8 ≡M=ð108 M⊙Þ.
Since _M ∼ 100 throughout the simulation, a good order-

of-magnitude estimate for the accretion rate both before
and after merger is _Mcgs ≈ 6 × 1025ρ-13M2

8 g s−1.

C. Features of Poynting luminosity

The powerful Poynting flux generated by our simula-
tions shows that strong flows of electromagnetic energy are
driven vertically outward along the orbital angular momen-
tum axis, starting near the orbital plane. Many studies have
shown that such Poynting flux regions can transfer power
from the black hole region, driving relativistic outflows
[74,88,89], and then through a cascade of internal or
external matter interactions, ultimately yielding strong
EM emissions (e.g., in the fireball model for gamma-ray
bursts [90]). Our simulations are not set up to model those
processes, but we can explore the Poynting luminosity as a
potential source of power for EM counterpart signals.
To get a measure of time dependence of the jet-like

Poynting-driven EM power, we compute the Poynting
luminosity LPoynt from (12), using the dominant ðl; mÞ ¼
ð1; 0Þ spherical harmonic mode of the z-component of the

FIG. 8. Top panel: Fluid velocity (z component) about 1100M
after merger for the high-resolution d ¼ 14.4M configuration.
Bottom panel: Poynting vector (11) (z component) for the same
time and configuration.

FIG. 9. Rate of mass loss _M to accretion into the black hole
horizons.
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Poynting flux, Sz (11), extracted on a coordinate sphere of
radius R ¼ 30M. Results from this diagnostic are shown
in Fig. 10. As discussed in Appendix A, this rotation-
axis-aligned component dominates the Poynting flux:
Sr ≈ Sz cos θ. We select extraction at 30M as giving a
measure of the input energy for potential reprocessing into
EMsignals down stream. This extraction radius is far enough
to avoid confusion with the motion of the black holes, yet
close enough to provide a quick measure of potential
emission on time scales comparable to the merger-time.4

Several features are evident in Fig. 10: (a) an early local
maximum in the flux (occurring at t ∼ 100M for this
extraction radius); (b) a steep rise in flux amplitude
beginning at t ∼ 450M, followed by (c) a slight drop to
a slow-growth stage, ending in a rapid climb and with a
slight “blip” (d), leading to a final maximum value
(e) before a gradual fall-off. We believe that these features
correspond to (a) the initial settling of the GRMHD fluids
and black hole space-time, (b) the arrival of magnetic-field
information from the black hole region at the extraction
sphere, (c) development relating to the inspiral process,
(d) prompt response to merger, and (e) initiation of single-
black hole jetlike characteristics.

1. Dependence on initial separation

The plasma in our simulations is initially at rest near the
black holes, which is clearly unphysical. We must therefore
be careful to start our BBH at a large enough separation so
that plasma in the strong-field region has time to establish a
quasiequilibrium flow with the binary motion.

Binary parameters for simulations covering a range of
initial separations are presented in Table II. To treat the
limit of zero initial separation, we also performed a
simulation of a single Kerr black hole (using the quasi-
isotropic form of exact Kerr [91]) with parameters chosen
consistent with the end-state black hole observed after
merger: mKerr ¼ 0.97M, a=mKerr ¼ 0.69.
In Fig. 11 we again show LPoynt at R ¼ 30M, but for

simulations beginning at times ranging from about 200M to
5400M before merger. For convenience, we show the
merger time of each configuration as a dashed line of
the same color. While we generally see the same set of
features for each simulation, the time delay between
features (b) and (d) shrinks as the inspiral duration becomes
shorter. The timing of features (a) and (b) indicates that they
can have no dependence on the merger of the binary, in
contrast to the conclusion drawn from the 2012 work [34].
For initially smaller-separation simulations such as the
d ¼ 8.4M of [34], these features are poorly resolved; in
particular the “slow-growth” stage is almost completely

FIG. 10. LPoynt, the Poynting luminosity, for the d ¼ 14.4M
configuration considered in Table III; extraction of the mode is on
a coordinate sphere of radius 30M. The merger time is marked by
a dashed vertical line.

TABLE II. Bowen-York parameters of the numerical configu-
rations used. The holes are nonspinning, and are initially
separated in the x direction. Our canonical configuration is
shown in bold face.

run name dðMÞ mp PtangðMÞ PradðMÞ
X1_d16.3 16.267 0.4913574 0.07002189 −0.0002001
X1_d14.4 14.384 0.4902240 0.07563734 −0.0002963
X1_d11.5 11.512 0.4877778 0.08740332 −0.0006127
X1_d10.4 10.434 0.4785587 0.0933638 −0.00085
X1_d9.5 9.46 0.4851295 0.099561 −0.001167
X1_d8.4 8.48 0.483383 0.107823 −0.0017175
X1_d6.6 6.61 0.4785587 0.1311875 −0.0052388

FIG. 11. LPoynt for the configurations considered in Table III;
extraction of the mode is on a coordinate sphere of radius 30M for
each case. Merger times for each binary are marked by dashed
vertical lines. (1LPoynt ¼ 5.867 × 1044ρ-13M2

8 erg s−1.)

4In [34], extraction was carried out at R ¼ 10M, but the initial
binary separation was much smaller in that case.
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absent. Consequently [34] failed to distinguish the initial-
ization-dependent rise (b) from the inspiral- and merger-
driven rise (c–e).
The blip (d) and the rise surrounding it do appear to be

correlated with the merger time. In Fig. 12, we realign the
flux curves of Fig. 11 by merger time tmerge (time when a
common apparent horizon is first found; see Table III). It
can be seen that the general trend with larger separation has
been to reveal a consistent premerger portion of the flux.
After an initial settling-in, the flux rises slowly as the binary
system inspirals.
In Appendix B we explore the robustness of this result to

changes in the extraction radius and to numerical resolution
changes. Overall the level and shape of the curve in Fig. 12
provides a picture of the time-dependence of the available
jet power, which is robust at roughly the ten-percent level.

2. Magnetic field dependence of Poynting luminosity

In the previous subsections we found a “light curve” for
the time dependence of outgoing Poynting flux for a
canonical ambient fluid density and aligned magnetic field
strength of b0 ¼ 0.1. However, it is natural to expect that
features of EM flux will change as the initial ambient field
strength varies. In previous studies carried out in the force-
free limit [50,52] the Poynting flux necessarily scaled with
the square of the initial magnetic field strength. On the
other hand, if the matter flows play an important role in
driving magnetic field development, then we should expect
a different scaling.
Here we investigate this issue by looking at several d ¼

14.4M configurations that differ only in their initial
uniform magnetic field strength b0. The different field
parameters are presented in Table IV, along with the
resulting Alfvén speeds vAlf .
Figure 13 shows the resulting Poynting luminosities on a

logarithmic scale. While the flux in all cases exhibits a very
small early amplification (the “initial-settling” peak (a) in
Fig. 10) whose timing is insensitive to field strength, the
later rise to levels observed during inspiral is significantly
accelerated or retarded relative to our canonical case, with
stronger ambient fields rising more quickly. The “rise time”
is consistent with a feature traveling outwards at the initial
ambient Alfvén speed vAlf (see Table IV), as vAlf ∝ b2 in
nonmagnetically dominated regions [Eq. (10)].
More surprisingly, however, each configuration appears

to reach the same level of Poynting luminosity during
inspiral, regardless of initial field strength (only the weakest
of the five cases does not share this common inspiral
luminosity, presumably because vAlf is too low for the
disturbance to reach the observer at R ¼ 30M before
merger). This is important because insensitivity to details
of astrophysical conditions at the time of merger, as we
seem to see with magnetic field strength in this case, would
be an important factor in any potentially robust electro-
magnetic signatures of black hole mergers.
To understand this apparent universality of the Poynting

luminosity during inspiral, we next analyze how the
magnetic field is amplified in the vicinity of the binary.
In the upper panel of Fig. 14, we show the evolved field b2

as extracted along the orbital (z) axis for these configura-
tions at time t ¼ 5000M, about 1500M after merger. We
see that, while b2 asymptotes to its initial value far from the
origin, the amplified fields closer in tend to a common
level. Indeed, within ∼10M of the origin, the top four
configurations are nearly indistinguishable, reaching a
common value of b2max ≈ 100 (similar to what was reported
in [34]). The lower panel shows b2 measured at the same
time, but along a line parallel to the x axis, at a height
z ¼ 10M. As the configuration is highly axially symmetric
around the orbital (z) axis by this time, this represents the
general falloff of b2 with distance from the orbital axis.
Grouping of the curves in the region x < 10M shows that

FIG. 12. As in Fig. 11, but with time axis aligned by merger
time of the binary. (1LPoynt ¼ 5.867 × 1044ρ-13M2

8 erg s−1.)

TABLE III. Time of merger tmerge for each binary configura-
tion. As time of merger depends on resolution, we include
resolution information for each case. Our canonical configuration
is shown in bold face.

run name dxðMÞ tmergeðMÞ
X1_d16.3 1=48 5380
X1_d14.4 1=48 3514

1=56 3651
1=72 3797

X1_d11.5 1=48 1549
1=56 1584
1=72 1572

X1_d10.4 1=48 1054
1=72 1066

X1_d9.5 1=48 681
X1_d8.4 1=48 451

1=56 451
X1_d6.6 1=48 208
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the consistency of b2 along the axis is representative of the
field strength across most or all of the jetlike region.
This common magnetic field magnitude suggests a

physical process in which gravitationally driven matter
flows drive up the magnetic field to the point of saturation.
The saturation likely reflects a point of overall balance
between magnetic pressure and gravitationally driven
matter pressure. Whatever the mechanism’s details, its
effect is that the arbitrary initial fields are replaced by a
universal, magnetically dominated helical structure. The
outgoing Poynting flux thus also tends to a common level.
We remind the reader that our simulations scale with an
arbitrary initial gas density ρ0. As the density increases, the
magnetic field strength should scale with ρ1=2.

3. Scaling behavior of luminosity

In the matter-free simulation of black-hole mergers, the
time scale and all observables (e.g. gravitational-wave
amplitude and frequency) scale with (or inversely to) the
total mass M of the system; thus the same simulation
can describe the merger of a stellar-mass system or a
supermassive one.

The results of our GRMHD simulations in this work are
not so trivially rescaled. In fact, for a given binary mass M
(which sets the timescale), the Poynting luminosity scales
cleanly only with the combination fρ0; p0; b20g. That is, if
we wish to scale the magnetic field strength b20 by a factor
C, then the same dynamics applies as long we also scale the

TABLE IV. Initial uniform GRMHD field values for canonical d ¼ 14.4M configuration (b1e-1) (shown in bold
face) and variants discussed in Secs. IV C 2 and IV C 3.

config ρ0 b0 κ0 p0 ϵ0 ζ0 h�0 vAlf

b1e-1 1.0 0.1 0.2 0.2 0.6 5.0e-3 1.81 0.074
b1e-2 1.0 0.01 0.2 0.2 0.6 5.0e-5 1.8 0.0075
b3e-2 1.0 0.03 0.2 0.2 0.6 4.5e-4 1.8 0.022
b3e-1 1.0 0.3 0.2 0.2 0.6 4.5e-2 1.89 0.22
b1e0 1.0 1.0 0.2 0.2 0.6 5.0e-1 2.8 0.60
b1e-1_up 100.0 1.0 0.0431 20.0 0.6 5.0e-3 1.81 0.074
b1e-1_down 0.01 0.01 0.928 2.0e-3 0.6 5.0e-3 1.81 0.074

FIG. 13. LPoynt for low-resolution d ¼ 14.4M configuration,
for five different magnetic field strengths b0, extracted at
R ¼ 30M. The common merger time is indicated by the dashed
vertical line. (1LPoynt ¼ 5.867 × 1044ρ-13M2

8 erg s−1.)

FIG. 14. Top panel: Evolved magnetic-field variable b2 along
the polar (z) axis at time t ¼ 5000M. The shaded region marks
the interior of the black-hole horizon. Bottom panel: b2 along line
parallel to x-axis, at z ¼ 10M.
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initial baryonic density ρ0 and the pressure p0 by the same
factor.5 The time-dependent Poynting luminosity is then C
times the original. We demonstrate in Fig. 15 that this
scaling is realized computationally.
This scaling invariance should not be surprising, since

the total stress-energy tensor (6a) is homogeneous in these
three quantities. As long as gravitational effects from the
matter fields are not relevant then the dynamics will be
independent ofC. Consequently all velocities, including for
instance the Alfvén velocity (10), are independent of this
collective rescaling. If we further write the magnetic-fluid
energy density ratio as ζ0 ≡ b20=ð2ρ0Þ, then the uniform
scaling performed in this section is equivalent to scaling the
initial fluid density ρ0 while keeping the specific internal
energy ϵ0 and the energy-density ratio ζ0 constant.
For a fixed fluid density ρ, the luminosity scales with

volume divided by time. In geometric units, this ratio scales
as M2. Thus the luminosity satisfies the scaling relation

LPoyntðtÞ ¼ ρ0M2Fðt=M; ϵ0; ζ0Þ; ð15Þ

where Fðt=M; ϵ0; ζ0Þ is a dimensionless function of time.
In the context of EM counterparts this scaling differs from
many other emission models that scale roughly with M, as
in Eddington-limited accretion. Note that our study does
not model EM radiation feedback, which would control an
Eddington-limited process [92].
The choice of initial density, however, can itself be

influenced by the total mass of the system. For instance,

consider the geometrically thick accretion disks investi-
gated by [55], ρ0 ∼M−1. In such a system, the Poynting
luminosity (15) will scale linearly with M. Our results
above indicate furthermore that Fðt=M; ϵ0; ζ0Þ is effec-
tively independent of ζ0 over a significant range of
magnetic field strength. Of course, in the limit of extreme
magnetic dominance, we expect the FFE description to
apply, where density can be assumed to be irrelevant, and
the luminosity scales with magnetic field squared.
At least for the simple class of astrophysical scenarios

covered in our simulations we conclude that Poynting
flux—as a time-dependent driver for jet energy—is largely
independent of several astrophysical details, particularly
magnetic field strength, up to a simple scaling. Next we
consider the relation of its time dependent behavior to
orbital dynamics.

4. Relation between Poynting luminosity
and orbital motion

Several numerical [49,50,52,93] and analytical [94–97]
studies have investigated how even non-spinning black
holes in an orbital configuration can generate Poynting
luminosities in the limit of force-free MHD through a
process similar to the Blandford-Znajek mechanism [88]
for jets powered by a black hole. In Blandford-Znajek, the
twisting of magnetic field lines in interaction with a
spinning black hole converts kinetic energy to jet power.
Before merger, however, the dragging of black holes
through the ambient field similarly converts kinetic energy
to jet power. While there are differences in the computed
efficiency of this conversion, a general picture emerges that
(for nonspinning black holes in the inspiral phase) the
Poynting luminosity scales as

LFFE;insp ∼ v2B2M2
BH: ð16Þ

A difference with our simulations is that our black holes do
not orbit in a magnetically dominated, force-free environ-
ment. Here we investigate whether a similar velocity
scaling still holds, analyzing data in the case with the
longest inspiral: d ¼ 16.3M.
We derive instantaneous BH velocity data from the

motion of the BH horizons given by our apparent horizon
finder. While these velocities are not gauge-invariant, in
practice they are reliable after an initial settling-in time of
∼50M and before the formation of the common horizon at
merger.
Complicating this issue is the time lag between the source

motion and the resulting Poynting flux present in fields
measured farther out. In Fig. 16,we show the best fit between
LPoynt as measured at R ¼ 30M and the measured speed,
assuming LPoyntðtÞ ¼ Avn, where v is measured at time t
offset by some fixed time Δ, representing propagation from
the strong-field region of the BHs to the extraction radius R.
The best-fit parameter values are Δ ¼ 100M, A ¼ 870, and

FIG. 15. Top panel: LPoynt for low-resolution d ¼ 14.4M
configuration, for the three different choices of fρ0; p0; b20g.
Bottom panel: difference between the canonical b1e-1 con-
figuration and each of the other two.

5Note that since the initial polytropic pressure-density relation
(3) is nonlinear, the constant κ must be adjusted to achieve the
same scaling in p and ρ.
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n ¼ 2.7, based on LPoynt over an inspiral “segment” begin-
ning once LPoynt has settled down into the inspiral regime,
and ending at the merger blip (times indicated by vertical
dashed lines in the Figure).
The best-fit value Δ ¼ 100M is consistent with LPoynt

propagating from the strong-field region out to R ¼ 30M at
an effective speed of vprop ≈ 0.33c. In principle, if we know
that the Poynting flux is always propagating outward at a
well-defined Alfvén speed vAlf , we can derive the neces-
sary time shift Δ from that. However, vAlf changes with
time and position—increasing as the underlying b2 grows
and ρ declines—and such a detailed analysis is beyond the
scope of this paper.
Thus we can deduce that for a fixed initial field

configuration, during the inspiral phase the Poynting
luminosity depends on the orbital motion as

LPoynt;inspðtÞ ≈ Aρ0M2vnðtretÞ; ð17Þ

with best-fit values A ¼ 870, n ¼ 2.7 and tret ¼ t − 100M.
While this result is derived from just one of our runs, we
have established above that the inspiral portion of our runs
yields similar results independent of the magnetic field
strength and of the initial orbital separation at which we set
the plasma to be at rest in our numerical coordinates. In our
case, it is the fluid density that scales the luminosity, and
that seems to regulate the magnetic field strength.
Independent of the observed invariance to initial magnetic
field strength, comparison with (16) reveals an enhanced
brightening as the velocity increases. One interpretation of
this enhancement would be that a mechanism similar to that
observed in the FFE studies is also generating power in our
studies. However, in our cases the magnetic field strength
grows on approach to merger, due to the accretion of gas
and thus piling up of field lines near the horizon.

5. Formula for luminosity in magnetized plasma

Armed with the observations of the previous subsections,
we can summarize our results for Poynting luminosity of
the binary at a representative reference point in its “inspi-
ral” phase, and at peak. Given that the BH orbital speed
increases only gradually even late in the inspiral, we choose
a representative speed vinsp ¼ 0.13c (this corresponds to a
puncture separation of d ≈ 12.2M, about 2000M before
merger.). Then from (17), we obtain for the inspiral

LPoynt;insp ≈ 3.55ρ0M2

¼ 3.55ηcgsρ-13M2
8 erg s−1

≈ 2.1 × 1045ρ-13M2
8 erg s−1; ð18Þ

where we use the conversion factor ηcgs from Eq. (C4) to
convert from code units to cgs.
Judging from Fig. 12, the post-merger peak of LPoynt is

around 17 in code units for our canonical case. However,
this is derived from a set of simulations carried out at
modest resolution (M=48). As noted in Appendix B, post-
merger values of LPoynt increase somewhat with resolution.
If we round up so that the peak Poynting luminosity is
LPoynt;peak ≈ 20 in code units, we find

LPoynt;peak ≈ 20ρ0M2

≈ 1.2 × 1046ρ-13M2
8 erg s−1: ð19Þ

This can be combined with the mass accretion rate found in
Sec. IV B to estimate a Poynting radiative efficiency around
the merger:

ϵEM ≡ LPoynt;peak

_Mc2
≈ 0.22: ð20Þ

6. Comparison with previous results

In the previous subsection we quantified potential
Poynting-flux-powered emissions, synthesizing the results
obtained from our GRMHD simulations of mergers with
initially nonmagnetically dominated plasmas. We can
compare these with the results of previous GRFFE studies
[49,50,52] and with previous GRMHD studies of mergers
in circumbinary disk configurations [54–56].
Quantitative comparisons depend on assumptions about

the astrophysical environment. Leaving aside details of the
matter distribution, the environment of our simulations is
characterized by a scalable initial gas density relative to a
reference density of ρ-13 ¼ 1 ¼ ρ0=ð10−13 g cm−3Þ with an
initially uniform poloidal magnetic field. In these units the
magnetic field strength of our canonical configuration was
B4 ¼ B=ð104 GÞ ¼ 0.34ρ-131=2, but we found that the
Poynting flux is minimally changed if the magnetic field
strength is varied by an order of magnitude either up or

FIG. 16. Best scaling of form Avn to match puncture speed v
with LPoynt as extracted at R ¼ 30M. The dashed vertical lines
indicate the beginning and end of the fit region.
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down. Thus for fixed black hole mass, our overall result for
LPoynt simply depends linearly on initial density.
Our study resembles previous GRFFE simulations in that

both assume an initially uniform large-scale poloidal
magnetic field. As we have noted, the magnetic field
structures and the velocity dependence on approach to
merger strongly resemble GRFFE results. However,
GRFFE results apply in the regime where the fluid is
magnetically dominated and are thus independent of
density. Instead, the relevant scale parameter for the
environment is the magnetic-field energy density. Those
authors suppose an astrophysically motivated reference
scaling of B ¼ 104 G. Despite the scaling differences,
we can nonetheless compare with our results at particular
magnetic-field and fluid density values.
Since the previous GRFFE simulations involved only

relatively brief simulations, it makes more sense to com-
pare peak levels of Poynting luminosity. In the figures and
discussion of Refs. [49,50,52] the Poynting luminosity
tends to rise to a brief peak and then to quickly fall off to a
level appropriate for the final spinning black hole, while
our luminosities stabilize closer to their peak levels at late
times. Taking this and differences in the various FFE papers
into account we estimate a peak level from these publica-
tions, which can be compared to our Eq. (19), of

LFFE;peak ≈ 3 × 1043B4
2M8

2 erg s−1; ð21Þ

reliable within a factor of two. At nominal values the
previous GRFFE studies yield a peak Poynting luminosity
level about 400 times smaller than our nominal result, but
the assumptions about the astrophysical environments are
not quite consistent; in our simulations, the environment is
not initially magnetically dominated.
Using the above estimates and expressions, can we then

find the value of B4 for the GRFFE environment in Eq. (21)
to achieve the same Poynting luminosity that we see in our
canonical case? The answer is B�4 ≈ 20 plus or minus 50%.
Converting to the units of our simulations using Eq. (C2)
for the relevant case ρ-13 ¼ 1, this corresponds to
ζ ¼ b2�=ð2ρ0Þ ≈ 18, which, appropriately enough, is higher
than the initial magnetic field strengths of any of our
simulations.
We note that the equivalent value b2� ≈ 35 is close to the

evolved b2 values seen near the postmerger black hole in
our simulations (which we found to be roughly independent
of initial field strength; see Fig. 14 and discussion in
Sec. IV C 2).
This suggests the following shorthand description of the

comparison between the results of our simulations and
previous GRFFE results: The expression (21) for the
GRFFE Poynting luminosity gives an approximately cor-
rect description of the our initially matter-dominated
GRMHD simulations if, in place of the initial magnetic
field strength B4, the dynamically driven magnetic field

strength found near where the jet meets the horizon is used
instead.
We can also compare with Poynting luminosities from

previous binary black hole simulations with matter initially
structured in a circumbinary disk. Using the code on which
ILLINOISGRMHD is based, Refs. [55,56] bring a Γ ¼ 4=3
circumbinary disk, with a poloidal magnetic field and
negligible self-gravity, to quasiequilibrium by allowing an
equal-mass BBH to orbit at fixed separation for ∼45 orbital
periods. To ensure quasiequilibrium could be established
with reasonable computational cost, the disk was assumed to
be thick (H=R ∼ 0.3) so that the MHD turbulence (magneto-
rotational instability) driving the accretion could be
adequately resolved. Beginning from a point about 700M
before merger, the binary was then allowed to inspiral and
merge, solving the full set of general relativistic field
equations for the gravitational fields and the equations of
GRMHD for the (nonself-gravitating) disk dynamics.
A quantitative comparison of our results with results of

Refs. [55,56] for circumbinary disks is challenging. First,
we can only compare with their fixed choice of magnetic
field configuration. Given that we observe some degree of
insensitivity to the initial magnetic fields chosen, we will
suppose that their field is within a broadly comparable
range, noting that their simulations also include regions of
gas and magnetic pressure dominance. More fundamental
are the density scales near the horizons that power Poynting
luminosity. While such densities in our simulations span
roughly an order of magnitude, densities in the circum-
binary disk simulations span many more. Thus there is no
clear way to define a common density as a point of
reference for the two studies. Instead, we make a com-
parison of Poynting luminosities normalized by the mass
accretion rate (i.e., “Poynting luminosity efficiency”) dur-
ing and after merger as an indicator of the supply of gas in
the vicinity of the black holes.
The mass accretion rate in Ref. [56] varies significantly

before merger, but settles to a value near 0.1 in their units
(see their Fig. 3). Scaled by this value, their Poynting
luminosity efficiency is close to ϵEM ≡ LPoynt= _M ≈ 0.01
near merger, growing by about a factor of 5 during the
subsequent period of 1000M. Their peak efficiency is
reached at a similar time after merger as in our simulations,
but remains smaller than our peak value [Eq. (20)] by a
factor of a few.

D. Simulating direct emission from merger

To this point, we have focused primarily on the Poynting
flux as a proxy for EM power from the merging black holes.
However, Poynting flux alone is not directly observable; we
interpret it as a power source for EM emissions downstream
along the jet. An alternative mechanism for EM emissions
is direct emission from the plasma fluid.
In our simulations the lack of a realistic equation of state

or of any radiative cooling mechanism for the gas makes it
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difficult to produce a reliable prediction for the actual EM
emission. Further, our initial conditions of uniform density
and magnetic fields do not capture astrophysical details of
the full system that may also contribute to EM emission.
We have carried out a simplified calculation of the EM

luminosity generated during the inspiral and merger sim-
ulation. To do so, we have used a new version of the
Monte Carlo radiation transport code PANDURATA [58],
revised to allow for arbitrary spacetime metrics. While the
ILLINOISGRMHD simulations generate a real dynamic
spacetime by solving Einstein’s equations numerically,
for this toy emission model we employ a simplified version
of the metric that can be calculated efficiently by
PANDURATA as a postprocessor of the MHD data. As
described in [98], the binary four-metric can be instanta-
neously described by a three-metric γij, lapse α, and shift
βi, according to:

gμν ¼
�−α2 þ β2 βj

βi γij

�
: ð22Þ

Following [99], we use α ¼ 2=ð1þ ψ4Þ, βj ¼ 0, and
γij ¼ δijψ

4. The conformal factor ψ is given by

ψ ¼ 1þ m1

2r1
þ m2

2r2
; ð23Þ

with r1 and r2 being the simple Cartesian distances between
the spatial coordinate and the primary/secondary masses.
For the Christoffel-symbol components Γρ

μν we take the
spatial and temporal metric derivatives analytically based
on the puncture trajectories calculated by the apparent
horizon finder used in our GRMHD simulations. One
advantage of using this simplified metric is that we can
easily calculate the photon trajectories “on the fly” and thus
do not need to rely on the fast light approximation used by
many ray-tracing codes.
Even though PANDURATA uses a slightly different metric

than that of the GRMHD simulations, the qualitative
properties of the spacetime are expected to be very similar.
We can avoid some potential numerical problems by
normalizing the ILLINOISGRMHD fluid 4-velocity every-
where by using the coordinate 3-velocity from
ILLINOISGRMHD and then using the analytic metric to
solve for ut via gμνuμuν ¼ −1.
Given the fluid velocity at each point and for each data

snapshot, a local tetrad can be constructed as in [58], from
which photon packets are launched and then propagated
forward in time until they reach a distant observer or are
captured by one of the black holes. Those that reach the
observer are combined to make images, light curves, and
potentially spectra. We ignore scattering or absorption in the
gas, so that all photon packets travel along geodesic paths.
One of the challenges with this approach is the inherent

uncertainty of what emission mechanism is most

appropriate, and even then, the electron temperature Te
is not known explicitly from the simulations, so it can only
be approximated with an educated guess. For this paper, we
focused on a single simplified emission model of thermal
synchrotron, where the emissivity is isotropic in the local
fluid frame with bolometric power density given by

Psyn ¼
4

9
nr20cβ

2γ2B2; ð24Þ

with r0 the classical electron radius, n the electron number
density, β≡ v=c, and β2γ2 ≈ Te=me (see, e.g. Chap. 6 of
[100]). We use the magnetic field strength and fluid density
specified by ILLINOISGRMHD, along with the code-to-cgs
conversion described above. We estimate the electron
temperature from the simulation pressure, assuming a
radiation-dominated fluid with p ¼ aT4

e, reasonable for
the Γ ¼ 4=3 polytrope used here. Thus the synchrotron
power scales as

Psyn ∝ B2ρ4=3 ∝ ρ7=30 ; ð25Þ

since B2 ∼ ρ.
In the top panel of Fig. 17 we show the observed

synchrotron intensity on a log scale for a single snapshot
of ILLINOISGRMHD data when the binary separation is
10M. The observer is located edge-on to the orbital plane
and the black hole on the left is moving towards the
observer, resulting in a special relativistic boost.
In an attempt to understand the features seen in Fig. 17,

we repeat the PANDURATA calculations with two other
emissivity models, in one case focusing just on the
contribution from the magnetic field, and in the other case
on the electron density and temperature. As can be seen in
Fig. 3, the gas forms two very small, thin disks with
magnetically dominated cavities above and below each
black hole. From this picture alone, it is not clear where
most of the synchrotron flux might originate.
However, when comparing the three panels of Fig. 17,

we see that the gas contribution is almost uniformly
distributed, and even the thin disks evident in Fig. 3 are
almost indiscernible when all the relativistic ray-tracing is
included. The reason for this is two-fold. First, the disks are
quite small in extent, and the gas is moving almost entirely
radially, so the emitted flux is beamed into the horizon, and
thus the disks themselves are not clearly visible in the ray-
traced image. Second, the overdensity of gas in the disks is
only a factor of a few or at most ten greater than the
background density. On the other hand, in the funnel
regions, B2 can be more than four orders of magnitude
greater than the ambient or initial pressure, yielding much
more significant spatial variations. Thus the synchrotron
image (top panel) most closely traces the magnetic field,
with a slight enhancement of emission where the gas
density and temperature rise near the black holes.
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In Fig. 18 we show the light curve generated by
synchrotron emission along with analogous traces com-
puted from the density and magnetic-field components for
the X1_d14.4 configuration. To calculate these curves,
millions of photons must be launched at each time step,
so for efficiency’s sake, we use a relatively coarse time
sampling of 200M. We only consider emission from inside
r < 30M, consistent with the Poynting flux extraction
radius.
Figure 18 shows that, unlike the Poynting flux, the

locally generated EM power is nearly constant throughout
the inspiral leading up to merger. There is a small burst of
luminosity preceding merger, followed by a dip of almost
50% for the synchrotron light curve, but the other models
show almost no discernible sign of the merger at all. The
dip is caused by the sudden expansion of the horizon
volume at merger, rapidly capturing the gas with the highest
temperature and magnetic field.
Another curious result of the PANDURATA calculation is

that, for a single snapshot, there is very little difference in

the flux seen by observers at different inclination angles or
azimuth (of order ∼10%), suggesting that variability in the
EM light curves on the orbital time scale will be minimal.
In principle, PANDURATA can also be applied to study the

spectra of EM emissions including effects, such as inverse-
Compton scattering as photons interact with hot atmos-
pheric plasma, that have been found to be important in
modeling black hole accretion disk spectra [101]. Our
present simulations, however, do not provide a realistic
treatment of atmospheric densities and temperatures.
Future studies with more detailed physics may reveal
more interesting time development in spectral features of
the emission.
The above simplifications and caveats mean that we

cannot make robust statements about the observability of
direct emission. However, based on our optically thin
synchrotron emission model, the direct emission luminos-
ity is orders of magnitude lower than that of the Poynting
flux. In addition, the synchrotron flux is roughly isotropic,
while significant beaming is observed in Poynting flux.
There is no contradiction in these measures; Poynting
luminosity may manifest as photons far downstream from
the GRMHD flows, whereas these direct emission esti-
mates originate in regions of high fluid density and
magnetic field strength in strong-gravitational-field zones.
When comparing these direct emissions with results from

circumbinary disk simulations, themost similar simulation is
in [55,56]. They estimated a form of direct emission, derived
from a cooling function based on hydrodynamic shock
heating. The implied cooling luminosity was more than an
order of magnitude larger than the Poynting luminosity,
while our results suggest that Poynting luminosity is larger
than direct synchrotron emission, at least for the canonical
density of 10−13 g cm−3. We have not incorporated a similar

FIG. 18. Bolometric luminosity generated in the region r <
30M for the X1_d14.4 configuration, assuming the canonical
initial density ρ0 ¼ 10−13 g cm−3. We model local synchrotron
emissivity, also showing the development of two contributing
components as described in the text.

FIG. 17. Snapshots from PANDURATA postprocessing of the
simulation data at a separation of 10M (about 1000M before
merger), viewed by an observer edge-on to the orbital plane. Top
panel: thermal synchrotron emission; middle panel: magnetic
contribution only (∝ B2); bottom panel: gas contribution only
(∝ ρT).
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cooling function for a more direct comparison, though we
note that our gas does not exhibit strong shocks.

V. CONCLUSIONS AND FUTURE WORK

To deepen our understanding of the interplay of gravity,
matter, and electromagnetic forces in the vicinity of a
merging comparable-mass black-hole binary, we have
carried out a suite of equal-mass nonspinning BBH merger
simulations in uniform plasma environments. We consid-
ered two classes of potential drivers for electromagnetic
emissions, primarily focusing on the development of
Poynting flux, which may drive a jet, but also considering
direct emissions from the fluid.
We conducted simulations covering a range of nearly

uniform density, low-velocity distributions of hot gas with a
significant but not dominant poloidal magnetic field. Based
on these we find that the Poynting luminosity grows on
approach to merger (roughly with a power of orbital
velocity v2.7), leveling off at a steady value after merger.
The level and time development of the Poynting luminosity
is largely independent of the initial magnetic field strength
and not strongly dependent on initial pressure or small
changes in fluid configuration, scaling overall with density
and the square of black hole mass. Consistent with this we
find that the central magnetic field strength is largely
independent of the initial field strength, regulated by the
gas flow. We further find that the coalescence yields a
Poynting efficiency of 0.04–0.22 between late inspiral and
merger.
These findings, using the new ILLINOISGRMHD code,

both confirm and extend our earlier GRMHD results
obtained with the WHISKYMHD code [34], and form a
bridge to complementary results from GRFFE codes, in
which the plasma is assumed completely magnetically
dominated.
Overall consideration of our results with those of

previous GRFFE studies suggests a consistent picture
where below a transition point near B4

2 ∼ 400ρ-13, the
gas flow dominates and peak Poynting flux is described
by our expression (19). Beyond this point the plasma is
magnetically dominated and the GRFFE results, summa-
rized in (21) should apply.
To complement Poynting luminosity investigations, we

also consider direct synchrotron emission from the plasma in
the strong-gravity region near the black holes. To explore the
time-dependent bolometric luminosity in this scenario, we
employ a new version of the PANDURATA code to propagate
photons through the ILLINOISGRMHD-generated MHD
fluids (in post-processing) and generate time-dependent
EM flux. Contrary to the Poynting flux analysis we do
not find growth in the synchrotron emission on approach to
merger. Instead, the luminosity remains steady until it drops
to a slightly lower level after merger. Note however that the
physical processes behind the two emission mechanisms are
mostly independent. Poynting luminosity is due to the highly

twisted and amplified magnetic fields in the larger funnel
region around the orbital axis, and is expected to accelerate
charged particles to produce jetlike behavior leading to EM
emission farther downstream; while the direct emission
considered here is due to the plasma itself in the more
immediate vicinity of the black holes, both before and after
merger.
These results provide clues about the physical processes

which may drive electromagnetic counterparts to massive
black hole mergers, which future GW instruments such as
LISA may observe. However limitations to these studies
prevent more definitive counterpart predictions. As with
many similar studies, our study assumes a large-scale orbit-
aligned magnetic field that might approximate the local
astrophysical environment near a massive BBH. While
some of our results are independent of the level of this field,
it provides an asymptotic field structure that we have not
strongly justified.
Similarly, while we find that EM emissions are sensitive

to ambient gas density, it is unclear how well our very
simplified gas distribution, lacking angular momentum
support, stands in for real flows from a larger available
gas reservoir, such as a circumbinary disk. Our simulations
also lack dynamical effects from radiation flows including
radiative cooling effects. These limitations will motivate
our future work. With more realistic gas distributions in
place, we will also investigate the effects of less symmet-
rical BH systems, including merger recoils [102].
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APPENDIX A: RELATION OF Szð1;0Þ
TO ELECTROMAGNETIC FLUX

The quantity Szð1;0Þ used in the main text is closely related
to the EM luminosity calculated by [50,52] in terms of the
“outgoing” Newman-Penrose [103] EM radiation scalar
Φ2 ¼ Fabnam̄b

LPoynt ¼
dEEM

dt
¼ lim

R→∞

I
R2

2π
jΦ2j2dΩ: ðA1Þ

The modulus squared of the radiation scalar, jΦ2j2, is
proportional to the radial component of the Poynting
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vector, SR. Specifically, if we assume that Φ2 is calculated
using the Kinnersley tetrad on a Kerr background, from
[104],

Tr
EM0 ¼

1

2π
jΦ2j2 ¼

1

α
Sr; ðA2Þ

where the Boyer-Lindquist coordinate (areal) radius r is
adopted. As r converges to the numerical radial coordinate
at large distances, and the lapse function α → 1, we see that
this is consistent with our definition of LPoynt:

LPoynt ≡ lim
R→∞

I
R2SRdΩ: ðA3Þ

In this case, we can relate the EM flux to the dominant
ðl; mÞ ¼ ð1; 0Þ spherical harmonic mode of the Poynting
vector used in this paper via

LPoynt ¼ lim
R→∞

I
R2SRdΩ ¼ lim

R→∞
2R2

ffiffiffi
π

p
SRð0;0Þ ðA4Þ

≈ lim
R→∞

I
R2Sz cos θdΩ ¼ lim

R→∞
2R2

ffiffiffi
π

3

r
Szð1;0Þ: ðA5Þ

This is the formula (12) used in our analysis. In moving
from (A4) to (A5), we have assumed the Poynting flux is
dominated by emission along the polar (z) direction:

SR ≈ Sz cos θ ⇒ SRð0;0Þ ≈
Szð1;0Þffiffiffi

3
p : ðA6Þ

This assumption is well justified for the main part of the
flux in the simulations presented here. For example, in
Fig. 19, we plot both Szð1;0Þ and

ffiffiffi
3

p
SRð0;0Þ for the d ¼ 14.4M

configuration. The two signals differ in the initial gauge
relaxation pulse (which is therefore not z-dominated),
but agree closely for the bulk of the signal beginning
at t ∼ 500M.

APPENDIX B: RESOLUTION TESTS
AND CONVERGENCE

In Fig. 20, we look at the effect of resolution on the
measured EM flux in several of our configurations. It is
evident that the general shape of the Poynting luminosity
curve near feature (d) is robust to changes in resolution,
despite some sensitivity in the quantitative level of the
early rise and the postmerger plateau as measured at this
extraction radius.
In Fig. 21, we concentrate on one of the physical cases,

d ¼ 14.4M, and show LPoynt calculated across several
extraction spheres, R=M ∈ f30; 40; 50; 60; 70; 80g. We
time-shift the different data sets using the initial ambient
Alfvén speed vAlf ¼ 0.07433, which serves to align the
initial rise in Poynting flux to the inspiral level. Note that
for the least-resolved case (hf ¼ M=48), the measured
luminosity drops with increased extraction radius R; while
some dissipation of Poynting flux is possible, the lower
panel shows that most of the effect vanishes for higher
resolution (hf ¼ M=72), pointing to numerical dissipation
as a major cause. The shape of feature (d) does vary with
the extraction radius, softening as the extraction radius
increases.

FIG. 19. Szð1;0Þ and
ffiffiffi
3

p
SRð0;0Þ extracted at R ¼ 30M for the d ¼

14.4M configuration. The two quantities differ in the initial gauge
relaxation pulse, but agree closely for the bulk of the signal
beginning at t ∼ 450M, indicating that by this time the approxi-
mation SR ≈ Sz cos θ holds.

FIG. 20. LPoynt for several configurations at basic (dx ¼ M=48)
and higher resolutions (denoted by thicker lines of the
same color).
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APPENDIX C: CONVERTING FROM
GEOMETRIC TO GAUSSIAN/CGS UNITS

The initial plasma configuration for the canonical field
case was chosen so that ρ=ðb2=2Þ ¼ 200 far from the
strong-field regions. Given that ρ is a matter density, there
has to be some conversion for this to make sense.

In Gaussian units, the fluid and magnetic energy den-
sities are

ufluid ¼ ρc2; umagnetic ¼
B2

8π
¼ b2

2
:

Thus the ratio of the two is

ζ≡ umagnetic

ufluid
¼ B2

8πρc2
: ðC1Þ

Then to get the field strength B given a specified fluid
density ρ and energy ratio ζ,

B2 ¼ 8πρc2ζ

¼ 720π × 106ζρ-13 g cm−1 s−2

⇒ B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
36π

5
ρ-13ζ

r
× 104 G; ðC2Þ

where we define ρ-13 ≡ ρ=ð10−13 g cm−3Þ.
Note that the expression (15) is in standard geometric

code units, where G ¼ c ¼ 1. To convert to dimensionful
units, we must multiply by a factor G2=c. Expressing ρ0
and M in cgs units, this factor is approximately
1.483 × 10−25 g−2 cm4 s−2. That is, we can rewrite (15) as

LPoyntðtÞ ¼ 1.483 × 10−25
�

ρ0
1 g cm−3

��
M
1 g

�
2

× Fðt; ϵ0; ζ0Þ erg s−1:

If instead, we scale with our canonical density
ρ0 ¼ 10−13 g cm−3, and a total system mass of
M ¼ 108 M⊙ ¼ 1.989 × 1041 g, we find

LPoyntðtÞ ¼ 5.867 × 1044ρ-13M2
8Fðt; ϵ0; ζ0Þ erg s−1; ðC3Þ

where we define ρ-13 ≡ ρ0=ð10−13 g cm−3Þ and M8≡
M=108 M⊙. As shorthand, we call this numerical factor
ηcgs:

ηcgs ≡ 5.867 × 1044ρ-13M2
8: ðC4Þ
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