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Lifting Weighted Blow-ups

Marco Andreatta

Abstract.

Let f: X — Z be a local, projective, divisorial contraction between normal varieties of
dimension n with Q-factorial singularities.

Let Y C X be a f-ample Cartier divisor and assume that fjy : Y — W has a structure
of a weighted blow-up. We prove that f : X — Z, as well, has a structure of weighted
blow-up.

As an application we consider a local projective contraction f : X — Z from a variety X
with terminal Q-factorial singularities, which contracts a prime divisor E to an isolated
Q-factorial singularity P € Z, such that —(Kx + (n — 3)L) is f-ample, for a f-ample
Cartier divisor L on X. We prove that (Z, P) is a hyperquotient singularity and f is a
weighted blow-up.

1. Introduction

Let X be a normal variety over C and n = dim X. A contraction is a surjective
morphism ¢ : X — Z with connected fibres onto a normal variety S. If Z is affine
then f: X — Z will be called a local contraction.

We always assume that f is projective, that is we assume the existence of f-ample
Cartier divisors L.

If f is birational and its exceptional set is an irreducible divisor then it is called
divisorial. We say that the contraction is Q-factorial if X and Z have Q-factorial
singularities. Note that if X is Q-factorial and f is a divisorial contraction of an
extremal ray (in the sense of Mori Theory) then Z is also Q-factorial (see Corollary
3.18 in [KM9g]).

A fundamental example of local contraction in Algebraic Geometry is the blow-up
of C" = Spec Clxy, ..., 2, at 0. More generally, given o = (ay,...,a,) € N such
that a; > 0 and m € N, one can define the o-blow-up (or the weighted blow-up
with weight o) of a hyperquotient singularity Z : ((g = 0) C C")/Z,(aq, ..., an).
The definition is given in Section 2, in accordance with Section 10 in [KM92].
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The main goal of the paper is to prove the following Theorem.

Theorem 1.1. Let f : X — Z be a local, projective, divisorial and Q-factorial
contraction, which contracts an irreducible divisor E to an isolated Q-factorial
singularity P € Z. Assume that dimX > 4.

Let Y C X be a f-ample Cartier divisor such that f' = fiy : Y — f(Y) =W is a
o' =(ay,...,an_1)-blow-up, 7, : Y = W.

Then f: X — Z is ao = (a1,...,an-1,ay)-blow-up, 7, : X — Z, where a,, is
such that Y ~¢ —a, E (~5 means linearly equivalent over f).

We apply the above Theorem to the study of birational contractions which appear
in a Minimal Model Program (MMP) with scaling on polarized pairs.

More precisely, if X is a variety with terminal Q-factorial singularities and L is an
ample Cartier divisor on X, the pair (X, L) is called a Polarized Pair. Given a non
negative rational number 7, there exists an effective Q-divisor A" on X such that
A" ~g rL and (X, A") is Kawamata log terminal. Consider the pair (X, A") and
the Q-Cartier divisor Kx + A" ~q Kx + rL.

By Theorem 1.2 and Corollary 1.3.3 of [BCHM10] we can run a Kx + A"-Minimal
Model Program (MMP) with scaling. This type of MMP was studied in deeper
details in the case r > (n — 2) in [And13].

To perform such a program one needs to understand local birational maps (diviso-
rial or small contractions), f : X — Z, which are contractions of an extremal rays
R :=RT[C] C N1(X/Z), where C is a rational curve such that (Kx +rL)'C <0
for a f-ample Cartier divisor L. We will call these maps Fano-Mori contractions
or contractions for a MMP.

In [AT14] we classify local birational contractions for a MMP if r > (n — 2): they
are o-blow-up of a smooth point with ¢ = (1,1,b,...,b), where b is a positive
integer.

In [AT16], Theorem 1.1, we prove that if » > (n — 3) > 0 then one can find
a general divisor X’ € |L| which is a variety with at most Q-factorial terminal
singularities and such that fx/ : X" — f(X') =: Z' is a contraction of an extremal
ray R’ := R*[C’] such that (Kx/ + (r — 1)L’)C" < 0, where L' := L.

On the other hand a very hard program, aimed to classify local divisorial con-
tractions to a point for a MMP in dimension 3, has been started long ago by Y.
Kawamata ([Ka96]); it was further carried on by M. Kawakita, T. Hayakawa and J.
A. Chen (see, among other papers, [Kaw01], [Kaw02], [Kaw03], [Kaw05], [Kaw12],
[Ha99], [Ha00], [Ha05], [Ch15]). They are all weighted blow-ups of (particular)
cyclic quotient or hyperquotient singularities and this should be the case for the
few remaining ones. It is reasonable to make the following:

Assumption 1.2. The divisorial contractions to a point for a MMP in dimension 3
are weighted blow-up.

The next result is a consequence, via a standard induction procedure, called Apol-
lonius method, of Theorem 1.1, the above quoted Theorem 1.1 in [AT16] and
Assumption (1.2) in dimension 3.
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Theorem 1.3. Let X be a variety with Q-factorial terminal singularities of di-
mension n > 3 and let f : X — Z be a local, projective, divisorial contraction
which contracts a prime divisor E to an isolated Q-factorial singularity P € Z
such that —(Kx + (n — 3)L) is f-ample, for a f-ample Cartier divisor L on X.
Then P € Z is a hyperquotient singularity.

Moreover, if we assume that 1.2 holds, f is a weighted blow-up.

2. Weighted blow-ups

We recall the definition of weighted blow-up, our notation is compatible with that
of Section 10 in [KM92] and of Section 3 in [Ha99].

Let o = (a1,...,a,) € N” such that a; > 0 and ged(aq,...,a,) = 1; let M =
lem(ay,...,an,).

The weighted projective space with weight (a1, ..., a,), denoted by P(aq, ..., a,),
can be defined either as:

P(ay, ... an) == (C" — {0})/C",

where £ € C* acts by (21, ..., xn) = (%, ..., % xy,).
Or as:
P(ay,...,an) := ProjcClzy, ..., x,),

where Clxy,...,2,] is the polynomial algebra over C graded by the condition
deg(x;) = a;, for i =1,...,n.

A cyclic quotient singularity, denoted by C"/Z, (a1, ..., a,) := X, is an affine vari-
ety definite as the quotient of C" by the action € : (21, ...,x,) = (€% 21, ..., €% x,,),
where € is a primitive m-th root of unity. Equivalently X is isomorphic to the spec-
trum of the ring of invariant monomials under the group action, Spec Clxy, ..., z,,]%m.

Let Q € Y : (g = 0) C C"! be a hypersurface singularity with a Z™ action.
The point P € Y/Z™ := X is called a hyperquotient singularity. In suitable
local analytic coordinates the action on Y extends to an action on C"*! (in fact
it acts on the tangent space Ty,g) and we can assume that Z,, acts diagonally
by € : (zg,...,xn) = (e*xg,...,e%x,), where € is a primitive m-th root of unity.
Since Y is fixed by the action of Z,,, it follows that g is an eigenfunction, so
that € : ¢ — €°g. We define the type of the hyperquotient singularity P € X
with the symbol %(ao, ..y an;e). Note that if m = 1 this is simply a hypersurface
singularity, while if g = z( this is a cyclic quotient singularity.

Let X = C"/Z(aq,...,a,) be a cyclic quotient singularity and consider the ratio-
nal map
v: X =>Plag,...,an)

given by (z1,...,2,) — (z1:...: xy).
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Definition 2.1. The weighted blow-up of X = C"/Zy(as,...,a,) with weight
o = (ai,...,a,) (or simply the o-blow-up), X, is defined as the closure in X x
P(ay, ..., ax) of the graph of ¢, together with the morphism 7, : X — X given by
the projection on the first factor.

The weighted blow-up can be described by the theory of torus embeddings, as
in section 10 of [KM92]. Namely, let e; = (0,...,1,...,0) for i = 1,...,n and e =
1/m(aq,...,ay). Then X is the toric variety which corresponds to the lattice Ze; +
oo + Zey, + Ze and the cone C(X) = Qreq + ... + Qye, in Q™ where Qp = {z €
Q:z>0}.

7Ty : X — X is the proper birational morphism from the normal toric variety X
corresponding to the cone decomposition of C(X) consisting of C; = ¥;4,Qe; +
Qye, for i = 1,...,n, and their intersections.

The following facts can be easily checked in many ways, for instance via toric
geometry (see also section 10 in [KM92] or section 3 in [Ha99]).

e The map m, is birational and contracts an exceptional irreducible divisor
E=P(ay,...,ar) to 0 € X.

e Let (y1 : ... : yn) be homogeneous coordinates on P(ay,...,a,). For any

1 < i < k consider the open affine subset U; = X N {y; # 0}; these affine
open subset are described as follows:

U; = SpecC[Z1, ..., ZTn|/Za,(—a1,...,m,...,—ay)

The morphism ¢q |y, : U; — X is given by

(i'la e ,fn) — (i‘1i‘?1/m, ... ,i‘?i/m, - ,fki‘?k/m).

 In the affine set U; the divisor F is defined by {z; = 0}; it is a Q-Cartier
divisor and Ox(—aF) ® O = Op(ma), for a divisible by Ila,.
H := —MF is actually Cartier, it is generated over 7, by global sections and
it is the generator of Pic(X/X) =7 =< H >.

e Let L = aH, for a a positive integer; clearly L is o-ample. We have
R'7,,0y(il) = HY(X,iL) =0
for every i € Z.
We now use Grothendieck’s language to give a different characterization of the

o-weighted blow-up.
For a a positive integer let L = aH = —aMFE. L is a m,-ample Cartier divisor.
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Consider the graduated C[z1, ..., z, )%™ -algebra @ 4~ , 7 Ox (dL). The construction
in section (8.8) of [EGA II], gives -

X = Projy (Ox ® P m.0x(dL)) - X.
d>0

Consider now the function
o-wt: Clzy,...,z,] = Q

defined as follows. On amonomial M = z3'...z5" we put o-wt(M) := > | s;a;/m.
For a general f = ZI ayM;, where ay € C and M; are monomials, we set

o-wt(f) := min{o-wt(Mj) : ay # 0}.

Definition 2.2. For a rational number k the o-weighted ideal I (k) is defined as:
I°(k) ={g € C[z1,..., 2y : o-wt(g) > k} = (27" - 20" : Zsjaj/m > k).
j=1

I°(k) is a an ideal in Clxy,...,7,] and therefore also in C[z1,...,z,])%"; in par-

ticular C[zy, ..., z,)%™ @ Drenaso (k) is a Cla, eeey T ) Em-graded module.

The next Lemma follows straightforward from the above discussion; see also Lemma
3.5 in [Ha99].

Lemma 2.3. Let 1, : X — X be a o-blow-up, E the exceptional divisor; let D be
the Q-Cartier Weil divisor defined by a Zy,-semi invariant f € Clzq, ..., zy,]. Then
we have

75(D) =D+ (o-wit(f))E,

[oa

where D is the proper transform of D.
In particular, for every integer a, we have 7,Ox(—aFE) = 1°(a).

The Grothendieck set-up and the Lemma imply immediately the following charac-
terization of weighted blow-up.

Proposition 2.4. Let X = C"/Z,(ay,...,a,) and b a positive integer multiple
of M = lem(ay,...,a,). The weighted blow-up of X with weight o defined above,
Ty X — X, is given by

X =Projx (Ox® @ I°(db)).
deN,d >0

Remark 2.5. The above characterization of X does not depend on the the choice
of b as a positive multiple of M; in fact taking Proj of truncated graded algebras
we obtain isomorphic objects (see for instance Exercise 5.13 or 7.11, Chapter II in
[Ha77]).



6 M. ANDREATTA

Note that it is not true that I°(db) = I?(b)?: see for instance Example 3.5 in
[AT14]. However this is true if b is chosen big enough; this can be proved, for
instance, following the proof of Theorem 7.17 in [Ha77].

If this is the case we have that X = Projy (Ox ® Dacn.a o I°(b)?); that is X is
the blowing-up of X = C"/Z,, (a1, ...,a,) with respect to the coherent ideal I (b)
(see the definition in Section 7, Chapter II, [Ha77]).

Definition 2.6. Let X : ((9 = 0) C C"™1)/Z,(aq,....,a,) be a hyperquotient
singularity and let = : C"*+1/Z,,(ag, ....,an) — C"*1/Z,,(aq,....,a,) be the o =
(ag, ..., ap)-blow-up. Let X be the proper transform of X via 7 and call again, by
abuse, 7 its restriction to X. Then 7 : X — X is also called the weighted blow-up
of X with weight o = (ay,...,a,) (or simply the o-blow-up).

The above Proposition 2.4, together with Corollary 7.15, Chapter II, [Ha77], im-
plies the following.

Proposition 2.7. Let X : ((¢ = 0) € C""1)/Z,(ao, ....,an) be a hyperquotient
singularity and let i : X — C"*1/Z,,(ao, ....,a,) be the inclusion.
Then

X =Projx (Ox® €O J7(db)) = X,
deN,d>0

where J(db) :=i~*(I°(db)) Ox.
If b is big enough then

X =Projx (Ox® 177 — X.
deN,d>0

3. Lifting cyclic quotient singularities

In this section we consider affine varieties Z and W; we think at them as germs
of complex spaces around a point P, (Z, P) and (W, P). We assume that P € Z
is an isolated Q-factorial singularities; Q-factoriality in this case depends on the
analytic type of the singularity.

Proposition 3.1. Let Z be an affine variety of dimension n > 4 and assume that
Z has an isolated Q-factorial singularity at P € Z.

Assume that (W, P) C (Z, P) is a Weil divisor which is a cyclic quotient singular-
ity, i.e. W =C""Y/Z(a1,...,an_1).

Then Z is a cyclic quotient singularity, i.e. Z = C"/Zm(a1,...,an_1,ay), where
an € 7 is defined in the proof.

Proof. Assume first that W is a Cartier divisor, i.e. W is given as a zero locus
of a regular function f, W : (f = 0) € Z. The map f : Z — C is flat, since
dimcC = 1. Quotient singularities of dimension bigger or equal then three are
rigid, by a fundamental theorem of M. Schlessinger ([Sch71]). Since Z has an
isolated singularity and dimW = n — 1 > 3, it implies that W is smooth, i.e.
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m = 1. A variety containing a smooth Cartier divisor is smooth along it, therefore,
eventually shrinking around P, Z is also smooth.

In the general case, since Z is Q-factorial, we can assume that there exists a
minimal positive integer r such that rW is Cartier (r is the index of W). Following
Proposition 3.6 in [Re87], we can take a Galois cover 7 : Z' — Z, with group Z,,
such that Z’ is normal, 7 is etale over Z \ P, 7~}(P) =: Q is a single point and
the Q-divisor 7*W := W' is Cartier, W' : (f' =0) C Z'.
Our assumption on W implies that r|m, i.e. m = r's,and W’ = C"'/Zs(ay, ..., an_1).
By the first part of the proof we have that s =1, i.e. W’ and Z’ are smooth.
Taking possibly a smaller neighborhood of @), we can assume that, if W’ = C*~!
with coordinates (z1,...,n—1), then Z' = C", with coordinates (x1,...,Zn—1,Zn),
where z,, := f.
The action of Z,,, on C", which extends the one on C"*!, fixes W', therefore f’ is
an eigenfunction; that is for a primitive m-root of unity € there exists a,, € N such
that e: f/ — € f'.
Therefore the Galois cover 7 : Z/ = C* — Z is exactly the cover of the cyclic
quotient singularity Z = C"/Zy (a1, ..., n—1, Q).

O

Remark 3.2. If n = 3 the above Proposition is false, as the following example
shows.

Example 3.3. Let 2/ = C*/Z,(a,—a,1,0); let (x,y,2,t) be coordinates in C*
and assume (a,r) = 1. Let Z C Z’ be the hypersurface given as the zero set of the
function f :=zy+ 2™ +t", with m > 1 and n > 2. This is a terminal singularity
which is not a cyclic quotient (it is a terminal hyperquotient singularity); in the
classification of terminal singularities it is described in Theorem (12.1) of [Mo82]
(see also section 6 of [Re87]).

However the surface W := Z N (¢t = 0), which is the surface in C3/Z,(a, —a,1)
given as the zero set of (xy + z"™), is a cyclic quotient singularity of the type
C2?/Zy2pp(a,rm — a).

We give a proof of this last fact for the interested reader. Let W be the surface
in C3, with coordinate (z,y,2), given as the zero set of the function xy + 2z™™.
W has a singularity of type A,,,_1, which is a cyclic quotient singularity of type
W = C2%/Zym(1,-1).

Let (£,m) be the coordinate of C? and let ¢ = e@m a r2m root of unit; note
that € is a rm root of unit. The action of Z,,, on C? can be described as
€' (&,m) = ("¢,e7™n). A base for C[¢, )%, the spectrum of the ring of in-
variant monomials under the group action, is given by ("™, 7", &'n) and there-
fore W = Spec(¢™™,n"™,&n). Let (x,y,2) = (€™, n"™,&n), then W is ob-
tained as the quotient of W by the action of Z, with weights (a,—a,1) given
by €™ (z,y,z) = (M™M*x, e "™, e"z). It is easy to check that this action can
be lifted directly to C? as the action: €(&,n) = (%€, "™ %). This extends the
previously defined Z,.,,,-action on C? and has W as quotient.
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Proposition 3.4. Let Z be an affine variety of dimension n > 4 with an isolated
Q-factorial singularity at P € Z. Assume also that (W,P) C (Z,P) is a Weil
divisor which has a hyperquotient singularity at P.

Then (Z, P) is a hyperquotient singularity.

Proof. Let W : (g =0) C C"/Zy,(aq, ..., an).

As in the previous proof we assume first that W is a Cartier divisor, i.e. W is
given as the zero locus of a regular function f. The map f : Z — C is flat and it
gives a deformation of W. Since W is a hypersurface singularity, its infinitesimal
deformations are all embedded deformations, i.e. they extend to a deformation
of the ambient space. That is, there exists a flat map f : Z — C, such that
f710) = C"/Z (a1, ..., an), Z is a hypersurface in Z,ie. Z:(§g=0)C Z, and
fiz=1.

By Schlessinger’s theorem ([Sch71]) this deformation f is rigid, therefore Z =
C"/Zm (a1, ...,an) x C = C"*Y/Z,(ay, ..., an,0).

Thus Z : (§=0) C C""/Z,, (a1, ..., an, 0).

In the general case, as in [Re87], Proposition 3.6, we take the Z,-Galois cover
7 Z'" — Z, such that Z’ is normal, 7 is etale over Z \ P, 7~ !(P) =: Q is a single
point and the Q-divisor 7*W := W’ is a Cartier divisor: W' : (f' =0) C Z'.

The map W' — W is an etale cover of W ramified at P and it depends on (a
subgroup of) the local fundamental group 71 (W \ {0}). By our assumption on the
dimensions and Lefschetz theorem this is equal to 71 (C"/Z, (a1, ...,a,) \ {0}) =
Zy,. Therefore the etale cover extends to C"/Z,,(ai,...,a,) and we have that
W' (¢ =0) c C"/Zs(a1,...,an), with m = r's. By the first part of the proof
7' (§ = 0) c C""/Zs(a,...,a,,0). Therefore Z : (g := g om ! =0) C
C" ) Zm(ay, .oy Gy Q). O

4. Lifting Weighted Blow-Ups

This section is dedicated to the proof of Theorem 1.1; therefore f : X — Z will
be a local, projective, divisorial contraction which contracts an irreducible divisor
E to P € Z. We assume that X (as a projective variety over Z) and Z (as affine
variety) are Q-factorial; factoriality on Z depends only on the analytic type of the
singularities, on X also on their relative position.

By assumption Y C X is a f- ample Cartier divisor such that f' = fjy : ¥ —
fY)=Wisao =(ai,...,an—1)-blow-up, mpr : ¥ — W.

In particular W = (g = 0) € C"~1/Z,, (a1, ..., an_1), possibly with g = 0. Proposi-
tion 3.4 implies that Z = (§ = 0) C C"/Z, (a1, ...,an—1,a,). Note that W = f(Y")
is given as (z, =0) C Z.

We have also Pic(Y/W) = < Lig >, where L = —ME, M = lem(ay,...,a,-1).
By the relative Lefschetz theorem, Pic(X/Z) = Pic(Y/W) = < L >; note that we
simply use the injectivity of the restriction map Pic(X/Z) — Pic(Y/W), true
even in the singular case (see for instance p.305 [Kle66] or [SGA II]).
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Since Y is Cartier and ample, there exists a positive integer a such that Ox (Y') ~
aL. We claim that a,, = aM. To show this consider the o := (ay,...., a,)-blow up
of Z, f : X — Z. Let E be the exceptional divisor. Note that Y sits in X as an
ample divisor, therefore by Lefschetz theorem there exists a Cartier divisor L on
X which extends Lig, L=-ME and Y = —aME. Since f(Y) : (z, = 0), by
Lemma 2.3 we compute that a, = o-wt(z,) = aM.

The map f is proper, so, as in Section 2, we can apply Grothendieck’s language,
section 8 of [EGA II], to say that

X = PrOjZ(Oz S @Id)7
d>0

where I; := f.Ox(—d(MFE)) = f.Ox(dL).
Note that, since E is effective, Iy = f.Ox(dL) C Oz C C"[x1,...,x,] is an ideal
for positive d and I; = f.Ox(dL) = Oz C C™[zy, ..., z,] for non positive d.

By Propositions 2.4 and 2.7, X will be the weighted blow-up if for positive d

f*Ox(dL) = 7;_1(1';1 o LL":L" : Zsjaj > db)OZ
=1

where b = M, s; are non negative integers and i : Z — C"/Z,,(ay, ....,a,) is the
inclusion.

We now mimic the proof of Theorem 3.6 in [Mo75].
Consider the exact sequence

(4.0.1) 0 — Ox(iL — aL) — Ox(iL) — Oy (iL) — 0,

for every integer i.

We have noticed in Section 2 that R*f/, Oy (iL) = 0 for i € Z. Therefore, by 4.0.1,
we obtain surjections R'f,Ox ((i — aj)L) — R f.Ox(iL) ,i,j € Z,5 > 0. On the
other hand R!'f,Ox(—jL) = 0 for sufficently large j. Hence we obtain

R'f.Ox(iL) =0 for every integer i.

All this implies the following exact sequences of O-algebras, Oz = (Clz1, ..., z,]/ (g))Zmz

(4.0.2) 0— f.Ox((i —a)L) = fOx(iL) — f.Oy(iL) — 0.
In particular, for ¢ = a, we have
0— Oz = f.Ox(al) — f.Oy(aL) — 0.

Let 6 be the image of 1 by the map Oz — f.Ox(aL); then 4.0.2 becomes

(4.0.3) 0— £.0x((i —a)L) X8 f,0x(iL) — f.Oy(iL) — O;
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x 0 is exactly X(x,,).

We will prove, by induction on d, that
£Ox(dL) = (25 -+ ayr + > sja; > db) Oy
j=1
By assumption we have that
n—1
f«Oy(dL) = (a7* - - -z ¢ Z sja; > db) Ow
j=1

where s; € N.

By induction on d, we can assume that
FOx((d—a)L) = (af'-ayr = ) sja; > (d— a)b) Oz,
j=1

the case d — a < 0 being trivial.

Let g = 2f' - a8 € f,Ox(dL) be a monomial.
If s,, > 1 then, looking at the sequence 4.0.3, g comes from f,Ox ((d —a)L) by the
multiplication by (z,,); therefore

n n—1
Zsjaj = Z 5ja; + span > (d — a)b+ spa, > db—ab+ ab = db.
i=1 j=1

If s, =0, then g € f.Oy(dL) and so

n n—1
E S5 = E S04 Z db.
j=1 j=1

The non-monomial case follows immediately.

5. Application to MMP with scaling

The proof of Theorem 1.3, as explained in the introduction, follows via a standard
induction procedure using Theorem 1.1, Theorem 1.1 in [AT16] and, for dimension
3, assuming 1.2. Tt is actually very similar to the proof of Therem 1.2.A in [AT16],
we rewrite it for the reader’s convenience.

Proof of Theorem 1.3. Let f : X — Z be a local projective, divisorial contraction
which contracts a prime divisor E to P € Z as in the Theorem.

Tf(X,L) = inf{t € R : Kx + tLis f-nef} is called the nef-value of the pair
(f + X - Z,L). By the rationality theorem of Kawamata (Theorem 3.5 in
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[KM98]), 7¢(X,L) := 7 is a rational non-negative number. Moreover f is an
adjoint contraction supported by Kx + 7L, that is Kx +7L ~; Ox (~j stays for
numerical equivalence over f).

By our assumption 7 > (n — 3). Therefore 7 +3 > n > n—1 = dimFE and, by
Proposition 3.3.2 in [AT16], there exists a section of L not vanishing along F; in
particular |L| is not empty.

Let H; € |L| be general divisors for ¢ = 1,...,n — 3. By Theorem 1.1 in [AT16],
quoted in the introduction, for any ¢, H; is a variety with terminal singularities
and the morphism f; = fg, : H; — f(H;) =: Z; is a local contraction supported
by Kg, + (1 — 1)Lg,. Since Z is terminal and Q-factorial (see [KM98, Corollary
3.36] and [KM98, Corollary 3.43]), then the Z;’s are Q-Cartier divisors on Z.

For any t = n—3,...,0 define V; = N'_?"'H; and g; = fiv, Y = f(Y) = Wy in
particular Y,, 3 =X, g,_3= f and W,_3 = Z.

By induction on ¢, applying Theorem 1.1 in [AT16], one sees that, for any t =
n—4,...,0, Y; is terminal and ¢g; : Y; — W; is a local Fano Mori contraction
supported by Ky, + (7 — (n — 3 — t)L}y,. Therefore W; is a terminal variety (by
[KM98, Corollary 3.43]) and it is a Q-Cartier divisor in Wj41, because intersection
of Q-Cartier divisors (by construction W; = ﬂ?:_f’_tZi).

Set L; := Lyw,. By Proposition 3.3.4 of [AT16] Bs|L;| has dimension at most 1;
by Bertini’s theorem (see [Jou83, Thm. 6.3]) F; := Y; N E is a prime divisor. FE;
is the intersection of Q-Cartier divisors and hence it is Q-Cartier.

Let X” = Yy and f” = go; by what said above, f” : X" — Z" is a divisorial
contraction from a 3-fold X" with terminal singularities, which contracts a prime
Q-Cartier divisor E” to a point P € Z”. Using the classification in dimension 3
of terminal Q-factorial singularities ([Mo82]) and of divisorial contractions (for a
summary see [Chl5]), one can see that Z” has a hyperquotient singularity at P,
which is actually contained in a special list.

By Proposition 3.4 and by induction on ¢, also Z has a hyperquotient singularity
at P.

Assume now (1.2), that is that f” is a weighted blow-up of P; applying Theorem
1.1 inductively on ¢, we have that f is a weighted blow-up of a hyperquotient
singularities.
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