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A first attempt to apply the AdS/QCD framework for a bottom–up approach to the evaluation of the 
effective cross section for double parton scattering in proton–proton collisions is presented. The main 
goal is the analytic evaluation of the dependence of the effective cross section on the longitudinal 
momenta of the involved partons, obtained within the holographic Soft-Wall model. If measured in high-
energy processes at hadron colliders, this momentum dependence could open a new window on 2-parton 
correlations in a proton.
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1. Introduction

The effects of multiple parton interactions (MPI) in proton–
proton scattering have been the object of several studies which 
have a long history (see, e.g. Ref. [1]) and, at the same time, con-
tinue to be an active field of interest. From an experimental point 
of view, the Large Hadron Collider (LHC) has opened the possi-
bility to observe specific signatures of these effects (see [2–6] for 
recent reports), useful to constrain the background for the search 
of New Physics; from a theoretical point of view, the investigation 
of two-parton correlations will become possible, opening a new 
field in the description of the non-perturbative three dimensional 
(3D) proton structure (see, e.g., Ref. [7]). The simplest MPI process 
is double parton scattering (DPS), whose description is based on 
specific non-perturbative elements: the double Parton Distribution 
Functions (dPDFs). These quantities describe the number densities 
of two partons, located at a given transverse distance (b⊥) in coor-
dinate space, which carry given longitudinal momentum fractions 
(xi = x1, x2) of the parent proton. The calculation of dPDFs, non-
perturbative quantities, is particularly cumbersome and therefore 
one can perform model calculations able to focus on the relevant 
features [8–11]. Usually, in the literature, the Fourier transform 
of the dPDFs w.r.t. b⊥ , depending therefore on k⊥ , the relative 
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transverse momentum between the two acting partons, sometimes 
called 2GPDs, has been studied. At present, it has not yet been 
possible to extract dPDFs from experimental data, but a specific 
observable, related to DPS, has received much attention in the past: 
the so called effective cross section, σeff . It is defined through the 
ratio of the product of two single parton scattering cross sections 
to the DPS cross section with the same final states and can be 
parameterized in terms of dPDFs and parton distribution functions 
(PDFs). The effective cross section has been extracted, although in a 
model dependent way, in several experiments [12–17]. The appar-
ent conclusion, within the present scenario and despite the large 
error bars, is that σeff remains constant as a function of the center-
of-mass energy of the collision.

In Ref. [18] we have recently investigated σeff , using the 
dPDFs calculated within the Light-Front (LF) approach developed 
in Ref. [10]. A clear dependence on the fractions of proton longitu-
dinal momentum carried by the four partons involved in the DPS 
process has been predicted. This feature could represent a first ac-
cess to the experimental observation of two-parton correlations in 
the proton.

The aim of the present work is to provide confirmation on the 
xi dependence in σeff by using an AdS/QCD framework, a com-
pletely different approach to hadron structure than the LF formal-
ism used in Ref. [18]. The leitmotif of the AdS/QCD approach is 
the duality between conformal field theories and gravitation in an 
anti de Sitter space [19]. Since QCD is not a conformal theory, peo-
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 

http://dx.doi.org/10.1016/j.physletb.2017.02.061
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://creativecommons.org/licenses/by/4.0/
mailto:marcoclaudio.traini@unitn.it
http://dx.doi.org/10.1016/j.physletb.2017.02.061
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2017.02.061&domain=pdf


M. Traini et al. / Physics Letters B 768 (2017) 270–273 271
ple have not been able to develop yet the fundamental top–down 
approach. We shall proceed therefore by a bottom–up approach 
where important features of QCD are implemented generating a 
theory in which conformal symmetry is only asymptotically re-
stored [20,21]. In this scheme we make use of the well established 
Soft-Wall model [22] of the AdS/CFT framework. Within this ap-
proach it has been proven that the gauge/gravity duality provides 
a (holographic) mapping of the string model �(z), z being the fifth 
dimension, to the hadron Light-Font wave functions (LFWFs) in 
four dimensional space-time. The approach has been successfully 
applied to the description of the mass spectrum of mesons and 
baryons reproducing the Regge trajectories (e.g. Ref. [21] and ref-
erences therein) and to Deep Inelastic scattering for the evaluation 
of the Generalized Parton Distributions (GPDs) (e.g. Refs. [23–27]). 
This last result can be used to link AdS/QCD and double parton 
physics as described in the next section 2 where we propose to 
calculate dPDFs within a general factorization framework which 
makes use of the GPDs as calculated in the AdS/QCD holographic 
approach. In section 3 we investigate explicitly the effective cross 
section calculating its xi -dependence in a simple and analytic way 
and, eventually, conclusions are drawn in section 4.

2. dPDFs from GPDs in Ads/QCD

The approach we are using, a semiclassical approximation to 
QCD, is often called Light Front Holography (LFH) [28]. It is based 
on the realization of a mapping relating AdS modes to LFWFs; it 
is obtained by matching specific matrix elements (e.g. the electro-
magnetic form factors) in the two approaches – string theory in 
AdS and Light-Front QCD in Minkowski space-time [29]. An inter-
esting application of the gauge/gravity correspondence to hadronic 
properties in the strong coupling regime, where QCD cannot be 
used in a direct and simple way, is the calculation of the Gen-
eralized Parton Distributions (GPDs) of the nucleon, described in 
Ref. [23–27] and we refer to those references for the detailed as-
pects of the calculation of GPDs and of the holographic mapping. 
In the next sections, we will recall only basic results to be used in 
the study of dPDFs.

2.1. GPDs in SW-model

Expressions for the GPDs in terms of the AdS modes are ob-
tained making use of the holographic mapping suggested by Brod-
sky and de Teramond [29] for the Hadron electromagnetic form 
factors (see also Ref. [30] for recent developments). The calcula-
tion of the nucleon form factors is, in fact, based on the use of the 
integral representation for the bulk-to-boundary propagator intro-
duced by Grigoryan and Radyushkin [31]:

V (k2⊥, ζ ) =
1∫

0

dx Fx(k
2⊥, ζ ) = (1)

=
1∫

0

dx
(αζ )2

(1 − x)2
xk2⊥/(4α2) e−(αζ )2x/(1−x),

where α is the parameter that appears in the dilaton definition 
used to break conformal invariance in AdS. α affects all fields con-
sidered in the model, including the vector massless field which 
allows the calculation of form factors (and GPDs). The same param-
eter appears, in the case of the nucleon, in the Soft-Wall potential, 
in the holographic coordinate V SW(z) = α2 z. We fix its numerical 
value according to Refs. [25,27], α = 0.41 GeV.

GPDs parameterize the non-perturbative hadron structure in 
hard exclusive processes [32,33]. We recall that GPDs depend on 
the longitudinal momentum fraction of the active quark, x, on 
the momentum transferred in the longitudinal direction (ξ , the so 
called skewdness), on the invariant momentum transfer, t , and on 
the momentum scale μ2

0. In the following, the latter dependence 
will be omitted for simplicity, if not differently specified.

The first t-dependent moments of GPDs are related to the nu-
cleon elastic form factors, i.e.

1∫
−1

dx Hq(x, ξ, t) = F q
1(t) ,

1∫
−1

dx Eq(x, ξ, t) = F q
2(t) , (2)

where F q
1(t) and F q

2(t) are the contributions of quark q to the 
Dirac and Pauli form factors, respectively. The property Eq. (2)
does not depend on ξ and it holds also at ξ = 0. Introducing 
the so-called valence GPDs, Hq

V (x, ξ, t) = Hq(x, ξ, t) + Hq(−x, ξ, t)
(analogously one can define Eq

V (x, ξ, t)), whose forward limit is 
Hq

V (x, ξ = 0, t = 0) = qV (x) = q(x) − q̄(x), and assuming isospin 
symmetry, from Eq. (2) one gets

F p
1 (t) =

1∫
0

dx

(
+2

3
Hu

V (x, ξ =0, t) − 1

3
Hd

V (x, ξ =0, t)

)
,

F n
1(t) =

1∫
0

dx

(
−1

3
Hu

V (x, ξ =0, t) + 2

3
Hd

V (x, ξ =0, t)

)
,

F p
2 (t) =

1∫
0

dx

(
+2

3
Eu

V (x, ξ =0, t) − 1

3
Ed

V (x, ξ =0, t)

)
,

F n
2(t) =

1∫
0

dx

(
−1

3
Eu

V (x, ξ =0, t) + 2

3
Hd

V (x, ξ =0, t)

)
. (3)

Eqs. (3) and (2), allow for the extraction of the functions
Hu,d

V (x, ξ =0, t, μ2
0) and Eu,d

V (x, ξ =0, t, μ2
0) at the scale μ2

0.
As a conclusion, the helicity independent GPDs Hq

V assume the 
explicit form [23,25,27]:

Hu
V (x, ξ = 0, t,μ2

0) = uV (x,μ2
0) x

− t
4α2 ,

Hd
V (x, ξ = 0, t,μ2

0) = dV (x,μ2
0) x

− t
4α2 . (4)

Analogous expressions can be written for the target helicity-flip 
GPDs Eq

V .
One should notice that, in the obtained GPDs, the dependence 

on the longitudinal momentum and on the momentum transfer are 
not factorized, as it happens, to our knowledge, in all the micro-
scopic model calculations of GPDs (see, e.g., Refs. [34] and [35]).

2.2. Factorization

As already mentioned, in actual analyses, dPDFs are usually 
approximated by factorized forms. In particular, as firstly pro-
posed in Ref. [36] and widely used, the dPDF in momentum space, 
FuV uV (x1, x2, k⊥, μ2

0), can be written as a product of two spin in-
dependent, quark helicity conserving GPDs Hu

V (x, ξ = 0, k⊥, μ2
0):

FuV uV (x1, x2,k⊥,μ2
0) =

≈ Hu
V (x1, ξ = 0,−k2⊥,μ2

0)Hu
V (x2, ξ = 0,−k2⊥,μ2

0). (5)
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As indicated, GPDs depend also on the momentum scale μ0.1

To be more precise, let us concentrate first on the chiral even 
(helicity conserving) distribution Hq

V (x, ξ, t, Q 2) for partons of 
q-flavor, and taking deeply virtual Compton scattering (DVCS) as 
a typical process. A virtual photon of momentum qμ is exchanged 
by a lepton to a nucleon of momentum Pμ and a real photon of 
momentum q′

μ is produced, together with a recoiling nucleon with 
momentum P ′

μ . The space-like virtuality is therefore Q 2 = −qμqμ

and it identifies the scale of the process (in the expression (5), 
Q 2 = μ2

0). The invariant momentum transfer is t = −k2⊥ = (P ′
μ −

Pμ)2 and the skewedness ξ encodes the change of the longitudinal 
nucleon momentum (2ξ = k+/ P̄+ , with 2 P̄μ = (Pμ + P ′

μ)).
The factorized form (5) contains only the GPDs at ξ = 0; it is 

remarkable that, when Fourier transformed to coordinate space, 
these quantities become densities, the so called impact parame-
ter dependent parton distributions (the reader can find in Ref. [33]
a recent update on GPDs physics). It is also interesting to note 
that the dPDF, Eq. (5), Fourier transformed to coordinate space, is 
given by a convolution of impact parameter dependent parton dis-
tributions. In this approximation, the longitudinal momenta of the 
quarks described by the dPDF are not correlated, while these mo-
menta and k⊥ are correlated (see Ref. [3] for a discussion on this 
issue).

The Hu
V are normalized in the natural way∫

dxHu
V (x, ξ = 0,k2⊥ = 0,μ2

0) = 2 ,

∫
dxHd

V (x, ξ = 0,k2⊥ = 0,μ2
0) = 1 ,

and the factorization (5) is valid in the region x1 + x2 < 1, i.e. in 
the region kinematically accessible to the two partons whose total 
momentum cannot exceed the nucleon momentum.

In Ref. [3] also a first order correction to Eq. (5) has been eval-
uated and the total expression reads

FuV uV (x1, x2,k⊥,μ2
0) =

≈ Hu
V (x1, ξ = 0,−k2⊥,μ2

0)Hu
V (x2, ξ = 0,−k2⊥,μ2

0) +

+ k2⊥
4M2

p
Eu

V (x1, ξ = 0,−k2⊥,μ2
0)Eu

V (x2, ξ = 0,−k2⊥,μ2
0), (6)

which includes a correction containing Eq
V , the nucleon spin inde-

pendent, target helicity flip GPD, and Mp is the proton mass.

3. xi -Dependence of the proton effective cross section

The effective cross section, σeff , is a relevant quantity in the ex-
perimental analysis of DPS (for a recent update, see, e.g., Ref. [18]
and references therein).

An expression for σeff , suitable for theoretical evaluations, has 
been developed in Ref. [18] and can be written as follows:

σeff (x1, x′
1, x2, x′

2,μ
2
0) =

=
∑

i,k, j,l Cik C jl F i(x1)Fk(x′
1)F j(x2)Fl(x′

2)∑
i. j,k,l Cik C jl

∫
Fij(x1, x2,k⊥) Fkl(x′

1, x′
2,−k⊥) dk⊥

(2π)2

, (7)

where Fi, Fk, F j, Fl are the PDFs entering the process in study 
(globally, i, k, j, l = q, ̄q, g), Fij(x1, x2, k⊥) are the related dPDFs (in 

1 In principle, dPDFs depend on two momentum scales, corresponding to those 
of the two different processes which are produced by the two active partons in 
the DPS process. Nevertheless, we assume here for definiteness that the two scales 
coincide.
Fig. 1. (Color online) σeff (x1, x2, μ2
0) (normalized at x1 = x2 = 10−3, Eq. (9)), as a 

function of x1 at fixed x2 = 0.001, 0.01, 0.1, 0.2. The small contribution due to the 
higher order term in Eq. (10) is shown for x2 = 0.2 (dotted). The low-x region is 
emphasized by means of a logarithmic x1-scale.

Eq. (7) the explicit dependence on the scale μ2
0 has been sup-

pressed for simplicity) and Cik are color factors. In principle, σeff
depends on four momentum fractions. In order to discuss the main 
features of σeff , one can restrict the analysis to the zero rapidity 
region (y = 0), and therefore to xi = x′

i , and to valence uV which 
remains the dominant component of the Fock space in the AdS ap-
proach and it is identified with valence quarks [27,37]:

σeff (x1, x2,μ
2
0) �

�
[
uV (x1,μ

2
0))uV (x2,μ

2
0)

]2

∫ [
FuV uV (x1, x2,k⊥,μ2

0)
]2 dk⊥

(2π)2

=

= 1∫
x

k2⊥/(2α2)

1 x
k2⊥/(2α2)

2
dk⊥

(2π)2

, (8)

where the explicit dependence (4) has been used. Eq. (8) shows 
that an analytic dependence on x1 x2 is predicted by the holo-
graphic AdS approach.

In particular in the valence region, the behavior is qualitatively 
similar to the one found previously within a LF approach [18]. 
Quantitatively, taking for example x1 = x2 = 0.4, one finds, from 
(8) σeff � 2π

α2 [ ln(1/x1) + ln(1/x2) ] � 26.6 mbarn, a value which is 
not far from the result of Ref. [18] and from those extracted by the 
experimental collaborations. As shown in Ref. [18], at least in the 
valence region, QCD evolution does not change substantially the 
x-dependence and the absolute values of σeff .

However, in the present analysis, we are especially interested 
in the xi dependence of σeff , which is found to be a largely model 
independent feature. To that aim we normalize the cross section 
at some low-x2 value (x2 = x0

2) obtaining (for x1 + x2 < 0, and x1 ≥
10−3)

σeff (x1 ≥ 10−3, x2 = x0
2,μ

2
0)

σeff (x1 = x0
1, x2 = x0

2,μ
2
0)

= ln(1/x1) + ln(1/x2)

ln(103) + ln(1/x2)
, (9)

which represents the essential result of the present work, illus-
trated in Fig. 1, where the ratios (9), is shown as a function of x1
and at different values of x2. A relevant xi -dependence of the cross 
section is found. It turns out to be rather strong in the valence re-
gion, as already indicated in Ref. [18]. It is important to notice that 
this dependence is sizable also at lower values of xi , manifesting a 
suppression of 20–30% at x1 = 0.01 (depending on the value of x2). 
At x1 = 0.1, the suppression is around 50%.
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Before concluding the section let us discuss the further cor-
rection due to the k2⊥/M2

p contribution in Eq. (6), as proposed in 
Ref. [3]. An explicit calculation shows that Eq. (9) still holds with 
the simple replacement

ln(1/x1) + ln(1/x2) →
→ ln(1/x1) + ln(1/x2)

1 +
(

α
2Mp

)2 f (x1,x2)
ln(1/x1)+ln(1/x2)

, (10)

where

f (x1, x2) =
= (3κu)2 (1 − x1)

2(1 − x2)
2

(1 − x1)(13/3 − x1)(1 − x2)(13/3 − x2)
, (11)

and κu = 2κp + κn ≈ 1.673 is related to the anomalous magnetic 
moments of proton and neutron, κp and κn , respectively.

The correction is very small as it can be seen in Fig. 1, where its 
effects are shown for x2 = 0.2 (the other cases being quite similar).

4. Summary and conclusions

The present work addresses a topic which has a specific rel-
evance in extracting double parton correlations from high-energy 
proton–proton scattering data: the xi -dependence of the (so called) 
effective cross section, a dependence put in numerical evidence 
in Ref. [18]. The relevance of such a dependence deserves some 
further study and we have investigated it within an AdS/QCD holo-
graphic approach. In fact it is largely recognized that such a tech-
nique is a good analytic tool to investigate physical systems, and 
their electromagnetic interactions, within non-perturbative QCD 
(see Ref. [21] for a recent report). The approach here proposed ap-
plies, for the first time, AdS/QCD to the evaluation of dPDFs and 
parton correlations. The result is rather direct, showing a clear xi
dependence of the effective cross section. Experimentally, such a 
dependence is not evident, most likely because of the large error 
bars. A better identification of the behavior of the cross section 
as a function of the center-of-mass energy of the collision would 
open interesting windows on the parton–parton correlations and, 
consequently, on a novel way to look at specific features of the 3-D 
structure of the nucleon.
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