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Abstract Generalized parton distributions are investigated
within a holographic approach where the string modes in
the fifth dimension describe the nucleon in a bottom–up or
AdS/QCD framework. The aim is to bring the AdS/QCD
results in the realm of phenomenology in order to extract
consequences and previsions. Two main aspects are studied:
(i) the role of the confining potential needed for breaking con-
formal invariance and introducing confinement (both: classic
soft-wall and recent infra-red potentials are investigated); (ii)
the extension of the predicted GPDs to the entire range of off-
forward kinematics by means of double distributions. Higher
Fock states are included describing the nucleon as a super-
position of three valence quarks and quark–antiquark pairs
and gluons.

1 Introduction

Generalized parton distribution functions (GPDs) are a
source of fundamental information encoding essential aspects
of the nucleon structure [1–14] as basic ingredients in the
description of hard exclusive processes [2–4]. They are
generalization of the well known parton distribution func-
tions and, at the same time, as correlation functions they
incorporate quite non-trivial aspects of hadrons in the non-
perturbative regime like: electromagnetic form factors, spin
and angular momentum of the constituents and their spa-
tial distribution [1,10]. Their functional structure is usually
written as a function of the longitudinal momentum frac-
tion of the active quark (x), the momentum transferred in
the longitudinal direction (ξ or skewedness) and the invari-
ant momentum (square) t = −�2. The Fourier transform of
GPDs (at ξ = 0) in the transverse direction encodes infor-
mation on the partonic distributions in the transverse plane
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and it translates in a quantitative information (because of the
probabilistic interpretation as density functions) on the sepa-
ration of the struck quark and the center of momentum of the
nucleon [5–9]. The detailed map of quarks and gluons in the
nucleon interior is often called “nucleon tomography” since
the traditional information from elastic and deep-inelastic
scattering provide static coordinates or momentum space pic-
tures, separately, while GPDs provide pictures of dynamical
correlations in both coordinate and momentum spaces [15].

Amplitudes of different hard exclusive processes (like
deeply virtual Compton scattering (e.g. [16]), and virtual vec-
tor meson production (e.g. [17,18]) in the new generation of
CLAS experiments at Jefferson Lab.) contain GPDs as essen-
tial components. On the other hand the experimental results
already collected have shed a fundamental light on their role
in different processes and kinematical regimes (for example
the H1 [19] and ZEUS [20] at HERA, HERMES at DESY
[21], Hall A and Hall B at Jefferson Lab. [22], COMPASS at
CERN [23]).

GPDs are non-perturbative objects and their evaluation
lies in the realm of non-perturbative QCD. The successes are,
till now, strongly limited [24,25]. An alternative approach is
the holographic light-front technique. Its fundamentals are
in the correspondence between string theory developed in a
higher dimensional anti-de Sitter (AdS) space and conformal
field theory (CFT) in Minkowski physical space-time [26–
29]. Several consequent models have been constructed and
they can be divided in top-down and bottom–up approaches.
Starting from some brane configuration in string theory, one
can, indeed, try to reproduce basic features of QCD follow-
ing top-down paths (e.g. Ref. [30,31]). On the way up one
starts from low-energy properties of QCD (like chiral sym-
metry breaking and quark confinement) to infer elements for
a gravity frame with asymptotically AdS space, the mod-
els are therefore indicated as AdS/QCD (e.g. Ref. [32,33]
and the references therein). In particular within the bottom–
up approach two successful models have been constructed:

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-017-4775-z&domain=pdf
mailto:marcoclaudio.traini@unitn.it


246 Page 2 of 15 Eur. Phys. J. C (2017) 77 :246

(i) the hard-wall model, which uses a sharp cut-off in the
extra dimension to confine the (dual) hadron field [34,35].
The model is simple, analytic and appealing, but it does not
reproduce the linear Regge behavior of the meson masses.
(ii) In the soft-wall model [36] a (quadratic) dilation field is
added in the meson sector in order to successful reproduce
the Regge behavior, however, chiral symmetry breaking can-
not be consistently realized. In particular, it has been shown
[37] that the spontaneous chiral symmetry breaking in vac-
uum and its restoration at finite temperature, can be realized
only within a careful choice of the dilaton profile (see also
Ref. [38]).

Consequently several authors are investigating how to
improve the SW description to incorporate the largest num-
ber of QCD properties [39–45].

An example particularly interesting in the present per-
spective is the infra-red improved soft-wall AdS/QCD model
proposed in Ref. [40]: it is constructed for baryons, taking
into account a specific baryonic property of the spectrum,
namely the parity-doublet pattern of the excited baryons. It
shows consistent properties also in the meson sector [41].
This simplified model is taken, in the present paper, as a pro-
totype to investigate GPDs and illustrating, at the same time,
a procedure valid to study generalized parton distributions
and other observables in a generically modified confining
potential.

Within the AdS/QCD approach deep-inelastic scattering
(DIS) has been first addressed by Polchinski and Strassler
in Refs. [47,48], and GPDs have been investigated by many
authors both within the hard-wall [49,50] and soft-wall [51–
54] models. Because of the nature of the AdS–QCD analogy
in the region of DIS, the results are restricted to the forward
limit (ξ = 0) (cf. Sect. 3).

In the present work an attempt for a step forward is inves-
tigated and in two directions: (i) generalizing the study of
GPDs for confining potentials more complex than the sim-
ple soft-wall model; (ii) extending the GPDs results to the
off-forward region, ξ > 0, by means of a technique called
double distributions [55].

In Sect. 2 the procedure to evaluate the nucleon holo-
graphic wave function in the modified confining potential is
discussed and the numerical results illustrated. In Sect. 3 the
relation between sum rules and the ξ = 0 components of
the GPDs is investigated and generalized to include, within
a unified framework: (i) the effects of the modified confining
potential; (ii) the contributions of higher Fock states. Numer-
ical results for both helicity-independent and -dependent
GPDs are discussed in Sect. 4 and compared with a light-front
approach. Section 5 is devoted to the application of double-
distribution techniques [55] to the AdS/QCD predictions for
the soft-wall model. It is shown how AdS/QCD can become

predictive in the whole kinematical range (x, ξ > 0, t). Con-
clusions and perspectives in Sect. 6.

2 From the soft-wall to the infra-red improved model

The AdS/QCD framework relates a gravitationally interact-
ing theory in the anti-de Sitter space AdSd+1 with a confor-
mal gauge theory in d-dimensions defined at the boundary.
The needed breaking of conformal invariance (QCD is not
a conformally invariant theory) of that correspondence for
the baryonic case is obtained introducing, in addition to the
dilaton term ϕ(z), an effective interaction ρ(z) in the action
of the Dirac field (propagating in AdSd+1) [32,33]:

S = 1

2

∫
ddx dz

√
g eϕ(z)

×
[
�

(
i�AeMA DM − μ − ρ(z)

)
� + h.c.

]
. (1)

Maximal symmetry is restored for ϕ(z) = ρ(z) = 0. One

has
√

(g) =
(
R
z

)d+1
, while eMA is the inverse vielbein,

eMA = ( z
R

)
δMA . DM is the covariant derivative and the Dirac

matrices anti-commute [�A, �B] = 2ηAB . A Dirac-like
wave equation can be derived from Eq. (1) and the dynam-
ical effect due to the dilaton field reabsorbed rescaling the
spinor � → eϕ(z)/2�. For that reason the term eϕ(z) is suf-
ficient to break maximal symmetry for mesons but not for
the baryon sector. The additional interaction term ρ(z) pro-
vides the needed breaking (and confining) contributions to
generate the correct baryon spectrum [32,46]. The absence
of dynamical effects of the dilaton background field has a
particular disappointing side effect in the lack of guidance
from gravity to solve the equations.

A solution is given by a light-front holographic mapping
where the LF wave equation can be identified with the equa-
tion of motion. In the case of d = 4, �A = (γμ, iγ5) and

V (z) =
(
R
z

)
ρ(z), the holographic variable z can be identi-

fied with the transverse impact variable ζ of the n−1 specta-
tor system with respect the active parton in a n-parton bound
state (z = ζ ). In the 2 × 2 chiral spinor representation one
obtains two coupled differential equations (cf. e.g. Ref. [32])

d

dζ
φ+ − ν + 1/2

ζ
φ+ − V (ζ )φ+ = Mφ−, (2)

− d

dζ
φ− − ν + 1/2

ζ
φ− − V (ζ )φ− = Mφ+; (3)

here ν can be identified with the light-front angular momen-
tum, i.e. the relative angular momentum between the active
parton and the spectator cluster. Equations (2) and (3) are
easily reduced to the equivalent system of second order dif-
ferential equations:
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− d2

dζ 2 φ+ − 1 − 4ν2

4ζ 2 φ+ + 2ν + 1

ζ
V (ζ )φ+

+dV (ζ )

dζ
φ+ + V 2(ζ )φ+ = M2φ+, (4)

− d2

dζ 2 φ− − 1 − 4(ν + 1)2

4ζ 2 φ− + 2ν + 1

ζ
V (ζ )φ−

−dV (ζ )

dζ
φ− + V 2(ζ )φ− = M2φ−. (5)

2.1 Linear soft-wall potential

For a quadratic interaction (and z = ζ within the holographic
model), ρ(ζ ) ∼ ζ 2, V (ζ ) = α2ζ (the so called soft-wall
linear potential) and Eqs. (4) (5) become:

− d2

dζ 2 φ+ − 1 − 4ν2

4ζ 2 φ+ + α4ζ 2φ+ + 2(ν + 1)α2φ+

= M2φ+, (6)

− d2

dζ 2 φ− − 1 − 4(ν + 1)2

4ζ 2 φ− + α4ζ 2φ− + 2να2φ−

= M2φ−. (7)

with normalized solutions (equivalent to 2D-harmonic oscil-
lator)

φ+
n,l+(ζ ) =

√
2 n!

(n + l+)!
√

α (αζ )l++1/2 e−α2ζ 2/2 Ll+
n (α2ζ 2),

(8)

φ−
n,l−(ζ ) =

√
2 n!

(n + l−)!
√

α (αζ )l−+1/2 e−α2ζ 2/2 Ll−
n (α2ζ 2);

(9)

where∫
dζ |φ+

n,l+(ζ )|2 =
∫

dζ |φ−
n,l−(ζ )|2 = 1. (10)

Ll
n(x) are the associated Laguerre polynomials and one iden-

tifies common eigenvalues M2 = 4α2(n+ν+1). The linear
confining potential generates a mass gap of the order of α. ν is
related to the h.o. angular momentum by l+ = ν, l− = ν +1.
In the following α2 = (0.41)2 GeV2 will be selected, a value
which interpolates among different choices in the literature
(cf. Ref. [32] and references therein) and it gives a good fit
to the form factors [54]. A critical analysis of the influence
of the α’s value on the results of the present approach will be
given in Sect. 4.2.1.

2.2 The IR-improved soft-wall model and its solutions

The infra-red improved soft-wall AdS/QCD model proposed
in Ref. [40] (in the following: IR) exhibits a confining poten-
tial of the form
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Fig. 1 The confining soft-wall linear potential V (ζ ) = α2ζ (α =
0.41 GeV) as function of ζ (fm) (dashed line), is compared with the
IR-improved potential introduced in Refs. [40,41] (see Eq. (11) and
Sect. 2.2 for comments). Also a hard-wall potential at ζ0 ∼ 1/�QCD is
sketched (dotted line)

Table 1 Values of the parameters for VI R of Eq. (11). μg , λA, λB are
from Ref. [40]. For kg see Eq. (12) and discussion

kg (GeV) μg (GeV) λA (u) λB (u)

0.0089 0.473 3.93 16.58

VI R(ζ ) = λAkgμg ζ
(

1 − λBμ2
g ζ 2 e−μ2

gζ
2
)

, (11)

shown in Fig. 1. The numerical values of the parameters are
as in Table 1.

The potential (11) belongs to the class of potentials obey-
ing V (ζ → 0) = α2ζ , and V (ζ � μ−1

g ) = α2ζ , i.e. la class
of potentials matching the linear wall both in the IR and UV
regimes [39].

Therefore the potential VI R must reduce to the linear soft-
wall potential in the limiting case λB = 0, and one has

λAkgμg = α2 = (0.41)2 GeV2 → kg ≈ 0.089 GeV,

(12)

parameters used in Fig. 1 and in the following.
The IR potential has been constructed to reproduce, with

good accuracy, both the meson and the baryon masses. In
particular it gives consistent predictions for the mass spec-
tra of scalar, pseudoscalar, vector and axial-vector mesons,
and both confinement and chiral symmetry breaking are well
characterized [41]. In the case of baryons the parameters
λA and λB are fixed by fitting the masses of the first low-
lying baryons with even parity (including nucleon). The pre-
dicted masses for odd-parity baryons and high excited states
of even-parity baryons are consistently reproduced [40] by
using the same values of the parameters.
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Let us introduce the form (11) in Eqs. (4) and (5), one gets[
− d2

dζ 2 + D±

ζ 2 + E± ζ 2 + F± ζ 2 e−μgζ
2 + G± ζ 4 e−μgζ

2

+H± ζ 6 e−2μgζ
2 + I±

]
φ±

ν,I R

= R̂±φ±
ν,I R = M2

I Rφ±
ν,I R, (13)

where (A = λAkgμg , B = λBμ2
g)

D+ = −(1 − 4ν2)/4; D− = −[1 − 4(ν + 1)2]/4
E+ = A2; E− = A2

F+ = [−3 − (1 + 2ν)]AB; F− = [+3 − (1 + 2ν)]AB
G+ = [−2A + 2μ2)]AB; G− = [−2A − 2μ2)]AB
H+ = A2B2; H− = A2B2

I+ = 2(1 + ν)A; I− = 2νA .

A convenient technique to solve Eqs. (13) is an expansion
on the basis of φ±

nl± of Eqs. (8, 9), in this way one can keep
all the already established properties of the solutions (8, 9)
within a linear combination of them. Consequently

φ±
ν,I R(ζ ) =

nmax∑
n=0

a±
ν,n φ±

nl±(ζ ), (14)

where ν = 3 and l+ = ν and l− = ν +1 for the lowest three-
quark Fock state of the nucleon [56]. The natural parameter
to be chosen to minimize M2

I R looking for the ground state
wave function (the nucleon) is the harmonic oscillator con-
stant which has to be diversifyed in two components α → α±
in order to respect the essential property M+

I R = M−
I R .

〈φ±
ν,I R |R̂±|φ±

ν,I R〉
〈φ±

ν,I R |φ±
ν,I R〉

∣∣∣∣∣
minimum

→ (M±
I R)2 → (MI R)2.

(15)

Of course the restricted Hilbert space used in solving the min-
imization will result in an upper bound for M2

I R . However,
as will become clearer in the next section, the convergence
is rapid and one has to expect only few percent deviations.

2.3 Numerical results

The minimization procedure is performed in the two compo-
nents φ±

ν,I R varying the parameter α− and reaching the min-

imum value for (M−
I R)2 = 2.61 GeV2 for α− = 2.65 fm−1,

with the corresponding (M+
I R)2 = 2.61 GeV2 for α+ =

2.35 fm−1, and involving 17 oscillator quanta (nmax = 16).
The harmonic oscillator angular momentum quantum num-
bers l− = ν + 1 and l+ = ν are fixed by the twist operator
ν = 3 for the lowest number of active quarks [56] (of course∑nmax

n=0 (a±
n,l±)2 = 1). In Table 2 the actual vales of the coeffi-

cients a±
n,l± . One can appreciate the rapid convergence. The

basis is in fact the maximum numerical basis supported by

Table 2 The numerical values
of the coefficients a±

νn for the
variational expansion (14) in the
case of maximum h.o. quanta
nmax = 16 and ν = 3
(l+ = ν = 3, l− = ν + 1 = 4).
The h.o. constants are fixed by
the minimization procedure at
α+ = 2.35 fm−1 and α− = 2.65
fm−1

n a+
(ν=3),n a−

(ν=3),n

0 0.9811 0.8749

1 −0.1872 −0.4423

2 0.0486 0.1834

3 −0.0071 −0.0678

4 0.0014 0.0233

5 −0.0002 −0.0076

6 3.6e−05 0.0024

7 −5.3e−06 −7.3e−04

8 8.3e−07 2.2e−04

9 −1.2e−07 −6.5e−05

10 1.8e−08 1.9e−05

11 −2.7e−09 −5.4e−06

12 3.9e−10 1.5e−06

13 −5.7e−11 −4.3e−07

14 7.3e−12 1.2e−07

15 −5.7e−12 −3.2e−08

16 −6.4e−12 8.0e−09

the Matlab code used for the minimization; however, it is
evident that remaining within nmax = 10 is a quite good
approximation. The numerical calculations of the next sec-
tions will make use of the restricted basis nmax = 10.

3 GPDs and sum rules at ξ = 0

In order to introduce the explicit calculations of the GPDs,
let us concentrate first on the chiral even (helicity conserv-
ing) distribution Hq(x, ξ, Q2, t) for partons of q-flavor at
the scale where one is assuming valid the calculation for the
related amplitudes. For example, the amplitude for deeply
virtual Compton scattering where a virtual photon of momen-
tum qμ is exchanged by a lepton to a nucleon of momentum
Pμ and a real photon of momentum q ′μ is produced (together
with a recoiling nucleon P ′μ). The space-like virtuality is
therefore Q2 = −qμqμ and it identifies the scale of the
process. The invariant momentum square is t = −�2 =
(P ′μ − Pμ)2 and the skewedness ξ encodes the change of
the longitudinal nucleon momentum (2ξ = �+/P̄+, with
2 P̄μ = (Pμ + P ′μ)). In the following the common notation
of simply three variables (x, ξ, t) instead of (x, ξ, Q2, t) is
assumed1. In addition only the limit ξ = 0 will be discussed
and therefore one can remain in the 0 ≤ x ≤ 1 region.

1 The chosen reference frame is symmetric and qμ and the average
moment P̄μ = (Pμ + P ′μ)/2, are collinear (along the z axis) and
opposite in directions.
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Fig. 2 The distributions xu(x) and xd(x) as a function of x . From
the soft-wall linear potential (solid lines) and from the IR-improved
potential model (dot-dashed), when higher-Fock states are included
(cf. Sect. 3.2). The total momentum sum rule reads Mu+d = 0.92 for
the SW model, Mu+d = 0.91 for the IR when higher Fock states are
included

3.1 Contribution of the valence quarks (ν = 3)

The helicity conserving Hq distributions, in the limit t = 0
and ξ = 0 reduce to ordinary parton distributions

Hq(x, 0, 0) = q(x), (16)

the unpolarized quark distribution of flavor q and one has
∫

dx Hq(x, 0, 0) =
∫

dx q(x) = Nq , (17)

where Nq fixes the number of valence quarks of flavor q
(Nu = 2, Nd = 1). The integral properties are therefore
model independent and strongly constrain the helicity con-
serving distributions in any model and/or parametrization
(the conditions on Nq are satisfied within all the models pre-
sented). The second moment,

∑
q=u,d

∫
dx x Hq(x, 0, 0) =

∑
q=u,d

∫
dx x q(x) = Mu+d ,

(18)

is related to the momentum sum rule (cf. Fig. 2) and the
models discussed differ: the LF-model is based on light-front
wave functions and obeys Mu+d = 1 since the valence con-
tribution is the only component at low momentum scale. The
numerical calculations give: Mu+d = 0.92 for the SW, while
Mu+d = 0.91 for the IR when higher Fock states are consid-
ered (cf. Sect. 3.2). In addition the first t-dependent moments
of the GPDs are related to the nucleon elastic form factors
[10], i.e.
∫ 1

−1
dxHq (x, ξ, t) = Fq

1 (�2),

∫ 1

−1
Eq (x, ξ, t) = Fq

2 (�2),

(19)

where Fq
1 (�2) and Fq

2 (�2) are the contribution of quark q
to the Dirac and Pauli form factors. The property (19) does
not depend on ξ and it holds also in the present approach
with ξ = 0 and therefore 0 ≤ x ≤ 1, (cf. Refs. [10,15]), and
one has

F p
1 (�2) =

∫ 1

0
dx

(
+2

3
Hu
V (x, ξ =0, t) − 1

3
Hd
V (x, ξ =0, t)

)
,

Fn
1 (�2) =

∫ 1

0
dx

(
−1

3
Hu
V (x, ξ =0, t) + 2

3
Hd
V (x, ξ =0, t)

)
,

F p
2 (�2) =

∫ 1

0
dx

(
+2

3
Eu
V (x, ξ =0, t) − 1

3
Ed
V (x, ξ =0, t)

)
,

Fn
2 (�2) =

∫ 1

0
dx

(
−1

3
Eu
V (x, ξ =0, t) + 2

3
Hd
V (x, ξ =0, t)

)
,

(20)

where t = −�2 and isospin symmetry has been assumed.
In terms of the holographic wave functions φ± derived from
AdS/QCD, the Dirac form factors for the nucleons in the
present soft-wall linear model are given by [32,49–53,56]

F p
1 (�2) =

∫
dζ V+(�2, ζ )

|φ+
ν,I R(ζ )|2
(α+ζ )4 (N+)2, (21)

Fn
1 (�2) = −1

3

∫
dζ

[
V+(�2, ζ )

|φ+
ν,I R(ζ )|2
(α+ζ )4 (N+)2

−V−(�2, ζ )
|φ−

ν,I R(ζ )|2
(α−ζ )4 (N−)2

]
, (22)

F p/n
2 (�2) = κp/n

×
∫

dζ
1

2

[
φ−

ν,I R(ζ )V−(�2, ζ )φ+
ν,I R(ζ )

(α−ζ )3 (N∓)2

+φ+
ν,I R(ζ )V+(�2, ζ )φ−

ν,I R(ζ )

(α+ζ )3 (N±)2

]
;

(23)

here κp/n are the proton and neutron anomalous gyromag-
netic factors, respectively. The kernels V± have a simple and
analytic integral form [57]:

V±(�2, ζ ) =
∫ 1

0
dx F±

x (�2, ζ )

=
∫ 1

0
dx

(α±ζ )2

(1 − x)2 x�2/[4(α±)2]e−(α±ζ )2x/(1−x).

(24)

The specific boundary condition V±(�2 = 0, ζ ) = 1
imposes the normalizations:
∫

dζ
|φ±

ν,I R(ζ )|2
(α±ζ )4 (N±)2 = 1 ,

∫
dζ

φ−
ν,I R(ζ )φ+

ν,I R(ζ )

(α−ζ )3 (N∓)2 = 1 ,
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∫
dζ

φ+
ν,I R(ζ )φ−

ν,I R(ζ )

(α+ζ )3 (N±)2 = 1 ; (25)

and the results of the SW [51–53] model are recovered in the
limit

α± → α = 0.41 GeV,

a±
nl± → anl± = 1,

and therefore:
φ±

ν,I R(ζ ) → φ±
nl±(ζ ) of Eqs. (8, 9)

(N+)2 → 2/(2/3!) = 6,

(N−)2 → 1/(2/4!) = 12.

(N±)2 → (N∓)2 = 6. (26)

The resulting expressions for the GPDs are

+2

3
Hu
V (x, ξ =0,−�2) − 1

3
Hd
V (x, ξ =0,−�2)

=
∫

dζ F+
x (�2, ζ )

|φ+
ν,I R(ζ )|2
(α+ζ )4 (N+)2; (27)

−1

3
Hu
V (x, ξ =0,−�2) + 2

3
Hd
V (x, ξ =0,−�2)

= −1

3

∫
dζ

[
F+
x (�2, ζ )

|φ+
ν,I R(ζ )|2
(α+ζ )4 (N+)2

−F−
x (�2, ζ )

|φ−
ν,I R(ζ )|2
(α−ζ )4 (N−)2

]
; (28)

+2

3
Eu
V (x, ξ =0,−�2) − 1

3
Ed
V (x, ξ =0,−�2)

= κp

∫
dζ

1

2

[
φ−

ν,I R(ζ )F−
x (�2, ζ )φ+

ν,I R(ζ )

(α−ζ )3 (N∓)2

+φ+
ν,I R(ζ )F+

x (�2, ζ )φ−
ν,I R(ζ )

(α+ζ )3 (N±)2

]
; (29)

−1

3
Eu
V (x, ξ =0,−�2) + 2

3
Ed
V (x, ξ =0,−�2)

= κn

∫
dζ

1

2

[
φ−

ν,I R(ζ )F−
x (�2, ζ )φ+

ν,I R(ζ )

(α−ζ )3 (N∓)2

+φ+
ν,I R(ζ )F+

x (�2, ζ )φ−
ν,I R(ζ )

(α+ζ )3 (N±)2

]
. (30)

3.2 Higher Fock states (ν = 4, ν = 5)

The formalism developed in the previous sections for the
solution of the improved IR potential at the lowest twist
(ν = 3), can easily accommodate also higher Fock states
in the wave functions opening the possibility of studying
their effects on the generalized parton distributions even in
the presence of a modified potential. In particular additional

gluons (ν = 4) or a quark–antiquark pair (ν = 5) as dis-
cussed in Ref. [56]. One obtains

(φ±
hF,I R(ζ ))2 =

∑
ν=3,4,5

cν (φ±
ν,I R(ζ ))2,

φ±
hF,I R(ζ ) φ∓

hF,I R(ζ ) =
∑

ν=3,4,5

cν φ±
ν,I R(ζ ) φ∓

ν,I R(ζ ),

(31)

with c3 = 1.25, c4 = 0.16, and c5 = 1 − c3 − c4 = −0.41.
The previous conditions and values are taken from Ref.

[56] where they are established for the linear SW potential.
However, the criteria are rather general and directly related
to experimental observables, their application also for the
IR potential seems quite natural and it represents, in any
case, a first sensible approximation. The minimization has
to be repeated for ν = 4, 5 in analogy with the numerical
analysis of Sect. 2.3. All the expressions derived in Sect. 3 are
generalized in a straightforward way replacing (φ±

ν,I R(ζ ))2

and φ±
ν,I R(ζ ) φ∓

ν,I R(ζ ) with the linear combinations (31). In
order to comment in more detail, the generalization of Eq.
(27) is given as an example:

+2

3
Hu
V (x, ξ =0,−�2) − 1

3
Hd
V (x, ξ =0,−�2)

=
∫

dζ F+
x (�2, ζ )

[∑
ν

cν

|φ+
ν,I R(ζ )|2
(α+ζ )4 (N+

ν )2

]
. (32)

One has to notice that the normalization factors N 2 will
depend on ν while the harmonic oscillator parameters α±
will not. In fact the baryon masses (fixed by the explicit form
of the confining potential) will get their minimum values for
the same α±, as it has been checked numerically. The gener-
alization is straightforward. In the appendix are the numerical
details.

4 GPDs and confining potentials: results and comments

4.1 Hu(x, ξ = 0, t) and Hd(x, ξ = 0, t)

Results for Hu(x, ξ = 0, t) are shown in Figs. 3 and 4. In
particular in Fig. 3 the results for the valence components
Hu
V (x, ξ = 0, t), i.e. the twist-3 contributions (ν = 3) are

shown for both the SW model and the IR-improved model.
One could imagine that the change in the confining potential
encodes just refinements producing only small effects on the
observables. This comment is true from the point of view of
the baryon spectra, however, the modifications induced on
the wave functions can show up in a more consistent way in
appropriate observables. It is the philosophy of the present
work and it is well illustrated in Fig. 3: comparing the SW
and the IR-improved results one can appreciate the effects
produced by the tuning of the confining potential (cf. Fig. 1).
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Fig. 3 Upper panel The results for Hu
V (x, ξ = 0, t = −0.2 GeV2)

predicted by the improved-IR model (continuous line) are compared
with the same results for the corresponding SW model (dotted) and the
LF model calculation of Ref. [58] (dashed). Only twist-3 contributions
are included (cf. Sect. 3.1) and therefore the analysis is restricted to the
valence sector. Lower panel As in the upper panel for t = −0.5 GeV2

Analogous effects emerge in the analysis of the response of
d-valence quarks (Fig. 5). In that case the effects of the IR-
improved potential seem to be even more evident in the low-x
region and for both t = −0.2 GeV2 and t = −0.5 GeV2.

The t-dependence of the H -GPDs can be appreciated
comparing the upper and lower panels of Figs. 3 and 5,
where the responses are shown for two different values of the
momentum t = −0.2 GeV2 and t = −0.5 GeV2. In particu-
lar in Fig. 3 the results of the present AdS/QCD approach
are compared with an investigation (cf. Ref. [58]) which
makes use of a light-front relativistic quark model devel-
oped in Ref. [59] and based on a q-q-potential with a lin-
ear plus a Coulomb-like component: V = − τ

r + κl r . The
predictions of the two approaches look rather different. The
constraints due to conformal symmetry breaking imposed by
the AdS/QCD approach seem to reduce the response consid-
erably (and in the whole x-range) changing, at the same time,
their t-dependence in a relevant way.

Figures 4 and 5 are devoted to the investigation of the
higher Fock states effects. Within the IR-improved potential
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Fig. 4 Upper panel The results for Hu
V (x, ξ = 0, t = −0.2 GeV2)

predicted by the improved-IR model and twist-3 contribution only (con-
tinuous line, the same results of Fig. 3) are compared with the results
obtained including higher Fock states (dot-dashed), namely ν = 4, 5
(cf. Sect. 3.2). Lower panel As in the upper panel for t = −0.5 GeV2

the ν = 3 and ν = 3, 4, 5 responses are shown and compared.
The effects of higher-Fock states is rather weak, but one has
to keep in mind the limited validity of the contribution for
ξ = 0, the only component here discussed. The role of quark–
antiquark and gluon components should show up in a more
consistent way in the ξ -dependence of the response [1,60,
61]. It would be particularly interesting, in view of the next
generation of experiments, to add explicitly such components
together with the appropriate perturbative QCD evolution.
Work in this direction is in progress.

The comparison with experiments seems also particularly
interesting from the point of view of the t-dependence of
the responses. Often such a dependence is taken following
the fall off of the nucleon form factors. Modeling GPDs
does not confirm that hypothesis and the results of Ref. [58]
already questioned such a t-dependence. The results of the
AdS/QCD approach show an even stronger t-dependence, a
peculiarity which should be explicitly investigated in future
experiments.
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Fig. 5 Upper panel The results for Hd (x, ξ = 0, t = −0.2 GeV2)

predicted by the improved-IR model and twist-3 contribution only (con-
tinuous line) are compared with the results obtained including higher
Fock states (dot-dashed), namely ν = 3, 4, 5 (cf. Sect. 3.2). The predic-
tions of the corresponding SW model are also shown (dotted). Lower
panel As in the upper panel for t = −0.5 GeV2

4.2 Eu(x, ξ = 0, t) and Ed(x, ξ = 0, t)

The integral properties of the helicity non-conserving
responses Eq are more model dependent:
∫

dx Eq(x, 0, 0) = κq , (33)

where κq is the anomalous magnetic moment. Experimen-
tally κu = 2κ p + κn = 1.67 and κd = 2κn + κ p = −2.03.
From a theoretical point of view the calculation of κq is
affected by the dynamical hypothesis of the approach used. In
particular for the LF-approach of Ref. [58] one has κu = 1.02
and κd = −0.74.2 On the contrary the AdS/QCD wave func-
tions are normalized at the experimental values. To make the

2 More explicitly, Ref. [58] investigates two L-F quark models: (i) a
Hypercentral potential which includes linear and Coulombian interac-
tions and which is SU (6) symmetric; (ii) a model with Goldstone Boson
exchange (GBE) [65] which breaks SU (6). Despite the fact that κp/n
are in principle sensitive to SU (6) breaking effects, the vales of the two
models do not differ that much. For details cf. Ref. [58].
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Fig. 6 Upper panel The results for Eu
V (x, ξ = 0, t = −0.2 GeV2)

predicted by the improved-IR model (continuous line) are compared
with the same results for a the corresponding SW model (dotted) and the
LF model calculation of Ref. [58] (dashed). Only twist-3 contributions
are included (cf. Sect. 3.1) and therefore the analysis is restricted to the
valence sector. Lower panel As in the upper panel for t = −0.5 GeV2

comparison more meaningful Figs. 6, 7 and 8 show the ratios
Eq(x, ξ, t)/κq . They are in continuity with Figs. 3, 4 and 5
for the Hq responses.

Also for the Eq distributions the SW and the IR-improved
potentials predict significantly different results as far as their
x-dependence is concerning. The comparison with the LF-
approach shows also an important difference in t- depen-
dence between the LF and the AdS/QCD approaches. The
inclusion of higher Fock states is illustrated in Figs. 7 and 8.

4.2.1 The α parameter: a critical analysis

Before discussing some application of the GPDs in AdS/QCD,
a critical analysis of the parameter α characterizing the SW
potential (cf. Sect. 2.1) could help in fixing the precision one
can expect in the present, and analogous, investigations. To
this end it is convenient to write explicitly the GPDs within
the SW approach, as they result from Eqs. (27)–(30) in the
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Fig. 7 Upper panel The results for Eu
V (x, ξ = 0, t = −0.2 GeV2)

predicted by the improved-IR model and twist-3 contribution only (con-
tinuous line, the same results of Fig. 6) are compared with the results
obtained including higher Fock states (dot-dashed), namely ν = 3, 4, 5;
cf. Sect. 3.2). Lower panel As in the upper panel for t = −0.5 GeV2

SW-limit of Eq. (26):3

Hu
V (x, ξ = 0, μ2

0, t) = uV (x, μ2
0) x

− t
4α2 ,

Hd
V (x, ξ = 0, μ2

0, t) = dV (x, μ2
0) x

− t
4α2 . (34)

(with t = −�2). It is evident from Eq. (34), (and analogous
expressions can be written for the helicity-dependent com-
ponents) that, for t = 0, the parameter α does not affect the
x-dependence of Hq , it influences its t-dependence. Such
a conclusion has the relevant consequence that the differ-
ences one can see in Fig. 2 are α-independent. For t < 0
the effects are more complicated correlating in a critical way
the x and t-dependence4 and the choice of the α-parameter
appears to be critical. The discussion of the SW spectrum
for baryons shows that the masses obey the Regge behavior
and α ≈ 0.5 GeV is needed to reproduce the nucleon spec-

3 Results for the helicity-independent components will be discussed,
they are illustrative also for the results of the helicity-dependent com-
ponent.
4 These correlations can have important physical consequences in dou-
ble (or multiple) parton scattering (e.g. Ref. [69]).
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Fig. 8 Upper panel The results for Ed (x, ξ = 0, t = −0.2 GeV2)

predicted by the improved-IR model and twist-3 contribution only (con-
tinuous line) are compared with the results obtained including higher
Fock states (dot-dashed), namely ν = 3, 4, 5; cf. Sect. 3.2). The predic-
tions of the corresponding SW model are also shown (dotted). Lower
panel As in the upper panel for t = −0.5 GeV2

trum (cf. Sect. 2.1). In the literature the values α = 0.49 GeV
and α = 0.51 are considered the best choices to reproduce,
within the holographic AdS/QCD, the nucleon and the �

spectra respectively [32]. The freedom in the choice of α is
related to the nature of the AdS/QCD approach and the actual
value is fixed following physical constraints like the nucleon
and the � masses. In the study of the nucleon electromagnetic
form factors, α is fixed in order to reproduce their momen-
tum transfer behavior and, to this end, it has been chosen [54]
α = 0.4066 ≈ 0.41 GeV. It is physically sensible to remain
within this choice in order to study GPDs. However, just to
give a flavor of the α dependence of the present investigation
in Fig. 9 the sensitivity of the helicity-independent GPDs to
the α’s values is shown for both the SW and the IR-improved
potential. The values chosen are: (i) the choice made in the
previous sections and related to the electromagnetic form
factors, α = 0.41 GeV; (ii) the value from the best fit of
the nucleon masses, α = 0.49 GeV. The variations shown in
Fig. 9 could represent an upper bound to the absolute theo-
retical error. However, one cannot consider the range of the
results shown in the figure as genuine theoretical error bars;
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Fig. 9 Upper panel The sensitivity of Hu
V (x, ξ = 0, t = −0.2 GeV2)

to the variation of the α parameter in the case of SW predictions. Lower
panel As in the upper panel for I R improved potential. See text

in fact the value α = 0.41 GeV is well constrained to be
associated to the electromagnetic interactions as described
within AdS/QCD. One has to keep in mind, indeed, that α

is the parameter that appears in the dilaton definition used
to break conformal invariance in AdS and it affects all fields
considered in the model, including the vector massless field
which allows the calculation of form factors (and GPDs);
cf. Eq. (24). The same parameter appears, in the case of the
nucleon, in the soft-wall potential, in the holographic coordi-
nate V (z) = α2 z. Consistency is mandatory and the α value
has to be fixed by physical constraints connected with the
vector massless field dual to the electromagnetic field and
the form factors appear a natural choice.

In concluding the present Sect. 4, a general comment can
be added in order to justify the large differences one can see
in the IR versus SW potential predictions as well as in the
comparison with the LF model. The quite different behav-
ior of the potentials at intermediate vales of z ≈ 0.5 fm (see
Fig. 1), introduce relevant differences in the high-momentum
components of the wave corresponding functions and, conse-
quently, on the H -distributions. In particular, if the behavior
of the IR potential is extrapolated to small distances (< 0.5

fm) to match Coulomb tail like in the case the LF model, the
enhancement at small- and intermediate-x values is empha-
sized as it emerges, for instance, from Figs. (3) and (6). The
responses of the LF model (in the region 0 ≤ x ≤ 0.3) are
larger than the IR-potential ones; the IR responses are, in turn,
larger than the SW model distributions: a coherent behav-
ior. On the contrary, because of the sum rule constraints, the
responses in the large-x region follow an inverse behavior.

5 Modeling the ξ -dependence with double distributions

In the present section the results obtained at ξ = 0, are
generalized to the whole ξ domain by means of a double-
distribution approach developed by Radyushkin in Ref. [55].
The approach involves a given profile function and the for-
ward parton distribution as evaluated in the previous sections
(or in a generic model). In order to be specific let us concen-
trate on the chiral even (helicity conserving) distributions
Hq(x, ξ, Q2, t). One can introduce non-singlet- (valence)
and singlet-quark distributions:

HNS(x, ξ, t) ≡
∑
q

[
Hq(x, ξ, t) + Hq(−x, ξ, t)

]

= +HNS(−x, ξ, t), (35)

HS(x, ξ, t) ≡
∑
q

[
Hq(x, ξ, t) − Hq(−x, ξ, t)

]
,

= −HS(−x, ξ, t). (36)

The analogous distribution for gluons is symmetric in x ,

Hg(x, ξ, t) = Hg(−x, ξ, t), (37)

with

Hg(x, ξ = 0, t = 0) = xg(x), x > 0. (38)

Once again, the Q2 dependence has been omitted following
the common simplified notation, it will be discussed in Sect.
5.1 when the hadronic scale Q2

0 will be introduced. Due to the
polynomiality property [67] the symmetry characters, (35),
(36) and (37), hold also under ξ → −ξ . The singlet and
gluon components mix under evolution, while the non-singlet
distribution evolve independently.

The t-independent part can be parametrized by a two com-
ponent form [55]

Hq(x, ξ) = Hq
DD(x, ξ) + θ(ξ − |x |) Dq

(
x

ξ

)
, (39)

with

Hq
DD(x, ξ) =

∫ +1

−1
dβ

∫ 1−|β|
−1+|β|

dα δ(x − β − αξ) Fq (β, α),

(40)

and Hq(x, ξ) ≡ Hq(x, ξ, t = 0).
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The Dq contribution in Eq. (39) is defined in the region
|x | ≤ ξ and therefore does not contribute in the forward
limit. The D-term contributes to the singlet-quark and gluon
distributions and does not contribute to non-singlet compo-
nents. Its effect under evolution is restricted at the level of few
percent [62–64] and it will be disregarded in the following.

Following Radyushkin the DD terms entering Eq. (40) are
written as

Fq(β, α) = h(β, α) Hq(β, 0, 0), (41)

where Hq(β, 0, 0) = q(β) (cf. Eq. (16)) and the profile
function is parametrized as [68]

h(β, α) = �(2b + 2)

22b+1�2(b + 1)

[
(1 − |β|)2 − α2

]b
(1 − |β|)2b+1 . (42)

The parameterbfixes the width of the profile functionh(β, α)

and the strength of the ξ -dependence. In principle it could be
used (within the double-distribution approach) as a fit param-
eter in the extraction of GPDs from hard electro-production
observables. The favored choice is bNS = bS = 1 (pro-
ducing a maximum skewedness) and bgluon = 2 [60,68].
In the limiting case b → ∞, h(β, α) → δ(α)h(β) and
Hq(x, ξ) → Hq(x, ξ = 0). The explicit evaluation of
Hq(x, ξ) in Eq. (39) makes use of the results of the previous
sections within the holographic AdS/QCD approach.

5.1 Results at low momentum scale: the soft-wall model

In the present section the results for the chiral even distri-
butions of the soft-wall model valid at ξ = 0 as discussed
in Sect. 4.1, are generalized to ξ > 0 by means of the dou-
ble distributions presented in the previous section. They are
defined in the different regions of the (generalized) x-values
by the integrals (40) and the combinations (35), (36) and (37)
(cf. also Ref. [68]):

Hq
DD(x, ξ, t = 0) ≡ Hq

DD(x, ξ) = θ(+ξ ≤ x ≤ +1)

×
∫ 1−x

1−ξ

− 1−x
1+ξ

dα Fq(x − ξα, α)

+θ(−ξ ≤ x ≤ +ξ)

×
∫ 1+x

1+ξ

− 1−x
1+ξ

dα Fq(x − ξα, α)

+θ(−1 ≤ x ≤ −ξ)

×
∫ 1+x

1+ξ

− 1+x
1−ξ

dα Fq(x − ξα, α) (43)

with

Hq
DD(x, ξ, t = −�2) = Hq

DD(x, ξ, t = 0) x�2/(4α2);
x > 0.
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Fig. 10 The soft-wall predictions for GPDs. Singlet-quark (upper
panel), non-singlet-quark (middle panel) and gluon (amplified 20 times,
lower panel) GPDs at the low momentum scale Q2

0 [see Eqs. (35), (36)
and (37)] at t = −�2 = 0, using the DDs (43). Full lines for ξ = 0.1,
dashed lines for ξ = 0.2 and dot-dashed lines for ξ = 0.3

The results at low momentum scale, Q2
0, where the soft-wall

model is supposed to be valid, are shown in Fig. 10 for three
different values of the skewedness parameter ξ = 0.1, 0.2,
and 0.3 and invariant momentum t = −�2 = 0. The value
of the low momentum scale is identified by means of the
momentum sum rule. In fact the number of particles are well
defined at the initial scale [cf. Eq. (17)], and the momentum
sum rule is not fulfilled by valence quarks only. As a matter
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of fact one has∫
dx x(Hu(x, ξ =0, t=0, Q2

0) + Hd(x, ξ =0, t=0, Q2
0))

=
∫

x(uV (x, Q2
0) + dV (x, Q2

0) = (0.64 + 0.28) = 0.92.

(44)

Differently from a quark model (relativistic or non-relativistic)
based on the presence of only valence quarks at the low-
est scale, the holographic approach is intrinsically based on
the QCD dynamics. The bound system of valence quarks
cannot share momentum among a pure three-quark system.
The masses of the quarks are unknown and what is repro-
duced is the spectrum of the system. The interpretation of
the nucleon bound system implies the presence of gluons
exchanged among the valence quarks. A natural consequence
is an additional gluon distribution filling the gap to the total
momentum. A gluon distribution proportional to the valence
densities at Q2

0 (à la Glück, Reya, Vogt [70,71]) can be a
sensible choice,

g(x, Q2
0) = Ag

[
uV (x, Q2

0) + dV (x, Q2
0)

]
, (45)

such that∫
dx x(uV + dV + g)|Q2

0
= 1, (46)

with Ag = 0.091 and
∫

dx xg(x, Q2
0) = 0.08. The (small)

Hg gluon distribution of Eq. (37) as consequence of the den-
sity (45), is shown in the lowest panel of Fig. 10. The factor 20
is needed to make Hg comparable with the results shown in
the other panel of the same figure, HS and HNS . The choice
(45) is only one of the possible choices one can make. One
could assume a different parametrization of the gluon distri-
bution (45), and deduce a different behavior of the (small)
Hg component of Fig. 10. In the previous studies of GPDs
within AdS/QCD no mention is made of the fact that the
momentum sum rule is not satisfied, i.e. property (44). The
main reason to introduce here a conserving momentum sum
rule, like Eq. (46), is related to the possibility of a detailed
investigation of the perturbative QCD evolution properties of
the distributions. The simplified assumption made in Eq. (45)
is mostly connected to the fact that the perturbative evolution
is dominated by the value of the moment carried by the gluon
component rather than by the exact form of the distribution.

In order to appreciate the role of the invariant momentum
transfer t = −�2, the results of Fig. 10 valid at t = 0 are
summarized in Fig. 11 and compared with the analogous
predictions for t = −0.5 GeV2. The SW model gives a non-
vanishing contribution to quark GPDs in the region |x | < ξ

at the lowest scale Q2
0 without introducing discontinuities

at |x | = ξ , the ξ -dependence is rather weak (cf. Fig. 10).
One can check, in particular, that HS = HNS at x > ξ , a
peculiarity due to the absence of a sea contribution at Q2

0.
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Fig. 11 Comparison of the SW predictions for HNS,S,g at ξ = 0.3
and t = 0 GeV2, thin lines, results as in Fig. 10, and t = 0.5 GeV2,
thick lines. The gluon distributions are amplified by a factor of 20

6 Conclusions and perspectives

A study of GPDs within a general AdS/QCD framework has
been presented. Two main features have been emphasized
and investigated in detail:

(i) The role of the confining potential in the holographic
coordinate as described within the soft-wall and within
more general potential models; in particular the possibil-
ity of introducing high Fock states in the calculation of
GPDs. A method to study effects due to different confin-
ing potentials introduced to break conformal symmetry
in the AdS/QCD approach to baryons has been proposed
in Sect. 2. In several works devoted to the investigation
of AdS/QCD wave functions for baryons, often the com-
plementary aspect is stressed: the potentials must mani-
fest iso-spectral properties and therefore their differences
have to be adequately mitigated [39]. On the contrary the
use of different (almost iso-spectral potentials) in cal-
culating amplitude and responses in deep inelastic scat-
tering, can put in evidence relevant differences that can
discriminate among them. The specific observables dis-
cussed in relation with generalized parton distributions
are a good example. The method implies the use of the
Soft Wall solutions as a complete basis to solve more
sophisticated potential models. The results are promis-
ing: the power of the holographic approach seems to be
preserved and observables can be calculated following
well established techniques. Higher Fock states can be
accommodated showing their relevance in the whole x-
region.

(ii) The extension of the GPDs results from AdS/QCD meth-
ods from the forward (ξ = 0) to the off-forward region
(ξ > 0). The procedure used (double distributions)
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enlarge the phenomenological domain of the GPDs pre-
dictions opening the concrete evaluation of the single,
non-singlet GPDs in the whole (x , ξ ,t) domain. The pro-
cedure used identifies also the resolution scale of the
results. The example developed is restricted to the soft-
wall, but it is easily generalized to more complex confin-
ing potentials.

The calculated helicity-independent and -dependent GPDs
show differences and properties to be further investigated in
order to compare their predictions with the new generation
of experimental data. In particular the important contribu-
tions due additional degrees of freedom like non-perturbative
gluon and sea components should be further investigated
together with a detailed analysis of the perturbative effects
due to QCD evolution. The elegance and the effectiveness of
the AdS/QCD approaches has to be integrated in a complete
predictive scheme for a large variety of observables in the
perspectives of modeling the nucleon structure [66]; work in
that direction is in progress.
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Appendix A: Higher Fock states

In this appendix some details of the method proposed in Sect.
2 are illustrated.

The procedures can be generalized in order to accommo-
date higher Fock states. As discussed in Sect. 3.2 the values
of α± remain the same also for the wave functions with ν = 4
and ν = 5 (as a numerical check has confirmed). The min-
imization produces the values of the coefficients shown in
Table 3.
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