2

3

4

5

6

7

8

9

10

SUPPLEMENTAL INFORMATION

Suppression and Synthetic-Lethal Genetic Relationships of Δ*gpsB* Mutations Indicate That GpsB Mediates Protein Phosphorylation and Penicillin-Binding Protein Interactions in *Streptococcus pneumoniae* D39

Britta E. Rued^{1§}, Jiaqi J. Zheng^{1§}, Andrea Mura², Ho-Ching T. Tsui¹, Michael J. Boersma¹, Jeffrey L. Mazny¹, Federico Corona², Amilcar J. Perez¹, Daniela Fadda², Linda Doubravová³, Karolína Buriánková³, Pavel Branny³, Orietta Massidda², and Malcolm E. Winkler^{1*}

¹Department of Biology, Indiana University Bloomington, Bloomington, IN 4705, USA
 ²Dipartimento di Scienze Chirurgiche, Università di Cagliari, 09100 Cagliari, Italy
 ³Cell and Molecular Microbiology Division, Institute of Microbiology, v.v.i., Academy of
 Sciences of the Czech Republic, 142 20 Prague 4, Czech Republic

- 16 Running title: Functions of essential pneumococcal GpsB in division
- ¹⁸ [§]Contributed equally to this work.
- ¹⁹ *Corresponding author E-mail: winklerm@indiana.edu
- 20

15

- 21 Tables S1-S8
- Figures Legends for Supplemental Figures S1-S15
- 23 References for Supplemental Information

S. pneumoniae strains			
Strain Number	Genotype (description) ^b	Antibiotic resistance ^c	Reference or source
E46	D39 $\Delta cps \Delta bgaA$::P _c - <i>erm</i> (IU1945 transformed with fusion $\Delta bgaA$::P _c - <i>erm</i> amplicon)	Erm ^R	This study
E177	D39 Δcps ∆pbp1a::P₀-erm	Erm ^R	(Land <i>et al.</i> , 2013)
E180	D39 Δcps ∆pbp2a::P₀-erm	Erm ^R	(Land <i>et al.</i> , 2013)
E193	D39 Δ <i>cps</i> ∆ <i>pbp1b</i> ::P _c -e <i>rm</i>	Erm ^R	(Land <i>et al.</i> , 2013)
E736	D39 $\Delta cps \Delta phpP$::P _c - <i>erm</i> (IU1945 transformed with fusion $\Delta phpP$::P _c - <i>erm</i> amplicon)	Erm ^R	This study
E739	D39 $\Delta cps \Delta[phpP-stkP]::P_c-erm$ (IU1945 transformed with fusion $\Delta[phpP-stkP]::P_c-erm$ amplicon)	Erm ^R	This study
EL59	R6	None	(Hoskins et al., 2001)
IU1690	D39	None	(Lanie <i>et al.</i> , 2007)
IU1781	D39	Str ^R	(Ramos-Montanez <i>et al.</i> , 2008)
IU1824	D39 rpsL1 \triangle cps2A'-cps2H' = D39 rpsL1 \triangle cps	Str ^R	(Lanie <i>et al.</i> , 2007)
IU1945	$D39 \Delta cps$	None	(Lanie et al., 2007)
IU3297	D39 $\Delta cps rpsL1 \Delta divIVA::P_c-[kan-rpsL^+]$ (IU1781 transformed with fusion amplicon $\Delta divIVA::P_c-[kan-rpsL^+]$)	Kan ^R	This study
IU4846	D39 Δcps ΔbgaA::kan-t1t2-P _{fcsk} -gpsB	Kan ^R	(Land <i>et al.</i> , 2013)
IU4888	D39 $\Delta cps \Delta gpsB <> aad9//\Delta bgaA::kan-t1t2-P_{tcsk}-gpsB$	Kan ^R Spc ^R	(Land <i>et al.</i> , 2013)
IU5456	D39 Δcps ezrA-L-FLAG ³ -P _c -erm (IU1945 transformed with fusion amplicon, ezrA-L- FLAG ³ -P _c -erm)	Erm ^R	This study
IU5458	D39 ∆ <i>cps gpsB-</i> L-FLAG ³ -P _c -erm	Erm ^R	(Land <i>et al.</i> , 2013)
IU5838	D39 ∆ <i>cps gpsB</i> -FLAG-P _c - <i>erm</i>	Erm ^R	(Land <i>et al.</i> , 2013)
IU5845	D39 $\Delta cps \Delta gpsB <> aad9 \Delta [spd1026-spd1037]$ $\Omega [spd_0889-spd_1026]$ (IU1945 transformed with $\Delta gpsB <> aad9$ amplicon from IU4888, with other mutations arising spontaneously) Sup2 in Figure 3.	Spc ^R	This study
IU6441	D39 $\Delta cps \Delta gpsB <> aad9 \Delta [spd1029-spd1037]$ $\Omega [spd_0889-spd_1024]$ (IU1945 transformed with $\Delta gpsB <> aad9$ amplicon from IU4888.	Spc ^R	This study

	with other mutations arising spontaneously)		
	Sup3 in Figure 3.		
	U39 Δcps ΔgpsB<>aad9 pnpP(G229D)		
IU6442	(101945 transformed with $\Delta gpsB <> aadg$	Spc ^R	This study
	amplicon from 104888, with spontaneous		-
	pripP(G229D) mutation) SupT in Figure 3.		
	$D39 \Delta gpsB <> aad9 pnpP(G117D) (IU1945)$		
IU6444	transformed with $\Delta gpsB <> aadg amplicon from UL4000, with an antice successful P(O447D)$	Spc ^R	This study
	104888, with spontaneous <i>pnpP</i> (G117D)		5
11105 (0		E R	
106543	D39 Acps pbp2b-FLAG-P _c -erm	Erm	(Tsui <i>et al.</i> , 2014)
106741	D39 Acps rpsL1 Appp1a	Str	(Tsui <i>et al.</i> , 2016)
	D39 $\Delta cps ezrA-HA-P_c$ -kan (IU1945	R R	
IU6810	transformed with fusion amplicon ezrA-HA-P _c -	Kan'`	This study
1116020	kan) D39 Acres php2x-HA-P -kan	Kan ^R	(Land at al. 2013)
100929			
106933	D39 $\Delta cps pbp2b$ -HA-P _c -kan	Kan [∽]	(Tsui <i>et al.</i> , 2014)
IU6962	D39 <i>∆cps ftsZ-</i> Myc-P _c - <i>kan</i>	Kan ^R	(Land <i>et al.</i> , 2013)
	D39 $\Delta cps pbp1a$ -HA-P _c - kan (IU1945		
IU7242	transformed with fusion <i>pbp1a</i> -HA-P _c - <i>kan</i>	Kan ^R	This study
	amplicon)		
1117426	D30 Acres $php2h-HA^4-P$ -kap	Kan ^R	(Tsui <i>et al.</i> , 2014)
107420		nan	
IU7434	D39 Δcps stkP-FLAG ² -P _c -erm	Erm ^R	(Tsui <i>et al.</i> , 2014)
			(Taui at al. 2014)
IU7438	D39 ∆ <i>cps stkP-</i> HA-P _c - <i>kan</i>	Kan ^R	(TSULET <i>al.</i> , 2014)
	$D30 \land cps pp 2x H \land P , kap stkP EL \land G^2 P$		$(T_{sui} ot al 2014)$
IU7510	orm	Kan ^R Erm ^R	(1501 <i>61 dl.</i> , 2014)
	$D_{20} \wedge c_{PC} = c_{PC} + C_{PC}^2 P$		$(T_{cui} \circ t_{2} \circ t_{2} \circ t_{2})$
IU7512	orm	Kan ^R Erm ^R	(1501 <i>et al.</i> , 2014)
	D_{20}^{-111}		
1117614	$D39 \Delta c \mu s I \mu s L I I (s Z - P_c - [kall - I \mu s L] (101024)$	Kan ^R	$(T_{cui} \circ t_{cu}) = 2016)$
107014	$[kan_rnsl^+]$	rtan	(1501 <i>et al.</i> , 2010)
	$\left[\text{Kall-IpSL} \right] $		
11.17644	$D39 \Delta cps ppp2D - PA - P_c - enn (101943)$	Erm ^R	
107044	amplicon		
	$D30 \Lambda cps php P^+ P [kap rps]^+ [(111045 was)$		
11.17640	transformed with fusion amplican $h^{-1}P_{-}$	Kan ^R	This study
107043	$[kan_rnsl^{+1}]$	Ran	This study
	D39 Acres rost 1 ftsZ-Myc (III 7614 transformed	_	
IU7667	with fusion amplicon $ftsZ-Myc$	Str ^R	This study
	D30 A cns rnsl 1 nhn P^+ -P -[kan-rnsl +]-stk P^+		
1117673	$(III 1824 \text{ was transformed with } phpP^+P =[kan-$	Kan ^R	This study
10/0/0	$rnsl^{+1}$ from II 17649)	Kan	This study
	$D_{39} \Lambda cns rns[1 nhnP(G229D) etkP(G10eton)$		
	(III7673 was transformed with nhnP(G220D)	5	
IU7685	amplicon from II 16442 with spontaneous	Str ^ĸ	This study
	stkP(G10 stop) mutation)		

IU7733	D39 $\Delta cps rpsL1 \Delta gpsB <> aad9 phpP(G229D)$ stkP(G10 stop) (IU7685 was transformed with $\Delta gpsB <> aad9$ from IU4888)	Spc ^R , Str ^R	This study
IU7736	D39 $\Delta cps rpsL1 \Delta gpsB<>aad9 phpP(T163P)$ (IU1824 was transformed with $\Delta gpsB<>aad9$ from IU4888 with spontaneous phpP(T163P) mutation)	Spc ^R , Str ^R	This study
IU7797	D39 Δcps pbp2a-HA ⁴ -P _c -erm (IU1945 transformed with fusion pbp2a-HA ⁴ -P _c -erm amplicon	Erm ^R	This study
IU7824	D39 $\Delta cps \Delta [spd_1031-1037]::P_c-erm (IU1945)$ transformed with fusion $\Delta [spd_1031-1037]::P_c-erm$ amplicon)	Erm ^R	This study
IU7921- IU7922	D39 $\Delta cps \Delta stkp::P_c-[kan-rpsL^+]$ (IU1945 transformed with fusion $\Delta stkp::P_c-[kan-rpsL^+]$ amplicon)	Kan ^R	This study
IU7923	D39 $\Delta cps \Delta stkp::P_c$ - <i>erm</i> (IU1945 transformed with fusion $\Delta stkp::P_c$ - <i>erm</i> amplicon)	Erm ^R	This study
IU8224	R6 Δ <i>gpsB</i> <> <i>aad9</i> (EL59 transformed with Δ <i>gpsB</i> <> <i>aad9</i> amplicon from IU4888)	Spc ^R	This study
IU8230	D39 $\Delta cps \Delta gpsB <> aad9//\Delta bgaA::kan-t1t2-P_{fcsk}-gpsB stkP-FLAG^2-P_c-erm (IU4888 transformed with stkP-FLAG^2-P_c-erm from IU7434)$	Spc ^R , Kan ^R , Erm ^R	This study
IU8271	D39 $\Delta cps \Delta [spd_1029-1037]::P_c-[kan-rpsL^+]$ (IU7824 transformed with fusion $\Delta [spd_1029-1037]::P_c-[kan-rpsL^+]$ amplicon)	Kan ^R	This study
IU8311	R6 $\Delta gpsB <> aad9 stkP-FLAG^2-P_c-erm$ (IU8224 transformed with stkP-FLAG ² -P _c -erm from IU7434)	Spc ^R , Erm ^R	This study
IU8369	R6 $\Delta gpsB <> aad9 \Delta divIVA::P_c-[kan-rpsL^+]$ (IU8224 transformed with $\Delta divIVA::P_c-[kan-rpsL^+]$ from IU3297)	Spc ^R , Kan ^R	This study
IU8371	R6 $\Delta divIVA::P_c^{-}[kan-rpsL^{+}]$ (EL59 transformed with $\Delta divIVA::P_c^{-}[kan-rpsL^{+}]$ from IU3297)	Kan ^R	This study
IU8419	R6 Δ[<i>phpP-stkP</i>]::P _c -[<i>kan-rpsL</i> ⁺] (EL59 transformed with Δ[<i>phpP-stkP</i>]::P _c -[<i>kan-rpsL</i> ⁺] amplicon from K739)	Kan ^R	This study
IU8496	D39 $\Delta cps \Delta div/VA::P_c-erm$ (IU1945 transformed with fusion $\Delta div/VA::P_c-erm$ amplicon)	Erm ^R	This study
IU8681	D39 $\Delta cps rpsL1$ ftsZ-Myc ezrA-L-FLAG ³ -P _c - erm (IU7667 transformed with ezrA-L-FLAG ³ - P _c -erm from IU5456)	Erm ^R , Str ^R	This study
IU8805	D39 <i>rpsL1</i> Δ <i>cps phpP</i> (G229D) (IU7673 transformed with <i>phpP</i> (G229D) from IU6442)	Str ^R	This study
IU8819	R6 <i>stkP</i> -FLAG ² -P _c - <i>erm</i> (EL59 transformed with <i>stkP</i> -FLAG ² -P _c - <i>erm</i> from IU7434)	Erm ^R	This study
IU9256	Rx1	None	(Pozzi <i>et al</i> ., 1996)
IU9262	Rx1 ΔgpsB::cat phpP(L148S) (IU9256	Cm ^R	This study (See

	transformed with $\Delta gpsB::cat$ fusion amplicon,		Table S3 for
	with spontaneous <i>phpP</i> (L148S) mutation)		construction)
IU9264	Rx1 ΔdivIVA::erm	Erm ^R	(Fadda <i>et al.</i> , 2003)
IU9266	Rx1 $\Delta diviVA::erm \Delta gpsB::cat phpP(L148S)$ (IU9262 transformed with $\Delta diviVA::erm$	Cm ^R , Erm ^R	This study (See Table S3 for
	amplicon from IU9264)	,	construction)
IU9713	D39 $\Delta cps rpsL1$ ftsZ-Myc ezrA-HA-P _c -kan (IU7667 transformed with ezrA-HA-P _c -kan amplicon from IU6810)	Kan ^R , Str ^R	This study
IU9767 ^d	D39 $\Delta cps rpsL1 P_c-[kan-rpsL^+]-ftsA^+ IU1824$ transformed with $P_c-[kan-rpsL^+]-ftsA^+$ fusion amplicon.	Kan ^R	This study
IU9913	D39 $\Delta cps div/VA$ -HA ² -P _c -kan (IU1945 transformed with div/VA-HA ² -P _c -kan fusion amplicon)	Kan ^R	This study
IU9967	D39 $\Delta cps rpsL1$ HA- <i>ftsA</i> (IU9767 transformed with HA- <i>ftsA</i> fusion amplicon)	Str ^R	This study
U10107	D39 $\Delta cps \Delta gpsB <> aad9 \Delta [phpP-stkP]::P_c-erm$ (E739 $\Delta [phpP-stkP]::P_c-erm$ transformed with $\Delta gpsB <> aad9$ from IU4888)	Spc ^R , Erm ^R	This study
IU10109	D39 $\Delta cps \Delta gpsB <> aad9 \Delta stkP::P_c-[kan-rpsL^+]$ (IU7922 transformed with $\Delta gpsB <> aad9$ from IU4888)	Kan ^R , Spc ^R	This study
IU10129, IU10138- IU10139, IU10156- IU10157	D39 $\Delta cps \Delta gpsB <> aad9//\Delta bgaA::kan-t1t2-P_{tcsk}-gpsB phpP(G229D) (IU4888 transformedwith phpP(G229D) from IU6442, withoutfucose)$	Kan ^R , Spc ^R	This study
IU10180, IU10191	D39 $\Delta cps \Delta gpsB <> aad9//\Delta bgaA::kan-t1t2-P_{tcsk}-gpsB phpP(D192A) (IU4888 transformed with phpP(D192A) fusion amplicon, without fucose)$	Kan ^R , Spc ^R	This study
IU10234	D39 $\Delta cps rpsL1$ HA-ftsA ftsZ-P _c -[kan-rpsL ⁺] (IU9967 transformed with ftsZ-P _c -[kan-rpsL ⁺] amplicon from IU7614)	Kan ^R , Str ^R	This study
IU10302	D39 $\Delta cps rpsL1$ HA-ftsA ftsZ-Myc (IU10234 transformed with ftsZ-Myc amplicon from IU7667)	Str ^R	This study
IU10349- IU10350, IU10363	D39 $\Delta cps \Delta gpsB <> aad9//\Delta bgaA::kan-t1t2-P_{fcsk}-gpsB phpP(D192A) (IU4888 transformed with phpP(D192A) fusion amplicon, without fucose)$	Kan ^R , Spc ^R	This study
IU10423- IU10424	D39 Δ <i>cps rpsL1 phpP</i> (G229D) (IU7673 transformed with <i>phpP</i> (G229D) from IU6442)	Str ^R	This study
IU11183	D39 $\Delta phpP$::P _c -erm (IU1690 transformed with $\Delta phpP$::P _c -erm from E736)	Erm ^R	This study
IU11187	D39 <i>rpsL1 phpP</i> ⁺ -P _c -[<i>kan-rpsL</i> ⁺]- <i>stkP</i> ⁺ (IU1781 transformed with <i>phpP</i> ⁺ -P _c -[<i>kan-rpsL</i> ⁺] from IU7673)	Kan ^R	This study
IU11195	D39 rpsL1 phpP(G229D) (IU11187	Str ^R	This study

	transformed with phpP(G229D) from IU6442)		
IU11205	D39 $\Delta cps \Delta gpsB<>aad9 phpP(G229D)$ $\Delta div/VA::P_c-erm (IU6442 transformed with \Delta div/VA::P_c-erm from IU8496)$	Spc ^R , Erm ^R	This study
IU11221	D39 $\Delta cps \Delta gpsB <> aad9 \Delta bgaA::P_c-erm phpP(G229D) (IU10129 transformed with \Delta bgaA::P_c-erm amplicon from E46)$	Spc ^R , Erm ^R	This study
IU11223	D39 $\Delta cps rpsL1 phpP$ (D192A) (IU7673 transformed with phpP(D192A) from IU10191)	Str ^R	This study
IU11227	D39 <i>rpsL1 phpP</i> (D192A) (IU11187 transformed with <i>phpP</i> (D192A) from IU10191)	Str ^R	This study
IU11238	D39 $\Delta cps \Delta gpsB <> aad9 \Delta bgaA::P_c-erm phpP(D192A) (IU10191 transformed with \Delta bgaA::P_c-erm amplicon from E46)$	Spc ^R , Erm ^R	This study
IU11240	D39 $\Delta cps rpsL1 phpP$ (D192A) (IU7673 transformed with phpP(D192A) from IU10191)	Str ^R	This study
IU11314	D39 $\triangle cps \ pbp2x$ -HA-P _c -kan gpsB-L-FLAG ³ -P _c - erm (IU6929 transformed with gpsB-L-FLAG ³ - P _c -erm amplicon from IU5458)	Kan ^R , Erm ^R	This study
IU11316	D39 $\triangle cps \ pbp2b$ -HA-P _c -kan gpsB-L-FLAG ³ - P _c -erm (IU6933 transformed with gpsB-L- FLAG ³ -P _c -erm amplicon from IU5458)	Kan ^R , Erm ^R	This study
IU11340	D39 $\Delta cps rpsL1 ezrA$ -L-FLAG ³ -P _c - <i>erm</i> HA- <i>ftsA ftsZ</i> -Myc (IU10302 transformed with <i>ezrA</i> - L-FLAG ³ -P _c - <i>erm</i> amplicon from IU5456)	Erm ^R , Str ^R	This study
IU11342	D39 $\Delta cps \Delta gpsB <> aad9 \Delta phpP::P_c-erm$ (E736 transformed with $\Delta gpsB <> aad9$ from IU4888)	Spc ^R , Erm ^R	This study
IU11344	D39 Δcps rpsL1 $\Delta gpsB<>aad9 phpP(G229D)$ (IU8805 transformed with $\Delta gpsB<>aad9$ from IU4888)	Spc ^R , Str ^R	This study
IU11346	D39 Δcps rpsL1 $\Delta gpsB<>aad9$ phpP(G229D) (IU10423 transformed with $\Delta gpsB<>aad9$ from IU4888)	Spc ^R , Str ^R	This study
IU11348	D39 Δcps rpsL1 ΔgpsB<>aad9 rpsL1 phpP(D192A) (IU11223 transformed with ΔgpsB<>aad9 from IU4888)	Spc ^R , Str ^R	This study
IU11350	D39 $\Delta gpsB$ <>aad9 $\Delta phpP$::P _c -erm (IU11183 transformed with $\Delta gpsB$ <>aad9 from IU4888)	Spc ^R , Erm ^R	This study
IU11352	D39 <i>rpsL1</i> Δ <i>gpsB</i> <> <i>aad9 phpP</i> (G229D) (IU11195 transformed with Δ <i>gpsB</i> <> <i>aad9</i> from IU4888)	Spc ^R , Str ^R	This study
IU11354	D39 $rpsL1 \Delta gpsB <> aad9 phpP(D192A)$ (IU11227 transformed with with $\Delta gpsB <> aad9$ from IU4888)	Spc ^R , Str ^R	This study
IU11412	D39 Δcps stkP-HA-P _c -kan gpsB-L-FLAG ³ -P _c - erm (IU7438 transformed with gpsB-L-FLAG ³ - P _c -erm amplicon from IU5458)	Kan ^R , Erm ^R	This study
IU11428	D39 Δcps rpsL1 ftsZ-Myc ezrA-HA-P _c -kan gpsB-L-FLAG ³ -P _c -erm (IU9713 transformed	Erm ^R , Kan ^R , Str ^R	This Study

	with gpsB-L-FLAG ³ -P _c -erm from IU5458)		
IU11432	D39 $\Delta cps rpsL1$ HA-ftsA ftsZ-Myc gpsB-L- FLAG ³ -P _c -erm (IU10302 transformed with gpsB-L-FLAG ³ -P _c -erm from IU5458)	Erm ^R , Str ^R	This Study
IU11438	D39 $\Delta phpP$::P _c - <i>erm</i> (IU1690 transformed with $\Delta phpP$::P _c - <i>erm</i> from E736)	Erm ^R	This study
IU11442	D39 $\Delta cps \Delta phpP::P_c-erm$ (IU1945 transformed with $\Delta phpP::P_c-erm$ from E736)	Erm ^R	This study
IU11456	D39 Δ <i>stkP</i> ::P _c - <i>erm</i> (IU1690 transformed with Δ <i>stkP</i> ::P _c - <i>erm</i> from IU7923)	Erm ^R	This study
IU11458, IU11459	D39 Δ[<i>phpP-stkP</i>]::P _c - <i>erm</i> (IU1690 transformed with Δ[<i>phpP-stkP</i>]::P _c - <i>erm</i> from E739)	Erm ^R	This study
IU11460	D39 $\Delta cps \Delta stkP$::P _c -erm (IU1945 transformed with $\Delta stkP$::P _c -erm from IU7923)	Erm ^R	This study
IU11462	D39 $\Delta cps \Delta [phpP-stkP]::P_c-erm$ (IU1945 transformed with $\Delta [phpP-stkP]::P_c-erm$ from E739)	Erm ^R	This study
IU11502	D39 $\Delta gpsB <> aad9 \Delta phpP::P_c-erm$ (IU11438 transformed with $\Delta gpsB <> aad9$ from IU4888)	Spc ^R , Erm ^R	This study
IU11504- IU11505	D39 $\Delta gpsB <> aad9 \Delta stkP$::P _c -erm (IU11456 transformed with $\Delta gpsB <> aad9$ from IU4888)	Spc ^R , Erm ^R	This study
IU11506- IU11507	D39 $\Delta gpsB <> aad9 \Delta [phpP-stkP]::P_c-erm$ (IU11458 transformed with $\Delta gpsB <> aad9$ from IU4888)	Spc ^R , Erm ^R	This study
IU11508	D39 $\triangle cps \triangle gpsB <> aad9 \triangle phpP::P_c-erm$ (IU11442 transformed with $\triangle gpsB <> aad9$ from IU4888)	Spc ^R , Erm ^R	This study
IU11512	D39 $\Delta cps \Delta gpsB <> aad9 \Delta [phpP-stkP]:: P_c-erm (IU11462 transformed with \Delta gpsB <> aad9 from IU4888)$	Spc ^R , Erm ^R	This study
IU11514	D39 $\triangle cps div/VA$ -Myc-P _c -kan gpsB-L-FLAG ³ - P _c -erm (IU5458 transformed with div/VA-Myc- P _c -kan fusion amplicon)	Kan ^R Erm ^R	This study
IU11516	D39 $\Delta cps \ pbp2a$ -HA ⁴ -P _c -kan gpsB-L-FLAG ³ - P _c -erm (IU5458 transformed with pbp2a-HA ⁴ - P _c -kan fusion amplicon)	Kan ^R Erm ^R	This study
IU11546	D39 $\Delta cps \Delta gpsB<>aad9 \Delta stkP::P_c-erm$ (IU11460 transformed with $gpsB<>aad9$ from IU4888)	Spc ^R , Erm ^R	This study
IU11558	D39 Δ <i>cps divIVA</i> -Myc-P _c - <i>kan</i> (IU1945 transformed with <i>divIVA</i> -Myc-P _c - <i>kan</i> amplicon from IU11514)	Kan ^R	This study
IU11560	D39 $\Delta cps \ pbp2a$ -HA ⁴ -P _c -kan (IU1945 transformed with $pbp2a$ -HA ⁴ -P _c -kan amplicon from IU11516)	Kan ^R	This study
IU11566	D39 $\Delta cps \ pbp1a$ -HA-P _c - <i>kan</i> gpsB-L-FLAG ³ - P _c -erm (IU7242 transformed with gpsB-L- FLAG ³ -P _c -erm amplicon from IU5458)	Kan ^R , Erm ^R	This study
IU11574	Rx1 $\Delta gpsB <> aad9 phpP^+-stkP^+$ (IU9256	Spc ^R	This study

	transformed with $\Delta gpsB <> aad9$ from IU4888)		
IU11716	D39 $\Delta cps gpsB$ -FLAG-P _c -erm stkP-HA-P _c -kan (IU5838 transformed with stkP-HA-P _c -kan from IU7438)	Kan ^R , Erm ^R	This study
IU11955	D39 $\Delta cps \Delta gpsB <> aad9 phpP(R125P)$ (IU1945 transformed with $\Delta gpsB <> aad9$ from IU4888, with spontaneous phpP(R125P) mutation)	Spc ^R	This study
IU12059	D39 $\Delta cps \Delta bgaA::tet-P_{Zn}-RBS_{ftsA}-$ spd_RS05380 (IU1945 transformed with fusion $\Delta bgaA::P_{Zn}-RBS_{ftsA}-spd_RS05380$)	Tet ^R	This study
K735	D39 $\Delta cps \Delta phpP::P_c-[kan-rpsL^+]$ (IU1945 transformed with fusion $\Delta phpP::P_c-[kan-rpsL^+]$ amplicon)	Kan ^R	This study
K739	D39 $\Delta cps \Delta [phpP-stkP]::P_c-[kan-rpsL^+]$ (IU1945 transformed with fusion $\Delta [phpP-stkP]::P_c-[kan-rpsL^+]$ amplicon)	Kan ^R	This study

26

27

^aStrains were constructed as described in *Experimental procedures*. :: indicates an

insertion into a region, whereas <> indicates an exact reading frame replacement.

^bPrimers used to synthesize fusion amplicons are listed in Supplemental Tables S2 28 and S3. All FLAG-tag (FLAG) fusions were made to the carboxyl ends of reading 29 frames. The amino acid sequence of the FLAG epitope is DYKDDDDK (Hopp et al., 30 1988, Wayne et al., 2010). FLAG² or FLAG³ indicates two or three tandem sequences of 31 the FLAG epitope, respectively (Waldo et al., 1999, Wayne et al., 2010). L refers to a 32 10-amino-acid linker sequence (GSAGSAAGSG). The c-Myc epitope amino acid 33 sequence is EQKLISEEDL (Evan et al., 1985), and the HA epitope amino acid 34 sequence is YPYDVPDYA (Tu et al., 1998). See (Land et al., 2013) for additional 35 details. 36

³⁷ ^cAntibiotic resistance markers: Erm^R, erythromycin; Cm^R, chloramphenicol, Kan^R, ³⁸ kanamycin; Spc^R, spectinomycin; Tet^R, tetracycline; Str^R, streptomycin.

³⁹ ^dDetails concerning IU9767 construction: The original intergenic region between ⁴⁰ spd_{1481} and ftsA is 218 bp. P_{c} -[kan- $rpsL^{+}$] cassette is inserted after 70 bp of

41	intergenic region. After the P_c -[kan-rpsL ⁺] cassette is a duplicated 100 bp sequence (30
42	bp of spd_1481 and 5' intergenic region). This construct is designed so that the P _c -[kan-
43	rpsL ⁺] sequence is followed by 30 bp of 3' spd_1481 and the entire 218 intergenic
44	region. The duplicated sequence (30 bp of spd_1481 and 5' intergenic region)
45	terminates transcription of P_c -[kan-rpsL ⁺], and maintains the intact intergenic region as
46	promoter sequence for <i>ftsA</i> .

TABLE S2. Oligonucleotide primers used for D39 and R6 strains in this study (order follows Table S1)^a

Primer	Sequence (5' to 3')	Template	Amplicon
			Product
For constr	uction of E46 (ΔbgaA::P _c -erm)		
P146	TGGCCATTCATCGCTGGTCGTGCTGAAAT	D39	5' upstream of
P148	CATTATCCATTAAAAATCAAACGGATCCTATCCCA		bgaA plus 60
	CAGCAAACTTACGAATGCTATAAAC	1	bp of bgaA
kanrpsL	TAGGATCCGTTTGATTTTTAATGGATAATG	P _c -erm	P _c -erm
forward		cassette	
kanrpsL	GGGCCCCTTTCCTTATGCTTTTG		
reverse			
P149	CAAAAGCATAAGGAAAGGGGCCCGCTCTTCTAGG	D39	57 bp of bgaA +
	TTTGAGTGCAGGATTAG		3' downstream
P147	TACGCCTTCTATCATGCCTTTGATCGCCCGT		of bgaA
For constr	ruction of E736 (Δ <i>phpP</i> ::P _c -erm)		
P1485	CCAAGCCTTGTTGGAGGCGAATAATTCCCT	D39	5' upstream of
P1486	CATTATCCATTAAAAATCAAACGGATCCTAGACAT		phpP plus 50
	AGTCTTGGTTATTTGTTCGTTTCTG		bp of <i>phpP</i>
kanrpsL	TAGGATCCGTTTGATTTTTAATGGATAATG	P _c - <i>erm</i>	P _c -erm
forward		cassette	
kanrpsL	GGGCCCCTTTCCTTATGCTTTTG		
reverse			
P1487	CAAAAGCATAAGGAAAGGGGCCCGGAGGTTTAG	D39	30 bp of <i>phpP</i> +
	ACAACATTACGGTTGC		3' downs'tream of <i>phpP</i>
TT547	CGGTGCTTGTGGTTGGTAAGTTTCCTCTGT		
For constr	uction of E739 (Δ[<i>phpP-stkP</i>]::P _c -erm)		
P1485	CCAAGCCTTGTTGGAGGCGAATAATTCCC	D39	5' upstream of
P1486	CATTATCCATTAAAAATCAAACGGATCCTAGACATA		phpP plus 60
	GTCTTGGTTATTTGTTCGTTTCTG		op of pnpP
kanrpsL	TAGGATCCGTTTGATTTTTAATGGATAATG	P _c - <i>erm</i>	P _c - <i>erm</i>
forward		cassette	
kanrpsL	GGGCCCCTTTCCTTATGCTTTTG		
reverse			
P1497	CAAAAGCATAAGGAAAGGGGCCCAATAAGACTAG	D39	57 bp of stkP
	AGTCAAGATTTCAATCTACAAACCTA		and 3'
P1496	CAATACCAAGGCGACAGAAGTTCCTGCCCC	_	downstream of stkP
For constr	uction of IU3297 (Δ <i>divIVA</i> ::P _c -[<i>kan-rpsL</i> ⁺])		
LII-R-015	TGGATAAAGAAGGTAGAAGATAGCTATGCTC	030	5' unstream
EII-IX-013		000	region of <i>divIVA</i>
SC216	TAACCGTCCAGTTATTATTAAGTAAGTAAGGATCC		
	GTTTGATTTTTAATGGATAATG		
SC215	TAACCGTCCAGTTATTATTAAGTAAGTAAGGATCC	P₀-[<i>kan-</i>	P _c -[<i>kan-rpsL</i> +]
	GTTTGATTTTTAATGGATAATGTG	rpsL⁺]	
SC218	CTAAACGTCCAAAAGCATAAGGAAAGGGGCCCCT	cassette	
	CCAGIGCAICCGACAGGTCCAAC		
SC217	GICCAAAAGCATAAGGAAAGGGGCCCCTCCAGTG	D39	3' downstream
			region of <i>divIVA</i>

LII-F-013	CACGTTGGACATGCTATGAACAAGATT		
For construction of IU5456 (<i>ezrA-</i> L-FLAG ³ -P _c - <i>erm</i>)			
TT192	ATCGTGTTCCAGCCTTGGTTACGACGCTTT	D39	3' ezrA
TT193	CGGAGCCAGCGGAACCAAAACGAATCGTTTCACG TGTTTTC		
AL351	CGATTCGTTTTGGTTCCGCTGGCTCCGCTGC	IU5458	L-FLAG ³ -P _c -
TT194	ACACAATAAAATCTTTTTCTTTTATTTCCTCCCGTTA AATAATAGATAACTATTAAAAAT		erm
TT195	ATAGTTATCTATTATTTAACGGGAGGAAATAAAAGA AAAAGATTTTATTGTGTGAGGAGC	D39	3' downstream of <i>ezrA</i>
AL297	GGACCTACTCCTATTGGAGCCCAAC		
For constr	uction of IU6810 (<i>ezrA</i> -HA-P _c - <i>kan</i>)		
TT192	ATCGTGTTCCAGCCTTGGTTACGACGCTTT	D39	3' ezrA
SV011	CGGTGATATTCTCATTTTAGCCATGTAATCACTCCT TCTTAATTACAAATTTTTAGCAT		
SV012	AAAATTTGTAATTAAGAAGGAGTGATTACATGGCT AAAATGAGAATATCACCGGA	P _c -[<i>kan-</i> <i>rpsL</i> ⁺]	HA-P _c - <i>kan</i> with HA added via
SV013	ACACAATAAAATCTTTTTCTTCTAAAACAATTCATC CAGTAAAATATAATAT	cassette	primer
SV014	AATATTATATTTTACTGGATGAATTGTTTTAGAAGA AAAAGATTTTATTGTGTGAGGAGC	D39	3' downstream of <i>ezrA</i>
TT330	GAGGAGTTCGGACTCGACTCTCCTTCAAGAA		
For constr	uction of IU7242 (<i>pbp1a</i> -HA-P _c - <i>kan</i>)		
TT225	AGCCGTGGAAACTCTAAACAAGGTCGGACT	D39	3' pbp1a
TT436	GCATAATCTGGAACATCATATGGATATGGTTGTGC TGGTTGAGGATTCTG		
TT437	ATCCTCAACCAGCACAACCATATCCATATGATGTT CCAGATTATGCTTAACC	IU6810	HA-P _c - <i>kan</i>
TT438	GAAAAATCTGGATGATAAATGCTAAAACAATTCATC CAGTAAAATATAATAT		
TT439	AAATATTATATTTTACTGGATGAATTGTTTTAGCATT TATCATCCAGATTTTTCTGGGTG	D39	3' downstream
AL276	CGCGTGCAGAGATTGCCAAGATTGAAGCCTTG		
For constr	uction of IU7644 (<i>pbp2b</i> -HA ⁴ -P _c -erm)		
TT351	AGTTGACGCCTGATTCCTTGGGAACGGTAA	IU7426	3' pbp2b-HA ⁴ -
TT579	ACAAATTTTGGGCCCGGTTAAGCATAATCTGGAAC ATCATATGGATAAGCATAATCTGGA		P _c
TT435	CCATATGATGTTCCAGATTATGCTTAACCGGGCCC AAAATTTGTTTGATTTG	IU6543	<i>erm</i> -plus 3' downstream of
TT352	TGAAGGACTGGAAAGACCACTGCACCTTCT		pbp2b
For constr	ruction of IU7649 (<i>phpP</i> ⁺ -P _c -[<i>kan-rpsL</i> ⁺])		
TT546	AGAGAGTCATCCCGAGTTCGAGCAGGTAAA	D39	3' phpP + stop

TT580	CATTATCCATTAAAAATCAAACGGATCCTATCATTC		codon
	TGCATCCTCCTCGTTCA		
kanrpsL	TAGGATCCGTTTGATTTTTAATGGATAATG	P _c -[<i>kan-</i>	P _c -[<i>kan-rpsL</i> ⁺]
forward		rpsL⁺]	
kanrpsL	GGGCCCCTTTCCTTATGCTTTTG	cassette	
reverse	0	500	
P1487		D39	60 bp 3' phpP +
TTE 47			5 STKP
11547	CGGIGCIIGIGGIIGGIAAGIIICCICIGI		
For constr	uction of IU7667 (<i>ftsZ</i> -Myc)		
TT165	AGTGGTGCCGATATGGTCTTCATCACTGCT	IU6962	3' ftsZ + Myc
TT587	GTATTTTCTTTTACATTCATTTACTTAAAGATCTTCT		
	TCAGAAATAAGTTTTTGTTCACG		
TT588	ACTTATTTCTGAAGAAGATCTTTAAGTAAATGAATG	D39	3' downstream
	TAAAAGAAAATACAGAACTTGTTT		region of ftsZ
TT166	TCATTGGGAGAGCCGGTTCCTGTGAAGAAT		
For constr	uction of IU7797 (<i>pbp2a</i> -HA ⁴ -P _c -erm)		
TT335	CAGGGGGAGTTCGTGGAGTTGTCGGTC	D39	3' fragment of
SV052	GCATAATCTGGAACATCATATGGATAGCGAAATAG		pbp2a
	ATTGACTATCGAATCCCA		
SV053	GATTCGATAGTCAATCTATTTCGCTATCCATATGAT	IU7644	HA⁴-P _c - <i>erm</i>
	GTTCCAGATTATGCTTATCC		
TT338	GCTAGGCTTTGACAAGCATCTTATTTCCTCCCGTT		
	AAATAATAGATAACTATTAAAAAT		
TT339	AGTTATCTATTATTTAACGGGAGGAAATAAGATGC	D39	3' downstream
	TTGTCAAAGCCTAGCTTTCT		region of <i>pbp2a</i>
P227	TCTGTTCCCGTGTGATCCGACAAATCCT		
For constr	uction of IU7824 (Δ[<i>spd_1031-1037</i>]::P _c -erm)		
P396	GCATTCCTAGCACCAATTACCCATCCAGAG	D39	5' upstream of
P398	CATTATCCATTAAAAATCAAACGGATCCTAACAGA		spd_1037 + 60
	CACTTAAAACAAGTGTAGCTACTGA		bp of 5'
kannal		D 0 # 100	spa_1037
forward	TAGGATCCGTTTGATTTTTAATGGATAATG	cassette	P _c -e/III
kanrpsL	GGGCCCCTTTCCTTATGCTTTTG		
reverse			
P1240	CAAAAGCATAAGGAAAGGGGCCCGCCAAGTTTGT	D39	60 bp of 3'
	TTATGATGGGGATAAAT		spd_1031 + 3'
P1238	TAACGGCACGACGGTCTGATTCCAAACGAA		downstream of spd 1031
For constr	uction of IU7921-7922 (Δ <i>stkp</i> ::P _c -[<i>kan-rpsL</i>]⁺)		
TT571	GAGCGAGTGCTTGATGCCTGTGCGGCTCCA	D39	5' upstream of
TT654		_	<i>stkP</i> + 60 bp of
	CAATCTGTTTGACAATCCG		5' stkP
kanrpsL	TAGGATCCGTTTGATTTTAATGGATAATG	K739	P _c -[kan-rpsL ⁺]
1		1	S

forward			plus 3' 60 bp of
P1496	CAATACCAAGGCGACAGAAGTTCCTGCCCC		<i>stkP</i> and downstream of <i>stkP</i>
For constr	uction of IU7923 (Δ <i>stkp</i> ::P _c - <i>erm</i>)		
TT571	GAGCGAGTGCTTGATGCCTGTGCGGCTCCA	D39	5' upstream of
TT654	CATTATCCATTAAAAATCAAACGGATCCTATCGAC CAATCTGTTTGACAATCCG		<i>stkP</i> + 60 bp of <i>5' stkP</i>
kanrpsL forward	TAGGATCCGTTTGATTTTTAATGGATAATG	E739	P _c - <i>erm</i> plus 3' 60 bp of <i>stkP</i>
P1496	CAATACCAAGGCGACAGAAGTTCCTGCCCC		and 3' downstream of <i>stkP</i>
For constr	uction of IU8271 (Δ[<i>spd_1029-1037</i>]::P _c -[<i>kan-rpsL</i> ⁺])		
P396	GCATTCCTAGCACCAATTACCCATCCAGAG	D39	5' upstream of
P398	CATTATCCATTAAAAATCAAACGGATCCTAACAGA CACTTAAAACAAGTGTAGCTACTGA		spd_1037 + 60 bp of 5' spd_1037
kanrpsL forward	TAGGATCCGTTTGATTTTTAATGGATAATG	P _c -[<i>kan-</i> <i>rpsL</i> ⁺]	P _c -[<i>kan-rpsL</i> ⁺]
kanrpsL reverse	GGGCCCCTTTCCTTATGCTTTTG	cassette	
P1512	CAAAAGCATAAGGAAAGGGGCCCCGTTGGCGTTT AACTGTGATTATGAA	D39	60 bp of 3' spd_1029 + 3'
P1510	ACCATTGCCACTGCGAACATGGTCTACAGC	-	downstream of spd_1029
For constr	uction of IU8496 (Δ <i>divIVA</i> ::P _c -erm)		· ·
TT242	GGGAATGGAATGGATAAAGAAGGTAGAAGA	D39	5' upstream of
SC216	CATTATCCATTAAAAATCAAACGGATCCTTACTTAC TTAATAATAACTGGACGGTTA		divIVA
SC215	TAACCGTCCAGTTATTATTAAGTAAGTAAGGATCC GTTTGATTTTTAATGGATAATGTG	P _c - <i>erm</i> cassette	P _c -erm
SC218	CTAAACGTCCAAAAGCATAAGGAAAGGGGCCCCT CCAGTGCATCCGACAGGTCCAAC	-	
SC217	GTCCAAAAGCATAAGGAAAGGGGCCCCTCCAGTG CATCCGACAGGTCCAACACCAGC	D39	3' downstream of <i>divIVA</i>
TT238	TTCAGCAAGGGCTGACTCAGATGACCATGA		
For constr	uction of IU9767 (P _c -[<i>kan-rpsL</i> ⁺]- <i>ftsA</i> ⁺)		
TT780	CGCATTACCAAGGAGCAAATAGAGCTTCTTTGGCA GG	D39	3' <i>spd_1481</i> + 70 bp intergenic
TT751	ATTATCCATTAAAAATCAAACGGATCCTATCTATTC AGAAATTCTTATTTATAAGCTGC		region
kanrpsL forward	TAGGATCCGTTTGATTTTTAATGGATAATG	P _c -[<i>kan-</i> <i>rpsL</i> ⁺]	P _c -[<i>kan-rpsL</i> ⁺]
kanrpsL reverse	GGGCCCCTTTCCTTATGCTTTTG	cassette	

TT781	CAAAAGCATAAGGAAAGGGGCCCGCAGAAAAAAT	D39	30 bp 3'
	GATTGCAAAGGAAGC		spd_1481,
TT753	GCCTTCCGCTAATTTGCGAGAGGTTTTCAA		intergenic (281
			bp) and 5' ftsA
For constr	uction of IU9913 (<i>divIVA</i> -HA²-P _c - <i>kan</i>)		
SC219	TAACCGTCCAGTTATTATTAAGTAAGTGAGGAATA	D39	3' divIVA
	GAATGCCAATTACATCATTAG		
AJP116	GCATAATCTGGAACATCATATGGATACTTCTGGTT		
	CTTCATACATTGGGCC		
AJP117	CCCAATGTATGAAGAACCAGAAGTATCCATATGAT	IU7426	HA²-P _c - <i>kan</i>
	GTTCCAGATTATGCTTATC		
AJP118	TGTCGGATGCACTGGAGCTACTAAAACAATTCATC		
	CAGTAAAATATAATATTTTATTTT		
AJP119	AATATTATATTTTACTGGATGAATTGTTTTAGTAGC	D39	3' downstream
	TCCAGTGCATCCGACAGG		of divIVA
TT238	TTCAGCAAGGGCTGACTCAGATGACCATGA		
For constr	uction of IU9967 (HA- <i>ftsA</i>)		
TT750	GGTCATAGGGGGCAATATCTTGACTAAGAAG	D39	5' upstream of
TT765	CTAGCAGCATAATCTGGAACATCATATGGATACAT		ftsA +5' ftsA
	TACATCGCTTCCTCTCTATCTTCCA		with HA
			sequence
			added in frame
			alter start
TT766	ΤΑΤΟΟΑΤΑΤΩΑΤΩΤΤΟΟΑΩΑΤΤΑΤΩΟΤΩΟΤΑΩΑΩΑ	030	3' fte A
11700	AGGCTTTTTTACAGGTCTAGATATT	039	5 1137
TT753	GCCTTCCGCTAATTTGCGAGAGGTTTTCAA		
For constr	uction of III11514 (div/VA-Myc-P -kan)		
		D 00	01 -11-11/4
50219		1.39	3 OVVA
	GAATGCCAATTACATCATTAG	200	o ann
	GAATGCCAATTACATCATTAG	200	
JC022	GAATGCCAATTACATCATTAG TTAAAGATCTTCTTCAGAAATAAGTTTTTGTTCCTT CTGGTTCTTCATACATTGGGCCAA	200	
JC022	GAATGCCAATTACATCATTAG TTAAAGATCTTCTTCAGAAATAAGTTTTTGTTCCTT CTGGTTCTTCATACATTGGGCCAA GAACAAAAACTTATTTCTGAAGAAGATCTTTAACCG	109913	Myc-P ₂ - $kan + 3'$
JC022 JC021	GAATGCCAATTACATCATTAG TTAAAGATCTTCTTCAGAAATAAGTTTTTGTTCCTT CTGGTTCTTCATACATTGGGCCAA GAACAAAAACTTATTTCTGAAGAAGATCTTTAACCG GGCCCAAAATTTGTTTGATTTGTA	IU9913	Myc-P _c - $kan + 3'$
JC022 JC021 TT238	GAATGCCAATTACATCATTAG TTAAAGATCTTCTTCAGAAATAAGTTTTTGTTCCTT CTGGTTCTTCATACATTGGGCCAA GAACAAAAACTTATTTCTGAAGAAGATCTTTAACCG GGCCCAAAATTTGTTTGATTTGTA TTCAGCAAGGGCTGACTCAGATGACCATGA	IU9913	Myc-P _c - <i>kan</i> + 3' downstream region of <i>divIVA</i>
JC022 JC021 TT238 For constr	GAATGCCAATTACATCATTAG TTAAAGATCTTCTTCAGAAATAAGTTTTTGTTCCTT CTGGTTCTTCATACATTGGGCCAA GAACAAAAACTTATTTCTGAAGAAGATCTTTAACCG GGCCCAAAATTTGTTTGATTTGTA TTCAGCAAGGGCTGACTCAGATGACCATGA uction of IU11516 (pbp2a-HA ⁴ -Pc-kan)	IU9913	Myc-P _c - $kan + 3'$ downstream region of <i>divIVA</i>
JC022 JC021 TT238 For constr	GAATGCCAATTACATCATTAG TTAAAGATCTTCTTCAGAAATAAGTTTTTGTTCCTT CTGGTTCTTCATACATTGGGCCAA GAACAAAAACTTATTTCTGAAGAAGATCTTTAACCG GGCCCAAAATTTGTTTGATTTGTA TTCAGCAAGGGCTGACTCAGATGACCATGA uction of IU11516 (<i>pbp2a</i> -HA ⁴ -P _c - <i>kan</i>) CAGGGGGGGAGTTCGTGGAGTTGTCGGTC	IU9913	Myc-P _c - $kan + 3'$ downstream region of <i>divIVA</i>
JC022 JC021 TT238 For constr TT335b	GAATGCCAATTACATCATTAG TTAAAGATCTTCTTCAGAAATAAGTTTTTGTTCCTT CTGGTTCTTCATACATTGGGCCAA GAACAAAAACTTATTTCTGAAGAAGATCTTTAACCG GGCCCAAAATTTGTTTGATTTGTA TTCAGCAAGGGCTGACTCAGATGACCATGA uction of IU11516 (<i>pbp2a</i> -HA ⁴ -P _c - <i>kan</i>) CAGGGGGAGTTCGTGGAGTTGTCGGTC	IU9913 IU7797	Myc-P _c - $kan + 3'$ downstream region of <i>divIVA</i> 3' <i>pbp2a</i> -HA ⁴ - P _c
JC022 JC021 TT238 For constr TT335b SV046	GAATGCCAATTACATCATTAGTTAAAGATCTTCTTCAGAAATAAGTTTTTGTTCCTTCTGGTTCTTCATACATTGGGCCAAGAACAAAAACTTATTTCTGAAGAAGATCTTTAACCGGGCCCAAAATTTGTTTGATTTGTATTCAGCAAGGGCTGACTCAGATGACCATGAuction of IU11516 ($pbp2a$ -HA ⁴ -Pc-kan)CAGGGGGAGTTCGTGGGAGTTGTCGGTCCGGTGATATTCTCATTTTAGCCATGTAATCACTCCTTCTTAATTACAATTTTTAGCCATGTAATCACTCCT	IU9913 IU7797	Myc-P _c - $kan + 3'$ downstream region of <i>divIVA</i> 3' <i>pbp2a</i> -HA ⁴ - P _c
JC022 JC021 TT238 For constr TT335b SV046	GAATGCCAATTACATCATTAG TTAAAGATCTTCTTCAGAAATAAGTTTTTGTTCCTT CTGGTTCTTCATACATTGGGCCAA GAACAAAAACTTATTTCTGAAGAAGATCTTTAACCG GGCCCAAAATTTGTTTGATTTGTA TTCAGCAAGGGCTGACTCAGATGACCATGA uction of IU11516 (<i>pbp2a</i> -HA ⁴ -P _c - <i>kan</i>) CAGGGGGAGTTCGTGGGAGTTGTCGGTC CGGTGATATTCTCATTTTAGCCATGTAATCACTCCT TCTTAATTACAAATTTTAGCAT	IU9913 IU7797	Myc-P _c - $kan + 3'$ downstream region of <i>divIVA</i> 3' <i>pbp2a</i> -HA ⁴ - P _c
JC022 JC021 TT238 For constr TT335b SV046 SV047	GAATGCCAATTACATCATTAG TTAAAGATCTTCTTCAGAAATAAGTTTTTGTTCCTT CTGGTTCTTCATACATTGGGCCAA GAACAAAAACTTATTTCTGAAGAAGATCTTTAACCG GGCCCAAAATTTGTTTGATTTGTA TTCAGCAAGGGCTGACTCAGATGACCATGA uction of IU11516 (<i>pbp2a</i> -HA ⁴ -P _c - <i>kan</i>) CAGGGGGAGTTCGTGGAGTTGTCGGTC CGGTGATATTCTCATTTTAGCCATGTAATCACTCCT TCTTAATTACAAATTTTAGCAT AAAAATTTGTAATTAAGAAGGAGTGATTACATGGC TAAAATGAGAATATCACCCGGA	IU9913 IU7797 IU6962	Myc-P _c - <i>kan</i> + 3' downstream region of <i>divIVA</i> 3' <i>pbp2a</i> -HA ⁴ - P _c <i>kan</i>
JC022 JC021 TT238 For constr TT335b SV046 SV047 A JP218	GAATGCCAATTACATCATTAG TTAAAGATCTTCTTCAGAAATAAGTTTTTGTTCCTT CTGGTTCTTCATACATTGGGCCAA GAACAAAAACTTATTTCTGAAGAAGAAGATCTTTAACCG GGCCCAAAATTTGTTTGATTTGTA TTCAGCAAGGGCTGACTCAGATGACCATGA uction of IU11516 (<i>pbp2a</i>-HA⁴-P_c-<i>kan</i>) CAGGGGGAGTTCGTGGAGTTGTCGGTC CGGTGATATTCTCATTTTAGCCATGTAATCACTCCT TCTTAATTACAAATTTTAGCAT AAAAATTTGTAATTAAGAAGGAGTGATTACATGGC TAAAATGAGAATATCACCGGA	IU9913 IU7797 IU6962	Myc-P _c - $kan + 3'$ downstream region of <i>divIVA</i> 3' <i>pbp2a</i> -HA ⁴ - P _c <i>kan</i>
JC022 JC021 TT238 For constr TT335b SV046 SV047 AJP218	GAATGCCAATTACATCATTAG TTAAAGATCTTCTTCAGAAATAAGTTTTTGTTCCTT CTGGTTCTTCATACATTGGGCCAA GAACAAAAACTTATTTCTGAAGAAGATCTTTAACCG GGCCCAAAATTTGTTTGATTTGTA TTCAGCAAGGGCTGACTCAGATGACCATGA uction of IU11516 (<i>pbp2a</i>-HA⁴-P_c-<i>kan</i>) CAGGGGGAGTTCGTGGAGTTGTCGGTC CGGTGATATTCTCATTTTAGCCATGTAATCACTCCT TCTTAATTACAAATTTTAGCAT AAAAATTTGTAATTAAGAAGGAGTGATTACATGGC TAAAATGAGAATATCACCGGA AAAGCTAGGCTTTGACAAGCATCTTACTAAAACAA TTCATCCAGTAAAATATATTT	IU9913 IU7797 IU6962	Myc-P _c - <i>kan</i> + 3' downstream region of <i>divIVA</i> 3' <i>pbp2a</i> -HA ⁴ - P _c <i>kan</i>
JC022 JC021 TT238 For constr TT335b SV046 SV047 AJP218 AJP219	GAATGCCAATTACATCATTAG TTAAAGATCTTCTTCAGAAATAAGTTTTTGTTCCTT CTGGTTCTTCATACATTGGGCCAA GAACAAAAACTTATTTCTGAAGAAGATCTTTAACCG GGCCCAAAATTTGTTTGATTTGTA TTCAGCAAGGGCTGACTCAGATGACCATGA uction of IU11516 (<i>pbp2a</i>-HA⁴-P_c-<i>kan</i>) CAGGGGGAGTTCGTGGAGTTGTCGGTC CGGTGATATTCTCATTTTAGCATGTAATCACTCCT TCTTAATTACAAATTTTTAGCAT AAAAATTTGTAATTAAGAAGGAGTGATTACATGGC TAAAATGAGAATATCACCGGA AAAGCTAGGCTTTGACAAGCATCTTACTAAAACAA TTCATCCAGTAAAATATAATATTTT TATTATATTTACTGGATGAATTGTTTAGTAAGAT	IU9913 IU7797 IU6962 D39	Myc-P _c - <i>kan</i> + 3' downstream region of <i>divIVA</i> 3' <i>pbp2a</i> -HA ⁴ - P _c <i>kan</i>
JC022 JC021 TT238 For constr TT335b SV046 SV047 AJP218 AJP219	GAATGCCAATTACATCATTAG TTAAAGATCTTCTTCAGAAATAAGTTTTTGTTCCTT CTGGTTCTTCATACATTGGGCCAA GAACAAAAACTTATTTCTGAAGAAGATCTTTAACCG GGCCCAAAATTTGTTTGATTTGTA TTCAGCAAGGGCTGACTCAGATGACCATGA uction of IU11516 (<i>pbp2a</i>-HA⁴-P_c-<i>kan</i>) CAGGGGGAGTTCGTGGAGTTGTCGGTC CGGTGATATTCTCATTTTAGCATGTAATCACTCCT TCTTAATTACAAATTTTTAGCAT AAAAATTTGTAATTAAGAAGGAGTGATTACATGGC TAAAATGAGAATATCACCGGA AAAGCTAGGCTTTGACAAGCATCTTACTAAAACAA TTCATCCAGTAAAATATAATATTTT TATTATATTTTACTGGATGAATTGTTTAGTAAGAT GCTTGTCAAAGCCTAGCTTTCTTG	IU9913 IU7797 IU6962 D39	Myc-P _c - <i>kan</i> + 3' downstream region of <i>divIVA</i> 3' <i>pbp2a</i> -HA ⁴ - P _c <i>kan</i> 3' downstream of <i>pbp2a</i>
JC022 JC021 TT238 For constr TT335b SV046 SV047 AJP218 AJP219 P227	GAATGCCAATTACATCATTAG TTAAAGATCTTCTTCAGAAATAAGTTTTTGTTCCTT CTGGTTCTTCATACATTGGGCCAA GAACAAAAACTTATTTCTGAAGAAGATCTTTAACCG GGCCCAAAATTTGTTTGATTTGTA TTCAGCAAGGGCTGACTCAGATGACCATGA uction of IU11516 (<i>pbp2a</i>-HA⁴-P_c-<i>kan</i>) CAGGGGGAGTTCGTGGAGTTGTCGGTC CGGTGATATTCTCATTTTAGCCATGTAATCACTCCT TCTTAATTACAAATTTTAGCAT AAAAATTTGTAATTAAGAAGGAGTGATTACATGGC TAAAATGAGAATATCACCGGA AAAGCTAGGCTTTGACAAGCATCTTACTAAAACAA TTCATCCAGTAAAATATAATATTTT TATTATATTTTACTGGATGAATTGTTTTAGTAAGAT GCTTGTCAAAGCCTAGCTTCTTG TCTGTTCCCGTGTGATCCGACAAATCCT	IU9913 IU7797 IU6962 D39	Myc-P _c - <i>kan</i> + 3' downstream region of <i>divIVA</i> 3' <i>pbp2a</i> -HA ⁴ - P _c <i>kan</i> 3' downstream of <i>pbp2a</i>

For construction of IU12059 (ΔbgaA::tet-Pzn-RBS _{ftsA} -spd_RS05380)					
TT657	CGCCCCAAGTTCATCACCAATGACATCAAC	IU9765	5' fragment of		
BR139	AAGGGATTTTGCTAATCTCTCCAATACATCGCTTC CTCTCTATCTTCCTTGTTATA	$\begin{array}{c c} (1sui & et \mid \Delta bgaA::tet-P_{Zr} \\ al., 2016) & RBS_{fisA} \end{array}$			
BR138	AGGAAGATAGAGAGGAAGCGATGTATTGGAGAGA TTAGCAAAATCCCTTGG	D39 aenomic	spd_RS05380		
BR141	CAACTGGTTTATGAGAAAGTAAGTTCTTTCATTCTA AACAGTCAATCAAAGGAAGAACTT	9			
BR140	CTTCCTTTGATTGACTGTTTAGAATGAAAGAACTTA CTTTCTCATAAACCAGTTGCTG	D39 genomic	3' fragment of bgaA		
CS121	GCTTTCTTGAGGCAATTCACTTGGTGC		0		
For constr	uction of phpP(G229D) strains (phpP(G229D))				
TT546	AGAGAGTCATCCCGAGTTCGAGCAGGTAAA	IU6442	<i>phpP</i> (G229D)		
TT547	CGGTGCTTGTGGTTGGTAAGTTTCCTCTGT				
For constr	uction of <i>phpP</i> (D192A) strains (<i>phpP</i> (D192A))				
TT546	AGAGAGTCATCCCGAGTTCGAGCAGGTAAA	IU7673	5' fragment		
BR26	CACTGCCTGAAATCATGTTGGTCAAGCCGGCACTA TTGAG		containing <i>phpP</i> (D192A)		
BR25	TTGCTCAATAGTGCCGGCTTGACCAACATGATTTC A	IU7673	3' fragment containing		
TT574	CGCCTGCTCTGGTGACAAGTAATGAACTGA		phpP(D192A)- kanrpsL		
TT546	AGAGAGTCATCCCGAGTTCGAGCAGGTAAA	phpP	To obtain		
TT580	CATTATCCATTAAAAATCAAACGGATCCTATCATTC TGCATCCTCCTCGTTCA	(D192A)	for initial cross		
TT546	AGAGAGTCATCCCGAGTTCGAGCAGGTAAA	phpP	To obtain full		
TT547	CGGTGCTTGTGGTTGGTAAGTTTCCTCTGT	(D192A)	phpP(D192A) for cross ins after sequencing		
For constr	uction of K735 (Δ <i>phpP</i> ::P _c -[<i>kan-rpsL</i> ⁺])				
P1485	CCAAGCCTTGTTGGAGGCGAATAATTCCCT	D39	5' upstream of phpP plus 5' 60		
P1486	CATTATCCATTAAAAATCAAACGGATCCTAGACATA GTCTTGGTTATTTGTTCGTTTCTG		bp of phpP		
kanrpsL forward	TAGGATCCGTTTGATTTTTAATGGATAATG	P _c -[<i>kan-</i> <i>rpsL</i> ⁺]	P _c -[<i>kan-rpsL</i> ⁺]		
kanrpsL reverse	GGGCCCCTTTCCTTATGCTTTTG	cassette			
P1487	CAAAAGCATAAGGAAAGGGGCCCGGAGGTTTAGA CAACATTACGGTTGC	D39	3' 60 bp of <i>phpP</i> + 3'		
TT547	CGGTGCTTGTGGTTGGTAAGTTTCCTCTGT		downstream of phpP		
For constr	For construction of K739 (Δ[<i>phpP</i> -stkP]::P _c -[kan-rpsL ⁺])				

P1485 P1486	CCAAGCCTTGTTGGAGGCGAATAATTCCCT CATTATCCATTAAAAATCAAACGGATCCTAGACATA GTCTTGGTTATTTGTTCGTTTCTG	D39	5' upstream of <i>phpP</i> plus 5' 60 bp of <i>phpP</i>
kanrpsL forward	TAGGATCCGTTTGATTTTTAATGGATAATG	P _c -[<i>kan-</i> <i>rpsL</i> ⁺] cassette	P _c -[<i>kan-rp</i> sL⁺]
reverse		00000110	
P1497	CAAAAGCATAAGGAAAGGGGGCCCAATAAGACTAG AGTCAAGATTTCAATCTACAAACCTA	D39	3' 57 bp of stkP + 3'
P1496	CAATACCAAGGCGACAGAAGTTCCTGCCCC		downstream region <i>of stkP</i>

^aGenomic DNA of indicated S. pneumoniae strains was used as templates for PCR

reactions. Strain genotypes are listed in Table S1.

TABLE S3. Oligonucleotide primers for Rx1 strains used in this study^a

Primer		
ypsB_KOF1_177 ^a	GGGTGTCTTGGCTTGTGTTTA	$\Delta qpsB$ in Rx1
ypsB_KOR2_709 ^a	TCAAACAAATTTTCATCAAGCTTGACC	$\Delta qpsB$ in Rx1
	TCACGTCCAAACTCTT	0.
ypsB_KOF3_690 ^a	AAGAGTTTGGACGTGAGGTCAAGCTT	∆ <i>gpsB</i> in Rx1
	GATGAAAATTTGTTTGA	
ypsB_KOR4_933 ^a	TCCAATCTATTCAGGCGTTTCTCTAGA	<i>∆gpsB</i> in Rx1
	ACTAGTGGATCCCCCGG	
ypsB_KOF5_913 ^a	CCGGGGGATCCACTAGTTCTAGAGAA	<i>∆gpsB</i> in Rx1
	ACGCCTGAATAGATTGGA	
<i>ypsB</i> _KOR6_158 5 ^a	TTGAAAACGAACACGTCCATC	∆ <i>gpsB</i> in Rx1
LN235 ^a	AGTGTGAGAAAATTTGGT	primer forward,
		amplification <i>divIVA::erm</i>
		from $\Delta divIVA$ (Fadda et
		al., 2003)
LN236ª	CGCTGGGAATATAAGGAT	primer reverse,
		amplification <i>divIVA::erm</i>
		from $\Delta div IVA$ (Fadda et
h h h h h h		al., 2003)
AM61F [°]	GACIGIAICAAGCIAGAACGGIIAAG	primer forward, PCR
		verification of spr1061-
		spr1060 (spa_1038-
		spu_1037)
AWDER	GAGTAATCCTGATGAGAATGATCCAG	verification of spr1061-
		spr1060 (spd 1038-
		spd 1037)
TT575 ^b	AATCAGAAAGGGATTGCTTTATGCAGT	primer forward. PCR
	TCC	verification of <i>spr1057</i> -
		spr1056 (spd 1034-
		spd_1033)
TT578 ^b	CTCCCATACAGCCATTACGATTCATAT	primer reverse, PCR
	TGA	verification of spr1057-
		spr1056 (spd_1034-
		spd_1033)
TT635 [⊳]	GCCTTTATGAGGCACCTAAGGGGTAT	primer forward, PCR
	AGTC	verification of spr1060-
		spr1053 (spd_1037-
- Duppeh	T	spd_1030)
P1238		primer reverse, PCR
	CGAA	verification of spr1060-
		spr1053 (spd_1037-
		spd_1030)

P1481 ^b	TTATGTAGGAGGAACCGAGGGCGGA GGAAT	primer forward, PCR verification of spr1059- spr1056 (spd_1036- spd_1033)
P1482 ^b	AGACGAGTGTTCCATAGCCGACTCCT TCATTT	primer reverse, PCR verification of spr1059- spr1056 (spd_1036- spd_1033)
pKNT25/pUT18_ <i>gpsB</i> _PF ^c	AA <u>CTGCAG</u> GATGGCAAGTATTATTTT TCAGCG	<i>primer forward</i> , PCR amplification of <i>gpsB</i> for plasmid insert for B2H studies
pKNT25/pUT18_ <i>gpsB</i> _BR [°]	CG <u>GGATCC</u> TCAAAATCTGAGTTATCTA AAATTTG	<i>primer reverse</i> , PCR amplification of <i>gpsB</i> for plasmid insert for B2H studies
pKNT25/pUT18- <i>divIVA</i> _PF ^c	AA <u>CTGCAG</u> GATGCCAATTACATCATTA GAAATA	<i>primer forward</i> , PCR amplification of <i>divIVA</i> for plasmid insert for B2H studies
pKNT2/pUT18- <i>divIVA</i> _BR ^c	CG <u>GGATCC</u> TTCTGGTTCTTCATACATT GGG	<i>primer reverse</i> , PCR amplification of <i>divIVA</i> for plasmid insert for B2H studies
pKNT25/pUT18_ <i>ezrA</i> _PF ^c	AA <u>CTGCAG</u> GATGTCTAATGGACAAC	<i>primer forward</i> , PCR amplification of <i>ezrA</i> for plasmid insert for B2H studies
pKNT25/pUT18_ <i>ezrA</i> _BR ^c	CG <u>GGATCC</u> TCAAAACGAATCGTTTCA	<i>primer reverse</i> , PCR amplification of <i>ezrA</i> for plasmid insert for B2H studies
pKNT25/pUT18_ <i>ftsZ</i> _PF ^c	AA <u>CTGCAG</u> GATGACATTTTCATTTGAT ACAGCTG	<i>primer forward</i> , PCR amplification of <i>ftsZ</i> for plasmid insert for B2H studies
pKNT25/pUT18_ <i>ftsZ</i> _BR ^c	CG <u>GGATCC</u> CGATTTTTGAAAAATGGA GGTGTA	<i>primer reverse</i> , PCR amplification of <i>ftsZ</i> for plasmid insert for B2H studies
pKNT25/pUT18_ <i>stkP</i> _BF ^c	CG <u>GGATCC</u> CATGATCCAAATCGGC	<i>primer forward</i> , PCR amplification of <i>stkP</i> for plasmid insert for B2H studies
pKNT25/pUT18_ <i>stkP</i> _ER ^c	CGGAATTCGAAGGAGTAGCTGAAGTT	<i>primer reverse</i> , PCR amplification of <i>stkP</i> for

		plasmid insert for B2H studies
pKNT25/pUT18_4 9F ^d	CGCAATTAATGTGAGTTAGC	primer forward, sequencing pKNT25/pUT18
pKNT25_328R ^d	TTGATGCCATCGAGTACG	primer reverse, sequencing pKNT25
pUT18_304R ^d	CGAGCGATTTTCCACAACAA	primer reverse, sequencing pUT18

56

^aGenomic DNA of the Rx1 *S. pneumoniae* strains was used as templates for PCR reactions. Strain genotypes are listed in Table S1.

- ⁵⁷ ^bIndicates primers used to verify by PCR the arrangement of *spd_1033-spd_1038* ⁵⁸ chromosomal region of Rx1.
- ⁵⁹ ^cIndicates primers used to obtain gene sequences for B2H studies.
- ⁶⁰ ^dIndicates primers to verify the correct sequence of the genes cloned in the B2H ⁶¹ vectors.

TABLE S4. PhpP model similarity to known protein structures.

Organism	Protein	PDB ID	RMSD ^a	Z-score ^b
	function			
S. agalactiae	Ser/Thr	2PK0	0.4	44.2
(Stp1)	protein			
AA 1-242	phosphatase			
M. tuberculosis	Ser/Thr	2V06	1.3	29.1
(Mspp)	protein			
AA 1-233	phosphatase			
M. tuberculosis	Ser/Thr	1TXO	1.4	30.5
(PstP)	protein			
AA 1-240	phosphatase			

63

62

⁶⁴ ^aRMSD was determined via PyMOL alignment (AA 1-246 of PhpP) (Schrodinger) of ⁶⁵ the PDB modelling file generated from Phyre2 input of PhpP sequence (Kelley *et al.*, ⁶⁶ 2015). See *Experimental procedures* for details.

⁶⁷ ^bZ-score was determined via input of the PhpP PDB modeling file generated from ⁶⁸ Phyre2 into DALI server (Kelley *et al.*, 2015, Holm & Rosenstrom, 2010).

TABLE S5. Relative protein phosphorylation levels in mutant strains compared to those
 in the Rx1 and R6 parent laboratory strains^a

Strain Number	Genotype	Sample OD ₆₂₀	Relative phosphorylation of StkP/MapZ ^b	Relative phosphorylation of DivIVA
IU9256	Rx1	0.4	≡1	≡1
IU9262	Rx1 ΔgpsB phpP(L148S) sup4	0.4	1.2 ± 0.2	1.2 ± 0.4
IU11574	Rx1 ∆gpsB	0.4	0.2 ± 0.2	0.3 ± 0.2
EL59	R6	0.4	≡1	≡1
IU8224	R6 ∆gpsB	0.4	0.6 ± 0.2	0.2 ± 0.2
IU8419	R6 Δ[phpP-stkP]::P _c - [kan-rpsL ⁺]	0.4	0.1 ± 0.1	0.1 ± 0.06

71

⁷² ^aRelative protein phosphorylation levels are listed for mutants compared to the Rx1 ⁷³ and R6 parent laboratory strains grown exponentially to $OD_{620} \approx 0.4$. Protein ⁷⁴ phosphorylation was determined as described in *Experimental procedures*, and a ⁷⁵ representative Western blot with the same sample order is shown in Figure 2A, where ⁷⁶ StkP~P/MapZ~P corresponds to the double band at \approx 70 kDa, and DivIVA~P ⁷⁷ corresponds to the band around \approx 45 kDa. The phosphorylation levels are the mean ⁷⁸ (±SEM) from at least two independent experiments.

⁷⁹ ^bThe signal level for strains IU9262, IU8224, and IU8419 was low and near the ⁸⁰ background level. We do not know why StkP/MapZ phosphorylation was greater in the ⁸¹ R6 $\Delta gpsB$ mutant IU8224 than in the Rx1 $\Delta gpsB$ mutant IU9262; however, the R6 ⁸² $\Delta gpsB$ mutant grew much better than the Rx1 $\Delta gpsB$ mutant, reflective of genetic ⁸³ differences between these two laboratory strains (see Table 1; *Results*).

Strain Number	Genotype	Sample OD ₆₂₀	Relative phosphorylation of StkP/MapZ	Relative phosphorylation of DivIVA
IU4888	∆ <i>gpsB</i> P _{fcsK} -gpsB +fucose, 1 h	0.1	0.9 ± 0.2	0.7 ± 0.1
IU4888	ΔgpsBP _{fcsK} -gpsB +fucose, 3 h	0.2-0.4	1.7 ± 0.2	1.6 ± 0.1
IU1945	D39 ∆ <i>cps</i> parent	0.1	≡1	≡1
IU1945	D39 ∆ <i>cps</i> parent	0.2-0.4	1.5 ± 0.1	1.6 ± 0.1
E739	Δ [<i>phpP-stkP</i>]::P _c - <i>erm</i>	0.1	0	0
E739	Δ [<i>phpP-stkP</i>]::P _c - <i>erm</i>	0.2-0.4	0	0
IU4888	ΔgpsBP _{fcsK} -gpsB –fucose, 1 h	0.1	0.2 ± 0.1	0.2 ± 0.1
IU4888	ΔgpsBP _{fcsK} -gpsB –fucose, 2 h	0.2	0.5 ± 0.1	0.4 ± 0.1
IU4888	∆gpsBP _{fcsK} -gpsB –fucose, 3 h	0.2-0.3	0.5 ± 0.2	0.4 ± 0.2

TABLE S6. Depletion of GpsB in the D39 background leads to decrease in
 phosphorylation.^a

86

^aRelative protein phosphorylation levels are listed for merodiploid strains depleted 87 for GpsB (-fucose) or not depleted for GpsB (+fucose) for the times indicated compared 88 to the exponentially growing IU1945 parent strain. Samples were taken at the OD₆₂₀ 89 values indicated. Protein phosphorylation was determined as described in *Experimental* 90 procedures, and a representative Western blot with the same sample order is shown in 91 Figure 2B, where StkP~P/MapZ~P corresponds to the double band at ≈ 70 kDa, and 92 DivIVA~P corresponds to the band around \approx 45 kDa. The relative phosphorylation levels 93 are based on means (±SEM) from at least three independent experiments. Signal levels 94 <0.2 are at the level of background detection of this method and cannot be accurately 95 quantitated. 96

TABLE S7. Relative protein phosphorylation levels in unencapsulated D39 $\Delta qpsB$ 97 original and reconstructed suppressor strains^a 98

Strain Number	Genotype	Sample OD ₆₂₀	Relative phosphorylation of StkP/MapZ	Relative phosphorylation of for DivIVA
IU1945	D39 ∆ <i>cp</i> s	0.4	≡1	≡1
IU5845 ^b	∆gpsB (sup2)	0.4	0.2 ± 0.02	0.2 ± 0.1
IU6441 ^b	∆gpsB (sup3)	0.4	0.1 ± 0.01	0.1 ± 0.03
IU6442 ^b	∆gpsB (sup1) phpP(G229D)	0.4	1.2 ± 0.04	1.2 ± 0.1
E46 ^c	D39 Δcps ΔbgaA::P _c -erm	0.4	0.8 ± 0.2	0.8 ± 0.1
IU11221 ^d	D39 Δcps ΔgpsB phpP(G229D) ΔbgaA::P _c -erm	0.4	1.1 ± 0.3	1.2 ± 0.1
IU11442 ^e	D39 Δcps ΔphpP::P _c -erm	0.4	0.4 ± 0.1	1.1 ± 0.1
IU11460 ^f	D39 ∆cps ∆stkP::P _c -erm	0.4	0.1 ± 0.02	0.1 ± 0.01
IU11462 ^f	D39 Δ <i>cps</i> Δ[<i>phpP-stkP</i>]::P _c -	0.4		
	erm		0.04 ± 0.02	0.1 ± 0.03

99

100

^aRelative protein phosphorylation levels are listed for mutants compared to the unencapsulated derivative of D39 (IU1945) grown exponentially to $OD_{620} \approx 0.4$. Protein 101 phosphorylation was determined as described in Experimental procedures, and a 102 representative Western blot with the same sample order is shown in Figure 3, where 103 StkP~P/MapZ~P corresponds to the double band at ≈ 70 kDa, and DivIVA~P 104 corresponds to the band around \approx 45 kDa. Phosphorylation levels are the mean (±SEM) 105 from at least two independent experiments. Signal levels <0.2 are at the level of 106 background detection of this method and cannot be accurately quantitated. 107

108

^bOriginally isolated $\Delta qpsB$ suppressor strain described in Table 2.

109	^c Isogenic parent strain for reconstructed $\Delta gpsB phpP(G229D)$ (sup1) strain in Fig. 3.
110	^d Reconstructed $\Delta gpsB phpP$ (G229D) (<i>sup1</i>) mutant (see Fig. 3 and Fig. 4).
111	^e The $\Delta phpP$::P _c - <i>erm</i> mutation is polar on downstream StkP kinase expression
112	resulting in decreased phosphorylation of the StkP/MapZ proteins. See text and Fig. 3
113	for details.
114	^f Negative control strains lacking the StkP protein kinase.

- TABLE S8. Genes deleted and duplicated in the IU5845 (*sup2*) $\Delta gpsB$ unencapsulated
- 116 D39 suppressor strain^a

Region	Gene	Putative or defined function
Genes in large	spd_1026	Branched chain alpha-keto acid dehydrogenase
Δ[spd_1026-		subunit E2
spd_1037]	spd_1027	TPP-dependent acetoin dehydrogenase complex,
deletion		E1 protein subunit beta
	spd_1028	Pyruvate dehydrogenase E1 subunit alpha
	spd_1029	Multidrug resistance protein NorM
	spd_RS05480	Hypothetical protein, no BLAST similarity to
		proteins of known function
	spd_1030	<i>pyrC</i> , dihydroorotase
	spd_1031	mutX, 8-oxo-dGTP diphosphatase
	spd_1032	ung, uracil-DNA glycosylase
	spd_1033	Hypothetical protein, uncharacterized, no BLAST similarity to proteins of known function
	spd_1034	Non-canonical pyrimidine nucleotidase, HAD-like
		superramily domain (YjjG)
	spd_1035	Hypothetical protein, BLAST to phosphate
		dependent mannose transporter
	spd_1036	PTS fructose transporter subunit IIA
	spd_1037	Hypothetical protein, BLAST to histidine triad protein
Selected genes	spd_0888	Adhesion protein, BLAST to AdcA
in large 134 gene duplication	spd_0889	Hypothetical protein, BLAST to histidine triad proteins. HIT family hydrolases
Ω[spd_0889-	spd_0904	Thymidine kinase, predicted
spd_1026]°	spd_0925	Hydrolase, predicted, BLAST to ADP-
	and 0026	Lipid kipapa, prodicted
	spu_0920	Lipid kinase, predicied
	spd_0939	MutR family transcriptional regulator, predicted
	spd_0952	FtsW
	spd_0953	Phosphoenolpyruvate carboxylase
	spd_0958	RNA polymerase sigma factor SigA
	spd_0973	ATP-dependent DNA helicase PcrA
	spa_0981	Adenylate cyclase, predicted
	spd_0982	GIP pyrophosphokinase, predicted
	spd_0983	NAD(+) kinase, predicted
	spd_0985	eutD, phosphate acetyltransferase
	spd_0999	MutR family transcriptional regulator, predicted
	spd_1001	ligA, DNA ligase (NAD') LigA

	spd_RS	Phosphoserine phosphatase, predicted										
	(before spd_10	11)										
447	spd_10	18	Immunog	obulin A	1 protease	9						
118	^a See Table 2 for su	ppresso	or isolation	and F	igure S3	for a de	epiction o	f the				
119	Δ[spd_1026-spd_1037] Ω	נ[spd_0	889-spd_1	026] in	the spo	d_1034	region of	the				
120	pneumococcal chromosor	ne of sti	ain IU5845	5. The d	eletion and	d insertio	n in the IL	16441				
121	(<i>sup3</i>) suppressor strain o	overlap	and are sli	ghtly sm	aller than	those lis	ted above	(see				
122	Fig. S3B).											
123	^b Genes were selected	based o	on functions	s importa	ant for cell	division,	normal gr	owth,				
124	pneumococcal pathogen	esis, o	r putative	roles	in proteir	phosph	norylation.	The				
125	mechanisms, if any, by wh	nich the	duplication	s contrib	bute to Δg	osB supp	ression ar	d the				

steps that lead to formation of the deletions/insertions are unknown.

SUPPLEMENTAL FIGURE LEGENDS

Fig. S1. $\Delta divIVA$ mutations are not epistatic to $\Delta gpsB$ in pneumococcal strain Rx1. 128 A) Representative growth curve of Rx1 strains. Strains are listed, 1-4 as follows: 1, Rx1 129 (IU9256); 2, Rx1 ΔgpsB phpP(L148S) (IU9262); 3, Rx1 ΔdivIVA (IU9264); 4, R6 ΔgpsB 130 phpP(L148S) $\Delta divIVA$ (IU9266). Doubling times were calculated using a nonlinear 131 regression exponential growth curve program (GraphPad Prism) for $OD_{620} \approx 0.015$ to 132 0.25. B) FDAA staining and microscopy of Rx1 live cells were performed as described in 133 Experimental procedures. The panels from left to right are: phase, FDAA labeling, and 134 phase/FDAA overlay. Representative images are shown of \geq 95% of the cells (n>50) 135 examined manually of each strain. The experiments were performed two to three times 136 independently with similar results. Reduced autolysis of the R6 $\Delta qpsB phpP(L148S)$ 137 $\Delta divIVA$ (IU9266) mutant in stationary phase was observed in each experiment. 138

Fig. S2. A) Diagram of the chromosomal *phpP-stkP* operon with surrounding genes. 139 140 The positions of mutations that lead to the G117D, L148S, T163P, D192A, and G229D amino acid changes in PhpP are indicated, together with the location of the stkP(G10 141 STOP) mutation in one of the constructed phpP(G229D) mutants. B) Diagram showing 142 the intermediate $phpP^+$ -[P_c-kanrpsL⁺]-stkP⁺ strain used to construct phpP(G229D) or 143 phpP(D192A) mutants in the rpsL1 background. Primers TT546 and TT547 were used 144 $phpP^+-[P_c-kanrpsL^+]-stkP^+,$ *phpP*(G229D), to amplify or *phpP*(D192A) for 145 transformations. 146

Fig. S3. A) Diagram of the chromosomal locus indicating the deletion/duplication mutations found in the D39 $\Delta cps \Delta gpsB sup2$ (IU5845) and sup3 (IU6441) suppressor strains (Table 2, lines 2 and 3). IU5845 has a deletion of $\Delta spd_{1026-1037}$ and a

duplication of $\Omega spd_{0889-1026}$ (indicated in figure), while IU6441 has a deletion of 150 $\Delta spd_{1029-1037}$ and a duplication of $\Omega spd_{0889-1024}$ (see B, below). See Table S8 151 for a list of deleted genes and selected duplicated genes in the sup2 and sup3 $\Delta qpsB$ 152 suppressor strains. In addition, mutations are indicated in this region that are present in 153 laboratory strain Rx1 or R6 parent compared to the D39 $\Delta c \rho s$ progenitor strain. The 154 deletions at the bottom were constructed in the D39 Δcps strain and tested for their 155 effects on protein phosphorylation (Fig. S8). B) MiSeq DNA read distribution showing 156 chromosomal duplications and deletions in the spd 1034 region of the genomes of 157 $\Delta qpsB sup3$ (IU6441) and $\Delta qpsB sup2$ (IU5845) that are not present in $\Delta qpsB sup1$ 158 (IU6442) (see Table 2, rows 1-3). 159

Fig. S4. Structure and specific activity of wild-type and mutant Spn PhpP proteins. 160 A) Threaded structure of the pneumococcal PhpP protein phosphatase showing amino 161 acids in the active site region changed in $\Delta gpsB$ suppressor mutants (see Table 2). 162 Phyre2 modeling of Spn PhpP structure (blue) is overlaid with the S. agalactiae Stp1 163 structure (green), PDB ID: 2PK0. Alignment was performed using PyMOL (Schrödinger, 164 LLC). Inset shows a close up of the aligned structure where the Spn active site arginine 165 (R13), and amino acid changes found in $\Delta qpsB$ suppressor mutants are indicated as 166 pink sticks at residues G117, L148, T163, G229, R13 (active site arginine) (Rantanen et 167 al., 2007), and D192 (aspartate residue important for binding Mn²⁺ ions required for 168 PhpP activity) (Nováková et al., 2005). B) Phosphatase specific activities of purified 169 PhpP(G229D) and PhpP(L148S) are greatly reduced (>16-fold) compared to wild-type 170 PhpP⁺. Phosphatase activity was quantified as pmol of free phosphate released in a 171 defined time from phosphorylated peptide RRA(pT)VA by purified His-tagged PhpP 172

protein as described previously (Nováková et al., 2005). The PhpP(G229D) and 173 PhpP(L148S) amino acid changes were introduced into expression plasmid pEXPhpP⁺ 174 by using the QuickChange mutagenesis kit (Stratagene) and the following primers:

PhpP G229D F GTTTTGCTAACAATGCAGGAGATTTAGACAACATTACGGTTGC; 176

175

PhpP G229D RGCAACCGTAATGTTGTCTAAATCTCCTGCATTGTTAGCAAAAC; 177

PhpP_G229D_RGCAACCGTAATGTTGTCTAAATCTCCTGCATTGTTAGCAAAAC; and 178

PhpP_G229D_R GCAACCGTAATGTTGTCTAAATCTCCTGCATTGTTAGCAAAAC. 179

Mutations in expression plasmids were confirmed by DNA sequencing. Phosphate-180 release assays using the malachite green phosphate-release kit (POMG-25H; BioAssay 181 Systems, Hayward, CA) were performed twice independently for each purified protein. 182 Data shown are mean ± SEM. 183

Fig. S5. Changes in PhpP suppressors are at conserved amino acids. Degree of 184 conservation of each residue in Spn PhpP and S. agalactiae PP2C phosphatase is 185 186 shown, as indicated by the legend in the bottom right corner. Asterisks mark essential Mn²⁺ coordinating and catalytic residues D192 and R13 (Nováková et al., 2005, 187 Rantanen *et al.*, 2007), and residues found to be mutated in $\Delta gpsB$ suppressor strains: 188 G117, R125, L148, T163, and G229. Degree of conservation is indicated by color coded 189 boxes, which was determined by the ConSurf server (Ashkenazy et al., 2016) using a 190 multisequence alignment of the amino acid sequences from the S. agalactiae PP2C 191 phosphatase, S. pneumoniae PhpP, and homologs L. monocytogenes Stp, B. subitlis 192 PrpC, *P. aeruginosa* Stp1, and *S. mutans* Pppl. 193

Fig. S6 Western blot demonstrating that PhpP(D192A) and PhpP(G229D) amino 194 acid changes do not significantly affect StkP and PhpP amounts in reconstructed 195

suppressor strains. Strains were harvested at $OD_{620} \approx 0.4$. A) Immunoblotting was 196 performed with α -PhpP antibody for the following strains: lane 1, wild-type parent D39 197 $\Delta cps rpsL1$ (IU1824); and lane 2, D39 $\Delta cps rpsL1 \Delta qpsB phpP(D192A)$ (IU11348). B) 198 Immunoblotting of the same blot was performed with α -StkP antibody. C) 199 Immunoblotting was performed with α -PhpP antibody for the following strains: lane 1, 200 wild-type parent D39 Δcps (IU1945); and lane 2, D39 $\Delta cps \Delta gpsB \Delta bgaA::P_c-erm$ 201 phpP(G229D) (IU11221). D) Immunoblotting of the same blot was performed with α -202 StkP antibody. These experiments were performed twice independently with similar 203 results. 204

Fig. S7. Western blot demonstrating that the PhpP(G229D) amino acid change does 205 not affect PhpP or StkP amounts in the originally isolated $\Delta gpsB sup1$ strain (Table 2, 206 line 1). Strains were harvested at OD₆₂₀ \approx 0.4. A) Immunoblotting was performed with α -207 PhpP antibody on the following strains: lane 1, wild-type parent D39 Δcps (IU1945); 208 lane 2, D39 $\Delta cps \Delta gpsB phpP(G229D)$ (IU6442, sup1); lane 3, D39 $\Delta cps rpsL1$ 209 phpP(G229D) stkP (G10 STOP) (IU7685); lane 4, D39 $\Delta cps \Delta [phpP-stkP]$ (K739) 210 control; lane 5, D39 $\Delta cps \Delta stkP$ (IU7921); and lane 6, D39 $\Delta cps \Delta phpP$ (K735) control. 211 B) Immunoblotting of the same blot was performed with α -StkP antibody. These 212 experiments were performed three times independently with similar results. The red line 213 marks a colored 53 kDa standard that did not transfer. 214

Fig. S8. Deletion of $spd_{1029-1037}$ does not affect threonine phosphorylation of proteins. Western blotting using α -pThr antibody was used to detect proteins phosphorylated at Thr residues in strains containing either the $spd_{1029-1037}$ or $spd_{1031-1037}$ deletion harvested at OD₆₂₀ \approx 0.1 and 0.4. Lanes 1 and 5, wild-type

parent D39 Δcps (IU1945); lanes 2 and 6, D39 $\Delta cps \Delta[spd_1031-1037]::P_c-erm$ (IU7824); lanes 3 and 7, D39 $\Delta cps \Delta[spd_1029-1037]::P_c-[kan-rpsL^+]$ (IU8271); and lanes 4 and 8, D39 $\Delta cps \Delta[phpP-stkP]$ (E739) control. This experiment was performed three times with similar results. More protein phosphorylation was routinely detected in cells at higher density (0.4) than at lower density (0.1). The red line marks a colored 53 kDa standard that did not transfer.

Fig. S9. GpsB is not required for localization of StkP in rings in laboratory strain Rx1. 225 Fluorescence microscopy was performed on the Rx1 parent and Rx1 $\Delta gpsB$ 226 phpP(L148S) derivative strains expressing P_{Zn} -gfp-stkP⁺. Cells were inoculated 1:100 227 from frozen glycerol starters (OD₆₂₀ \approx 0.3) in pre-warmed BHI broth and incubated at 228 37° C until they reached OD₆₂₀=0.1. At this time, cultures were split into two tubes 229 containing no added zinc or 0.65 mM ZnCl₂ and incubated at 37°C. Growth was 230 monitored turbidimetrically every 30 min and samples for microscopy were taken. A) 231 Rx1 parent strain expressing GFP-StkP ectopically; and B) Rx1 AgpsB phpP(L148S) 232 expressing GFP-StkP ectopically, taken after two hours after induction. Percentage of 233 cells with StkP rings is based on 142 manually examined cells of the $\Delta gpsB$ 234 phpP(L148S) mutant. 235

Fig. S10. Pairwise co-IP of GpsB-L-FLAG³ with bPBP2b-HA, StkP-HA, or aPBP2a HA⁴, but not with bPBP2x-HA. Co-IP experiments were performed as described in
 Experimental procedures. A) Western blots of cell lysates before co-IP was performed.
 Total protein loaded for each sample was 62 µg. The top blot was probed with anti-HA
 primary antibody, and the bottom blot was probed with anti-FLAG primary antibody.
 Predicted molecular weights (MWs) of bPBP2x-HA, bPBP2b-HA, StkP-HA, and

aPBP2a-HA⁴ are 83.5 kDa, 75.7 kDa, 73.5 kDa, and 85.2 kDa, respectively. The 242 predicted MW of GpsB-L-FLAG³ monomer is 16.4 kDa. B) Western blot after co-IP was 243 performed. Total amount of elution loaded was 20 µL after mixing 1:1 with 2X Laemmli 244 sample buffer. The top blot was probed with anti-HA primary antibody for detection of 245 HA tagged prev proteins, using GpsB-L-FLAG³ as bait. Predicted MWs of proteins are 246 listed in A. The bottom blot was probed with anti-FLAG primary antibody for detection of 247 GpsB-L-FLAG³. Two major bands can be detected by anti-FLAG primary antibody in the 248 strains expressing GpsB-L-FLAG³; the bottom band is the monomer and the upper band 249 may be a trimer. Strains used to prepare extracts were constructed in D39 Δcps strain 250 IU1945. Lane 1 pbp2x-HA $qpsB^+$ (IU6929); lane 2 qpsB-L-FLAG³ pbp2x-HA (IU11314); 251 lane 3 pbp2b-HA qpsB⁺ (IU6933); lane 4 qpsB-L-FLAG³ pbp2b-HA (IU11316); lane 5 252 stkP-HA $qpsB^{\dagger}$ (IU7438); lane 6 qpsB-L-FLAG³ stkP-HA (IU11412); lane 7 pbp2a-HA⁴ 253 $qpsB^+$ (IU11560); and lane 8 pbp2a-HA⁴ qpsB-L-FLAG³ (IU11516). 254

Fig. S11. Pairwise co-IP of GpsB-L-FLAG³ with EzrA-HA, but not with HA-FtsA or 255 aPBP1a-HA. Co-IP experiments were performed as described in Experimental 256 procedures. A) Western blots of cell lysates before co-IP was performed. Total protein 257 loaded for each sample was 57 µg. The top blot was probed with anti-HA primary 258 antibody, and the bottom blot was probed with anti-FLAG primary antibody. Predicted 259 molecular weights (MWs) of EzrA-HA, HA-FtsA, and aPBP1a-HA are 67.6 kDa, 50.7 260 kDa, and 81.0 kDa, respectively. The predicted MW of GpsB-L-FLAG³ monomer is 16.4 261 kDa. B) Western blot after co-IP was performed. Total amount of elution loaded was 20 262 µL after mixing 1:1 with 2X Laemmli sample buffer. The top blot shown was probed with 263 anti-HA primary antibody for detection of HA tagged prey proteins, using GpsB-L-FLAG³ 264

as bait. Predicted MWs of proteins are listed in A. The bottom blot was probed with anti-265 FLAG primary antibody for GpsB-L-FLAG³. Two major bands can be detected by anti-266 FLAG primary antibody in the strains expressing GpsB-L-FLAG³; the bottom band is the 267 monomer and the upper band may be a trimer. Strains used to prepare extracts were 268 constructed in D39 $\triangle cps$ strain IU1945. Lane 1, ezrA-HA ftsZ-Myc $qpsB^+$ (IU9713); lane 269 2, gpsB-L-FLAG³ ezrA-HA ftsZ-Myc (IU11428); lane 3, HA-ftsA ftsZ-Myc gpsB⁺ 270 (IU10302); lane 4, *qpsB*-L-FLAG³ HA-*ftsA ftsZ*-Myc (IU11432); lane 5, *pbp1a*-HA *qpsB*⁺ 271 (IU7242); and lane 6 qpsB-L-FLAG³ pbp1a-HA (IU11566). 272

Fig. S12. Pairwise co-IP of EzrA-L-FLAG³ with FtsZ-Myc, but lack of pairwise co-IP 273 of GpsB-L-FLAG³ with DivIVA-Myc or FtsZ-Myc. Co-IP experiments were performed as 274 described in Experimental procedures. A) Western blots of cell lysates before co-IP was 275 performed. Total protein loaded for each sample was 69 µg. The top blot was probed 276 with anti-Myc primary antibody, and the bottom blot was probed with anti-FLAG primary 277 antibody. Predicted molecular weights (MWs) of DivIVA-Myc and FtsZ-Myc are 31.5 278 kDa and 45.7 kDa, respectively. DivIVA was previously shown to run at a higher MW 279 than predicted (45 kDa) (Fadda et al., 2007). The predicted MWs of GpsB-L-FLAG³ and 280 EzrA-L-FLAG³ are 16.4 kDa and 70.3 kDa, respectively. B) Western blot after co-IP was 281 performed. Total amount of elution loaded was 20 µL after mixing 1:1 with 2X Laemmli 282 sample buffer. The top blot was probed with anti-Myc primary antibody for detection of 283 Myc tagged prey proteins, using GpsB-L-FLAG³ or EzrA-L-FLAG³ as bait. Predicted 284 MWs of proteins are listed in A. The bottom blot was probed with anti-FLAG primary 285 antibody for GpsB-L-FLAG³ or EzrA-L-FLAG³. Strains used to prepare extracts were 286 constructed in D39 $\triangle cps$ strain IU1945. Lane 1, *divIVA*-Myc $qpsB^+$ (IU11558); lane 2 287

 $gpsB-L-FLAG^3$ *divIVA-*Myc (IU11514); lane 3, HA-*ftsA ftsZ*-Myc *gpsB*⁺ (IU10302); lane 4, *gpsB-L-FLAG*³ HA-*ftsA ftsZ*-Myc (IU11432); lane 5, HA-*ftsA ftsZ*-Myc *ezrA*⁺ (IU10302); lane, 6 HA-*ftsA ftsZ*-Myc *ezrA-L-FLAG*³ (IU11340).

Fig. S13. Pairwise co-IP of StkP-FLAG² with bPBP2x-HA and bPBP2b-HA. Co-IP 291 experiments were performed as described in Experimental procedures. A) Western 292 blots of cell lysates before co-IP was performed. Total protein loaded for each sample 293 was 52 µg. The top blot was probed with anti-HA primary antibody, and the bottom blot 294 was probed with anti-FLAG primary antibody. Predicted molecular weights (MWs) of 295 bPBP2x-HA and bPBP2b-HA are 83.5 kDa and 75.7 kDa, respectively. Predicted MW of 296 StkP-FLAG² is 74.3 kDa. B) Western blot after co-IP was performed. Total amount of 297 elution loaded was 20 µL after mixing 1:1 with 2X Laemmli sample buffer. The top blot 298 was probed with anti-HA primary antibody for detection of HA tagged prey proteins, 299 using StkP-FLAG² as bait. Predicted MWs of proteins are listed in A. The bottom blot 300 was probed with anti-FLAG primary antibody for detection of StkP-FLAG². Strains used 301 to prepare extracts were constructed in D39 $\triangle cps$ strain IU1945. Lane 1, pbp2x-HA 302 stkP⁺ (IU6929); lane, 2 stkP-FLAG² pbp2x-HA (IU7510); lane 3, pbp2b-HA stkP⁺ 303 (IU6933); and lane 4, *stkP*-FLAG² *pbp2b*-HA (IU7512). 304

Fig. S14. Pairwise co-IP of GpsB-L-FLAG³ with StkP and MreC, but not with detectable levels of FtsZ, FtsA or PhpP, and pairwise co-IP of StkP-FLAG² with MreC, but not with FtsZ, FtsA, or PhpP. Co-IP experiments were performed as described in *Experimental procedures*. A) Western blots of cell lysates before co-IP was performed. Total protein loaded for each sample was 56 μg. The blots shown were probed with native antibodies towards the prey protein of interest or commercial anti-FLAG, as

indicated. Predicted molecular weight (MWs) of FtsZ, FtsA, PhpP, StkP, GpsB-L-FLAG³, and StkP-FLAG² are 44.5, 49.6, 27.1, 72.3, 16.4, and 74.3 kDa, respectively. B) Western blot after co-IP was performed. Total amount of elution loaded was 20 μ L after mixing 1:1 with 2X Laemmli sample buffer. Predicted MWs of proteins are listed in A. Strains used to prepare extracts were constructed in D39 Δcps strain IU1945. Lane 1, D39 Δcps (IU1945); lane 2, *gpsB*-L-FLAG³ (IU5458); and lane 3, *stkP*-FLAG² (IU7434).

Fig. S15. Interactions between Spn GpsB and other division proteins detected by 317 B2H assays. Hybrid plasmid pairs were co-transformed into the *E. coli* strain BTH101, 318 and interactions were detected by spotting the co-transformation mixtures onto LB-X-gal 319 agar plates, supplemented with the appropriate concentrations of ampicillin and 320 kanamycin and photographed after 40 hours, as described in *Experimental procedures*. 321 A) GpsB-T25, DivIVA-T25, EzrA-T25 and FtsZ-T25 fusions co-expressed with DivIVA-322 T18, GpsB-T18, EzrA-T18, and FtsZ-T18 fusions, respectively. B) StkP-T25 and StkP-323 T18 fusions co-expressed with StkP, GpsB, and DivIVA -T18 or -T25, respectively. The 324 bottom panels show the negative (-) and positive (+) controls for the B2H system. White 325 indicates no interactions; blue indicates interactions. See text for additional details. 326

327

332

333

334

328 **REFERENCES FOR SUPPLEMENTAL INFORMATION**

- Ashkenazy, H., S. Abadi, E. Martz, O. Chay, I. Mayrose, T. Pupko & N. Ben-Tal, (2016) ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. *Nuc Acids Res* **44**: W344-350.
 - Evan, G.I., G.K. Lewis, G. Ramsay & J.M. Bishop, (1985) Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product. *Molec Cell Biol* **5**: 3610-3616.
- Fadda, D., C. Pischedda, F. Caldara, M.B. Whalen, D. Anderluzzi, E. Domenici & O. Massidda, (2003) Characterization of *divIVA* and other genes located in the chromosomal region downstream of the dcw cluster in *Streptococcus pneumoniae. J Bacteriol* **185**: 6209-6214.

- Fadda, D., A. Santona, V. D'Ulisse, P. Ghelardini, M.G. Ennas, M.B. Whalen & O. Massidda, (2007) *Streptococcus pneumoniae* DivIVA: localization and interactions in a MinCD-free context. *J Bacteriol* **189**: 1288-1298.
- Holm, L. & P. Rosenstrom, (2010) Dali server: conservation mapping in 3D. *Nuc Acids Res* **38**: W545-549.
- Hopp, T.P., K.S. Prickett, V.L. Price, R.T. Libby, C.J. March, D.P. Cerretti, D.L. Urdal &
 P.J. Conlon, (1988) A short polypeptide marker sequence useful for recombinant
 protein identification and purification. *Bio-Technol* 6: 1204-1210.
- Hoskins, J., W.E. Alborn, Jr., J. Arnold, L.C. Blaszczak, S. Burgett, B.S. DeHoff, S.T. 347 Estrem, L. Fritz, D.J. Fu, W. Fuller, C. Geringer, R. Gilmour, J.S. Glass, H. Khoja, 348 A.R. Kraft, R.E. Lagace, D.J. LeBlanc, L.N. Lee, E.J. Lefkowitz, J. Lu, P. 349 Matsushima, S.M. McAhren, M. McHenney, K. McLeaster, C.W. Mundy, T.I. 350 Nicas, F.H. Norris, M. O'Gara, R.B. Peery, G.T. Robertson, P. Rockey, P.M. Sun, 351 M.E. Winkler, Y. Yang, M. Young-Bellido, G. Zhao, C.A. Zook, R.H. Baltz, S.R. 352 Jaskunas, P.R. Rosteck, Jr., P.L. Skatrud & J.I. Glass, (2001) Genome of the 353 bacterium Streptococcus pneumoniae strain R6. J Bacteriol 183: 5709-5717. 354
 - Kelley, L.A., S. Mezulis, C.M. Yates, M.N. Wass & M.J. Sternberg, (2015) The Phyre2 web portal for protein modeling, prediction and analysis. *Nat Protocols* **10**: 845-858.

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

- Land, A.D., H.C. Tsui, O. Kocaoglu, S.A. Vella, S.L. Shaw, S.K. Keen, L.T. Sham, E.E. Carlson & M.E. Winkler, (2013) Requirement of essential Pbp2x and GpsB for septal ring closure in *Streptococcus pneumoniae* D39. *Molec Microbiol* **90**: 939-955.
- Lanie, J.A., W.L. Ng, K.M. Kazmierczak, T.M. Andrzejewski, T.M. Davidsen, K.J. Wayne, H. Tettelin, J.I. Glass & M.E. Winkler, (2007) Genome sequence of Avery's virulent serotype 2 strain D39 of *Streptococcus pneumoniae* and comparison with that of unencapsulated laboratory strain R6. *J Bacteriol* 189: 38-51.
 - Nováková, L., L. Sasková, P. Pallová, J. Janecek, J. Novotná, A. Ulrych, J. Echenique, M.C. Trombe & P. Branny, (2005) Characterization of a eukaryotic type serine/threonine protein kinase and protein phosphatase of *Streptococcus pneumoniae* and identification of kinase substrates. *FEBS J* **272**: 1243-1254.
- Pozzi, G., L. Masala, F. Iannelli, R. Manganelli, L.S. Havarstein, L. Piccoli, D. Simon & D.A. Morrison, (1996) Competence for genetic transformation in encapsulated strains of *Streptococcus pneumoniae*: two allelic variants of the peptide pheromone. *J Bacteriol* **178**: 6087-6090.
- Ramos-Montanez, S., H.C. Tsui, K.J. Wayne, J.L. Morris, L.E. Peters, F. Zhang, K.M.
 Kazmierczak, L.T. Sham & M.E. Winkler, (2008) Polymorphism and regulation of
 the spxB (pyruvate oxidase) virulence factor gene by a CBS-HotDog domain
 protein (SpxR) in serotype 2 Streptococcus pneumoniae. Molec Microbiol 67:
 729-746.
- Rantanen, M.K., L. Lehtio, L. Rajagopal, C.E. Rubens & A. Goldman, (2007) Structure
 of Streptococcus agalactiae serine/threonine phosphatase. The subdomain
 conformation is coupled to the binding of a third metal ion. *FEBS J* 274: 3128 3137.
- 384 Schrodinger, L., The PyMOL molecular graphics system, version 1.8.

- Tsui, H.C., M.J. Boersma, S.A. Vella, O. Kocaoglu, E. Kuru, J.K. Peceny, E.E. Carlson,
 M.S. VanNieuwenhze, Y.V. Brun, S.L. Shaw & M.E. Winkler, (2014) Pbp2x
 localizes separately from Pbp2b and other peptidoglycan synthesis proteins
 during later stages of cell division of *Streptococcus pneumoniae* D39. *Molec Microbiol* 94: 21-40.
- Tsui, H-C..T., J.J. Zheng, A.N. Magallon, J.D. Ryan, R. Yunck, B.E. Rued, T.G. Bernhardt & M.E. Winkler, (2016) Suppression of a deletion mutation in the gene encoding essential PBP2b reveals a new lytic transglycosylase involved in peripheral peptidoglycan synthesis in *Streptococcus pneumoniae* D39. *Molec Microbiol* **100**: 1039-1065.
- Tu, Y., F. Li & C. Wu, (1998) Nck-2, a novel Src homology2/3-containing adaptor protein that interacts with the LIM-only protein PINCH and components of growth factor receptor kinase-signaling pathways. *Mol Biol Cell* **9**: 3367-3382.
- ³⁹⁸ Waldo, G.S., B.M. Standish, J. Berendzen & T.C. Terwilliger, (1999) Rapid protein-³⁹⁹ folding assay using green fluorescent protein. *Nat Biotechnol* **17**: 691-695.
- Wayne, K.J., L.T. Sham, H.C. Tsui, A.D. Gutu, S.M. Barendt, S.K. Keen & M.E. Winkler,
 (2010) Localization and cellular amounts of the WalRKJ (VicRKX) two component regulatory system proteins in serotype 2 *Streptococcus pneumoniae*.
 J Bacteriol 192: 4388-4394.

Fig. S2

Α

Fig. S3A

JBrowse	File	View	Help																		
0 100,	,000	200,000	300,000	400,000	500,0	600 600	0,000	700,000	800,000	900,0	00 1,000,	000 1,10	00,000	1,200,000	1,300,000	1,400,000	1,500,000	1,600,000	1,700,000	1,800,000	1,900,0
						($ \in $	\rightarrow	Q Q (Ð 🕀	NC_0085	33 🔻 NC	_008533	3:86500811	106007 (241	Kb) Go					
900,000					950,000					1,000,000				1,050,000							
Reference sequence		Zoom in to see see			e			Zoom in t	o see sequei	e sequence			Zoom in t	o see sequer	ee sequence			Zoom in to see sequence			
t© Genes					• • • • • • • • • • • • • • • • • •	• • •			• • • • • • • • •	• • • •		 			• • • • • •	• • • •	* *				
IU6442.	Plus		1	h		h					300	1.				i	1.	h		su	01
لقنياقتهم	والمريقة والم	10.00	المريد الأمالية	وفاق فسالك	بدحطه	, A.M. (1)	" di pi	Lake Mille	and developed	ال بناب ال	200	بالله منه ال	البري ا	life al al _e fai	فقر فالتأثيق	يل و المحاص	فراغيا فاخر	يفاقة تبعليه	بالراقية وكالغ	بالفتر فالتق	المغيقا ا
🕲 IU6441.	.Plus					, 11			hit to the gift of		700 700			-i Mérer			u sahara			su	03
⊗ IU5845.	.Plus								Anna Mara An	-1.4 Ab A	Zess			م الله	*****					su	02

Changes in PhpP suppressors are at conserved amino acids

Fig. S5

В

A

Rx1∆gpsB phpP(L148S)

Cells with StkP rings 87%

Anti-HA to detect HA tagged proteins (prey)

Anti-FLAG to detect GpsB-L-F³ (bait)

Anti-HA to detect HA tagged proteins (prey) complexed with GpsB-L-F³

Anti-FLAG to detect GpsB-L-F³ (bait)

