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Abstract
Improving the interpretability of brain decod-
ing approaches is of primary interest in many
neuroimaging studies. Despite extensive stud-
ies of this type, at present, there is no formal
definition for interpretability of brain decoding
models. As a consequence, there is no quanti-
tative measure for evaluating the interpretability
of different brain decoding methods. In this
paper, we present a simple definition for in-
terpretability of linear brain decoding models.
Then, we propose to combine the interpretabil-
ity and the performance of the brain decoding
into a new multi-objective criterion for model
selection. Our preliminary results on the toy
data show that optimizing the hyper-parameters
of the regularized linear classifier based on the
proposed criterion results in more informative
linear models. The presented definition provides
the theoretical background for quantitative evalu-
ation of interpretability in linear brain decoding.

1. Introduction
In cognitive science, researchers usually analyze recorded
brain activity to discover the answers of where, when, and
how a brain region participates in a particular cognitive
process. To answer the key questions in cognitive science,
scientists often employ mass-univariate hypothesis testing
methods to test scientific hypotheses on a large set of
independent variables (Groppe et al., 2011). On the
down side, the high dimensionality of neuroimaging data
requires a large number of tests that reduces the sensitivity
of these methods after multiple comparison correction.
The multivariate counterparts of mass-univariate analysis,
known generally as multivariate pattern analysis (MVPA),
have the potential to overcome this deficit.

2016 ICML Workshop on Human Interpretability in Machine
Learning (WHI 2016), New York, NY, USA. Copyright by the
author(s).

Brain decoding (Haynes & Rees, 2006) is an MVPA
technique that delivers a model to predict the mental state
of a human subject based on the recorded brain signal.
From the neuroscientific perspective, a brain map resulting
from weight of linear brain decoding model is considered
interpretable if it enables the scientist to answer where,
when, and how questions. But typically a classifier, taken
alone, only answers the question of what is the most likely
label of a given unseen sample. This fact is generally
known as knowledge extraction gap (Vellido et al., 2012)
in the classification context. Thus far, many efforts have
been devoted to filling the knowledge extraction gap of
linear and non-linear data modeling methods in different
areas such as computer vision (Bach et al., 2015), signal
processing (Montavon et al., 2013), chemometrics (Yu
et al., 2015), bioinformatics (Hansen et al., 2011), and
neuroinformatics (Haufe et al., 2013).

Despite the theoretical advantages of MVPA, its practical
application to inferences regarding neuroimaging data
is limited primarily due to the knowledge extraction
gap (Sabuncu, 2014). Therefore, improving the
interpretability of linear brain decoding and associated
brain maps is a primary goal in the brain imaging
literature (Strother et al., 2014). The lack of interpretability
of multivariate brain maps is a direct consequence of low
signal-to-noise ratios (SNRs), high dimensionality of
whole-scalp recordings, high correlations among different
dimensions of data, and cross-subject variability. At
present, two main approaches are proposed to enhance the
interpretability of multivariate brain maps: 1) introducing
new metrics, such as reproducibility of maps or stability
of models, into the model selection procedure (Rasmussen
et al., 2012; Conroy et al., 2013; Yu, 2013), and 2)
introducing new hybrid penalty terms for regularization
to incorporate spatio-temporal prior knowledge in the
learning (van Gerven et al., 2009; Michel et al., 2011;
de Brecht & Yamagishi, 2012; Grosenick et al., 2013).

In spite of the aforementioned efforts to improve the
interpretability, there is still no formal definition for the in-
terpretability of brain decoding in the literature. Therefore,
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the interpretability of different brain decoding methods are
evaluated either qualitatively or indirectly. With the aim of
filling this gap, our contribution is two-fold: 1) assuming
that the true solution of brain decoding is available, we
present a simple definition of the interpretability in linear
brain decoding; 2) we propose the combination of the
interpretability and the performance of the brain decoding
as a new Pareto optimal multi-objective criterion for model
selection. We experimentally, on a toy dataset, show that
incorporating the interpretability into the model selection
procedure provides more interpretable models 1.

2. Methods
2.1. Notation and Background

Let X ∈ Rp be a manifold in Euclidean space that
represents the input space and Y ∈ R be the output space,
where Y = Φ∗(X ). Then, let S = {Z = (X,Y) |
z1 = (x1, y1), . . . , zn = (xn, yn)} be a training set of
n independently and identically distributed (iid) samples
drawn from the joint distribution of Z = X × Y . In
the neuroimaging context, X indicates the trials of brain
recording, and Y represents the experimental conditions.
The goal of brain decoding is to find the function ΦS :
X→ Y as an estimation of the ideal function Φ∗ : X → Y .

As is a common assumption in the neuroimaging context,
we assume the true solution of a brain decoding problem
is among the family of linear functions H. Therefore,
the aim of brain decoding reduces to finding an empirical
approximation of ΦS , indicated by Φ̂, among all Φ ∈
H. This approximation can be obtained by solving a risk
minimization problem:

Θ̂ = argmin
Θ

L(Y,ΦS(X)) + λΩ(Θ) (1)

where Θ denotes the parameters of the linear model, L :
Z × Z → R+ is the loss function, Ω : Rp → R+

is the regularization term, and λ is a hyper-parameter
that controls the amount of regularization. λ is generally
decided using cross-validation or other data perturbation
methods in the model selection procedure.

The estimated parameters of a linear decoding model Θ̂ can
be used in the form of a brain map so as to visualize the
discriminative neurophysiological effect. We refer to the
normalized parameter vector of a linear brain decoder in
the unit hyper-sphere as a multivariate brain map (MBM);
we denote it by ~Θ where ~Θ = Θ

‖Θ‖ (‖.‖ is the 2-norm).

As shown in Eq. 1, learning occurs using the sampled data.
In other words, in the learning paradigm, we attempt to
minimize the loss function with respect to ΦS (and not

1
For further experiments on the real dataset please see (Kia, 2016)

Φ∗) (Poggio & Shelton, 2002). The irreducible error ε is
the direct consequence of sampling; it sets a lower bound
on the error, where we have:

ΦS(X) = Φ∗(X) + ε (2)

2.2. Theoretical Definition

In this section, we present a definition for the interpretabil-
ity of linear brain decoding models and their associated
MBMs. Our definition of interpretability is based on
two main assumptions: 1) the brain decoding problem is
linearly separable; 2) its unique and neurophysiologically
plausible solution, i.e., Φ∗, is available.

Consider a linearly separable brain decoding problem in an
ideal scenario where ε = 0 and rank(X) = p. In this case,
Φ∗ is linear and its parameters Θ∗ are unique and plausible.
The unique parameter vector Θ∗ can be computed by:

Θ∗ = Σ−1
X XTY (3)

ΣX represents the covariance of X. Using Θ∗ as the
reference, we can define the strong-interpretability:

Definition 1. An MBM ~Θ associated with a linear function
Φ is “strongly-interpretable” if and only if ~Θ ∝ Θ∗.

In practice, the estimated solution of a linear brain problem
is not strongly-interpretable because of the inherent limita-
tions of neuroimaging data, such as uncertainty (Aggarwal
& Yu, 2009) in the input and output space (ε 6= 0),
the high dimensionality of data (n � p), and the high
correlation between predictors (rank(X) < p). With these
limitations in mind, even though the solution of linear brain
decoding is not strongly-interpretable, one can argue that
some are more interpretable than others. For example, in
the case in which Θ∗ ∝ [0, 1]T , a linear classifier where
Θ̂ ∝ [0.1, 1.2]T can be considered more interpretable than
a linear classifier where Θ̂ ∝ [2, 1]T . This issue raises the
following question:

Problem. Let S1, . . . , Sm be m perturbed training sets
drawn from S via a certain perturbation scheme such as

bootstrapping, or cross-validation. Assume ~̂
Θ1, . . . ,

~̂
Θm

are m MBMs of a certain Φ on the corresponding per-
turbed training sets. How can we quantify the proximity of
Φ to the strongly-intrepretable solution of brain decoding
problem Φ∗?

Considering the uniqueness and the plausibility of Φ∗

as the two main characteristics that convey its strong-
interpretability, we define the interpretability as follows:

Definition 2. Let αj (j = 1, . . . ,m) be the angle between
~̂
Θj and ~Θ∗. The “interpretability” (0 ≤ ηΦ ≤ 1) of the
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MBM derived from a linear function Φ is defined as:

ηΦ =
1

m

m∑
j=1

cos(αj) (4)

In fact, the interpretability is the average cosine similarities
between Θ∗ and MBMs derived from different samplings
of the training set. Even though, in practice, the exact
computation of ηΦ is unrealistic (as Θ∗ is not available), the
interpretability of the decoding model can be approximated
based on ad-hoc heuristics (see (Kia, 2016) for an example
in the magnetoenecephalography decoding). The approx-
imated interpretability can be incorporated in the model
selection procedure in order to find more reproducible and
plausible decoding models.

2.3. Interpretability in Model Selection

The procedure for evaluating the performance of a model so
as to choose the best values for hyper-parameters is known
as model selection (Hastie et al., 2009). This procedure
generally involves numerical optimization of the model
selection criterion. The most common model selection
criterion is based on an estimator of generalization perfor-
mance. In the context of brain decoding, especially when
the interpretability of brain maps matters, employing the
predictive power as the only decisive criterion in model
selection is problematic (Rasmussen et al., 2012; Conroy
et al., 2013). Here, we propose a multi-objective criterion
for model selection that takes into account both prediction
accuracy and MBM interpretability.

Let ηΦ and δΦ be the interpretability and the generalization
performance of a linear function Φ, respectively. We
propose the use of the scalarization technique (Caramia &
Dell´ Olmo, 2008) for combining ηΦ and δΦ into one scalar
0 ≤ ζ(Φ) ≤ 1 as follows:

ζΦ =

{
ω1ηΦ+ω2δΦ
ω1+ω2

δΦ ≥ κ
0 δΦ < κ

(5)

where ω1 and ω2 are weights that specify the importance of
the interpretability and the performance, respectively. κ is a
threshold that filters out solutions with poor performances.
In classification scenarios, κ can be set by adding a small
safe interval to the chance level. It can be shown that the
hyper-parameters of a model Φ are optimized based on ζΦ
are Pareto optimal (Marler & Arora, 2004).

2.4. Classification and Evaluation

In our experiment, a least squares classifier with L1-
penalization, i.e., Lasso (Tibshirani, 1996), is used for
decoding. Lasso is a popular classification method in brain
decoding, mainly because of its sparsity assumption. The

Figure 1. Noisy samples of toy data. The black line shows the true
separator based on the generative model (Φ∗). The magenta line
shows the most accurate classification solution.

choice of Lasso helps us to better illustrate the importance
of including the interpretability in the model selection.
Lasso solves the following optimization problem:

Θ̂ = argmin
Θ

‖Φ(X)− ΦS(X)‖22 + λ ‖Θ‖1 (6)

where λ is the hyper-parameter that specifies the level
of regularization. Therefore, the aim of the model se-
lection is to find the best value for λ. Here, we try to
find the best regularization parameter value among λ =
{0.001, 0.01, 0.1, 1, 10, 50, 100, 250, 500, 1000}.

We use the out-of-bag (OOB) (Breiman, 2001) method to
compute δΦ, ηΦ, and ζΦ for different values of λ. In OOB,
given a training set (X,Y), m replications of bootstrap are
used to create perturbed training sets (we set m = 50) 1.
We set ω1 = ω2 = 1 and κ = 0.6 in the computation of ζΦ.
Furthermore, we set δΦ = 1 − EPE where EPE indicates
the expected prediction error.

3. Experiment
3.1. Experimental Material

To illustrate the importance of integrating the interpretabil-
ity of brain decoding with the model selection procedure,
we use simple 2-dimensional toy data presented in (Haufe
et al., 2013). Assume that the true underlying generative
function Φ∗ is defined by:

Y = Φ∗(X ) =

{
1 if x1 = 1.5
−1 if x1 = −1.5

where X ∈ {[1.5, 0]T , [−1.5, 0]T }; and x1 and x2 rep-
resent the first and the second dimension of the data,
respectively. Furthermore, assume the data is contaminated

by Gaussian noise with co-variance Σ =

[
1.02 −0.3
−0.3 0.15

]
.

Figure 1 shows the distribution of the noisy data.

1
The MATLAB code used for experiments is available at https://github.com/

smkia/interpretability/
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Table 1. Comparison between δΦ, ηΦ, and ζΦ for different λ values on the toy 2D example shows the performance-interpretability
dilemma, in which the most accurate classifier is not the most interpretable one.

λ 0 0.001 0.01 0.1 1 10 50 100 250 500 1000

δ(Φ) 0.9883 0.9883 0.9883 0.9883 0.9883 0.9884 0.9880 0.9840 0.9310 0.9292 0.9292
η(Φ) 0.4391 0.4391 0.4391 0.4392 0.4400 0.4484 0.4921 0.5845 0.9968 1 1
ζ(Φ) 0.7137 0.7137 0.7137 0.7137 0.7142 0.7184 0.7400 0.7842 0.9639 0.9646 0.9646
~̂
Θ ∝

[
0.4520
0.8920

] [
0.4520
0.8920

] [
0.4520
0.8920

] [
0.4521
0.8919

] [
0.4532
0.8914

] [
0.4636
0.8660

] [
0.4883
0.8727

] [
0.5800
0.8146

] [
0.99
0.02

] [
1
0

] [
1
0

]

3.2. Results

In the definition of Φ∗ on the toy dataset, x1 is the decisive
variable and x2 has no effect on the classification of the
data into target classes. Therefore, excluding the effect
of noise and based on the theory of the maximal margin
classifier, ~Θ∗ ∝ [1, 0]T is the true solution to the decoding
problem. By accounting for the effect of noise and solving
the decoding problem in (X,Y) space, we have ~Θ ∝
[ 1√

(5)
, 2√

(5)
]T as the parameter of the linear classifier.

Although the estimated parameters on the noisy data yield
the best generalization performance for the noisy samples,
any attempt to interpret this solution fails, as it yields the
wrong conclusion with respect to the ground truth (it says
x2 has twice the influence of x1 on the results, whereas
it has no effect). This simple experiment shows that the
most accurate model is not always the most interpretable
one, primarily because the contribution of the noise in the
decoding process (Haufe et al., 2013). On the other hand,
the true solution of the problem ~Θ∗ does not provide the
best generalization performance for the noisy data.

To illustrate the effect of incorporating the interpretability
in the model selection, a Lasso model with different λ
values is used for classifying the toy data. In this case,
because ~Θ∗ is known, the interpretability can be computed
using Eq. 4. Table 1 compares the resultant perfor-
mance and interpretability from Lasso. Lasso achieves
its highest performance (δΦ = 0.9884) at λ = 10 with
~̂
Θ ∝ [0.4636, 0.8660]T (indicated by the magenta line
in Figure 1). Despite having the highest performance,
this solution suffers from a lack of interpretability (ηΦ =
0.4484). By increasing λ, the interpretability improves so
that for λ = 500, 1000 the classifier reaches its highest
interpretability by compensating for 0.06 of its perfor-
mance. Our observation highlights two main points: 1)
In the case of noisy data, the interpretability of a decoding
model is incoherent with its performance. Thus, optimizing
the parameter of the model based on its performance
does not necessarily improve its interpretability. This
observation confirms the previous finding by Rasmussen
et al. (2012) regarding the trade-off between the spatial
reproducibility (as a measure for the interpretability) and
the prediction accuracy in brain decoding; 2) if the right
criterion is used in the model selection, employing proper
regularization technique (sparsity prior, in this case) leads

to more interpretability for the decoding models.

4. Discussions
In this study, our primary interest was to present a definition
of the interpretability of linear brain decoding models.
Our definition and quantification of interpretability remains
theoretical, as we assume that the true solution of the brain
decoding problem is available. Despite this limitation,
we argue that the presented simple definition provides a
concrete framework of a previously abstract concept and
that it establishes a theoretical background to explain an
ambiguous phenomenon in the brain decoding context.

Despite ubiquitous use, the generalization performance of
classifiers is not a reliable criterion for assessing the in-
terpretability of brain decoding models (Rasmussen et al.,
2012). Therefore, considering extra criteria might be
required. However, because of the lack of a formal
definition for interpretability, different characteristics of
brain decoding models are considered as the main objec-
tive in improving their interpretability. Our definition of
interpretability helped us to fill this gap by introducing a
new multi-objective criterion as a weighted compromise
between interpretability and generalization performance.
Furthermore, this work presents an effective approach for
evaluating the quality of different regularization strategies
for improving the interpretability of MBMs. Our findings
provide a further step toward direct evaluation of inter-
pretability of the currently proposed penalization strategies.

Despite theoretical advantages, the proposed definition of
interpretability suffer from some limitations. The presented
concepts are defined for linear models, with the main
assumption that Φ∗ ∈ H (where H is a class of linear
functions). Extending the definition of interpretability to
non-linear models demands future research in visualization
of non-linear models in the form of brain maps.
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