This document is confidential and is proprietary to the American Chemical Society and its authors. Do not copy or disclose without written permission. If you have received this item in error, notify the sender and delete all copies.

Staggered fibrils and damageable interfaces lead concurrently and independently to hysteretic energy absorption and inhomogeneous strain fields in cyclically loaded antler bone

Journal:	ACS Biomaterials Science & Engineering
Manuscript ID	ab-2016-00637q.R1
Manuscript Type:	Article
Date Submitted by the Author:	n/a
Complete List of Authors:	De Falco, Paolino; Queen Mary University of London, School of Engineering and Materials Science Barbieri, Ettore; Queen Mary University of London, School of Engineering and Materials Science Pugno, Nicola; Università di Trento, Department of Civil, Environmental and Mechanical Engineering; Queen Mary, University of London, School of Engineering and Materials Science; Fondazione Bruno Kessler, Center for Materials and Microsystems Gupta, Himadri; Queen Mary University of London, School of Engineering and Materials Science

SCHOLARONE[™] Manuscripts

Hysteresis at the fibrillar level in the mineralized fibrils of antler bone (left) is enabled via the staggered architecture and interfaces which can fail above critical loads (right)

334x165mm (96 x 96 DPI)

2
3
Δ
-
5
6
7
8
0
9
10
11
12
12
13
14
15
16
10
17
18
19
20
20
21
22
23
20
∠4
25
26
27
21
28
29
30
24
31
32
33
34
25
30
36
37
38
00
39
40
41
42
40
43
44
45
46
47
41
48
49
50
50
51
52
53
54
54
55
56
57
58
50
59

1	Staggered fibrils and damageable interfaces lead concurrently and
2	independently to hysteretic energy absorption and inhomogeneous
3	strain fields in cyclically loaded antler bone
4	P. De Falco ^a , E. Barbieri ^a , N. Pugno ^{a,b,c} and H. S. Gupta ^{a*}
5	^a Queen Mary University of London, School of Engineering and Material Science, London, E1 4NS, UK
6	^b Laboratory of Bio-Inspired and Graphene Nanomechanics, Department of Civil, Environmental and
7	Mechanical Engineering, University of Trento, Trento, Italy
8	^c Center for Materials and Microsystems, Fondazione Bruno Kessler, Povo (Trento), Italy
9	* Corresponding author: Himadri S. Gupta (h.gupta@qmul.ac.uk)
10	Keywords
11	Antler bone, interface, nanoscale, cohesive behaviors, heterogeneity, hysteresis
12	Abstract
13	The high toughness and work to fracture of hierarchical composites, like antler bone, involve structural
14	mechanisms at the molecular, nano- and micro scales, which are not completely explored. A key
15	characteristic of the high energy absorption of such materials is the large hysteresis during cyclic loading, but
16	its origin remains unknown. In situ synchrotron X-ray diffraction tests during tensile loading of antler bone
17	showed heterogeneous fibrillar deformation and hysteresis. To explain the origin of these mechanisms from
18	the nanostructure of antler bone, here we develop a class of finite-element fibril models whose predictions
19	are compared to experimental data across a range of potential composite architectures. We demonstrate
20	that the key structural motif enabling a match to experimental data is an axially staggered arrangement of
21	stiff mineralized collagen fibrils coupled with weak, damageable interfibrillar interfaces.
22	
23	1 INTRODUCTION
24	Natural structural materials exhibit mechanical properties through complex hierarchical
25	architectures and load-absorbing mechanisms. These architectures evolved naturally from

basic building blocks thanks to a 'self-organization' strategy during growth¹. In fact,
biological structures adapt, change function during growth, renew their material and build

28 hierarchies². The macroscopic behaviour of these materials depends on the interaction

ACS Biomaterials Science & Engineering

between structural properties at different scales³. Bio-composites, such as bone, shells and nacre, represent an excellent example of how the design at lower hierarchical scales confers higher mechanical properties than the single constituents⁴. Although the stiffness of these biocomposites is comparable to that of the basic constituent at the nanoscale, their toughness results hugely increased. For instance, in bone and shell, the toughness of the mineral constituents is << 1MPa*m^{1/2} while the toughness of their macrostructure varies, respectively, in a range of 2 - 7 MPa^{*}m^{1/2} and 3 - 7 MPa^{*}m^{1/2}.

Bone, as shown in **Figure 1**, at the nanometre scale length is a composite of stiff inorganic hydroxyapatite platelets interleaved with a softer organic matrix, made principally of type I tropocollagen proteins⁵. This sub-structure, together with an intrafibrillar phase of noncollageneous proteins and mineral, forms mineralized fibrils that are arranged into aggregate structures at higher levels and larger length scales, such as fibril arrays and lamellae¹. The structural aspects of this architecture served as inspiration for bioinspired materials that replicate the nanometre scale fibril-matrix⁶⁻¹⁰ and intrafibrillar¹¹ structure, or at micrometre scales^{12,13}. Nonetheless, the mechanical interactions between the constituent units and the higher length scales remain a matter of active research. In particular, previous studies focused on how the hierarchical architecture brings functionally desirable properties such as high toughness¹⁴, energy absorption and fatigue resistance¹⁵.

At the range of $1 - 100 \mu m$, accepted and validated toughness mechanisms are crack deflection and bridging¹⁶, and constrained microcracking¹⁷. The nanoscale structure is believed to be of fundamental importance for bone toughness. However, it is both challenging to investigate experimentally¹⁸ as well as to explain the reasons of its mechanical properties at this scale with a model. Works to date mainly focused on either deformation beyond the yield point under uniaxial or localized loading¹⁸⁻²⁰ or on post-hoc

interpretation of electron microscopic images of loaded and fractured bone²¹⁻²². These experimental studies led to hypothesise different toughness mechanisms²³. Examples include intrafibrillar plasticity²⁰, sacrificial bonds within noncollageneous proteins²², friction between collagen and mineral²⁴, fibrillar sliding of mineralized collagen fibrils²⁵, interfibrillar sliding of collagen fiber arrays²⁶ and microcracking²⁷. At these small length scales relatively less clear evidence exists on the response to cyclic loading, although recent experimental work has begun to shed light on this question. For example, Schwiedrzik et al.²⁸ focused on compression and cyclic micro-pillar tests on lamellar bone and measured axial and transverse apparent moduli and compressive strengths.

Bone is physiologically subjected to external periodic loading that can lead to fatigue failure, and high rate impact that instead can lead to fracture. It is then of considerable interest to understand how the nanostructure behaves under these loading conditions. Unfortunately, experimental information on the structural changes at the fibrillar and interfibrillar level in these loading modes is relatively scarce. Concurrently, the link between the types of fibrillar architecture and the developed cyclic inelastic response is also not very clear. In this regard, a recurrent generic motif in the architecture of hard biological composites is a staggered arrangement of fibrils (Figure 2b)²⁹. This particular arrangement plays a key role in energy dissipation through sliding³⁰⁻³¹ and in enhancing the structural elastic properties³²⁻³³. Gupta et al.²⁰ identified elastoplastic behaviour for the individual mineralized fibril under the assumption of staggered configuration of mineral platelets and collagen molecules inside the fibril.

The role of such a staggered configuration in cyclic loading and energy absorption is
unexplored at the nanoscale. Recent *in situ* synchrotron SAXD/WAXD mechanical
loading/unloading tests on antler bone²⁰ show hysteresis in stress-strain curves at both the
3

macroscopic and the fibrillar level. These results also highlight the presence of two groups of fibrils: plastically deforming fibrils, which exhibit larger deformation (which will be denoted type A in what follows), and elastically deforming fibrils (denoted type B), whose deformation remains at or under the strain at the material yield point. It is clear that these structural mechanisms may be related, and that the fibrillar hysteresis is an important component of the high work to fracture of antler, but its structural origins are far less understood. In situ experimental probes of the type described above need to be combined with ultrastructural modelling at the scale of 1-100 nm, in order to develop a deeper understanding of the relevant mechanisms.

In this paper, we present a set of finite element simulations of the mineralized fibrils in antler bone under cyclic loading whose results, when matched to experiment, give an understanding of the causes of the fibrillar hysteresis. We will show that the combination of a damageable interface and staggered fibrillar arrangement turns out to be capable of explaining the experimentally observed hysteretic loops in loading/unloading curves. In addition, a clear explanation of the biphasic fibrillar deformation mechanisms, in terms of the dependence on interfacial strength and architecture, is here reported. These results provide new insights of toughening mechanisms at the nanoscale in antler bone.

2
3
4
5
6
7
1
8
9
10
11
12
12
14
14
15
16
17
18
19
20
21
22
~~ ^?
23
24
25
26
27
28
29
20
30
31
32
33
34
35
36
37
38
20
39
40
41
42
43
44
45
46
40 17
-11 10
40
49
50
51
52
53
54
55
56
50
ວ/ 50
58
59

Figure 1 - Hierarchical structure in antler bone: The collagen fibrils (II) are made of tropocollagen molecule (I) and hydroxyapatite mineral. At the following hierarchical level, these fibrils are wrapped in a protein-based matrix (III) forming a plywood structure: the lamella unit (IV). This group is repeated in the osteon (V) which is part of the compact bone (VI) and therefore of the antler bone structure (VII-VIII).

106 **2 METHODS**

107

105

108 2.1 Experimental method

109 The preparation description of antler bone specimens and the *in situ* mechanical tests with 110 synchrotron small angle X-ray diffraction (SAXD) are described in detail in a previous 111 paper²⁰, and summarized here briefly. The samples were taken from the antler cortical 112 shell of a red deer (Cervus elaphus) near the antler-pedicle junction and tested with SAXD 113 measurements, combined with cyclic loading. While the details are available in our previous papers ³⁴, they will be summarized here for completeness. Figure 2a shows a 114 115 highly simplified schematic for tensile cyclic tests on hydrated antler bone specimens 116 combined with time-resolved synchrotron SAXD measurements, where a synchrotron X-117 ray beam impinges on the specimen, leading to a sequence of SAXD patterns acquired as 118 the sample is deformed.

119

60

Meridional peaks are visible in the SAXD pattern, due to the periodic electron density profile arising from the axial D-stagger of the tropocollagen molecules inside the fibril (D~65-67 nm for vertebrate collagenous tissues). Percentage shifts in these peak positions are therefore measures of fibril strain, as reported previously for bone (e.g. Gupta et al.³⁵, Dong et al.³⁶, Zimmermann et al.³⁷, among others). The 3rd order meridional peak was used

for determination of mean fibril strain, via the relation D = $6\pi/q_{03}$ where q_{03} was the peak position, in reciprocal space, of the meridional peak. Further, the peak width w_q was also determined, which (as reported in Krauss et al.³⁴ and Gupta et al.²⁰) provides a measure of the heterogeneity of fibrillar deformation: a narrow w_q corresponds to a uniform fibrillar deformation with all fibrils in the scattering volume deforming similarly, while an increasing $w_{\rm q}$ corresponds to an increasing heterogeneity, or dispersion, in the fibril strain distribution. As the details are presented in Gupta et al.²⁰, we note only that by tracking the stress-induced increase in mean fibril strain, together with the increase in w_{q} , a biphasic fibrillar deformation was observed, and will serve as part of the comparison of our presented model to experiment.

2.2 Numerical method and implementation of the model

Parametric finite elements simulations were performed to test a seven-layer staggered fibrillar system using Abagus (Abagus 6.14-1, Dassault Systemes). The two-dimensional model is made of 2800 CPS4R finite elements (CPS4R corresponds to 4-node, reduced integration with hourglass control). The plates, measuring 10 μ m × 0.2 μ m, represent the fibrils (with 200 nm or 0.2 µm radius²) in bone and are connected through cohesive laws, which are shown in detail in Figure 2b³⁸. Interfaces link both the lateral sides of fibrils ('mode I interface') and their bottom-up sides ('mode II interfaces') (see Figure 3c for interfaces definition). The model (Figure 2b) assumes initially linear elastic behaviour (Equation 1, next page) followed by the initiation and evolution of damage. In Equation 1, the traction stress vector consists, as our models are two-dimensional, of two components t_n and t_s , which are, respectively, the normal and shear tractions, and δ_n and δ_s which represent the relative displacements between the nodes on the adjacent surfaces of two different fibrils. We decided to use the simplest traction-separation law, where normal (K_{nn}) and tangential (K_{ss}) stiffness are not coupled (K_{ns} and K_{sn} are null in **Equation 1**).

$$t = \begin{bmatrix} t_n \\ t_s \end{bmatrix} = \begin{bmatrix} K_{nn} & 0 \\ 0 & K_{ss} \end{bmatrix} \begin{bmatrix} \delta_n \\ \delta_s \end{bmatrix}$$
(1)

150

151 As peak traction values for the mode I and mode II undamageable interfaces, we used generic values such as $t_n^0 = t_s^0 = 80$ MPa. These values are never achieved among the 152 153 finite elements adjacent to the interfaces and do not affect the results. For mode II damageable interfaces we adopted the values $t_n^0 = 80$ MPa and $t_s^0 = 0.8$ MPa; t_n^0 is an 154 arbitrary high value, never reached upon the structure, while t_s^0 is the shear stress 155 occurring when at least one point in the structure reaches yielding. We followed the 156 hypothesis²⁰ that heterogeneity, due to progressive mode II interface damage, starts 157 158 occurring in correspondence of the yielding point. We imposed this condition by choosing 159 as shear traction peak value, the maximum shear stress, recorded in a generic point of 160 structure, which occurs when at least one finite element reaches the yielding stress 161 prescribed by the material model used for the simulations ($\sigma_v \approx 46$ MPa, which is the yield point observed experimentally for antler bone in Gupta et al.²⁰). The damage initiation 162 values t_n^0 and t_s^0 were chosen such that mode I interfaces are never damageable, while 163 164 the mode II interfaces could be either damageable or not. Therefore, we adopted a 165 maximum stress criterion for the onset of damage (Equation 2) where damage initiates when the maximum ratio between the traction values at the interface ($< t_n >$, t_s) and the 166 peak values (t_n^0 and t_s^0) reaches the value of one. The symbols <> represent the Macaulay 167 168 brackets that are used to mean that a compressive traction does not initiate the damage.

$$max\left\{\frac{\langle t_n \rangle}{t_n^0}, \frac{t_s}{t_s^0}\right\} = 1 \quad (2)$$

169

170

57 58 59

60

We used, the values $K_{nn} = K_{ss} = 100$ MPa as stiffness coefficients for both mode I and mode II interfaces. The choice of K_{nn} for the mode II interface and K_{ss} for the mode I interface has no effect on the results. The response of the system was then expected to be mainly affected by K_{nn} for the mode I interface and by K_{ss} for the mode II one. We performed parametric simulations, keeping all the parameters fixed except for K_{nn} for the mode I interface and K_{ss} for the mode II interface. We varied these values between 100 and 300 MPa/ μ m, with a step of 100 MPa/ μ m (in total 9 simulations), and we found that when $K_{nn} = K_{ss} = 100$ MPa/µm the numerical maximum tissue strain matches the correspondent experimental value closely. We chose these coefficients such that both the numerical and the experimental systems achieve the same level of maximum tissue strain. We expressed the coefficients K_{nn} and K_{ss} as K in **Figure 2b**, as the figure is representative of a generic mode of fracture. The choice of K_{nn} for the mode I interface and Kss for the mode II interface is fundamental for the obtained results; in fact it affects not only the deformation of the system but also the hysteretic width of loops in stress-strain curves.

As displacements at failure of the interfaces, we adopted the arbitrary high values 10 µm and 3 µm, respectively for the undamageable interfaces and for the damageable interface. These levels of displacement values are never achieved by the finite elements in our simulations, over the course of the stress and strain range seen experimentally, and are hence selected to make sure that the damage occurs only in terms of stiffness degradation and never of complete failure. Specifically, we assumed that the stresses are always transferred through the interfaces. For damageable interfaces, once the damage initiates, the stiffness follows the degradation law: K' = (1 - d) K, where d ϵ [0, 1] is the damageable variable. The total dissipated energy dissipated (per unit of area) through the process of damage of the interface is the area under the traction-separation curve (represented as G_c

1 2 3	197	in Figure 2b). In Table 1 we schematically summarise the values adopted for the cohes	sive
4 5	108	simulations	
6 7	130		
8			
9 10			
11 12			
13			
14 15			
16 17			
18			
19 20			
21 22			
23			
24 25			
26 27			
28			
29 30			
31 32			
33			
34 35			
36 37			
38			
39 40			
41 42			
43 44			
45			
46 47			
48 ⊿q			
50			
51 52			
53 54			
55			
56 57			
58 59			
60			10

204 B-C: damage evolution curve characterized by the stiffness degradation coefficient (1- 205 C: failure of interface. 206 207	200		lion law. / D.			
C: failure of interface. C: failure of int	204	B-C: damage evolution curve characteriz	zed by the stif	fness degradation c	oefficient (1-d)	
206 207 $ \frac{Mode I}{undamageable} damageable} damageablamageable} damageable} damageabl$	205	C: failure of interface.				
207 $ \frac{Mode I}{interface} \frac{Mode II}{undamageable} damageable}{interface} \frac{Mode II}{interface} \frac{Mode II}{$	206					
$\begin{tabular}{ c c c c c } \hline Mode II & Mode II & Mode II & Mode II & undamageable & damageable & interface & i$	207					
$\frac{\text{Mode I}}{\text{interface}} \qquad \frac{\text{undamageable}}{\text{interface}} \qquad \frac{\text{damageable}}{\text{interface}} \qquad \frac{\text{damageable}}{100} \qquad \frac{100}{100} \qquad \frac{100}{10} $				Mode II	Mode II	
interface interface interface interface Elastic constant for fracture mode I: 100 100 100 Kan [MPa/µm] Elastic constant for fracture mode II: 100 100 100 Kas [MPa/µm] Peak traction for fracture mode I: 80 80 80 0 Peak traction for fracture mode II: 80 80 80 80 0 Peak traction for fracture mode II: 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 10 3 20 208 Table 1 - Input values for cohesive models used in the FE analyses. Bold fonts indice the parameters that critically affect the simulations. 208 <th colsp<="" td=""><td></td><td></td><td>Mode I</td><td>undamageable</td><td>damageabl</td></th>	<td></td> <td></td> <td>Mode I</td> <td>undamageable</td> <td>damageabl</td>			Mode I	undamageable	damageabl
Elastic constant for fracture mode I: 100 1			interface	interface	interface	
Elastic constant for fracture mode I: 100 100 100 K _{nn} [MPa/µm] Elastic constant for fracture mode II: 100 100 100 K _{ss} [MPa/µm] Peak traction for fracture mode I: 80 80 100 t _n ⁰ [MPa] Peak traction for fracture mode II: 80 80 0.8 t _s ⁰ [MPa] Separation value 10 10 3 $\overline{\delta}$ [µm] 208 Table 1 – Input values for cohesive models used in the FE analyses. Bold fonts indice the parameters that critically affect the simulations. 210				interface	interrated	
$100 100 100 100 100 100 K_{nn} [MPa/\mum]$ Elastic constant for fracture mode II: 100 100 100 100 100 100 K_{ss} [MPa/\mum] Peak traction for fracture mode I: 80 80 100		Elastic constant for fracture mode I:				
Elastic constant for fracture mode II: $100 100 100$ $K_{ss} [MPa/\mum]$ Peak traction for fracture mode I: $80 80 100$ $t_n^0 [MPa]$ Peak traction for fracture mode II: $80 80 0.8$ $t_s^0 [MPa]$ Separation value $10 10 3$ $\delta [\mum]$ Table 1 – Input values for cohesive models used in the FE analyses. Bold fonts indice the parameters that critically affect the simulations.			100	100	100	
Elastic constant for fracture mode II: 100 100 100 K_{ss} [MPa/µm] Peak traction for fracture mode I: 80 80 100 t_n^0 [MPa] Peak traction for fracture mode II: 80 80 0.8 t_s^0 [MPa] Separation value 10 10 3 δ [µm] Table 1 – Input values for cohesive models used in the FE analyses. Bold fonts indice the parameters that critically affect the simulations.		κ _{nn} [MPa/μm]				
$100 100 100$ $K_{ss} [MPa/\mum]$ Peak traction for fracture mode I: $80 80 100$ $t_n^0 [MPa]$ Peak traction for fracture mode II: $80 80 0.8$ $t_s^0 [MPa]$ Separation value $10 10 3$ $\delta [\mum]$ Table 1 - Input values for cohesive models used in the FE analyses. Bold fonts indice the parameters that critically affect the simulations.		Elastic constant for fracture mode II:				
K _{ss} [MPa/µm] Peak traction for fracture mode I: 80 80 t_n^0 [MPa] Peak traction for fracture mode II: 80 80 80 80 80 80 t_s^0 [MPa] Separation value 10 10 δ [µm] Table 1 – Input values for cohesive models used in the FE analyses. Bold fonts indice the parameters that critically affect the simulations.			100	100	100	
Peak traction for fracture mode I: solar 0 (MPa] Peak traction for fracture mode II: 80 80 0.8 t_s^0 (MPa] Separation value 10 10 3 δ [µm] Table 1 – Input values for cohesive models used in the FE analyses. Bold fonts indice the parameters that critically affect the simulations.		K _{ss} [MPa/μm]				
$\begin{array}{c} 80 & 80 & 100 \\ \mathbf{t_n^0 [MPa]} \\ \end{array}$ Peak traction for fracture mode II: $\begin{array}{c} 80 & 80 & 0.8 \\ \mathbf{t_s^0 [MPa]} \\ \end{array}$ Separation value $\begin{array}{c} 10 & 10 & 3 \\ \mathbf{\delta [\mu m]} \\ \end{array}$ 208 209 208 209 209 Table 1 - Input values for cohesive models used in the FE analyses. Bold fonts indice the parameters that critically affect the simulations. 210		Peak traction for fracture mode I:				
t_n^0 [MPa]Peak traction for fracture mode II:808000.8 t_s^0 [MPa]Separation value10103 δ [µm]208209209201201			80	80	100	
Peak traction for fracture mode II: 80 80 0.8 $\mathbf{t_s}^0$ [MPa] Separation value 10 10 3 δ [µm] 10 10 3 Table 1 – Input values for cohesive models used in the FE analyses. Bold fonts indice the parameters that critically affect the simulations. 10 10		tn⁰ [MPa]				
$80 \qquad 80 \qquad 0.8$ $t_{s}^{0} [MPa]$ Separation value $10 \qquad 10 \qquad 3$ $\delta [\mu m]$ 208 209 210 Table 1 – Input values for cohesive models used in the FE analyses. Bold fonts indic the parameters that critically affect the simulations.		Peak traction for fracture mode II:				
t _s ⁰ [MPa] Separation value 10 10 3 δ [μm] 7able 1 – Input values for cohesive models used in the FE analyses. Bold fonts indic the parameters that critically affect the simulations.			80	80	0.8	
Separation value 10 10 3 δ [μm] Table 1 – Input values for cohesive models used in the FE analyses. Bold fonts indic the parameters that critically affect the simulations. 210		ts ⁰ [MPa]				
10 10 3 δ [μm] 208 Table 1 – Input values for cohesive models used in the FE analyses. Bold fonts indic the parameters that critically affect the simulations. 210		Sonaration value				
 δ [μm] Table 1 – Input values for cohesive models used in the FE analyses. Bold fonts indice the parameters that critically affect the simulations. 210 		Separation value	10	10	3	
 Table 1 – Input values for cohesive models used in the FE analyses. Bold fonts indice the parameters that critically affect the simulations. 		δ [μm]				
 Table 1 – Input values for cohesive models used in the FE analyses. Bold fonts indic the parameters that critically affect the simulations. 						
210	208 209	Table 1 – Input values for cohesive mo the parameters that	dels used in t critically affect	he FE analyses. Bo t the simulations.	ld fonts indica	
	210		-			

The material properties adopted for the fibrils follow a previous model (Figure 3a)²⁰, with the Young's modulus of 15.8 GPa and the yielding of 46 MPa (Figure 3b). In other words, the elastoplastic behaviour of a single fibril, and its yield point and stiffness, are taken as a given, and arise from previous experimental work (Gupta et al.^{20, 39}). Tensile and cyclic static simulations were performed to study respectively the biphasic fibrillar deformation (section 3.1) and hysteretic loops in stress-strain curves. The applied loads reproduce the values used for experiments by Gupta et al.²⁰. Uniaxial traction, along the direction 1 (see Figure 3c), was applied to the top end of the finite element models and fixed support to the bottom end, while right and left sides were kept unconstrained. In detail, a traction value of 60 MPa was imposed for the static tests and a sequence of different traction values for the cyclic tests (43 - 0 - 50 - 0 - 56 - 0 - 60 - 0 - 43 MPa). The uniaxial tissue strain was computed as ratio between the displacement of the loaded edge and the initial length, not by averaging the strain field. This is because the average of the strains over the structure does not account for the deformation of the cohesive interfaces. In fact, since cohesive interfaces are essentially springs, small gaps appear between the fibrils (visible, for example, in **Figure 4c**). These gaps are not cracks, but only representative of relative displacements between fibrils.

Figure 3 - Experimental and numerical fibril stress-strain curves: (a) Experimental stress-strain curve for antler bone versus model prediction. Data are averaged from 10 uniaxial stretch-to-failure tests and bars are standard deviations. (b) Material properties input for simulations. (c) Cohesive interface characterization. The interface surrounding the central fibril starts damaging when at least one finite element of the whole structure reaches yielding at 46 MPa (maximum stress criterion).

- 49 237

- **3 RESULTS**

240 3.1 Biphasic fibrillar deformations

As stated earlier, a main experimental finding in Gupta et al.²⁰ was a biphasic fibrillar deformation. Our aim was to understand the role of cohesive interfibrillar surface interfaces in staggered mineralized fibril models, in enabling this behaviour. In this regard the multipanel **Figure 4** shows an overview comparing strain distributions between experimental data and numerical simulations. These will be explored in detail below.

Figure 4 – Experimental and numerical fibrillar deformation mechanisms: (a) Strain distribution for elastically and plastically deforming fibrils for a tissue strain value of 1.76 %. (b) SAXD intensity plots. (i) Tissue strain at the yield value of 0.6 % (highlighted by a circle and the letter (i) in Figure c). (ii) Tissue strain at the value of 3.2 % (highlighted by a circle and the letter (ii) in Figure c). (c) Stress distributions with and without damageable interfaces. Zoom from Figures d and f. (d) Fibril behaviors in presence of undamageable

Page 17 of 30

ACS Biomaterials Science & Engineering

interfaces between fibrils. Fibril b, at the center of the middle layer, deforms plastically. (e) Variation of mean fibril strain (filled circles) and upper and lower control lines plotted against tissue strain. The middle solid line is the linear regression against tissue strain. (f) Fibril behaviors in presence of damageable interface only between the middle layer and the adjacent two layers. Fibril b, at the center of the middle layer, deforms elastically.

For tensile simulations, we firstly adopted a non-damageable law for both the mode I and the mode II interfaces, shown previously in **Figure 3c**. The results of applied uniaxial traction on the fibrils are shown in **Figure 4d**, with relative magnification in **Figure 4c**, with both fibrils A and B plastically deforming, as expected. The maximum longitudinal stress (σ_{11}), reached in central region of the fibrils, is 135 MPa in fibril A and 119 MPa in fibril B, while the averaged stresses are respectively 65 MPa and 63 MPa, beyond the yield point.

Secondly, we found that the introduction of damageable mode II interface around the middle layer produces a differentiation of the fibril behaviors. The damage of the interface around the middle layer partially 'isolates' fibril B, which is then not able to fully contribute to the load absorption. While fibril A remains elastoplastic in its deformation behaviour, the deformation of fibril B never exceeds the elastic range (Figures 4c - f). In fact, although the maximum longitudinal stress (σ_{11}), locally measured in a restricted region of fibril B, is 58 MPa (beyond the yield point), its homogenized stress is below the yield point (39 MPa). The corresponding values for fibril A are respectively 157 MPa and 73 MPa. Considering a particular level of macroscopic tissue strain beyond the yield point, such as ε_t = 1.76 % (Figure 4a), we find that most of the load (86 %) is carried by fibril A whose finite elements are able to stretch up to eight times more than the finite elements in fibril B. For this tissue strain value, the largest deformation in fibril A is $\varepsilon_f = 8.9$ % whilst in fibril B is $\varepsilon_f = 1.2$ %. In

addition, the average deformation of fibril A is 0.9 % while for the fibril B the equivalentstrain is 0.2 % (below the yield point).

In Figure 4f, curves show that numerical results are in good agreement with the experimental results shown in Figure 4e, where a comparison between experimental results and model predictions, developed by Gupta et al.²⁰, is presented. In particular, the figure includes the upper and lower control lines ($\epsilon_{f+25\%}$), the best fit linear regression against tissue strain (middle solid line), and the model predictions for both the elastically deforming fibril (blue dash-dotted line) and the plastically deforming fibrils (red dashed line). In Figures 4f - e, the elastic and plastic patterns are clearly observable, as also demonstrated by the experimental results in **Figure 4b**, where the SAXD intensity plot (Figure 4b (i)) shows that all the fibrils are elastic at the yielding point (tissue strain = 0.6 %), while for a tissue strain of 3.2 % (Figure 4b (ii)) the coexistence of plastic and elastic fibrils occurs, with 58% of fibrils at ε_f = 2.95 % (plastic strain) whilst the remainder fraction at $\varepsilon_f = 0.53\%$ (elastic strain).

Figure 5 - Cyclic loading in different fibrillar geometries: *Comparisons between numerical (figures a, b, c*₁*, c*₂*, d*₁*, d*₂*) and experimental results (figure e). (a) Two fibrils model with 'mode I' non damageable interface. (b) Two fibrils model with 'mode II' non damageable interface. (c*₁*) Four fibrils model with 'mode I' and 'mode II' non damageable interfaces, in aligned configuration. (c*₂*) Four fibrils model with 'mode I' non damageable interface and 'mode II' damageable interface, in aligned configuration. (d*₁*) Seven layers model without interfaces, in staggered configuration. (d*₂*) Comparison between two seven*

304 layers models in staggered configuration: damageable mode II interfaces at the middle
305 layer versus undamageable ones. (e) Experimental results for cyclic loading on bone.

A second main finding in Gupta et al.²⁰ was the existence of hysteresis at the fibrillar level. The elasto-plastic behaviors of a set of different models under cyclic loading were simulated to discover the combined effects of fibril lateral arrangement and architecture, coupled with the interface types described in the previous subsection. We found that the experimentally observed hysteresis in the cyclic loading curves occurs when staggered fibril arrangement coupled with mode I and mode II cohesive surface interfaces are introduced in cyclic simulations. In fact, the presence of only mode I or mode II interfaces for, respectively, a system of two aligned or two-column fibrils is clearly not responsible for hysteresis (Figures 5a - b). These effects do not arise from the limited number of fibrils considered: an increase in number of fibrils from two to four, in a condition of non-overlap, results in no hysteresis with both damageable and undamageable mode II interfaces (Figure 5c1 – c2). As fibrils do not transmit load through shearing in the configurations shown in **Figures 5c1 - c_2**, no difference between damageable and undamageable mode II interface is observed. From our set of simulations, we observed that only the concurrence of staggered fibril arrangement and cohesive surface interface (not necessary damageable) leads to hysteresis in loading/unloading stress strain curves (Figure 5d2). It can be seen from Figure 5d1 that staggered but perfectly bonded fibrils (no cohesive interface) do not exhibit hysteresis and loading/unloading patterns perfectly overlap. The introduction of damageable mode II interfaces makes the structure more deformable. Indeed, as fibrils, in staggered configuration, transmit loading through shearing, damageable and then weaker mode II interfaces allow the whole structure to deform up to 1.89 %, while in a condition of non-damageable interfaces the tissue strain reaches the value of 1.67 % (Figure 5d2) at the same stress level of 60 MPa.

Numerical results for the cyclic loading curves are in very good agreement with experimental data (comparisons in Figures 5d2 and 5e). Maximum tissue strains, in both cases, are about 1.9 % and furthermore, the structural yielding points occur at tissue strain \approx 0.22 % and axial stress \approx 25 MPa, earlier than the corresponding prediction in the material law²⁰ used for simulations.

Figure 6 - Summary of main results: (a) Staggered fibrillar configuration and damageable mode II interface are responsible for hysteretic stress strain curve and heterogeneous fibrillar deformation. (b) The inclusion of staggered configuration and undamageable interface leads to hysteresis and homogeneous fibril deformation. (c) Aligned fibrillar configuration and no interface lead to no hysteresis and homogeneous fibril deformation.

This paper shows how combination of finite elements simulations at fibrillar level, combined with experimentally derived information on ultrastructural plasticity of the fibril, enables the development of a model for the mechanical behaviors of antler bone under cyclic loading conditions which can explain both the energy dissipation (via hysteresis) as well as the concurrent heterogeneous pattern at the nanoscale. In addition, as shown in Figure 6, our parametric simulations allow us to conclude that the combination of: a. staggered fibrillar configuration and damageable mode II interface leads to hysteresis and fibrillar heterogeneity; b. staggered fibrillar configuration and undamageable mode II interface leads to hysteresis and fibrillar homogeneity;

c. aligned fibrillar configuration and perfectly bonded boundary conditions (without
 cohesive behaviors) at the interfaces leads to no hysteresis and fibrillar
 homogeneity.

358 4 DISCUSSION AND CONCLUSION

Elastic deformation in bone at the nanoscale has been extensively studied^{4, 32, 40-42} via multiscale fibre composite models that often treat bone material as a two-scale hierarchical composite; mineralized fibrils are arranged in a staggered manner, and fibrils themselves consist of mineral platelets staggered in a collagen matrix phase. Such models are usually validated by comparing the tissue-level modulus predictions to experimentally determined stiffness, though in an ideal scenario predictions of deformation and stress at multiple levels would be calculated and compared to experiment.

367 In the area of structural models for inelastic and damage accumulation in bone, there are 368 no modeling attempts for the structural response of the nanoscale bone material under

cyclic loading. To fill this gap, here we proposed a model based on surface cohesive behaviors. Our main assumptions are to neglect the material properties of the interfibrillar matrix and to consider the fibrils linked by cohesive surfaces whose damage process occurs in terms of stiffness degradation. Previously, cohesive behaviours were used for studying the damage mechanisms of bone at different scales⁴³⁻⁴⁷. Our approach, on the contrary, is based on cohesive stiffness representative of interfaces with negligible small thicknesses. The main difference between the two approaches is that in surface-based laws the damage evolution describes the degradation of the cohesive stiffness whereas in the continuum-based approach⁴³⁻⁴⁷ the damage concerns the degradation of the material stiffness. The continuum model, called also cohesive zone model, can be used to analyse both interface and bulk fracture. For example, Hamed and Jasiuk⁴³ created a multiscale model for studying the mechanisms of damage in bone and used the cohesive zone for modelling the fracture of the interface between collagen and hydroxyapatite platelets but also the fracture inside the fibrillar components. They found that the mesh size of cohesive elements had a significant effect on the strength of the mineralized fibrils. A recent study⁴⁶ investigated the evolution of damage in staggered array of mineralised collagen fibrils (MCF) embedded in extrafibrillar protein matrix modelled by continuum cohesive finite elements. The authors found that the failure mechanisms of the extrafibrillar matrix play a dominant role on the energy dissipation capacity of the system. Lin et al.⁴⁷ recently provided evidence as to the importance of the extrafibrillar matrix, considered as composite of hydroxyapatite crystals embedded in an interface modelled by cohesive finite elements, in the pre-vield deformation and failure mode of bone. They found that a tough interface provokes ductile deformation of matrix, as in the case of wet bone, whereas a brittle interface causes brittle deformation, as in dry bone.

Hysteresis, at higher scales in bone, has been found in experiments, but relatively few bone-specific models exist. Ascenzi et al.48 tested single osteons and found hysteresis loops under tension. They discovered that the collagen orientation is the main factor to determine the features of hysteresis loops. In both our experimental work and in other references such as Ascenzi et al.⁴⁸, the width of hysteretic loops tends to increase as the applied stress increases. In terms of modelling of the hysteresis loop width, the work of A. G. Evans and co-workers, who carried out modelling and numerical analysis of ceramic matrix composite deformation⁴⁹, is relevant, although their model is applied to a different class of synthetic materials. They derived expressions for which the maximum hysteresis loop width depends on the Young's modulus of both, the fibrils and the matrix, the fibril radius and the fibril volume fraction, but also on the stress conditions, such as the maximum stress reached in the system. At lower scales an analytical model explained the inelastic response of bone⁵⁰, indicating stress/strain hysteresis in loading/unloading tests. The authors found the shear yielding of the interface between collagen fibrils and mineral platelets to be the cause of irreversible slip and then of hysteresis. Hysteresis, in our staggered fibrillar models, is due to the presence of cohesive surface interfaces and in detail, to zones of stress concentration. In fact, we found that, once stretched or released (null surface traction applied to the structure) finite elements of the horizontally adjacent fibrils (fibrils on the same layer) are under-loaded, while finite elements of the underlying fibrils are over-loaded (Figure 4c). This mechanism results in a certain delay of the structure, manifesting as hysteretic loops, necessary to reach the traction value imposed at following loading or unloading steps.

418 Our second finding regards heterogeneous fibrillar deformation caused by partially 419 damageable interfaces. Heterogeneity in the behaviors of mineralized tissue was detected 420 as a mechanism contributing to energy dissipation ^{19, 22}. Mechanical properties of Page 25 of 30

ACS Biomaterials Science & Engineering

individual mineralized collagen have been only recently analyzed thanks to the development of innovative experimental techniques. While the fibrillar structure of collagenous tissues was explored extensively during the last decades (for a review see ³⁹), only more recently have their mechanical properties been determined experimentally^{18, 51}. Heterogeneity in fibrillar deformation were found in antler cortical tissue by Krauss et al.³⁴ by using a time-resolved synchrotron small angle X-ray diffraction technique, coupled with tensile testing. They found that heterogeneity in fibrillar deformations starts after the macroscopic vielding. Hang and Barber¹⁸ performed tensile testing on individual fibrils from antler using atomic force microscopy and scanning electron microscopy. They found heterogeneous deformations in fibrils showing either yield or strain hardening. The structural mechanism for interfacial failure between fibrils may involve the breakage of sacrificial bonds in the noncollageneous proteins found in the interfibrillar matrix²². These weak calcium mediated bonds within and between proteins such as osteopontin or osteonectin have been proposed to play a significant role in bone toughness⁵²⁻⁵³ Recently, Poundarik et al.²¹ proposed a mechanism of clusters of extrafibrillar mineral held together by non-collagenous protein glue. Under deformation, this model generates an inhomogeneous strain and stress pattern at the fibrillar level. While we found, instead, that damageable mode II interfaces are responsible for heterogeneous strain fields, the structural origin of such damage may involve mechanisms as proposed by Poundarik et al.²¹. In detail, fibrils surrounded by damageable interfaces behave elastically while other fibrils reach higher stress values after yielding (Figure 7a in Appendix 1). At lower scales, Buehler²⁵ found the existence of a range of adhesive energy values between molecule $(0.01 - 1 \text{ J/m}^2)$ which optimizes the toughening mechanisms. Following this concept of optimization, a possible application of our model may be a quantitative and parametric approach to evaluate the types of mechanical behaviors of interfaces which lead to optimized toughness. It must be remarked that in our models, we consider damage only as

stiffness degradation of cohesive surfaces and not as failure and that we use a 2D model.
In terms of multiscale modelling of toughness, the current model will allow one to
homogenize the properties at the fibrillar scale and these homogenized properties could
be inserted into a larger-scale 3D model for the study of crack propagation and damage in
real antler bone.

> In conclusion, by constructing a finite element model for the inelastic cyclic loading response of mineralized collagen fibrils in antler, we show that the hysteresis observed is due to interfibrillar staggering leading to inhomogeneous stress fields along the fibril and localized intrafibrillar plasticity, while the inhomogeneous deformation arises from the weak interfaces between fibrils, potentially mediated by sacrificial bonds in the noncollageneous proteins between fibrils.

5 ACKNOWLEDGMENTS

HSG thanks Peter Fratzl and Stefanie Krauss (Max Planck Institute of Colloids and Interfaces, Potsdam, Germany), Dr. Sergio Funari (HASYLAB-DESY, beamline A2) and Prof. John Currey (University of York) for very pleasant scientific collaboration on earlier work on antler bone^{20, 34}. EB is supported by the Queen Mary University of London Start-up grant for new academics. NMP is supported by the European Research Council (ERC StG Ideas 2011 BIHSNAM n. 279985, ERC PoC 2015 SILKENE nr. 693670), by the European Commission under the Graphene Flagship (WP14 Polymer Nanocomposites, n. 696656).

REFERENCES

F		
5	472	1. Meyers, M. A.; Chen, PY.; Lin, A. YM.; Seki, Y., Biological materials: structure and
7	473	mechanical properties. Progress in Materials Science 2008, 53 (1), 1-206.
8	474	2. Fratzl. P.: Weinkamer. R., Nature's hierarchical materials. <i>Progress in Materials Science</i>
9	475	2007. 52 (8), 1263-1334.
10	476	3. Buehler, M. L. Nano-and micromechanical properties of hierarchical biological materials
11	477	and tissues Journal of Materials Science 2007 <i>A</i> 2 (21) 8765-8770
12	478 178	A Li B : Goo H. Mochanical properties of papestructure of biological materials. <i>Journal of the</i>
13	470	4. Ji, B., Gao, H., Mechanical properties of hanostructure of biological materials. <i>Journal of the</i> Machanics and Divises of Solids 2004 , 52 (0), 1062, 1000
14	479	Mechanics and Physics of Solids 2004, 32 (9), 1905-1990.
15 16	400	5. Weiner, S.; Wagner, H. D., The material bone: structure-mechanical function relations.
17	481	Annual Review of Materials Science 1998, 28 (1), 271-298.
18	482	6. Bonderer, L. J.; Studart, A. R.; Gauckler, L. J., Bioinspired design and assembly of platelet
19	483	reinforced polymer films. <i>Science</i> 2008, <i>319</i> (5866), 1069-1073.
20	484	7. Pugno, N. M., Mimicking nacre with super-nanotubes for producing optimized super-
21	485	composites. <i>Nanotechnology</i> 2006, 17 (21), 5480.
22	486	8. Bosia, F.; Buehler, M. J.; Pugno, N. M., Hierarchical simulations for the design of
23	487	supertough nanofibers inspired by spider silk. <i>Physical Review E</i> 2010, 82 (5), 056103.
24	488	9. Bosia, F.; Abdalrahman, T.; Pugno, N. M., Self-healing of hierarchical materials. <i>Langmuir</i>
20	489	2014, <i>30</i> (4), 1123-1133.
27	490	10. Bosia, F.; Abdalrahman, T.; Pugno, N. M., Investigating the role of hierarchy on the strength
28	491	of composite materials: evidence of a crucial synergy between hierarchy and material mixing.
29	492	Nanoscale 2012. 4 (4), 1200-1207.
30	493	11. Wang Y: Azaïs T: Robin M: Vallée A: Catania, C: Legriel P.: Pehau-Arnaudet, G.:
31	494	Babonneau E : Giraud-Guille M -M : Nassif N The predominant role of collagen in the
32	105	nucleation growth structure and orientation of hone anatite. <i>Nature materials</i> 2012 , 11 (8), 724-
33	406	Table aballe. Nature indentition of bone apalle. Nature indicituis 2012, 11 (6), 724-
34 35	490	12. Dimas L.S. Protzal C. H. Eulan L. Puebler, M. L. Tough compacitos inspired by
36	497	12. Diffias, L. S.; Bratzer, G. H.; Eyloff, I.; Bueffier, M. J., Tough composites inspired by
37	490	mineralized natural materials: computation, 3D printing, and testing. Advanced Functional
38	499	Materials 2013, <i>23</i> (36), 4629-4638.
39	500	13. Compton, B. G.; Lewis, J. A., 3D-printing of lightweight cellular composites. <i>Advanced</i>
40	501	Materials 2014, 26 (34), 5930-5935.
41	502	14. Koester, K. J.; Ager, J.; Ritchie, R., The true toughness of human cortical bone measured
42	503	with realistically short cracks. <i>Nature materials</i> 2008, 7 (8), 672-677.
43 11	504	15. Fleck, C.; Eifler, D., Deformation behaviour and damage accumulation of cortical bone
44 45	505	specimens from the equine tibia under cyclic loading. Journal of biomechanics 2003, 36 (2), 179-
46	506	189.
47	507	16. Nalla, R. K.; Kinney, J. H.; Ritchie, R. O., Mechanistic fracture criteria for the failure of
48	508	human cortical bone. Nature materials 2003 , 2 (3), 164-168.
49	509	17. Vashishth. D.: Behiri. J.: Bonfield. W., Crack growth resistance in cortical bone: concept of
50	510	microcrack toughening. Journal of biomechanics 1997 , 30 (8), 763-769.
51	511	18. Hang, E.; Barber, A. H., Nano-mechanical properties of individual mineralized collagen
52	512	fibrils from hone tissue Journal of the Royal Society Interface 2011 8 (57) 500-505
53 54	513	10 Tai K · Dao M · Suresh S · Palazoglu A · Ortiz C Nanoscale beterogeneity promotes
55	514	energy dissination in hone Nature materials 2007 6 (6) A51-462
56	514	Custo H. Krause S. Korrebaitzki M. Karusaratan A. Dunlan L. Darbar A. Dessarka D.
57	515	20. Gupta, Π., Kiauss, S., Keischiller, Ni, Karunarathe, A.; Duniop, J.; Barber, A.; Boesecke, P.;
58	010	Funari, S.; Fratzi, P., intrafibrillar plasticity through mineral/collagen sliding is the dominant
59		
60		26

mechanism for the extreme toughness of antler bone. Journal of the mechanical behavior of biomedical materials 2013, 28, 366-382. Poundarik, A. A.; Diab, T.; Sroga, G. E.; Ural, A.; Boskey, A. L.; Gundberg, C. M.; Vashishth, 21. D., Dilatational band formation in bone. Proceedings of the National Academy of Sciences 2012, 109 (47), 19178-19183. Fantner, G. E.; Hassenkam, T.; Kindt, J. H.; Weaver, J. C.; Birkedal, H.; Pechenik, L.; Cutroni, 22. J. A.; Cidade, G. A.; Stucky, G. D.; Morse, D. E., Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture. Nature materials 2005, 4 (8), 612-616. 23. Launey, M. E.; Buehler, M. J.; Ritchie, R. O., On the mechanistic origins of toughness in bone. Annual review of materials research **2010**, 40, 25-53. Tai, K.; Ulm, F.-J.; Ortiz, C., Nanogranular origins of the strength of bone. Nano letters 2006, 24. 6(11), 2520-2525. 25. Buehler, M. J., Molecular nanomechanics of nascent bone: fibrillar toughening by mineralization. *Nanotechnology* **2007**, *18* (29), 295102. 26. Gupta, H. S.; Wagermaier, W.; Zickler, G. A.; Raz-Ben Aroush, D.; Funari, S. S.; Roschger, P.; Wagner, H. D.; Fratzl, P., Nanoscale deformation mechanisms in bone. Nano Letters 2005, 5 (10), 2108-2111. 27. Zioupos, P.; Currey, J., The extent of microcracking and the morphology of microcracks in damaged bone. Journal of Materials Science 1994, 29 (4), 978-986. 28. Schwiedrzik, J.; Raghavan, R.; Bürki, A.; LeNader, V.; Wolfram, U.; Michler, J.; Zysset, P., In situ micropillar compression reveals superior strength and ductility but an absence of damage in lamellar bone. Nature materials 2014, 13 (7), 740-747. Barthelat, F.; Rabiei, R., Toughness amplification in natural composites. Journal of the 29. Mechanics and Physics of Solids **2011**, 59 (4), 829-840. 30. Buehler, M. J.; Yung, Y. C., Deformation and failure of protein materials in physiologically extreme conditions and disease. Nature materials 2009, 8 (3), 175-188. Bar-On, B.; Wagner, H. D., Mechanical model for staggered bio-structure. Journal of the 31. Mechanics and Physics of Solids **2011**, 59 (9), 1685-1701. Bar-On, B.; Wagner, H. D., Structural motifs and elastic properties of hierarchical biological 32. tissues–A review. Journal of structural biology 2013, 183 (2), 149-164. 33. Xia, W.; Ruiz, L.; Pugno, N. M.; Keten, S., Critical length scales and strain localization govern the mechanical performance of multi-layer graphene assemblies. Nanoscale 2016, 8 (12), 6456-6462. 34. Krauss, S.; Fratzl, P.; Seto, J.; Currey, J. D.; Estevez, J. A.; Funari, S. S.; Gupta, H. S., Inhomogeneous fibril stretching in antler starts after macroscopic yielding: Indication for a nanoscale toughening mechanism. Bone 2009, 44 (6), 1105-1110. 35. Gupta, H. S.; Seto, J.; Wagermaier, W.; Zaslansky, P.; Boesecke, P.; Fratzl, P., Cooperative deformation of mineral and collagen in bone at the nanoscale. Proceedings of the National Academy of Sciences 2006, 103 (47), 17741-17746. 36. Dong, X. N.; Almer, J. D.; Wang, X., Post-yield nanomechanics of human cortical bone in compression using synchrotron X-ray scattering techniques. Journal of biomechanics 2011, 44 (4), 676-682. 37. Zimmermann, E. A.; Schaible, E.; Bale, H.; Barth, H. D.; Tang, S. Y.; Reichert, P.; Busse, B.; Alliston, T.; Ager, J. W.; Ritchie, R. O., Age-related changes in the plasticity and toughness of human cortical bone at multiple length scales. Proceedings of the National Academy of Sciences **2011,** *108* (35), 14416-14421. Xu, X.-P.; Needleman, A., Numerical simulations of fast crack growth in brittle solids. 38. Journal of the Mechanics and Physics of Solids 1994, 42 (9), 1397-1434.

1		
2	565	20 Wass T. Cairps D. Nanoarchitectures of the animal extracellular matrix: expertinities for
3 4	566	synchrotron radiation studios on collagon and fibrillin <i>Journal of synchrotron radiation</i> 2005 , 12
5	567	
6	507	(0), /JI-/J/.
7	500	40. Hamed, E.; Lee, Y.; Jasiuk, I., Multiscale modeling of elastic properties of cortical bone. Acta
8	569	Mechanica 2010, 213 (1-2), 131-154.
9	570	41. Nikolov, S.; Raabe, D., Hierarchical modeling of the elastic properties of bone at submicron
10	5/1	scales: the role of extratibrillar mineralization. <i>Biophysical journal</i> 2008, <i>94</i> (11), 4220-4232.
12	572	42. Jäger, I.; Fratzl, P., Mineralized collagen fibrils: a mechanical model with a staggered
13	573	arrangement of mineral particles. <i>Biophysical journal</i> 2000, 79 (4), 1737-1746.
14	574	43. Hamed, E.; Jasiuk, I., Multiscale damage and strength of lamellar bone modeled by
15	575	cohesive finite elements. <i>journal of the mechanical behavior of biomedical materials</i> 2013 , 28, 94-
16	576	110.
17	577	44. Ural, A., Prediction of Colles' fracture load in human radius using cohesive finite element
18	578	modeling. Journal of biomechanics 2009, 42 (1), 22-28.
19	579	45. Mischinski, S.; Ural, A., Finite element modeling of microcrack growth in cortical bone.
20 21	580	Journal of Applied Mechanics 2011, 78 (4), 041016.
22	581	46. Lai, Z. B.; Yan, C., Mechanical behaviour of staggered array of mineralised collagen fibrils in
23	582	protein matrix: Effects of fibril dimensions and failure energy in protein matrix. Journal of the
24	583	Mechanical Behavior of Biomedical Materials 2017. 65. 236-247.
25	584	47. Lin. L.: Samuel, J.: Zeng, X.: Wang, X., Contribution of extrafibrillar matrix to the mechanical
26	585	behavior of bone using a novel cohesive finite element model. <i>Journal of the Mechanical Behavior</i>
27	586	of Biomedical Materials 2017 , 65, 224-235
20 29	587	48 Ascenzi A · Benvenuti A · Mango E · Simili R Mechanical hysteresis loops from single
30	588	osteons: technical devices and preliminary results. <i>Journal of hiomechanics</i> 1985 , <i>18</i> (5), 391-398
31	580	49 Vagaggini E : Domergue I M : Evans A G Relationshins between hysteresis
32	500	45. Vagaggini, L., Domergue, J. W., Evans, A. G., Neidtionships between hysteresis
33	501	the American Coramic Society 1995 , 79 (10), 2700, 2720
34	502	EQ Moreor C : Ho M : Wang B : Evang A Machanisms governing the inelastic deformation of
35	502	So. Mercer, C., He, M., Wang, K., Evans, A., Mechanishis governing the melastic deformation of
30	595	Contical bone and application to trabecular bone. Acta Biomatemana 2006 , 2 (1), 59-68.
38	594	51. Shen, Z. L.; Dodge, M. R.; Kann, H.; Baharini, R.; Eppeli, S. J., Stress-strain experiments on
39	595	Individual collagen fibrils. Biophysical Journal 2008, 95 (8), 3956-3963.
40	596	52. Thurner, P. J.; Chen, C. G.; Ionova-Martin, S.; Sun, L.; Harman, A.; Porter, A.; Ager, J. W.;
41	597	Ritchie, R. O.; Alliston, I., Osteopontin deficiency increases bone fragility but preserves bone mass.
42	598	Bone 2010, 46 (6), 1564-1573.
43	599	53. Gupta, H. S.; Fratzl, P.; Kerschnitzki, M.; Benecke, G.; Wagermaier, W.; Kirchner, H. O.,
44 15	600	Evidence for an elementary process in bone plasticity with an activation enthalpy of 1 eV. Journal
46	601	of the Royal Society Interface 2007, 4 (13), 277-282.
47		
48	602	
49		
50	603	
51		
52 52		
53 54		
55		
55		

