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Highlights 
 New formulation for vibration behavior of spiral cylinders is proposed. 

 A general procedure is applied to analyze the effect of boundary conditions. 

 Effect of separation distance in spiral cylinders on natural frequency is studied. 

 New results on vibration characteristics of spiral cylinders are presented. 

 Based on circular cylinders, a new technique is developed for spiral cylinders design. 
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Abstract 

In this paper, free vibration of open noncircular cylinders with spiral cross section are studied under 

arbitrary boundary conditions. For deriving the strain energy function, Kirchhoff-Love hypotheses 

are employed. To obtain the solutions, Rayleigh-Ritz technique is implemented by selecting 

Chebyshev orthogonal polynomials of first kind as admissible displacement functions in three 

directions. Convergence of the proposed formulation is verified for spiral cylindrical panel and the 

results are compared with those of ABAQUS. Parametric study is undertaken to highlight the effect 

of inner radius, separation distance, subtended angle, thickness, and length of the spiral cylinders on 

the free vibration characteristics. Results obtained in this research are the first step toward modeling 

spiral cylinders and can be used for comparison in future studies. Finally, the design strategy for the 

spiral cylinders with specific vibration characteristics is presented. The results imply that spiral 

cylinder with specific vibration characteristics can be designed using equivalent open circular 

cylinder. 
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1. Introduction 

Research on the vibration of cylindrical shells is not a new topic and the first reference dates 1970s 

[1]. Shells are one of the most useful elements in industry and civil to construct complicated 

Structures. These structures vary from roof of a building to wing of a flight. Their application in 

different fields requires precise analysis of the static and dynamic behavior considering design and 

safety issues.  
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Cylindrical shells are one of the most principal elements used in engineering structures and the 

vibration behavior of them is an interesting topic for researchers even after decades [2-5]. Numerous 

studies on closed circular cylinders cover different aspects of their vibration behavior [6-8]. The 

effect of variable thickness of closed circular cylinder, in axial and circumferential directions, on 

vibration of shell has been studied [9, 10]. Different boundary conditions and vibration behavior of 

composite cylinders are other interesting topics for researcher [11-14]. Meanwhile, similar studies 

have been carried out on open circular shells [15-19].  

Noncircular cylinders have been studied as closed shells and open panels in two different categories 

like circular cylinders [20]. Suzuki et al. investigated the vibration characteristics of closed 

noncircular thin and thick shells [21, 22]. Most of the researches on closed noncircular cylinders are 

focused on special cross sections such as oval [23] and elliptic profiles [24-26]. Although some of 

researchers have investigated the closed noncircular cylindrical shells with arbitrary cross section, 

they have treated oval and elliptic shells as examples. 

Soldatos reviewed the studies on mechanics of cylindrical shells with noncircular cross section 

including vibration characteristics [27]. As clarified in the survey, due to difficulties of open 

noncircular panels comparing with circumferentially closed cylindrical shells, the research on the 

open noncircular cylindrical panels have received little attention. Srinivasan and Bobby studied the 

vibration characteristics of oval panels by considering all edges of panel are clamped and 

investigated the effect of parameters such as curvature, thickness and aspect ratio [28]. Massalas et 

al. used Donnell’s theory to study the natural frequencies of noncircular shells with arbitrary 

boundary conditions and applied this method on oval shells in special boundary conditions [29]. 

Koumousis and Armenakas investigated free vibration of noncircular cylindrical panels with simply 

supported curved edges using Flugge and Donnell type equations and applied the method on 

symmetric panels [30]. In addition, Koumousis and Armenakas analyzed the free vibration of oval 

cylindrical panels with simply supported curved edges [31]. Suzuki et al. developed and exact 

solution procedure for determining the natural frequencies of open noncircular shells supported by 

shear diaphragm in curved edges and the method was applied for shells having elliptical cylindrical 

curvature and circumferentially varying thickness [32]. Koumousis presented a new method for 

obtaining the dynamic characteristics of cylindrical panels with noncircular cross section having 

simply supported curved edges using Flugge and Donnell type equations [33]. The researcher 

claimed that mentioned method is efficient in determining the eigenfrequencies and corresponding 

mode shapes. Grigorenko et al. investigated free vibration of elastic isotropic open cylindrical shell 

with elliptic cross section using spline-collocation method [34].  

There are rare publications on the vibration of open noncircular shells comparing with the circular 

ones in the literature. Additionally, these studies on noncircular shells are concentrated on oval and 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

4 
 

elliptic cross sections. In this paper, free vibration of a cylindrical panel with spiral cross section as 

an open noncircular shell is studied. Spiral cross section is a well-known configuration in some 

general structures like large span roofs [35] and specific applications like carbon nanoscrolls [36-

39]. In addition, spiral cylinders can be the result of imperfection in production process of circular 

cylindrical panels. 

Although some of pervious researches studied open noncircular shell as an arbitrary profile, they are 

usually limited to Flugge and Donnell’s theory with special boundary conditions on the edges of 

panel [33]. In the present research, with no limitation on the boundary conditions, any classical and 

non-classical constrains can be applied along the straight and curved edges of the panel for analyzing 

vibration characteristics of spiral cylinders. In this study, displacement functions of the shell in each 

direction are expanded as Chebyshev polynomials of first kind. After convergence analysis, results 

are compared with finite element model using ABAQUS commercial software.  

 

2. Modeling 

Fig 1 shows an open noncircular cylindrical shell with length, L , circumferential subtended angle,

,  and linearly varying radius. The cylindrical coordinate system ( x z ) illustrated on the shell 

segment might be used for describing the equations of motion. , ,u v  and w denote the displacement 

components in these directions, respectively. The radius of curvature in circumferential direction of 

mid-surface is R
. The global Cartesian coordinate system ( XY Z ) would be used to describe the 

position vector of a typical point on mid-surface of shell. The translational springs ( , ,u v wk k k ) and 

torsional spring ( Tk ) are uniformly distributed along the boundaries to model the resultant forces in 

each boundary. The inner and outer radii of the cross section are 
0R  and 

1R , respectively. The term t

shows the distance between two successive turns of spiral which is called separation distance and the 

thickness of shell is assumed to be h . 

 
Fig 1 Geometry of a cylindrical panel with spiral cross section a) cylindrical panel b) spiral cross section of mid-surface 
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The position of a typical point in the mid-surface of a cylindrical shell with Archimedean spiral cross 

section can be defined in terms of x and  as: 

0 0
ˆ ˆ ˆ( , ) ( )cos ( )sinr x xI R a J R a K          (1) 

where ˆ ˆ, ,I J and K̂ denote the unit vectors along X , Y , and Z . Parameter a  which controls the 

distance between two successive turns of spiral equals / 2t  . By considering the ratio 
0/a R to be 

small and using formulation presented in Appendix A, the Lame parameters for the cylindrical panel 

with spiral cross section could be described as: 

2 2

0 0

1

( )

A

B a R a R a 



    
 

(2.a) 

(2.b) 

and the curvature radii of the shell along two directions can be determined by: 

2 2 3
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
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
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 
  

 

 (3.a) 

(3.b) 

By considering linear variation of in-plane displacements through the thickness of the shell and 

satisfying the Kirchhoff-Love assumptions, the components of strain in an arbitrary point of a shell 

are commonly expressed by separating membrane and bending strains as: 

0

0

0

xx xx xx

x x x
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z k
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  
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 

 

 (4) 

in which 0

xx , 0

 , and 0

x  are normal and shear strains independent of z direction. xxk , k  , and 

xk  represent variation of curvatures and twist in mid-surface, respectively. Considering the 

geometric parameters of a spiral cylindrical panel, described in relations (1-3), and using Kirchhoff-

Love assumptions, the strain-displacement relations of mid-surface are: 
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(5) 

Generalized Hook’s law determines the components of stress in each point of the shell according to 

strain components calculated through relations (4) and (5): 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

6 
 

2 2
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(6) 

where,
xx , 

 , and 
x  represent normal stresses and shear stress, respectively. E  is Young 

Modulus and  shows Poison ratio of open cylindrical shell. Force and moment applied on the panel 

can be calculated by integrating components of stress along the thickness of shell: 
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(7b) 

Using relations (5) and (7) one can write the total strain energy of the deformation stored in the 

spiral cylindrical panel as: 

0 0 0( )xx xx x x xx xx x x

S

U N N N M k M k M k ds                (8) 

The corresponding kinetic energy of the shell can be written as: 

2 2 2( ) ( ) ( )
2

S

h u v w
T ds

t t t

    
   

   
  (9) 

where   denotes the mass density of the shell and t represents time parameter. The energy stored in 

the boundary springs which simulates the boundary conditions effect is other component of energy. 

This energy could be calculated as following: 
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(10) 

in which 0 0, , , ; , , ,sj

i s Lk i u v w T j x x     represent the stiffness of springs located at boundary 

edge 
sj in different directions. For example, 0x

wk shows the stiffness of spring in z direction located 
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at boundary x=0. Using the energy components calculated through relations (8), (9), and (10), total 

Lagrangian energy functional for a noncircular cylindrical panel with spiral cross section and 

arbitrary boundary condition in straight and curved edges could be written: 

bL T U U    (11) 

In this study, Rayleigh- Ritz method is used to determine the natural frequencies and mode shapes of 

the panel. Effect of boundary conditions are embedded in energy function, consequently, any 

independent and complete bases functions can be considered as admissible functions and they are 

not needed to satisfy any boundary condition. Therefore, Chebyshev polynomials of first kind are 

considered as admissible functions for displacement components in three directions:  

0 0

0 0

0 0

( , , ) ( ) ( )
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
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 

 

 

 

 

 

 

 

 













 (12) 

where, 
mnU , 

mnV , and  
mnW  are unknown coefficients of displacement functions. ( )mP x , and ( )nP   

represent Chebyshev polynomials of first kind as following: 

0 1

1 2

( ) 1; ( )

( ) 2 ( ) ( ) 1i i i

P s P s s

P s sP s P s i 

 

  
 (13) 

Chebyshev polynomials of first kind are defined on the interval [-1, 1]. Therefore, the length of the 

cylinder should be transformed to this interval. A coordinate transformation between the dimensions 

of cylinder and mentioned interval, 2 / 1x x L  ; 2 / 1    , is needed.  

Due to limitations of calculation, the series expansion should be truncated. Therefore, proper 

precision can be achieved by the selection of M and N as the summation limits. Substituting relation 

(12) into equations (8-11) and minimizing total Lagrangian energy with respect to unknown 

coefficients of displacement, leads to the following eigenvalue problem. 

 

 

 

 

 

 

2

[0] [0] 0
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K K K M W



                      
        

                       
                             

 (14) 

Where ijK and ; , , ,ijM i j u v w denote sub-matrices of generalized stiffness and generalized mass 

matrices which their elements are represented in Appendix B. The vectors U, V, and W are 

undetermined coefficients of displacement which construct the corresponding mode shapes of each 

natural frequency: 
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T

N N M MN

U U U U U U U
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





 (15) 

One can obtain the natural frequencies of noncircular shell with spiral cross section by solving the 

standard eigenvalue problem. Substituting corresponding eigenvector of each natural frequency to 

displacement relations gives the mode shapes. 

 

3. Results and discussion 

In order to study the effect of geometric parameters of spiral cylindrical panel on the vibration 

characteristics, a computer program has been developed. Although there is no limitation on the 

application of any boundary condition, reporting the results of every combination of boundary 

conditions is impossible. In this research, one of the main goals is selecting appropriate geometrical 

parameters of a spiral cylindrical panel to achieve desired vibration behavior. Therefore, in most of 

the simulations, all edges of the panel are considered to be free. In this investigation, simply support 

boundary condition beside the free boundary condition is interested to serve suitable results for 

future studies. In addition, some results are reported for completely clamped and completely 

supported by shear diaphragm boundary conditions in all edges of spiral panel. 

Defining the stiffness of springs uniformly distributed along each edge of the panel depends on the 

boundary conditions. Based on the analysis presented in section 3.1, the boundary spring rigidities 

can be expressed for classical boundary conditions including free, simply support, clamped, and 

shear diaphragm on the curved edge 0x   as an example: 

Free (F): 0 0 0 00, 0, 0, 0
x x x x

u v w Tk k k k     

Simply Support (S): 0 0 0 09 9 910 , 10 , 10 , 0
x x x x

u v w Tk D k D k D k     

Clamped (C): 0 0 0 09 9 9 910 , 10 , 10 , 10
x x x x

u v w Tk D k D k D k D     

Shear Diaphragm (D): 0 0 0 09 90, 10 , 10 , 0
x x x x

u v w Tk k D k D k     

where 3 2/12(1 )D Eh    is bending stiffness of the panel. Since there are four edges for an open 

cylindrical panel, a simple letter string like FSCD is employed to represent the boundary conditions 

of the spiral cylinder. FSCD indicates a spiral cylinder with free, simply support, clamped, shear 

diaphragm boundary conditions at the edges 0x  , x L , 0  , and   , respectively.  

 

3.1. Convergence and accuracy 

The first crucial step to use the proposed method in vibration analysis of spiral cylinder is 

determination of truncation number for displacement series expansion. Although the values of M and 

N depend on the geometric properties of panel, boundary conditions, mode number, and the accuracy 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

9 
 

of results, usually there is a constant value for specific structure. In the convergence study, the 

natural frequencies of a completely free spiral cylinder with different truncation numbers are 

presented. Table 1 demonstrates first seven natural frequencies of a spiral cylinder with following 

geometric parameters: 
0 2 ,R m 1 ,t m 2 ,  5 ,L m  and 0.1h m . For all numerical results in 

this research, unless otherwise stated, the material properties are 210 ,E GPa  37800 / ,kg m   

0.3  . The results show that the natural frequencies converge quickly. Verification of the 

formulation in this study could be achieved by comparison between the results of the proposed 

method and those obtained through ABAQUS. The geometric profile of the spiral cross section is 

created in ABAQUS through the Python script and 3465 uniform shell elements are used for 

simulation. The applied elements are four-node doubly curved thin or thick shell elements (S4R) of 

ABAQUS standard element library. 

 

Table 1 Convergence of first seven natural frequencies for completely free cylindrical panel with spiral cross section 

(
0

2 ,R m 1 ,t m 2 ,  5 ,L m  0.1h m ) 

Mode 

Shape 

M=N 
ABAQUS 

4 8 11 12 13 14 15 

1 4.36 1.75 1.74 1.75 1.75 1.75 1.75 1.74 

2 4.58 2.32 2.47 2.32 2.32 2.32 2.32 2.47 

3 11.75 3.89 3.80 3.82 3.82 3.82 3.82 3.80 

4 12.35 5.34 5.34 5.30 5.30 5.30 5.30 5.34 

5 104.00 9.31 8.50 8.54 8.54 8.54 8.54 8.49 

6 168.28 9.94 9.21 9.61 9.60 9.60 9.60 9.20 

7 175.63 18.29 15.02 15.78 15.78 15.78 15.78 15.00 

 

The previous researchers usually studied the circular cylinders and researches on noncircular 

cylindrical panels are limited to oval and elliptic ones. Considering the lack of results on the 

vibration characteristics of spiral cylinders in the literature, a possible strategy for verification of 

results and comparing with the literature can be achieved by simplifying the formulation of a 

noncircular spiral cylinder into a circular cylinder and comparing with previous studies. Therefore, 

by putting separation distance, t, equal to zero a circular cylinder is modeled as: 
0 2 ,R m 0,t 

/ 2,  3 ,L m and 0.02h m . The first four frequency parameters, 2 /R E   , of the cylinder 

are given in Table 2 and corresponding mode shapes are shown in Fig 2. However, more verification 

of the presented method on circular cylindrical, spherical, and conical panels could be found in Refs 

[18, 40, 41]. 
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Table 2 Comparison of first four frequency parameters for FCCC cylindrical panel with circular cross section 

(
0

2 ,R m 0,t  / 2,  3 ,L m  0.02h m ) 

Mode shape  Present Ref [18] 

1  0.1529 0.1529 

2  0.1787 0.1787 

3  0.2819 0.2819 

4  0.2877 0.2877 

 

 
Fig 2 First four mode shapes of FCCC cylindrical panel with circular cross section 

 

If the separation distance of a cylindrical panel is not zero, the comparison of results with literature 

is impossible and the results obtained by proposed method can be compared with those of ABAQUS 

software. Therefore, two cylindrical panels with spiral cross sections are modeled as: Example 1

0( 3 ,R m 1 ,t m ,  5 ,L m and 0.01 )h m , Example 2 
0( 4 ,R m 1.5 ,t m 5 / 2,  30 ,L m

and 0.01 )h m . The boundary conditions FCCC and FCFC are considered for Example 1 and 

Example 2, respectively. The first four natural frequencies of these cylinders are determined and 

reported in Table 3 and the corresponding mode shapes are illustrated in Figs 3 and 4 using proposed 

method and ABAQUS model. For the ABAQUS simulation, the model contains 5100 and 14550 

shell elements for Example 1 and Example 2, respectively. 

 

Table 3 first four frequency parameters for Example 1 and Example 2 determined through proposed method and ABAQUS software 

  Example 1  Example 2 

Mode shape  Present ABAQUS  Present ABAQUS 

1  0.0514 0.0516  0.0027 0.0027 

2  0.0517 0.0519  0.0070 0.0070 

3  0.0644 0.0648  0.0076 0.0076 

4  0.0673 0.0677  0.0084 0.0085 

 

       a                          b                                  c    d 
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Fig 3 First four mode shapes of Example 1 calculated through the proposed method (a-d) and ABAQUS (e-h) 

 

 
Fig 4 First four mode shapes of Example 2 calculated through the proposed method (a-d) and ABAQUS (e-h) 

 

The effect of boundary springs rigidity on the natural frequency is studied to check the 

appropriateness of boundary conditions modeling. Fig 5 shows the frequency parameter, 

2 /L h D   , versus different elastic restraint parameter in one of the boundaries. A spiral cylinder 

with 
0 2 ,R m 1 ,t m 3 ,L m and 0.05h m by two subtended angles / 3  and    is studied 

and the results compared with circular cylinder by putting separation distance equal to 0. When three 

springs stiffness of a boundary condition is zero and elastically restrained in one direction the 

       a                          b                                  c    d 

      e          f           g             h             

       a                          b                                  c    d 

        e         f        g                    h   
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boundary could be defined as EI. Consequently, when the three groups of the springs get infinite 

stiffness, 10
9
D, the boundary could be represented with EII. 

Figs 5a and 5b show the variation of first frequency parameter in CEIFF and CEIIFF boundary 

conditions for spiral and circular cylinders when subtended angle equals to / 3  . The results for a 

bigger subtended angle,   , in Figs 5c and 5d reveal the effect of cross section in natural 

frequencies. 

 
Fig 5 Variation of first frequency parameter for spiral cylinder with two different subtended angles for elastic boundary conditions 

a) / 3   , CEIFF b) / 3   CEIIFF c)   , CEIFF d)    CEIIFF  

 

3.2. Parameter study  

From design perspective, it is important to know the influence of each parameter on the vibration 

characteristics of the panel. In this section, the effect of each geometric parameter in natural 

frequency and corresponding mode shape is studied by considering the other parameters are 

constant. Table 4 represents the lowest four natural frequencies of the spiral cylinder with different 
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classical boundary conditions to investigate the frequency change with respect to variation of 

separation distance.  

When separation distance increases the cylinder degenerates from a circular to spiral cylinder. 

According to formulation, ratio of separation distance to radius should be small. However, 

comparison of the results obtained by proposed method and ABAQUS demonstrate high accuracy of 

the proposed formulation even for 
0/ 1t R  .  

 

Table 4 First four natural frequencies of spiral cylinder with different separation distances and boundary conditions 

( 2 ,
0

R m 2 ,  5 ,L m  0.1h m ) 

Separation 

Distance 

Mode 

Shape 
Boundary Conditions 

t (m)  FFFF SFFF FFSS SSFF FSSS SSSF SSFS SSSS CCCC DDDD 

0 

1 2.72 19.80 0.00 48.47 49.17 48.48 48.48 106.92 112.07 80.94 

2 3.11 20.14 5.59 48.49 50.78 95.32 95.32 107.96 112.19 86.18 

3 5.91 41.62 5.91 95.32 66.22 103.38 103.38 120.69 128.57 88.92 

4 6.89 46.50 15.18 95.32 69.37 107.81 107.81 125.14 128.80 106.29 

0.5 

1 2.15 18.19 0.10 43.94 46.58 43.94 48.16 99.79 104.67 77.24 

2 2.66 19.77 4.43 48.15 47.26 87.89 94.92 100.84 105.46 80.12 

3 4.68 40.95 4.69 87.89 59.81 95.45 98.70 111.68 117.09 88.39 

4 5.99 42.27 12.00 94.88 63.48 101.06 100.76 114.22 119.95 90.15 

1 

1 1.75 16.82 0.15 40.50 43.62 40.50 47.83 92.97 98.11 72.54 

2 2.32 19.58 3.61 47.83 44.90 82.30 92.83 94.11 98.71 77.74 

3 3.82 38.37 3.82 82.30 54.47 88.40 93.92 103.75 109.69 80.37 

4 5.30 42.49 9.72 88.38 58.38 94.32 94.46 106.12 110.48 90.79 

1.5 

1 1.45 15.71 0.18 37.79 41.45 37.79 47.53 86.72 91.98 68.43 

2 2.05 19.41 3.01 47.53 42.11 77.92 86.71 87.98 92.75 73.48 

3 3.18 36.51 3.17 77.92 51.69 82.29 87.92 96.99 102.31 78.42 

4 4.74 40.36 8.04 82.29 52.49 88.21 94.06 99.03 103.88 81.30 

2 

 

1 1.22 14.80 0.18 35.59 39.23 35.59 47.23 81.21 86.68 64.76 

2 1.83 19.24 2.56 47.23 39.95 74.39 81.19 82.45 87.26 69.96 

3 2.70 34.73 2.68 74.39 47.58 77.03 82.46 91.11 96.46 74.06 

4 4.29 38.74 6.76 77.03 49.79 82.71 90.62 92.75 97.48 79.47 

A
B

A
Q

U
S
 1 1.21 14.82 0.18 35.39 39.12 35.39 47.27 81.15 86.48 64.39 

2 1.83 19.43 2.27 47.27 39.87 73.68 81.14 82.40 87.22 69.81 

3 2.65 34.63 2.48 73.68 47.32 76.88 82.40 90.97 96.30 73.68 

4 4.17 38.74 6.61 76.88 49.68 82.65 90.71 92.70 97.29 79.76 

 

Generally, separation distance shows a decreasing effect on the natural frequencies of spiral 

cylindrical panel and it is more considerable in FFFF boundary condition comparing with other 

boundary conditions. However, the first natural frequency shows an opposite behavior for FFSS 

boundary condition and corresponding mode shape is a special mode which appears only in this 

boundary condition. Restricting straight edges by simply support shows more effect on natural 

frequencies than restriction on curved edges. Meanwhile, results for completely clamped and shear 

diaphragm boundary condition are reported. 
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In Table 5, a set of examples are conducted to illustrate the influence of inner radius on the vibration 

behavior of spiral cylinder with different boundary conditions. Although like separation distance, the 

decreasing influence of inner radius on natural frequency in completely free boundary condition is 

dominant, the first natural frequency in FFSS boundary condition shows different manner. In 

addition, the first natural frequency obtained in FFSS is lower than that of FFFF. This strange 

consequence depends on the appearance of a particular mode shape in FFSS boundary condition. 

 

Table 5 First four natural frequencies of spiral cylinder with different inner radiuses and boundary conditions 

( 1 ,t m 2 ,  5 ,L m  0.1h m ) 

Inner 

Radius  

Mode 

Shape 
Boundary Conditions 

R0 (m)  FFFF SFFF FFSS SSFF FSSS SSSF SSFS SSSS CCCC DDDD 

1 

1 4.70 20.35 0.74 49.18 56.65 49.18 64.03 120.62 126.43 86.45 

2 4.89 25.62 10.25 64.03 58.09 96.22 118.50 123.55 128.40 95.77 

3 9.91 43.77 10.60 96.22 85.93 110.16 121.49 147.16 156.33 103.80 

4 10.82 50.83 27.09 110.09 87.51 124.22 123.73 153.82 159.63 128.09 

2 

1 1.75 16.82 0.15 40.50 43.62 40.50 47.83 92.97 98.11 72.54 

2 2.32 19.58 3.61 47.83 44.91 82.30 92.83 94.11 98.71 77.74 

3 3.82 38.37 3.82 82.30 54.47 88.40 93.92 103.75 109.69 80.37 

4 5.30 42.49 9.72 88.38 58.38 94.32 94.46 106.12 110.48 90.79 

3 

1 0.89 14.70 0.05 35.44 37.07 35.44 39.96 77.58 82.70 63.39 

2 1.40 16.48 1.83 39.96 37.35 74.19 77.51 78.13 83.04 66.24 

3 1.94 33.92 1.95 74.19 43.51 75.10 78.16 83.65 88.67 68.88 

4 3.50 36.01 4.95 75.10 43.82 78.28 81.58 84.25 89.25 71.53 

4 

1 0.54 13.26 0.03 32.03 32.55 32.03 35.15 67.53 72.81 56.90 

2 0.94 14.53 1.11 35.15 32.76 66.03 67.53 67.86 73.01 56.91 

3 1.17 30.49 1.18 66.02 36.29 67.94 67.83 71.24 76.48 58.92 

4 2.52 32.10 2.99 67.93 37.02 68.75 70.92 71.86 76.82 60.56 

 

To study the effect of subtended angle on vibration characteristics, variation of the lowest two 

natural frequencies of the spiral cylinder against subtended angle with FFFF boundary condition is 

illustrated in Fig 6. The results are achieved using the parameters of previous example with different 

subtended angles. Additionally, the corresponding first two mode shapes of the spiral cylinder in 

selected subtended angles are represented to enhance the understanding of vibration behavior. It can 

be observed from the figure that first natural frequency increases and reaches the crest in 45  and 

declines while second natural frequency contains three extrema in 25 , 45  and 65 . This firstly 

reported result shows a different behavior with respect to previously results published on open 

circular cylinders and could be helpful significantly from design perspective. 
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Fig 6 Variation of natural frequencies versus subtended angle of spiral cylinder and first two mode shapes of selected subtended angles with FFFF 

boundary condition a-b) 20 ,   c-d) 45 ,   e-f) 70 ,   g-h) 180 ,   i-j) 375   

 

Fig 7 shows the trend of first two natural frequencies for SSSS restricting condition versus the 

subtended angle. From the results it is clear that first two natural frequencies have decreasing trend 

for SSSS boundary condition while for FFFF boundary condition do not. Although the mode shapes 

corresponding to this boundary condition are entirely different from FFFF, in both of them as 

subtended angle increase the first mode shapes contains more waves along the circumferential 

direction than longitudinal direction. It reflects the fact that cylindrical panels with higher arc length 

are flexible in circumferential direction and as the arc length decrease the circumferential flexibility 

diminishes and the first mode shapes contain more waves along the axial direction instead of 

circumferential direction. 

The effect of length and thickness of the shell on the vibration of spiral cylinder is depicted on Fig 8 

and Fig 9 with FFFF and SSSS boundary conditions. Generally, in each boundary condition, 

thickness of the shell has a similar effect on the natural frequency for different length. For example, 

in Fig 8 the natural frequencies of the shell with thickness 0.1m is 2.5 times of that in thickness 0.04m 

while in SSSS boundary condition in Fig 9 it is 1.5 times bigger than natural frequencies of spiral 

cylinder with thickness 0.04m. This diversity could be the result of appearance of bending effect due 

to boundary condition. 
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Fig 7 Variation of natural frequency versus subtended angle of spiral cylinder and first two mode shapes of selected subtended angles with SSSS 

boundary condition a-b) 35 ,   c-d) 75 ,   e-f) 180 ,   g-h) 360     

 

 

 

Fig 8 Variation of natural frequency versus length of spiral cylinder for 0.04h m  (…) and 0.1h m (---) and first two mode shapes of selected 

length with FFFF boundary condition a-b) 4 ,L m  c-d) 40L m    

 

According to the results of Fig 8 first natural frequency in FFFF boundary condition is nearly 

constant up to length 8m. However, it shows a decreasing manner for higher values of cylinder 

length. This variation comes from the mode change which could be observed in mode shapes 

represented in Fig 8. The natural frequency related to circumferential mode shape, Fig 8a, has a 

nearly constant value in different length of cylinder and appears as first and second mode shape by 

variation of length. In Fig 9, the first and second natural frequencies coincide with each other and as 
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length of cylinder increases the number of waves along the circumferential direction decreases and 

tends to increase it along the axial direction.  

 

 

Fig 9 Variation of natural frequency versus length of spiral cylinder for 0.04h m  (…) and 0.1h m (---) and first two mode shapes of selected 

length with SSSS boundary condition a-b) 4 ,L m  c-d) 40L m    

 

3.3. Design strategy 

Since all of the structures and instruments contain mass and elastic properties, they are willing to 

vibrate. Understanding vibration behavior of engineering elements for safe design of structures and 

efficient operation of systems is necessary. Structures are usually designed to avoid dangerous 

failures due to vibration of a specific part. For example, vibration fatigue in components of airplane, 

gas turbine, and large span roofs is one of the crucial designing criteria. However, vibration in some 

engineering applications such as actuating elements and casting process plays a useful role. 

Therefore, achieving desired vibration performance serves an essential purpose for most of the 

engineering designs.  

The target of this section is proposing a feasible procedure for selecting appropriate geometrical 

parameters of a spiral cylindrical panel to achieve desired vibration behavior. The geometry of a 

spiral cylinder can be expressed in terms of inner radius, separation distance, subtended angle, 

thickness, and length. Based on the results obtained in this study, the non-dimensional parameters,

/aveR L , /t L , /h L , and /L L
 are defined for the sake of generality and convenience. Where 

aveL R   represents the arc length of panel and 
0 / 2aveR R a   is a new parameter introduced for 

determining the average radius of a spiral cross section. The non-dimensional natural frequency for 

expressed variables can be defined as 212(1 ) / E L     . 
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Fig 10 shows the variation of frequency parameter for completely free cylindrical panel in selected 

values of /aveR L  and /h L , while Fig 11 presents the effect of separation distance for selected values 

of /aveR L . 

 
Fig 10 Variation of first frequency parameter versus ratio of circumferential length to longitudinal length with FFFF boundary condition for selected 

values of average radius to longitudinal length and thickness to longitudinal length ratios 

 
Fig 11 Variation of frequency parameter versus ratio of separation distance to longitudinal length with FFFF boundary condition for selected values of 

average radius to longitudinal length ratio in / 0.005, / 0.4h L L L    
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Investigations of this research show that, after introducing /aveR L as a parameter, the effect of 

separation distance on frequency parameter is small and not comparable with other parameters 

especially for bigger values of average radius to longitudinal length ratio. However, other parameters 

including /aveR L , /h L , and /L L
are very important in designing process. Therefore, it is appropriate 

to select parameters of an equivalent circular cylindrical panel at first step by concentrating on the 

limitations of design to reach the objective predefined natural frequency. In second step, various 

pairs of separation distance and inner radius can be selected considering average radius defined in 

pervious step. 

 

4. Conclusion 

In this research, a new formulation based on Kirchhoff-Love assumptions is proposed to study the 

vibration behavior of noncircular cylindrical panels with spiral cross section. The natural frequencies 

and mode shapes of spiral cylinders are determined through Rayleigh Ritz method. The convergence 

and accuracy of the results are studied based on the natural frequencies and mode shapes of spiral 

and circular cylinders. Results obtained from finite element modeling in ABAQUS and previous 

studies are compared with outcomes of this research and a good agreement is achieved. 

The effect of each parameter including inner radius, separation distance, subtended angle, thickness, 

and length of the spiral cylindrical panel on the vibration characteristics of the shell are investigated 

through the proposed method. Results indicate that the effect of each parameter on the natural 

frequencies of the panel varies for different boundary conditions. However, ratio of circumferential 

length to longitudinal length plays the most important role on natural frequencies and mode shapes 

of the cylindrical panel. Separation distance as the distinctive characteristic of spiral cylinders, 

significantly changes the natural frequencies of the panel while other parameters are assumed to be 

constant. Although the effect of separation distance on the vibration behavior is noticeable, its effect 

diminishes for a constant average radius. Therefore, for designing a spiral cylinder, it is appropriate 

to select the geometrical parameters of equivalent circular cylinder at first step. Then, by considering 

the radius of circular cylinder as average radius of spiral cylinder, various pairs of separation 

distance and inner radius can be suggested. 
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Appendix A 

Generally, the position vector of a point on the mid-surface of a shell can be defined by two 

curvilinear coordinates ( ,  ) in the global Cartesian coordinate system as: 

( , ) ( , ) ( , )r X i Y j Z k         (A1) 

One can determine the magnitude of an infinitesimal distance between two points in the mid-surface 

of the shell by: 

2 2 2( ) . . ( ) 2 . . ( )
r r r r r r

ds dr dr d d d d   
     

     
   

     
 (A2) 

For the orthogonal curvilinear coordinates relation (A2) reduces to: 

2 2 2 2 2( ) . ( ) ( )ds dr dr A d B d     (A3) 

where A and B are the coefficients of fundamental form or Lame parameters and can be expressed as  

;
r r

A B
 

 
 
 

 (A4) 

In fact, the Lame parameters relate the change in curvilinear coordinates to change in arc length. The 

principle radii of curvatures for two curvilinear coordinate lines can be determined as 

2 2

2 2

2 2

;

ˆ ˆ. .

A B
R R

r r
n n

 

 

 
 

 

 
(A5) 

Where n̂ represents the unit vector normal to the surface and is calculated using following equation: 

ˆ

rr

n
A B





   
(A6) 

 

Appendix B 

In this appendix a detailed expressions of generalized stiffness and mass matrices are presented.  The 

following relations can be used to determine each element in submatrices of generalized stiffness 

and mass matrices. 

0 011 00 00 11 00 00 00 00

11 1 66 1 1 1

10 01 01 10

12 0 66 0

10 00

12 0

00 11 11 00 00 11 00 01 00

22 1 66 1 22 3 22 4 22

( ) ( 1) ( 1)
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 


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 

 





      

(B1) 
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where i and j are defined indexes based on unknown coefficients of displacements 

( 1) 1i m N n     and ( 1) 1j p N q    . The Other parameters could be defined as: 
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