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Abstract

We present here a new approach for computing Grobner bases for bilateral
modules over an effective ring. Our method is based on Weispfenning notion of
restricted Grobner bases and related multiplication.

For (commutative) polynomial rings F[X{,...,X,] [3, 4, 7, 5] over a field, Grobner
bases are computed by an iterative application of Buchberger test/completion which
states that a basis F is Grobner if and only if each element in the set of all S-polyno-
mials

lem(M(fo), M(fo)) lem(M(f5), M(fo)) }
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between two elements of F, reduces to 0.
The same result holds for free monoid rings F(X{, ..., X,) over a field, even if the

shape of the matches (S-polynomials) between two elements is more involved and, in
general, between two elements there could even be infinitely many S-polynomials; of
course, in this setting, there is no hope of termination. Anyway, there are classical
techniques [34] producing a procedure which, receiving as input a finite generating set
F for the module I(F), provided that I(F) has a finite Grobner basis, halts returning
such a finite Grébner basis.

In both cases, it is well known that Buchberger test/completion is definitely super-
seded in each honest survey of Buchberger Theory and (what is more important) in all
available implementations, by the test/completion based on the lifting theorem [22]:
a generating set F is a Grobner basis if and only if each element in a minimal basis



of the syzygies among the leading monomials {M(f,) : f, € F} lifts, via Buchberger
reduction, to a syzygy among the elements of F.

The point is that the lifting theorem allowed Gebauer—Moller [11] to give more
efficient criteria. Thus they detect at least as many “useless” pairs as Buchberger’s
two criteria [5], but they do not need to verify whether a pair satisfies the conditions
required by the Second Criterion and thus they avoid the consequent bottleneck needed
for listing and ordering the S-pairs (in the commutative case they are (#F)> while a
careful informal analysis in that setting suggests that the S-pairs needed by Gebauer—
Moller Criterion are n#F). Moreover, the flexibility of Méller lifting theorem approach
- with respect to Buchberger S-pair test - allows the former to extend Buchberger theory
verbatim at least to (non commutative) monoid rings over PIRs.

We can remark that Buchberger Theory and Algorithm for left (or right) ideals of
monoid rings over PIRs essentially repeats verbatim the same Theory and Algorithm
as the commutative case.

The same happens in the first class of twisted polynomial rings whose Buchberger
Theory and Algorithm has been studied, solvable polynomial rings over a field [15]:
there the left case is obtained simply by reformulating Buchberger test, while the bi-
lateral case is solved via Kandri-Rody— Weispfenning completion which essentially
consists of a direct application of Spear’s Theorem.

Later, Weispfenning studied an interesting class of rings, Q(x, Y)/I(Yx — x°Y),
e € Nye > 1 [44], [26, IV.49.11,1V.50.13.6], and essentially applied the same kind
of completion: instead of the bilateral ideal

L := SpanQ (x”Ybfchd :(a,b,c,d) € N4)
he considered the restricted ideal
I := Spang (x“de 2 (a,d) € Nz).

Then he computed a restricted Grobner basis of it via Buchberger test and extended this
restricted Grobner basis to the required bilateral Grobner basis via a direct application
of Spear’s Theorem. The point is that, if we denote ¢ the commutative multiplication

Y4 o x°YP = x**eyb* (a,b,c,d) € N*,

the computation of restricted Grobner bases verbatim mimicks the commutative case
as it was done for left ideals in the case of solvable polynomial rings.
A Buchberger Theory for each effective ring

A=Q/I,Q:=DFUV), T =1L(G),

where D is a PID and G a Grobner basis w.r.t. a suitable term ordering <, has been
recently proposed in [26, IV.50] (for an abridged survey see [23]), using the strength of
Moller lifting theorem.

In this setting, denoting G := G N D(v), we need to consider S-pairs among ele-
ments which essentially have the shape

—awf,feFwe (V),a € D(v)/I,(Gy) in the left case, and



— aldfbp,f € F,A,p € (V), a,b € D{V)/15(Gy) in the bilateral case.

While reading the proofs of [26, IV] the senior author realized a wrong description
of the S-polynomials required by the bilateral lifting theorem in an example involving
the Ore algebra Z[X, Y, Z]/I(YX — 2XY,ZX — 3XZ,ZY — 5XZ) [26, IV.50.11.8] which
was therefore forced to remove; at the same time, however, the reading of the section
devoted to Weispfenning ring suggested him how to formalize an intuition informally
expressed in [25]. Applying this approach to Ore algebras [9] the junior author for-
malized the notion of Weispfenning multiplication ¢ and realized that it allows to ex-
tend verbatim Buchberger First Criterion and, consequently, the algorithms based on
Gebauer-Moller Criteria [11], [26, I1.25.1].

This provides an alternative (and more efficient) approach for producing bilateral
Grobner bases, via the notion of restricted Grobner bases, for which we have to apply
the test to elements having the shape

—awo f,f € F,w e (V),a € D) /1(Go)

and for which Gebauer-Moller Criteria are available; once a bilateral Grobner basis is
thus produced a direct application of Spear Theorem is all one needs.

In Sections 1-3 we discuss in detail our notion of effective ring, i.e. a ring A
presented, accordingly the universal property of free monoid rings, as a quotient A =
Q/ I of a free monoid ring Q := D(v LI'V) modulo a bilateral ideal 7 = L,(G), presented
in turn by its Grobner basis w.r.t. a suitable term ordering <. Thus the ring A turns out
to be a left R-module over the effectively given ring

R := R/1,(Gp), R :=D(V),Gy :=GNR.

In Section 4 we discuss the pseudovaluation [1] which is naturally induced on A by
the classical filtration/valuation of @ related with Buchberger Theory, so that in Section
5 we can import on (A the notions and main properties of Grobner bases, Grobner
presentation, normal forms.

At the same time after having introduced Weispfenning multiplication (Section 6),
we can extend the same notions and properties (Section 7) to the case of restricted
modules, proving a lifting theorem for them (Section 8) and consequently listing the
S-polyomials needed to test/completing a restricted basis (Section 11); an adaptation
of Weispfenning Completion in this setting (Section 9), allows to produce, iteratively,
a bilateral Grobner basis from which a strong bilateral Grobner basis can be easisly
deduced (Section 12).

Of course, in this setting it is well-known that there is no chance to hope for a
terminating algorithm, unless the ring is noetherian and its representation is properly
restricted; the classical approach consists in producing a procedure which terminates
if and only if the module generated by a given finite basis has a finite Grobner basis
which, in this case, is returned (Section 10).

The paper is completely self-contained and can be read without knowing [26] and
[23]; it requires however a good knowledge of the classical papers on which is based the



core of Buchberger Theory: the results by Buchberger [3, 4, 7, 5], Spear [40], Zacharias
[47], Moller [22], Gebauer-Moller [11], Traverso[43, 12], Weispfenning [15, 2, 44],
Pritchard [33, 34], Apel [1].

1 Effectiveness

Given any set Z and denoting (Z) the monoid of all words over the alphabet Z, we
can consider the free monoid ring Q := D(Z) of (Z) over the principal ideal domain
D whose elements are the finite sums of “monomials” ¢t,c € D, T € (Z), and whose
product is obtained by distributing the word concatenation of (Z) :

CX1X2 .o Xy - dAY1 ... Yy = cdX1Xy ... Xy ...y, foreach c,d € D, x;,y; € 7.
The ring Q := Z(Z) has the following universal property: any map Z — A over any
ring with identity A can be uniquely extended to a ring morphism Q — A. Therefore:

Fact 1. For a (not necessarily commutative) ring with identity A, there is a (not neces-
sarily finite nor necessarily countable) set Z and a projection 11 : Q := Z{Z) - A so
that, denoting | C Q = Z(Z) the bilateral ideal | .= ker(Il), we have A = Q/I.

Proof. Tt is sufficient to consider the set Z := A and the identity map Z := A — A in
order to obtain the result by the universal property of Q := Z(A). |

Of course, each commutative ring A can be represented in a similar way as a quo-
tient of the commutative polynomial ring P := Z[Z] modulo an ideal .

Let R be a (not necessarily commutative) ring with identity 1z and A another (not
necessarily commutative) ring with identity 14 which is a left module on R.

Definition 2. [27] We consider (A to be effectively given when we are given

— aZacharias [26, 11.26.1] principal ideal domain D with canonical representatives
[27];

sets vV :={x1,...,xj,...}, V:={Xy,..., X, ...}, which are countable, and

- Z:=VI_IV={xl,...,xj,...,Xl,...,X,-,...};

rings R := D(V) C Q := D(Z);

projections 7 : R = D(xy,...,xj,...) > R and

H:Q:: D(-xl’"-sxj""sxl’-'-in,'--) _»ﬂWhICh Satlsfy
(x;) = n(x;)1#, for each x; €V,
sothat [T1(R) = {rlg : r € R} C A.

Thus denoting



— I :=ker(Il) c Q and
- I:=InR=ker(r) CR,

we have A = Q/T and R = R/I; moreover we can wlog assume that R C A.
Further, when considering A as effectively given in this way, we explicitly impose
the Ore-like requirement that

Xixj = ) m(ai)X; + n(agiy) mod T, ay; € D(V), (1)
=1

forall X; € V, X;€EV.

Remark 3.

1. It is sufficient to consider the uncountable field of the reals R, to understand that
not necessarily each ring A can be provided of a Buchberger Theory.

Essentially, our definition of an effectively given ring A is a specialization of
the one introduced (under the same name of explizite-bekann) for fields by van
der Waerden [46]; the difference is that the ablity of performing arithmetics in
endlichvielen Schritten is granted here by the implicit assumption of knowing a
Grobner basis of 7.

Moreover, in the commutative case, the recent result of [45] which, following an
old idea of Buchberger [6], obtains a degree-bound evaluation for ideal member-
ship test and canonical form computation by merging Grete Hermann’s [14] and
Dubé’s [10] bounds, grants a representation of A which even satisfies Hermann’s
[14, p.736] requirement of an upper bound for the number of operations needed
by the computation.

If we are interested in polynomial rings with coefficients in R or in a ring of
analytical functions (as in Riquiet-Janet Theory [17, 18, 32]), since a given finite
basis has a finite number of coefficients ¢; € R, the requirement that the data
are effectively given essentially means that we need to provide the algebraically
dependencies among such c;.

For instance while the rings Q[n] and Q[e] can be considered effectively given
as Q[v] within Kronecker’s Model [26, 1.8.1-3.], the problem arises with Q[, e]:
the Kronecker’s Model Q[vy, v,] is valid provided that  and e are algebraically
independent; potential algebraic dependencies generate an ideal | ¢ Q[vy, v;]
and the ring can be considered effectively given under Definition 2 only if such
ideal is explicitly produced thus representing Q[r, e] as Q[vy, v2]/l; the point,
of course, is that the status of algebraically dependency between 7 and e is still
open.

2. The Ore-like requirement (1), which wants that no higher-indexed “variable”
X;, 1 > i, appears in the representation, in the left R-module A, of a multiplication
of a “variable” X; at the right by a “coefficient” x;, is necessary in order to avoid
non-noetherian reductions.



In order to illustrate the rle of condition (1), the most natural example is the free
monoid ring Z({x,y) which is naturally a left Z[x]-module; a natural choice for
the generating set (H(V)) = H((V)) isV = {X;,i € N}, II(X;) = yx’ which gives,
through the isomorphism IT, the equivalent representation Z(x, y) = Z[x](V) and
the projection

IT: Z{x, Xo, X1, ...) » Z{x,y), ker(I]) = {X;x — X;;1,i € N},

and in order to obtain T(X;x—X;,) = X;x we are | forced to use the non-noetherian
ordering X; >y Xp >y ... >y X; >y ... on V which would require a related
Hironaka Theory [13].

Thus our definition considers Z{x,y) as not effectively given as a left Z[x]-
module. o

For each m € N, we denote {ey,...,e,} the canonical basis of the free Q-module
@™, whose basis as a left D-module is the set of terms

(Z)(’") ={te;: t € (Z), 1<i<m).

If we impose on (Z)™ a term ordering <, then each f _€ @" has a unique rep-
resentation as an ordered linear combination of terms ¢ € (Z)" with coefficients in
D:

F= ) clftt s o(f) €D\{OL 1 € Tt > - > 1,
i=1

The support of f is the set supp(f) := {r : c(f,?) # 0}; we further denote T(f) := 1,
the maximal term of f, Ic(f) := c(f, 1)) its leading coefficient and M(f) := c(f, t))t; its
maximal monomial.

For a subset G ¢ Q" of a module @", I.(G),1x(G),1,(G) denotes the left (resp.
right, bilateral) module generated by G, the index being dropped when there is no need
of specification; moreover T{G} denotes the set

T(G)} := {T(f) : f €1} c (Z)™.

2 Recalls on Zacharias rings and canonical representa-
tion

Zacharias approach [47] to Buchberger Theory consisted in remarking that, if each
module | ¢ R(Z)Y" has a groebnerian property, necessarily the same property must
be satisfied at least by the modules | € R” ¢ R(Z)Y" and thus such property in R is
available and can be used to device a procedure granting the same property in R(Z)".
The most elementary applications of Zacharias approach is the generalization (up to
membership test and syzygy computation) of the property of canonical forms from the
case in which R = F is a field to the general case: all we need is an effective notion of
canonical forms for modules in R.



Definition 4 (Zacharias). [47] A ring R is said to have canonical representatives if
there is an algorithm which, given an element ¢ € R™ and a (left, bilateral, right)
module J C R™, computes a unique element Rep(c, J) € R™ such that

- ¢ —Rep(c,J) € J,
- Rep(c,J) =0 &< ced.

The set
R™ > Zach(R™/J) := Rep(J) := {Rep(c,J) : c e R"} = R"/J

is called the canonical Zacharias representation of the module R™/J. |
Remark that, for each ¢,d € R™ and each module J C R™, we have
c—ded < Rep(c,J) = Rep(d,J).

Definition 5. [47] (cf. [26, II. Definition 26.1.1]) A ring R with identity is called a
(left) Zacharias ring if it satisfies the following properties:

(a). Ris a noetherian ring;

(b). there is an algorithm which, for each ¢ € R", C := {cy,...c;} € R™ \ {0}, allows
to decide whether ¢ € I;(C) in which case it produces elements d; € R : ¢ =

ZLl dic;
(c). there is an algorithm which, given {cj,...c;} € R™ \ {0}, computes a finite set of
generators for the left syzygy R-module {(dl s d) €ER YL dici = O}.

Note that [22] for a ring R with identity which satisfies (a) and (b), (c) is equivalent
to

(d). there is an algorithm which, given {cy,...c;} € R™ \ {0}, computes a finite basis
of the ideal
I - 1 <i<s}):Ip(cy).

If R has canonical representatives, we improve the computational assumptions of
Zacharias rings, requiring also the following property:

(e). there is an algorithm which, given an element ¢ € R” and a left module J C R™,
computes the unique canonical representative Rep(c, J). |

We can now precise our assumption on D requiring that it is a Zacharias PID with
canonical representatives.

We begin by noting that when D = Z, for each m € Z, reasonable sets A,, of the
canonical representatives of the residue classes of Z,, = Z/I(m) are

Amz{z€Z:—§<z§%},Amz{zez:0<zsm}orAm={z€Z:O§z<m}.

In the general case we remark that, if we use Szekeres notation [42], [26, [V.46.1.1.2],
[27] and denote |, the left Szekeres ideal

le == {le(f) : f e L, T(f) =7} U {0} =1(c;) CD

and ¢, its Szekeres generator, for each module | € Q" and each 7 € (Z)™, we obtain



— the relation
w|lT = |y,

foreacht,w e T{l} :={T(f): fel} C <Z>(m);
— the partition (Z)™ = L(l) U R(I) U N(I) of (Z)™ where

- N() = {r € (Z)™ : 1, = ()},
- L) :={r €(Z)y™ : I, =D},
- R() := {r € (Z)" : I, ¢ {(0),D}};

— the canonical Zacharias representation

Q" > Zach@"/l) :=Rep(l) = {Rep(c.]):ceQ"}
= @ Rep(l:)7
T€(Z)m
- @ Zach(R/l.)r = Q"/|
TeTm
of the module Q"/I.

3 Zacharias canonical representation of Effective Asso-
ciative Rings
If we fix
— aterm-ordering < on (Z)
we can assume J to be given via
— its bilateral Grobner basis G w.r.t. <

and, if < satisfies .
X; >tforeachre(v)and X; €V, 2)

also [ is given via
— its bilateral Grobner basis Gy := G N R w.r.t. <.
Since condition (1) implies that, for each X; € V, X; €YV,
i
fij = Xixj — Za[,’jX[ —apjel cQ
I=1

if we further require that < satisfies
X;xj = T(f;;) foreach X; € V, x; €V, (3)

and denote C := {f;; : X; € v, X; € V} we have



- GyuCcagG,
— A s generated as R-module by [1((V)) and,

— as D-module, by a subset of {UUJ v eE(V),we (V)}.

Thus, using Szekeres notation and setting A., := D/1; for each 7 € (Z), A can be
described via its Zacharias canonical representation w.r.t. < as

A=Q/T= (P [@ Acwv]w =: Zach_(A) c Q. O]

we(Vy \VEW)

Example 6. W.rt. the ideal | := I(2X,3Y) € Z[X, Y] whose strong Grobner basis is
{2X, 3Y, XY}, the ring

A=ZIX, Y]/l =2 ZX, Y)/1,(2X, 3Y, XY, Y X)
has the canonical representation
A=Z+Z[X]X + Z3[Y]Y;
thus the underlying Z-module has the structure

e @)@

i€N\{0)
and the ring structure is defined by
(a,...di,...gi,...)*(b,...ei,...hi,...) = (C,...ﬁ,...,li,...)

where a,b,c € Z,d;, e;, f; € Z, = {0, 1}, g, hi, l; € Z3 = {—1,0, 1} and

¢ := ab,
i-1

fj = m(a)e; + djei_j + dimy(b),i € N\ {0},
=1
i-1

L = mah + Z gihi_j+ gimy(b),i € N\ {0},
j=1

If we further consider, for each w € (V), the left Szekeres ideal
I, ={reR:3he@QTh) <wro+hel}>I=INR

and the ring R, = R/1,, having the Zacharias canonical representation

Zach.(R,) = (P A, vc R

VEV)



we obtain
Zach_(R/I,) c Zach_(R/]) = Zach.(R) Cc R

and

A=P {@ Acwu]w =P RwcRV) =Q (5)

we(V) \VEW) we(V)

More precisely, denoting
- NJ):={we(V): I,=1),
- L) :={we(V):I,=R)
- RU) :={we(V): I, ¢ {L.R}}
we have the partition (V) = L) UR({) UN(T) and, denoting
- 8=R()UNU) = (V) \ L) c(V),
we obtain
1. BC (V) is an order module i.e. ltp € B = 1€ Bforeach A, 7,p € (V);
2. Ais both a left R-module and a left R-module with generating set 5.

Thus, each element f € A is uniquely represented via its canonical representation
w.rt. <

Rep(f,.J) = ) a,w € Zach(A)

weB

where, using the present notation, each

ay = Z by,v € Zach_(R,,)

ve(v)

is the canonical representation of an element of the module R/7,, and each b,,, € A,
is the canonical representation of an element of the ring A, := D/I(cy) = D/1,0; we
will identify the elements in A, R, and A, with their representatives.

Example 7. For Q = Z{x1, x2, X1),

Cl/(u

Go = {xx1},C = (X1x1 — X1, X1x0 — 01 X1}, T =h(Go U C), A=Q/ T,
a minimal Grobner basis of 7 is Gy U C U {xlx;’le, i € N}, since we have

x100X1 = X1 * xoxp — (X1x2 — x1.X1) * x1 — x1 % (X1x1 — x2X1)

and, fori > 1
xlx’z“Xl = 105X * x; — x1x5 * (X1x1 — 0X)).

We therefore have

R = Z(x1, ) /1(x2x1), Zach(R) = Spany (x| x] : (i, j) € N?},

10



and, denoting R; := RX{’I’ = qu for each [, we have, for [ > 1,
I =T (oxy, x x5 i € N), Ry = Zx1, x0) /1) = Z[x1, x]/1(x1 x2)

so that Zach(R;) = Span,{x}, xé :i,j € N}and

Zach(A) = Z[x1, %1 P | P Zlx, x1/1nxm)X]

>1

so that a generic element of Zach_(A) has the form
FOx1,x) = a(xy, 1) + ) (b + cix)) + dy(x)) X
>0

with a € Z[x1,x],b; € Z,¢; € Z[x1],d; € Z[x>], ¢;(0) = d;(0) = 0 and the related left
R-algebra structure is defined by

A ) = xalx, x) + Z (B! + ey X1,
>0
j+1 j+1 j+1 j+1 1
0 fx) = x5 a0, x) + Z(bzxé +dj(x2)x, )Xl,
>0
i+1 _Jj+1 i+1 _Jj+1
AT f, ) = X a0, xy).

Remark 8.

1. We must stress that all inclusions — A., C D, Zach.(R,) € R = D(v),
Zach_(A) c R[B] c R(V) — must be understood as ser inclusions only and
do not preserve the module structure and the notation ‘R(V) does not denote the
canonical monoid ring but, as the notation R[B], only the underlying free left
R-modules with bases (V) and B.

2. Note that Zacharias’ approach holds for any effective unitary ring R with canon-
ical representations; thus of course the rdle of D can be assumed on one side
by each effectively given domain/field, on the other side by, say, D(X), Q(X),....
Actually, if we are interested in polynomial rings with coefficients in R or in a
ring of analytical functions, since a given finite basis has a finite number of co-
efficients ¢; € R, the requirement that the data are effectively given essentially
means that we need to provide the algebraically dependencies among such c;
(compare Remark 3.1.).

3. Condition (1), restricting the choice of < to a term-ordering satisfying Equa-
tion (3), grants that, for each i, j, X;x; € T{I} and thus that C C G; moreover,
since there is no possible match among the leading terms {X;x; : X; € V,x €V
it also grants that, in Q and under <, C is a bilateral Grobner basis of the ideal
I,(C) it generates.

11



Since there are the obvious matches
{T(fij) % 7= X; + x;7: X; € V., x;7 € T(Gy )

in general we cannot expect that Gy U C is a bilateral Grobner basis of the ideal
I,(Gy U C) it generates; this in turn implies that as left R-module, Q/1,(Gy U C)
is not necessarily free (see Example 7).

. In the next sections we will discuss expressions

f=) adixgixbp;:,p€B,a€ Ry \{0},b; e R, \ {0}, 8, € B

“
=1

where f € M is an element and B C M is a basis of a bilateral A-module M.
Each element a; € R, \ {0} is to be considered either

— as any non-zero element in a residue class modulo the left ideal 7, in the
ring R = Z{V) or

— as the Zacharias canonical representation of such residue class in the set
Zach_(R,,) Cc Zach.(R) C R, or even

— as any non-zero element in a residue class modulo the left ideal (7 ,,) in the
ring R by simply identifying R with its Zacharias canonical representation
Zach_(R).

Consequently each element a;4; represents a “monomial” in A where the coef-
ficient a; can be interpreted either in R or in R but in both cases represents a
residue class or its canonical representation.

As a consequence, in all setting in which (A is mainly considered as a left R-
module, we choose of writing a; € R \ {0}.

. Each free A-module A™, m € N, — the canonical basis of which will be denoted
by {eq,...,e,} —is an R-module with basis the set of the terms

B = (re; 1€ B, 1 <i<m)

and the projection IT : Q := D(Z) » A, T := ker(Il), A = Q/ T, extends to each
canonical projection, still denoted I1,

IT: Q" » A" ker(I) = I"™ = L,(G"™)

where G is the Grobner basis w.r.t. < of 7 and G" := {ge;, g € G,1 < i <mj}is
the Grobner basis of 7™ w.r.t. any term-ordering on (Z)" — which we still de-
note < with a slight abuse of notation — satisfying, for each t;,t, € (Z), 7,72 €
@™,

H<1h 7 LT = HT1 L hTy, T1Hh £ Thbh.

12



In connection with the choice of the order module
B =RT)UNT) = (V) \ L) c (V)

as module basis of A, Spear’s Theorem [26, IV.50.6.3] suggests to consider it well-
ordered by the same term-ordering < on (Z) which we have used for providing the
Zacharias representation of A discussed above and which in particular satisfies Equa-
tions (2) and (3). In fact, in our setting Spear states that, for any module M c A™,
denoting M’ := TT"!(M) = M + I™, we have

1. if F is a reduced Grobner basis of M’, then
{ge F:g=T(g)} ={I(g) : g € F,T(g) € B} = F N Zach(A)"
is a Grobner basis of M;

2. if F c Zach (A)" — so that in particular II(f) = f for each f € F — is the
Grobner basis of M, then F LI G™ is a Grobner basis of M.

Thus, w.r.t. a term-ordering < satisfiying Equations (2) and (3), each non-zero
element f € A"™ has its canonical representation

f = Z c(f.tie e, € Zach (A)",t; € B,c(f,tje,) € R, \ {0},1 <t <m,
=

with e, > e, > --- > ;e and we denote, supp(f) := {t;e, : 1 < j < m} the support
of f, T<(f) := t1e, its maximal term, lc.(f) := c(f, t1e,) its leading coefficient and
ML (f) := c(f, t1e, )t e, its maximal monomial.

If we denote, following [35, 36], M(A™) := {cte;|t € B,c € R;\ {0}, 1 <i < mj}, the
unique finite representation above can be reformulated

f: Z me, m‘z':c(f7T)T

Tesupp(f)

as a sum of elements of the monomial set M(A™).

These notions heavily depend on Zacharias representation which in turn depends
on the term-ordering < we have fixed on (V).

This has an unexpected advantage: already in the case of semigroup rings [37, 20,
21] A = R[S], an elementary adaptation of Buchberger Theory (which would suggest
to set B := S) is impossible since S does not possess a semigroup ordering. The
paradoxical solution consists [20, 21], or at least can be interpreted as [26, IV.50.13.5]
considering S := B not as a semigroup but as a subset of a proper free semigroup
(V) D B and, via Spear’s Theorem, import to A the natural (V)-pseudovaluation

T(): A" > 8™ f > T(f)

of R(V).
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The general solution, thus, consists into applying the classical filtration/valuation
interpretation of Buchberger Theory [41, 24, 1, 29] and to impose on Q a I'-pseudova-
luation

T() : A™ > B™ cT™ . f - T(f)

where the semigroup (I', o), 8 T c (V), is properly chosen on the basis of the struc-
tural properties of the relation ideal 7 in order to obtain a smoother arithmetics of the
associated graded ring G := G(A).

4 Apel: pseudovaluation
Denote, for a semigroup (I', o), '™ the sets
.= {yvei,yel',1 <i<u}l,ueN,
endowed with no operation except the natural action of I'
XTI xT =T :(6,y,6,) — 6 0yod,, foreachs;, s, el,yel'™,

Definition 9. If (T, o) is a semigroup, a ring A is called a I'-graded ring if there is a
family of subgroups {A, : y € I'} such that

- "7( = @yel" ﬂy’
- AsA, C Asoy for any 6,y €T

A right A-module M of a I'-graded ring A is called a I'“-graded A-module if
there is a family of subgroups {M, : y € ™} such that

- M= @yer(") M,,
- M,As C Myos forany 6 € I,y € T,

Given two I'™-graded right A-modules M, N, by a I'-graded morphism ¢ : M — N
of degree 5 € T we shall mean a morphism such that ®(M,) C N,.s for each y € T™.

An A-bimodule M of a I'-graded ring A is called a I'-graded A-bimodule if there
is a family of subgroups {M, : y € T™} such that

- M= @yer(") M,,
- AsM,, C Mo, and M, As C Mo5 forany 6 € T,y € T™.

Given two I'™®-graded A-bimodules M, N by a I'-graded morphism ¢ : M — N of
degree (0;,0,) € T’ 2, we shall mean a morphism such that ®(M,) C Ns,oy0s for each
yel®,

Each element x € M, is called homogeneous of degree y € r®,

Each element x € M can be uniquely represented as a finite sum x := ¥ crw x,
where x, € M,, and {y : x, # 0} is finite; each such element x, is called a homogeneous
component of degree y. |
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Definition 10 (Apel). [1] Let (I', o) be a semigroup well-ordered by a semigroup or-
dering <, A aring which is a left R-module over a subring R ¢ A and M an A-module.
A T-pseudovaluation is a function v : A\{0} — I such that, for each a;, a, € A\{0},

1. v(a; — az) < max(v(a), v(az)),
2. v(araz) < v(ay) o v(az),
3. v(r) = 1r foreachr €e R C A.

Impose now on r® g well-ordering, denoted, with a slight abuse of notation also
<, satisfying, for each 6§,,6, € I, y;,y, € T®

61 <62, 7y1<y2 = 010y <6207%2,71 261 <y00.

A function w : M \ {0} — I'™ is said a v-compatible T'"-pseudovaluation on M if
it satisfies, for each a € A \ {0} and each m, my,my, € M \ {0},

4. w(m; — my) < max(w(mp), w(m,)),

5. w(am) < v(a) o w(m) and w(ma) < w(m) o v(a).
O

Notation 11. (Cf. [26, Il.Definition 24.6.5] Given a semigroup (I, o) well-ordered by
a semigroup ordering <, a ring A which is a left R-module over a subring R C A,
a I-pseudovaluation v : A \ {0} — T, an A-bimodule M and a v-compatible T'*)-
pseudovaluation w : M \ {0} — '™ write

- Fy(M) :={me M : wim) <y} U {0} C M, for each y € I'";

- V,(M):={meM:wm)<ylU{0} Cc M, foreachy € re;

G,(M) := F,(M)/V,(M), foreach y € rw:;

G(M) = @751“(14) Gy(M)

L : M — G(M) is the map such that, for each m € M,m # 0, L(m) denotes the
residue class of m mod V(M) and £(0) = 0. a

Definition 12. With the present notation, we define

— the associated graded ring of A the left R-module G(A) which is a I'-graded
ring, and

— the associated graded module of M the left R-module G(M), which is a T'™-
graded G(A)-module. O

As we have remarked above, when the ring A is explicitly given via the Zacharias
representation (5) we cannot use the function

T(): A= B: f—=T()
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as a natural pseudovaluation because, in general, either 8 is not a semigroup or, at
least, < is not a semigroup ordering on it.

Thus we consider a semigroup I', B c I' C (V), such that the restriction of < on I"
is a semigroup ordering. In this way, the function

T(): A BcT: f— T)

is a I-pseudovaluation, which we will call its natural T'-pseudovaluation and the free
A-module A™ has the natural T(-)-compatible pseudovaluation

T() : A" B™ cTM . £ T(f).
Under these natural pseudovaluations, we have

Gs(A) = Rs for each 6 € B and

- Gs(A)={0} foreachd €T\ B;

G(A) and A coincide as subsets, (but not as rings nor as R-modules) and both
have the Zacharias representation stated in (5);

G, (A™) = R; for each y = de; € B™ and

G, (A™) = {0} for each y € T™ \ B™);
G(A™) = G(A)™ as R-modules.

L(f) = M(f) for each f € A™.

5 Bilateral Grobner bases

Let A = Q/I be an effectively given left R-module, endowed with its natural I'-
pseudovaluation T(-) where the semigroup (T, o) satisfies

- BcT c(V)yand
— the restriction of < on I' is a semigroup ordering.

We denote G = G(A), by * the multiplication of A and by * the one of G.
For any set F ¢ (A" we denote, in function of <:

- T{F} :={T(f) : f € F} c B"™;
— M{F} := {M(f) : f € F} c M(A™).

— To(F) := L(T{F)) = (T * f % p): ,pe€B,f e Fy ={loT(fop: Ap e
B, f e F}cB8m;

- Mu(F) := (M(ad * f % bp) : a € Ry \ {0},b € R,\ {0},2,p € B,f € F} =
{m«=M(f)*n:m,neM(A), f € F}CMA™).
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Definition 13. Let M c A™ be a bilateral A-module. F ¢ M will be called
— abilateral Grobner basis of M if F satisfies
M{M} = Mx(M) = M{L(M2(F))} = M{L(M{F})} = L(M{F}) N M(A™),
id est if it satisfies the following condition:

— foreach f € M, there are g; € F, A;,p; € B,a; € Ry, \ {0}, b; € R, \ {0} such
that

— T(f) = A; 0 T(g;) o p; for all i,
- M(f) = X aidi = M(g) * bipi;
— a bilateral strong Grobner basis of M if it satisfies the following equivalent con-
ditions:
— for each f € M there is g € F such that M(g) |, M(f),
— foreach f € Mthere are g € F,a € Ry \ {0},b € R, \ {0}, A, p € B such that
M(f) = ad * M(g) * bp = M(ad x g % bp),
- M{M} = Mp(M) = M(F).
Definition 14. Let M c A" be a bilateral A-module and ' ¢ M. We say that f €
A™\ {0} has

— a bilateral (weak) Grobner representation in terms of F' if it can be written as
f = Zt.lzl CZ,‘/L' * gk b[pl', with /l,‘,pi S B, a; € R,l,. \ {O},b, S Rpi \ {0},g, € F, and
T(f) > A; o T(g;) o p; for each i;

— a bilateral strong Grobner representation in terms of F if it can be written as
f = Zi.l:l a,-/l,- * g % b,'pi, with /l,‘,p,’ € B, a; € R/[l \ {0},b, € Rﬁi \ {0}, gi € F, and
T(f) =41 0T(g1)op; > A 0T(g;) op; foreachi,1 <i < pu.

For f € A™\ {0}, F c A™, an element g := NF(f, F) € A" is called a
— bilateral (weak) normal form of f w.r.t. F, if
f — g € I,(F) has a weak Grobner representation wrt F' and
g§#0 = M(g) ¢ M{L(M{F})};
— bilateral strong normal form of f w.r.t. F,if

f — g € I(F) has a strong Grobner representation wrt ' and

g#0 = M(g) ¢ Mu(F).
Remark 15. As we noted above, G := G(A) and A, while coinciding as sets, do not
necessarily coincide as rings nor as R-modules; thus in general for 4,p € B,a € R, \

{0}, b € R,\{0} and g € A", g = M(g)+p, we don’t have al*M(g)*bp = ad=M(g)=bp
but we could have

tail(ad x M(g) * bp) := al x M(g) x bp — ald +* M(g) = bp # 0.

In such case, of course, T(tail(al x M(g) x bp)) < T(ad x M(g) *x bp); more exactly,
either
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— 10 T(g) o p € B in which case
M(ad x M(g) * bp) = ald + M(g) = bp
and ald x* M(g) x bp = M(ald x M(g) x bp) + tail(al x M(g) * bp);
— or 10 T(g) o p € T™ \ B™ in which case

adxM(g)xbp = M(al*xM(g)xbp) = 0 and alxM(g)*xbp = tail(al*xM(g)xbp);

in both cases we have

ad x g % bp —ad = M(g) = bp ad x* M(g) x bp — ad = M(g) * bp + al x p x bp

tail(ad * M(g) x bp) + ad x p x bp =: h,

with T(h) < A0 T(g) o p. O

Lemma 16. Let f € A™; then for each g; € A", A;,p; € B,a; € Ry, \ {0}, b; € R, \ {0}
which satisfy

- T(f) = A4; 0 T(g;) o p;, for each i,
the following are equivalent

1. M(f) = XiM(aid; * g * bip;),

2. M(f) = 2 aidi * M(g)) * bip;,

3. T(f - Xiaidi x gi * bip;) < T(f).

Proof. Remark that the assumption T(f) = A; o T(g;) o p;, for each i, grants, according
Remark 15, the equivalence (1) = (2).
Moreover, denoting g := f — M(f), pi := g — M(g)),

hi = a;d; % gi % bip; — a;d; = M(g;) = bip; = tail(a;d; * M(g;) * bip;) + a;d; * p; * bip;

and h := g — Y; h; we have

f_zai/li*gi*bipi M(f)"'q—zaiﬁi*M(gi)*biPi—Zhi

1

M(f) = )" aidi+ M(gi) * bip; + h.

Thus, setting 7 := T(f) = A; o T(g;) o p; € B™, we have T(¢q) < rand T(h;) < T
for each i, so that T(h) < 7.
Therefore M(f) = ; a;d; = M(g:) = byp; = 3,; M(a;A; * g; * bip;) implies

f—Zaiﬂi*gi*bzpi =h
so that T (f — X; a;d; x gi x bip;) = T(h) < T(f) proving 2) = (3).
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Conversely,

T|f= > aidi % g % bipi | < T(f) = M(f) = Y aidi + M(g) * bip; = 0.

i i

Theorem 17. For any set F ¢ A™ \ {0}, among the following conditions:

1. felbL(F) < it has a bilateral strong Grobner representation

f:

i

u
a;d; * g x bip;
0

in terms of F which further satisfies

T(f) = 21 0 T(g1) o p1 and 4; 0 T(g) o p; > A1 © T(gir1) © piv1 for each i;

2. fel(F) < ithas a bilateral strong Grobner representation in terms of F;
3. F is a bilateral strong Grobner basis of I,(F);

4. for each f € A™ \ {0} and any bilateral strong normal form h of f w.rt. F we
have f € [h(F) < h=0;

5. felh(F) < it has a bilateral weak Grobner representation in terms of F;
6. F is a bilateral weak Grobner basis of I,(F);

7. for each f € A™\ {0} and any bilateral weak normal form h of f w.rt. F we
have f e L(F) < h=0;

there are the implications

1) = 2 = @B = @
U U U
B = 6 < O

If R is a skew field we have also the implication (5) = (2) and as a consequence the
seven conditions are equivalent.

Proof. The implications (1) = (2) = 3), ) = (), (2) = (O),
(3) = (6)and (4) = (7) are trivial.

Ad (3) = (1): for each f € I,(F) by assumption there are elements g € F,
Ap€B,acR;\{0},beR,\ {0}, such that

T(f) = 10 T(g) 0 p and M(f) = ad » M(g) * bp.

Thus M(ad x M(g) x bp) = ad = M(g) * bp = M(f) and denoting, for f = M(f)+g¢q
and g = M(g) + p.

fi i=f—adx g*xbp=gq—tail(al x M(g) x bp) —ad x p *x bp

19



we have T(f;) < T(f) so the claim follows by induction, since 8 is well-ordered by
<.

Ad (6) = (5): similarly, for each f € I,(F) by assumption there are elements
gi € F, Aiapi €B,a; € R,L. \ {0}, b; € Rp[ \ {0} such that

- T(f) = 4; 0 T(g:) o p; for all i,
- M(f) = X aid; = M(g)) * b;p;.

Thus T(f — >;a;d; * g % bip;) < T(f) and it is then sufficient to denote f; :=
f — 2iaid; % gi % b;p; in order to deduce the claim by induction.
Ad (3) = @) and (6) = (7): either

—h=0and f=f-hel(F)or
- h#0,M(h) ¢ M(IL,(F)), h ¢ L(F) and f ¢ I,(F).

Ad(4) = (2)and (7) = (5): for each f € [,(F), its normal form is & = 0 and
f = f — hhas a strong (resp.: weak) Grobner representation in terms of F.

Ad(5) = (2): let f € IL(F)\{0}; since R is a skew field, (5) implies the existence
of elements g € F, A, p € B, such that T(f) = A0T(g)op =: 7; thus denoting d € R\ {0}
the value which satisfies

dr =M * g * p) = A * M(g) *p,
we have
M(f) =le(f)d'dr =1e(f)d ™' A= M(g) + p = M ((le(f)d ™' 2) % g % p)

as required. O

6 Weispfenning multiplication

In proposing a Buchberger Theory for a class of Ore-like rings, id est Weispfenning
rings [44], [26, IV.49.11,1V.50.13.6] Q(x, Y)/I(Yx — x°Y),e € N, e > 1, Weispfenning
considered, given a basis F, the restricted module

Iw(F) := Spang{x“fY”, (a, b) € N*}

and computed a restricted Grobner bases G which grants to each element f € Iy (F) a
restricted Grobner representation

f=> cix“gY” : degy(f) > degy(g) + bi,c; € Q, (a;, b)) e N*, g; € G,

u
i=1
to be extended, in a second step, to the required basis by an adaptation of Kandri-
Rody— Weispfenning completion [15][26, IV.49.5.2].

We can interpret this construction as a multiplication on the monomial set
M(A) :={ct:t € B,c € R, \ {0}}

which becomes, by distribution, a multiplication in A.
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Definition 18. Setting, for each m| = a7, my = a7, € M(A)
my o my = (ajaz) (T2 01y)

Weispfenning multiplication is the associative multiplication

CTAXA-A
defined as
fog= > 3 mon,= » > cfegwor
T€supp(f) wesupp(g) Tesupp(f) wesupp(g)

for each f = X cqupp(p) Mrs M = c(f, )T and g = 3 equpp(e) Ml Mo = (&, W)w.

Note that ¢ is commutative when (A is a twisted monoid ring R[S] over a commu-
tative ring R and a commutative monoid S, as polynomial rings, solvable polynomial
rings [15, 16],[26, IV.49.5], multivariate Ore extensions [30, 31, 8, 9] ....

The intuition of Weispfenning can be formulated by remarking that its effect is to
transform a bilateral problem into a left one. Thus the construction proposed in [44]
simply reformulates the one stated in [15]; in an analogous way the reformulation of
the (commutaive) Gebauer—Moller criteria [11] for detecting useless S-pairs was easily
performed in [9] in the context of multivariate Ore extensions by means of Weispfen-
ning multiplication.

Our aim is therefore to apply ¢ to reduce the computation of Gebauer—-Moller sets
for the bilateral case to the trivial right case where efficient solutions are already avail-
able [22],[26, IV.47.2.3].

We note that Weispfenning construction is a smoother special case of the construc-
tion proposed by Pritchard [33, 34],[26, IV.47.5] for reformulating bilateral modules
in D(X) as left modules in a monoid ring D[(X)*] where the monoid (X)* is properly
defined in terms of (X).

7 Restricted Grobner bases

Following Weispfenning’s intuition [44] we further denote

— Iw(F) c A™ the restricted module generated by F,

Iw(F) := Spang(af xp:a€R\{0}L,peB,feF),
= Spang(mo f:me M(A™), f € F},

- Trv()F) =R(TFD) ={T(f*p):pe B, feF} ={T(flop:peB,feF}C
B,

- My(F) := {(M(af xp):a€ R\{0},p€ B, f € F} ={aM(f)xp:a € R\{0},p €
B, f e F}={moM(f): meMA, f € F} ¢ M(A™).

Definition 19. Let M c A™ be a retricted A-module. FF c M will be called
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— arestricted Grobner basis of M if F satisfies
M{M} = My(M) = M{ly(My (F))} = M{ly(M{F})} = Iy(M{F}) N M(A™),
id est if it satisfies the following condition:

— for each f € M, there are g; € F, p; € B,a; € R\ {0} such that
- T(f) = T(g;) o p; for all i,
- M(f) = X, aiM(g)) = p; = 3 aip; © M(g));

— a restricted strong Grobner basis of M if it satisfies the following equivalent
conditions:

— for each f € M there is g € F such that M(g) |w M(f),

— for each f € Mthere are g € F,a € R\ {0}, p € B such that
M(f) = aM(g) * p = M(ag x p) = M(ap ¢ g),

— MM} = My (M) = My (F).

Definition 20. Let M c A™ be a restricted A-module and F ¢ M. We say that
f e A"\ {0} has

— a restricted (weak) Grobner representation in terms of F if it can be written
as f = Z’il:l aigi * p; = Z’ilzl a;p; ¢ gi, with p; € B,a; € R\ {0},g; € F, and
T(f) = T(g;) o p; for each i;

— a restricted strong Grobner representation in terms of F if it can be written as
f= 2 aigi x pi = X, aipi o gi, with p; € B,a; € R\ {0}, g; € F, and
T(f) = T(g1) op; > T(g;) op; foreachi,1 <i < pu.

For f € A™\ {0}, F c A", an element g := NF(f, F) € A" is called a
— restricted (weak) normal form of f w.r.t. F, if

f — g € Iy(F) has arestricted weak Grobner representation wrt F', and
§#0 = M(g) ¢ M{ly(M{F})}

— restricted strong normal form of f w.r.t. F, if

f — g € Iy(F) has a restricted strong Grobner representation wrt F, and
g§#0 = M(g) ¢ My(F).

Lemma 21. Let f € A™; then for each g; € A™, p; € B, a; € R\ {0} which satisfy
- T(f) = T(g;) o p;, for each i,
the following are equivalent

1. M(f) = X M(aipi < gi)s
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2. M(f) = X; aM(g)) * p;,
3. T(f = Xiaipi© &) < T(f).

Proof. Remark that the assumption T(f) = T(g;) o p;, for each i, grants, according
Remark 15, the equivalence (1) < (2).
Moreover, denoting, for each p € B,a € R \ {0} and g € A"

tail(ap o M(g)) := ap o M(g) — aM(g) = p
and setting g := f — M(f), p; := g — M(g)),
hi := a;p; ¢ g — a;M(g;) * p; = tail(a;p; © M(g;)) + a;p; ¢ p;

and h := g — Y}; h; we have

f_zaipiogi
7

1

M) +q= ) aM(g)*pi= ) b

M(f) - > aiM(g)) * pi + h.

l

Thus, setting 7 := T(f) = T(g:) o p; € B™, we have T(¢g) < 7 and T(h;) < 7 for
each i, so that T(h) < 7.

Therefore M(f) = ¥; a;M(g;) * pi = X; M(aip; © g;) implies f — ¥; aip; © gi = h so
that T (f — X aipi © &) = T(h) < T(f) proving (2) = (3).

Conversely,

1

T[f—Za,-p,»ogi] <T(f) = M(f)- > aM(g)*p; = 0.

i

Theorem 22. For any set F ¢ A™ \ {0}, among the following conditions:

1. fely(F) < it has a restricted strong Grobner representation

f:

i

aigi x pi =

i

H u
ap; © gi
=1 =1

in terms of F which further satisfies

T(f) =T(g) op1 >+ >T(g) o p; > T(gir1) © pis1;

2. felyw(F) < ithas a restricted strong Grobner representation in terms of F;

3. F is a restricted strong Grobner basis of Iy (F);

4. for each f € A™ \ {0} and any restricted strong normal form h of f w.rt. F we
have f € ly(F) < h=0;
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5. felw(F) < ithas a restricted weak Grobner representation in terms of F;
6. F is a restricted weak Grobner basis of Ly (F);

7. for each f € A™\ {0} and any restricted weak normal form h of f w.r.t. F we
have f € ly(F) < h=0.

there are the implications

1 = 2 = B <= @
U U U
B == 6 <= O

If R is a skew field we have also the implication (5) = (2) and as a consequence the
seven conditions are equivalent.

Proof. The implications (1) = (2) = (3), 5 = (), (2) = (O),
(3) = (6)and (4) = (7) are trivial.

Ad 3) = (1): for each f € Iy(F) by assumption there are elements g € F,
p € B,a € R\ {0}, such that

T(f) = T(g) o p and M(f) = aM(g) * p.

Thus M(ap o M(g)) = aM(@) * p = M() and denoting, for f = M(f) + g and
g =M(g) + p,
fl :=f_ap<>g: q—tail(apOM(g))—apop

we have T(f;) < T(f) so the claim follows by induction, since 8 is well-ordered by
<.

Ad (6) = (5): similarly, for each f € Iy(F) by assumption there are elements
gi € F,p; € B,a; € R\ {0} such that

- T(f) = T(g;) o p; for all i,
- M(f) = X;aM(g) = p; = X; aipi © M(g)).

Thus T(f -2, aip;og;) < T(f) and it is then sufficient to denote f; := f—>; a;p;ogi
in order to deduce the claim by induction.

Ad (3) = (4)and (6) = (7): either
—h=0and f=f—-hely(F)or
- h#0,M(h) ¢ My(Iyw(F)), h ¢ Iy(F) and f ¢ Iy (F).

Ad(4) = (2)and (7) = (5): for each f € Iy (F), its normal form is &z = 0 and
f = f — h has a strong (resp.: weak) Grobner representation in terms of F.

Ad (5) = (2): let f € Iy(F) \ {0}; since R is a skew field, (5) implies the
existence of elements g € F, p € B, such that T(f) = T(g) o p =: 7; thus denoting
d € R\ {0} the value which satisfies

dr =M(p o g) = M(g) * p,
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we have
M(f) = le(f)d ™" dt = 1e(f)d™ M(g) x p = M ((e(f)d " )p o g)

as required. O

8 Lifting Theorem for Restricted Modules

Given the finite set
F:={gi,...,8u) C A", g = M(g) - pi =: aiTie, — pj,

let us now denote M the restricted module M := Iy (F) endowed with its natural I'-
pseudovaluation T(-).

Considering both the left R-module R®x A and the left R-module RRrGP, which,
as sets, coincide, we impose on the left R-module (R ® A°P)", whose canonical basis
is denoted {ey, ..., e,} and whose generic element has the shape

D deipipi € Buai € R\(OLT <l <.

2

the T -pseudovaluation — compatible with the natural I'-pseudovaluation of A —
w: (R®g AP)" — ™
defined for each o := Y, aie;,p;i € (R ®g AP)" \ {0} as
w(e) == max{T(g) © pi. pi € B} € T

so that G (R ®g A®)") = (G (R ®r AP))" = (R ®r G°P)" and its corresponding "™ -
homogeneous — of ['"-degree w(c) — leading form is

L(o) = Z ane,pn € (R®r G®)" where H := {h: 1, o ppe,, = w(o)}
heH

We can therefore consider the morphisms

sy (RO GP)' - G" : sy [Z aiel,-,Oi] = Z aM(g;,) * pi,

l

Gw: (RO AP) - A" . Gy [Z a,-ez,pi] = Z aigi; * P

l

1

l

We can equivalently reformulate this setting in terms of Weispfenning multiplica-
tion considering the morphisms

sw: G = G" 1 sw (Zu: {Z aipp] ei] = Zul Z aipM(gi) * p,

i=1 \peB i=1 peB
u u
Sy : A" > A" : Gy [Z (Z a;pp] 6;] = Z Z QippP © 8is
i=1 \peB i=1 peB
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where the symbols {e},...,e,} denote the common canonical basis of A" and G“,
which, as sets, coincide and which satisfy G* = G(A)* = G(A*) under the pseu-
dovaluation w : A* — T'™ defined, for each

o= Z [Z aipp] e; € A\ {0}
i=1 \peB
by
w(o) := max {T(gl-) opiap# O} er™,
<

The corresponding I'™-homogeneous — of ['"™-degree w(c) — leading form is

L(o) := Zu: [Z aipPJ e, €G"

i=1 \peB;
where, for each i we set B; :={p € B: T(g;) op = w(o)}.
Definition 23.

— if u € ker(sy) is T™-homogeneous and U € ker(Sy) is such that u = L(U), we
say that u lifts to U, or U is a lifting of u, or simply u has a lifting;

— arestricted Gebauer—Moller set for F is any ["-homogeneous basis of ker(sy);

— for each I'"™-homogeneous element o = 3; a;e;0; € (R @& A®)" — or, equiva-
lently,

u

o= ) apiei € A\{0},a; # 0, = T(g) o p; = w(o),
i=1

we say that Sy (o) has a restricted quasi-Grobner representation in terms of F
if it can be written as

=

algl*plzZalp,ogl:pIEB,aIER\{O},gIEF
1 =1

u
Cw(o) =
=

with w(o) > T(a;g; * p1) = T(g)) o p; for each [, — or, equivalently,

ew(O') = h,‘ <o gi,/’li € ﬂu, W(O’) > T(g,) o T(/’l,)

u

i=1

— Denoting for each set S ¢ M, L{S} :={L(g) : g€ S} c G(M), aset Bc Mis
called a restricted standard basis of M if

Iw(L{B}) = Iw(L{M}).
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Theorem 24 (Moller—Pritchard). [22, 33, 34] With the present notation and denot-
ing ®My (F) any restricted Gebauer—Moller set for F, the following conditions are
equivalent:

1. F is a restricted Grobner basis of M;
2. feM & f has arestricted Grobner representation in terms of F;

3. for each o € OMy(F), the restricted S-polynomial Sy (o) has a restricted
quasi-Grobner representation Sy(o) = Z’;:l ap;© g = 27:1 aig; * pi, in terms
of F;

4. each o € ©My (F) has a lifting lift(o);
5. each T -homogeneous element u € ker(sy) has a lifting lift(u).
Proof.
(1) = (2) is Theorem 22 (6) = (5).
2) = () Swl(o) e Mand T(Sw(0)) < w(o).
(3) = 4) Let

6W(O-) = Z aip; © 8, = Z aigl; * pPi, W(O-) > Ty Opie“i

u u
i=1

—_

i=

be a restricted quasi-Grobner representation in terms of F'; then

lift(o) :== 0 —

i

u
aiepi
=1
is the required lifting of 0.
4 = (5) Let
u:= Z aie,pi € (R®r GT)" 1), 0 pie, = w(u),
i

be a '™ -homogeneous element in ker(sy) of ['"-degree w(u).

Then there are p, € B, a, € R\ {0}, for which

W= Y a0 p = wi)
€GNy (F)

For each o € My (F) denote

Ho
7 := o ~ lift(o) = L{1ift(e) - lift() := ) aiey, i € (R B AP)"

i=1

and remark that 7, o Pice,, < w(d) < w(o) and Sy (F) = Sy(o).
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It is sufficient to define

lift(u) := ay lift(o) % py = Z opo o lift(or)
Te6My (F) TeGMy (F)
and
u:= Z ay0 * Pg = Z APy © T
TeGMy (F) 6Ny (F)
to obtain

lift(u) = u — u, L(ift(w)) = u, Sy(n) = Sy (u), Sw(ift(w)) = 0.

(5) = (1) Let g € M, so that there are p; € B,a; € R\ {0},1 < [; < u, such that
o1 = Y aiep; € (R @ AP) satisfies

“
g =Gw(oy) = Zaigli * p; = Zaipi o gl

u
i=1 i=1

Denoting H := {i : T(g;,) o p; = 7y, © p;€,, = w(o1)}, then either

- w(o)=T(g) € B 5o that, for each i € H, M(a;M(g;,)*pi) = aiM(g;,)*pi
and
M(g) = > aM(g,) * p; € M{Iy(M{F})},
i€eH
and we are through, or
- T(g) < w(o), in which case! 0 = ¥,cy a;M(g;) * p; = sw(L(0)) and the
I'™-homogeneous element £(o1) € ker(sy) has a lifting

24

U= L) - ) aje,p; € (R &g AT)"
j=1

with

v

Z ajpj o8, = Z aipi © g, and 7y, 0 pje, < w(o)
j=1 icH

so that g = Sy(0) and w(o) < w(oy) for

4
oy = ; a;e;p; + Zl ae;pj € (R®g ﬂOP)M
i Jj=

and the claim follows by the well-orderedness of <.

Theorem 25 (Janet—Schreier). [17, 38, 39]
With the same notation the equivalent conditions (1-5) imply that

!Compare Remark 15.
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6. {lift(o) : o € OGMy (F)} is a restricted standard basis of ker(Sy).
Proof. Let oy := Y/_, aiep; € ker(Sy) C (R ®g A®P)".

Denoting H := {i : 7, opie, = w(o1)}, we have

L) = ) aeyp; € ker(sy)

ieH
and there is a '™ -homogeneous representation

L(oy) = Z o0 % P, W(O) 0 pr = W(0r1)

ae®My (F)
with p, € B,a, € R\ {0}.
Then
oy = 01— Z agpe < lift(o)
ceGMy (F)

= o= ), depgo(@=0)
T€6My (F)

= o —-Llo)+ Z QgpPg © T
Gy (F)

Ho
= Z aieypi + Z Z (@saic) ey, (Pic * o)
igH oe®GMy (F) i=1

satisfies both o, € ker(Sy) and w(o,) < w(op); thus the claim follows by induction.
O

9 Weispfenning: Restricted Representation and Com-
pletion

Note that R is effectively given as a quotient of a free monoid ring R := D(v) over D
and the monoid (V) of all words over the alphabet v modulo a bilateral ideal I, R = R/I.
Wilog we will assume that < orders the set V so that X; < X5 < ... and that its
restriction to (V) is a sequential term-ordering, id est the set {w € (V) : w < 7} is finite
for each T € (V).
Note that, under these assumptions, (1) implies the existence in A of relations

X;xd= Z a;(d)X; + api(d), a;i(d) € D(v), for each X; € V,deR \ {0}
I=1

and
p*Xxj= Zapjvv,apjy € D(v), foreach x; € v,p € 8.

veB
vsp
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Lemma 26. [44] Let
F:={g1,....8) Cc A", g = M(g) — pi = ciTi€, — Pi;

set Q ;= max{T(g;) : 1 <i<u}
Let M be the bilateral module M := 1,(F) and Iy (F) the restricted module

Iw(F) Spang(af xp:ac R\ {0}, pe B, fe€F)

Spang(apo f:a€ R\ {0},pe B,f €F).

If every g x apjy, xj € V,u,p € B,u < p < Q, has a restricted representation in
terms of F w.rt. a sequential term-ordering <, then every g x r,g € F,r € A, has a
restricted representation in terms of F w.r.t. <.

Proof. We can wlog assume r = [];_, xj,, x;, € V and prove the claim by induction on
v eN.
Thus we have a restricted representation in terms of F'

4

v—1
gx {n x./l] = Zdhgih * pp, T, 0 pn < T(g) © l_[xjn
h

=1 =1

whence we obtain

oo
*
<
=
=
Il
—_—
oo
*
<
L
=
=
~——
*
=
s

Z dngi, * (Ph * xjy)
h

Z dhgi/l * Z aP/ijUU
h

veB
v<pp

= Z di Z (83 * @pii) v
h

veB
vspp

and since v < p, < T(f) < Q each element g;, x ap, ;. can be substituted with its
restricted representation whose existence is granted by assumption. |

Lemma 27. [44] Under the same assumption, if, for each g € F, both each X; x g, X; €
V and each g * a,j,, x; € V,u,p € B,u < p < Q, have a restricted representation in
terms of F w.rt. <, then Iy (F) = M.

Proof. 1tis sufficient to show that, for each f € Iy(F), both each X; % f € Iy(F), X; € v
and each f % x; € Iy(F), x; € V.
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By assumption f = >}, dngi, * pn.dn € R\ {0}, pp € B C (Z), 1 < iy, € u, so that

Xix f = Z(Xi*dh)gih * O
7

i
= Z Zazi(dh)xl + aoi(dn) | &, * P
7w V=

= Z Z ag(dp) (X; * gi,) * pn + Z aoi(dr)gi, * pn
W

h =1

and

f*xx; = Zdhgih*(ph*xj)
h

= Z dhgi;, * Z Aap, julV
h

vesB
v<pp

= Z dy Z (gih * aphj‘,v) v
7

veB
vspp,

and, since v < p, < T(f) < Q each element g;, * a,,;,, can be substituted with its
restricted representation whose existence is granted by assumption.
The same holds for each X; % g;, thus the claim follows. O

Corollary 28. [44] Let
Fi=A{g1,....8 C A", g = M(g) — pi = ¢;Ti€, — pi.
Let M be the bilateral module M := I,(F) and Iy (F) the restricted module

Iw(F) := Spang(af*xp:a€R\{0},peB,feF)
= Spang(apo f:aeR\{0},pe B, feF).

F is the bilateral Grobner basis of M iff

1. denoting ®M(F) any restricted Gebauer—Moller set for F, each o € ®IN(F) has
a restricted quasi-Grobner representation in terms of F;

2. foreach g € F, both X; % g,X; € V and each
8* pjy, X; EV,U,pEBUu<p<Q,

have a restricted representation in terms of F w.r.t. <.
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10 Finiteness, Noetherianity, Termination

Even if we restrict ourselves to a case in which both ¥ and V are finite and that < is a
sequential term-ordering on (Z) so that the tests required by Corollary 28 are finitely
many, unless we know and explictly use noetherianity of A, it is well-extablished that
the best one can hope to be able of producing is a procedure which receiving as input a
finite set of elements F := {gi,...,8,} C A" defining the module I(F)

— in case I(F) has a finite (left, right, restricted, bilateral) Grobner basis, halts
returning such a finite Grobner basis;

— otherwise, it produces an infinite sequence of elements

81s-+58us8urls---s8is---
such that the infinite set {g; : i € N} is a Grobner basis of I(F).

A nice and efficient procedure to this aim has been proposed by Pritchard [34], [26,
1V.47.7]; with slight modification Pritchard’s approach allows also to produce

— a procedure, which, given further an element g € A™, terminates if and only if
g € I(F) in which case it produces also a Grobner representation of it;

— a procedure, which, given an element g € A™ and any subset N' ¢ N(I(F)),
terminates if and only if g € I(F) has a canonical representation

Rep(g, I(F))  Spang,(N)

in which case it produces such canonical representation, thus granting the im-
possibility of using non-commutative Grobner bases as a cryptographical tool.

The procedures, assuming < to be sequential, consists in fixing an enumerated set
UL, U2y« Uiy Vigls e -
of the elements of (Z)"™ which satisfy
— v; < vy foreach i,
— for each v € (Z)™ there is a value i : v < v;;

and denotes, for eachi € N
S;:={v<uv}cS™

Then we set Gy := G,i:= 1,5 := 0 and iteratively we compute
- B :={o € 6IM(G;_1), w(o) S v},
-G =G;i1 U {NF(S(O’), G;_1) : 0 € B;}.
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11 Restricted Grobner basis

In order to compute a restricted Grobner basis we need to formulate Spear Theorem in
the restricted setting.
It is more convenient to consider the ring Q/I and the obvious projections

O (@/I)" > A" ker(®) = (I/)" =T (n(H)™)

where H = G \ (Go U C) and n(H)"™ := {n(h)e;,h € H,1 < j < m}.
Then given a restricted module M := Iy(F) ¢ A™, where F ¢ Zach_(A)™) c
Q" and wlog f = II(f) for each f € F, we consider the restricted module

M = M-+ Span,(yuf *p:y €D\ {0} ve ¥, yv ¢ M).p € (V). f € FUn(H)™)
= M+ Spang (yupo f:y €D\ (0L v e (Myv ¢ MI).p € (V). f € F U(H)™).

Lemma 29 (Spear). [40],[26, II.Proposition 24.7.3., IV.Theorem 50.6.3.(1)] With the
present notation if F is a reduced restricted Grobner basis of M, then

(geF:g=0(9) =(D(g): g€ F,T(g) € B} = F n Zach_(A)"
is a reduced restricted Grobner basis of M.

Proof. Letm € M and m’ € M’ N Zach_(A)" c @" be such that ®(m’) = m, so that
M@m') = M(m) ¢ M(I™), and m’ = n(m’).

Then there are g; € F, p; € V, U; € (V),y; € D\ {0}, y;; ¢ M(I) such that, denoting
M(gl) = CiTi€; = CiViw;€,, satisfy

- M(m) := cre, = cvwe, = 3; yiv;M(g;) * pi,
- T=U;"Ti Pis
- W= wWw;op,
- L=t
- M(g;) = g and T(g;) € B™.
Thus in particular we have
— T(m) = T(g) o p; and
- M(m) = %; vit:M(g:) * pi = 2 yivipi © M(g:)
as required. |

Let F c A™ and express each g € F as

8 =M(g) — pg =: cpwee, — pg = (7gvg _/\/g)wgelg ~Dg
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with .
Pg € A", ¢y € R,y €{V),xq €ER, ¥, €D, v, €(V),

and T(pg) < 74, vgv, ¢ M(I) and T(x,) < v,.

Note that, analogously, for each h € H := G \ {Gy U C} C Q, M(h) can be uniquely
expressed as

M(h) = cpwn = (Yaun + xn)wh

with Yn € D, vy € <V>, wy € (V), Ch Xn € R, YhUh ¢ M(I), T()(h) < vUp.

In order to apply Spear’s Theorem we adapt the notation of [23, Corollary 14] and
consider

— the module (Q/I)'F FmiHl indexed by the set F U 7(H)"™ and whose canonical
basis is denoted {e(f) : f € F Un(H)™}, and

- &, (@/DFmHL s @AM - e(h) — D(h), for each h € F U G™.

Spear’s Theorem having reduced the problem of computing restricted Gebauer-
Moller sets to the classical problem of computing Gebauer-Mdller sets for elements
in Q with a restricted representation, we can on one side use the classical Buchberger
Theory for Free Associative Algebra