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Statistical detection of JPEG traces
in digital images in uncompressed formats
Cecilia Pasquini, Giulia Boato, Member, IEEE, and Fernando Pérez-González, Fellow, IEEE

Abstract—Intrinsic statistical properties of natural uncom-
pressed images are used in image forensics for detecting traces
of previous processing operations. In this paper, we propose
novel forensic detectors of JPEG compression traces in images
stored in uncompressed formats, based on a theoretical analysis
of Benford–Fourier coefficients computed on the 8×8 block-DCT
domain. In fact, the distribution of such coefficients is derived
theoretically both under the hypotheses of no compression and
previous compression with a certain quality factor, allowing for
the computation of the respective likelihood functions. Then, two
classification tests based on different statistics are proposed, both
relying on a discriminative threshold that can be determined
without the need of any training phase. The statistical analysis
is based on the only assumptions of Generalized Gaussian
distribution of DCT coefficients and independence among DCT
frequencies, thus resulting in robust detectors applying to any
uncompressed image. In fact, experiments on different datasets
show that the proposed models are suitable for images of different
sizes and source cameras, thus overcoming dataset-dependency
issues that typically affect state-of-art techniques.

Index Terms—Benford–Fourier coefficients, Benford’s law, im-
age forensics, JPEG compression.

I. INTRODUCTION

IN the last decade, the field of digital image forensics has
undergone a constant expansion, drawing a growing atten-

tion of the research community. In fact, the increasing need of
authentication techniques for digital images without a priori
information (like the presence of a watermark) has brought
researchers to develop a number of forensic approaches de-
signed to work passively and facing different forensic issues,
like forgery detection, source identification, and computer
generated versus natural content discrimination [1] [2] [3].
One of the most widely investigated problems is the detection
of previous operations and the estimation of the processing
history, which might reveal the non-pristine condition of the
subject image and allow for the localization of forged areas.
Given the wide variety of potential processing operations and
the corresponding statistical traces, a high number of forensic
techniques have been designed, often tailored to specific traces
and experimental settings. Several valuable solutions have
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been proposed for different forensic problems, yielding good
performance both in synthetic and more realistic forensic
scenarios. However, a common issue to many methods is the
fact that a solid theoretic framework describing the statistical
behavior of the quantities involved is not available. Thus,
although they achieve excellent results in certain experimental
settings, the absence of a generalized model might result in
non-controllable performance when the test setting is modified
since the parameters of the methods change as well. This
generally happens, for instance, when a certain approach
implies the need of machine learning techniques: although
they represent extremely useful tools, they usually require
extensive training phases and suffer from typical automatic
learning issues (as overfitting or dataset-dependency), which
might have a strong impact on the applicability of multimedia
forensic techniques in different settings. This is especially
true when data depicting sensitive content are analyzed and
forensic analysis reliability is an essential requirement, as it
commonly happens in real-world cases [4] and even more so
when they involve courts of law.

In this paper, we tackle from a theoretical perspective the
problem of detecting the traces of a previous JPEG com-
pression in images that are stored in uncompressed formats.
Such issue appears when the forensic analysis is performed
on images supposedly taken by a device set to provide
uncompressed images (like professional or semi-professional
cameras) or, in general, in every situation where the subject
image is supposed to be never compressed, and the presence
of JPEG compression traces would suggest that the image has
been taken from a different camera or it has been already
processed by someone. Indeed, although the JPEG standard
represents the most used format for digital images, the need
for analyzing uncompressed formats arises, for instance, when
professional photographic images are involved, for which it is
getting a common practice to provide the original raw image
and employ it in the forensic analysis [5].

In this framework, the proposed method relies on the
theoretical analysis of the Benford–Fourier (BF) coefficients
[6] computed from the DCT coefficients of the image, for
which a statistical model is derived both under the hypotheses
of no previous compression (i.e., the image is pristine) and
previous compression with a certain quantization table (i.e., the
image has been JPEG compressed). This allows us to define
a hypothesis testing framework where the null hypothesis
is the pristine condition of the image, and the alternative
hypothesis is represented by a previous compression. The
work [7] contains a preliminary and partial version of the
methodology, which is here extended to the case multiple
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DCT frequencies and encompasses also a novel model for the
alternative hypotheses. This results in two novel tests based on
different statistical schemes, namely the λ-test and the logL0-
test, with the aim of discriminating images that have never
been compressed from images previously compressed.

An interesting peculiarity of the proposed methods is that
the statistical description of the BF coefficients, derived ana-
lytically, explicitly depends on the number of DCT coefficients
considered, i.e., it is related to the size of the subject image.
Moreover, all the statistical parameters involved in the model
are estimated directly from the data without relying on any
predetermined dataset. This results in two size-adaptive JPEG
compression detectors, which do not require any training
phase. Experimental results on several datasets and JPEG
compression parameters show the benefits of this approach
with respect to state-of-the-art methods.
The paper is structured as follows: in Section II, the literature
on the detection of JPEG traces in uncompressed format
images is revisited; the BF coefficients are introduced in
Section III; the novel statistical analysis of such coefficients is
presented in Section IV and in Section V the proposed detec-
tion algorithm is described; the experimental tests performed
are reported in Section VI, while conclusions are presented in
Section VII.

II. RELATED WORK

The detection of JPEG compression traces in digital images
that are stored in uncompressed formats is a known problem
in multimedia forensic research. In principle, a previous com-
pression could be identified by exhaustively recompressing the
test image with all the possible quality factors and looking
for the minimal distance between the test image and the re-
compressed versions. However, such an approach is extremely
time consuming for bigger images and highly dependent on the
image content, leading to poor detection rates. As a matter of
fact, researchers have developed several alternative techniques,
each of them relying on different statistics and presenting pros
and cons.

One of the first approaches was proposed in [8]: there,
the blocking artifacts left by a JPEG compression in the
pixel domain are exploited, and a detector based on inter-
and intra-block pixel differences is designed. Such values
are combined in a final statistic K, expressing the strength
of blocking artifacts, and images presenting a value of K
higher than a certain threshold are classified as compressed.
In the same paper, a procedure based on ML estimation of
the used quantization table is proposed. An improved version
is presented in [9], where the joint detection of both the
quantization table and the used color space transformation is
achieved.

As the quantization of the 8 × 8-block DCT coefficients
represents the core of the JPEG compression procedure and
leaves characteristic footprints, several methods for JPEG
images focus on the analysis of the DCT coefficients for
extracting information regarding the compression history. In
[10], the distribution of DCT coefficients after quantization
and reprojection on the pixel domain is studied: in particular,

the authors observe how the DCT coefficients behave differ-
ently around 0 when the image is pristine or previously com-
pressed. Such different behaviors are captured in a 1D feature,
discriminating between original and compressed images; in the
latter case, a simple procedure is proposed for estimating the
quantization steps. A similar rationale is exploited in [11],
where the authors suggest to use the variance of the forward
quantization noise (error in quantizing the DCT coefficients)
as discriminative threshold. On the other hand, the work
presented in [12] studies the first order statistics of the factors
of the AC DCT coefficients, i.e., the set of numbers that divide
evenly the coefficients: after the quantization the histogram
of the factor set is altered, showing sharper peaks. Thus, the
maximum difference between adjacent bins is considered as
discriminative threshold.

Such methods are characterized by a low complexity and
good performance, also in case of small images; on the other
hand, the used statistics present a quite different behaviour
when varying the size and source camera of the image and
therefore the performance is strongly dependent on the initial
set of images used for determining the threshold.

Another statistic that has been explored in image forensics
is the distribution of the First Significant Digits (FSD) of
the DCT coefficients. Indeed, when the DCT coefficients are
quantized, their FSDs change together with their distribution.
In particular, for uncompressed images we have that the
FSDs follow a logarithmic distribution, known as Benford’s
law, which is perturbed when a quantization occurs. Driven
by this observation, the authors in [13] proposed a JPEG
compression detector based on an SVM classifier which uses
as features the empirical frequencies of the nine FSDs on all
the DCT coefficients in the image. The method achieves good
results on the considered dataset and requires a relatively low
computational complexity; however, it does not provide an
estimate of the quality factor or quantization table used, since
no theoretical model for the FSD distribution is available, and
the results are strongly dependent on the dataset.

Recently, a first approach based of Benford–Fourier coeffi-
cients has been proposed in [6] and a preliminary version of
this work is available in [7]; both of them will be described
in detail in the next sections.

III. BENFORD–FOURIER COEFFICIENTS

In this work, we exploit Benford–Fourier coefficients to
characterize uncompressed images and identify potential pre-
vious processing operations, in particular JPEG compression.
Such coefficients have been originally introduced in [14] and
have a precise mathematical meaning which makes them
extremely suitable for the considered forensic problem.

For the sake of clarity, in the following we will indicate uni-
variate real or complex random variables with capital letters,
whose realizations will be represented by the corresponding
lower case letters. Moreover, we will denote the real and
imaginary parts of a complex number a as <(a) and =(a),
respectively.

Then, let X be a random variable representing the non-
zero DCT coefficients and fX its probability density function;
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TABLE I
MAGNITUDE OF THE BENFORD–FOURIER COEFFICIENT an FOR DIFFERENT VALUES OF THE SHAPING FACTOR ν OF THE GG DISTRIBUTION AND n.

n 1 2 3 4 5 6 7 8
ν = 0.5 6.1 · 10−3 3.2 · 10−6 1.1 · 10−9 3.3 · 10−13 9.0 · 10−17 2.2 · 10−20 5.5 · 10−24 1.3 · 10−27

ν = 0.75 2.7 · 10−2 1.6 · 10−4 7.4 · 10−7 3.1 · 10−9 1.2 · 10−11 4.8 · 10−14 1.8 · 10−16 6.7 · 10−19

ν = 1 5.6 · 10−2 1.1 · 10−3 1.8 · 10−5 2.9 · 10−7 4.6 · 10−9 6.9 · 10−11 1.0 · 10−12 1.5 · 10−14

ν = 1.25 8.8 · 10−2 3.5 · 10−3 1.2 · 10−4 4.5 · 10−6 1.5 · 10−7 5.4 · 10−9 1.8 · 10−10 6.2 · 10−12

we suppose fX is symmetric with respect to 0. Then, we
define Z as the random variable representing the absolute
value of nonzero DCT coefficients. In other words, Z models
the behavior of |X| in R+

0 (i.e., discarding the value 0 as
possible outcome), and its pdf is given by

fZ(z) = 2 · fX(z) ∀z ∈ R+
0 ,

as fX is symmetric.
Then, we define the random variables

Z ′
.
= log10 Z

Z̃
.
= log10 Z mod 1,

representing the absolute valued positive DCT coefficients
in the logarithmic and modular logarithmic domains, re-
spectively. The r.v. Z̃ is particularly relevant because of its
relationship with the pdf of the FSD of X [14] and it has
been exploited in JPEG counter-forensic techniques [15] [16].

Now, the Benford–Fourier (BF) coefficients in n ∈ N are
defined as the Fourier transform of fZ′(z′) evaluated at 2πn,
i.e.,

an =

+∞∫
−∞

fZ′(z′)e−j2πnz
′
dz′ =

+∞∫
−∞

fZ(z)e−j2πn log10 zdz.

(1)
Such coefficients turn out to be particularly suitable for
characterizing the DCT coefficient behavior since they have
a key role in the statistical description of Z̃: in fact, in [14] it
has been shown that, for a generic continuous r.v. Z, we have

fZ̃(z̃) = 1 + 2

+∞∑
n=1

|an| cos(2πnz̃ + φn), z̃ ∈ [0, 1). (2)

where an = |an|ejφn .
Moreover, it has been shown that the DCT coefficients

of uncompressed images can be modeled by a Generalized
Gaussian r.v. with a shaping factor generally ranging from 0.5
to 1.2 [17] and we adopt such model throughout the following
derivations. We choose not to study modeling errors that
could potentially occur, since other effects introduced in the
compression process (like quantization in the pixel domain)
will prevail on them. In [14] the authors show that if X is a
Generalized Gaussian (GG) r.v. with standard deviation σ and
shaping factor ν, i.e.,

fX(x) = Ae−|βx|
ν

, x ∈ R,

β =
1

σ

√
Γ(3/ν)

Γ(1/ν)
, A =

βν

2Γ(1/ν)
,

the theoretical expression of an, n ∈ N, and its magnitude can
be derived as functions of the GG parameters:

an =

+∞∫
−∞

fZ′(z′)e−j2πnz
′
dz′

=
2A

βν
ej

2πn log β
log 10 Γ

(−j2πn+ log 10

ν log 10

)
,

|an|2 =

∞∏
k=0

[
1 +

(2πn)2

log2 10(νk + 1)2

]−1
, (3)

where log denotes the natural logarithm.
As seen in (3), the magnitude of the coefficients increases

with ν and does not depend on the variance of the GG. In
Table I, we report the values of |an| computed as in (3) (where
k ranges from 0 to 105) for different values of n and ν. We
can notice that, in particular, when n ≥ 3, the |an| are always
lower than 10−4.

This represents a useful information in JPEG image foren-
sics and suggests that the behavior of the BF coefficients can
be used to characterize uncompressed images. Indeed, a first
approach in this direction was proposed in [6], where the BF
coefficients from the DCT coefficients of the whole image are
estimated by computing the FFT of the empirical distribution
of Z̃. Then, the first five coefficients (i.e., n = 1, . . . , 5)
are used as feature to train an SVM discriminating between
natural uncompressed images and images that underwent a
JPEG compression, obtaining promising results.

For further details on the role of Benford’s law and
Benford–Fourier coefficients in images, a comprehensive treat-
ment can be found in [6].

IV. STATISTICAL ANALYSIS OF BENFORD–FOURIER
COEFFICIENTS

In this work, we aim at discriminating compressed images
saved in uncompressed format from images that underwent a
JPEG compression. Accordingly, for each DCT frequency we
want to quantify the probabilities that the DCT coefficients
have never been quantized or that they have been previously
quantized with a generic step q. To this aim, we consider
the BF coefficients at a fixed DCT frequency and develop
a statistical model for each of these two cases. Such models
will then be exploited in the final test, where the hypotheses of
no compression and compression with a quality factor among
a predetermined pool are considered. Whereas the hypothesis
testing scheme will be described in detail in Section V, in
the following we present the statistical models derived for
the BF coefficient of a single DCT frequency. A preliminary
version of the model in Section IV-A was proposed in [7],
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while Section IV-B contains a novel analysis of the quantized
DCT coefficients.

A. Uncompressed image model

In order to use BF coefficients for analyzing an image, we
need a numerical procedure to estimate them given the subject
image.

By looking at (1), we can notice that an is the expected
value of the complex random variable gn(Z) = e−j2πn log10 Z ,
whose values lie on the unit circle1. Thus, as it is usually done
in statistics, we can obtain an estimate of an = E{gn(Z)} by
considering the sample mean of gn(Z) provided by the DCT
coefficients of the image through the different 8 × 8 blocks.
Thus, if we denote as zm the value of the DCT coefficient at
the chosen frequency in the m-th block, we can consider as
estimator of an the expression

ân
.
=

M∑
m=1

e−j2πn log10 z
m

M
, m = 1, . . . ,M, (4)

where M is the total number of 8× 8 blocks in the image.
In other words, we can see ân as realization of the r.v.

Ân
.
=

M∑
m=1

e−j2πn log10 Z
m

M
, m = 1, . . . ,M, (5)

where Zm is the r.v. representing the DCT coefficient at the
chosen frequency in the m-th block.

Although the sample mean is a minimum variance unbiased
estimator of the expected value (i.e., E{Ân} = an), we should
take into account the fact that the actual accuracy of ân in the
estimation of an depends on the size of the considered sample.
For this reason, we are interested in studying the distribution
of Ân as a function of the number of samples M .

To this end, we can observe that Ân is a sum of M inde-
pendent and identically distributed random variables gn(Zm).
Then, by applying the Central Limit Theorem (CLT) to the
real and imaginary parts of Ân, we have that their distribution
is asymptotically Gaussian with expected values <(an) and
=(an), respectively [18]. In other words,

Ân ≈ an +W0,

where W0 is a zero-mean complex normal random variable.
A necessary and sufficient condition for W0 to be circularly

symmetric (i.e., with real and imaginary parts independent and
identically distributed [18]) is that E{W 2

0 } = 0. Starting from
the definition of Ân, it is easy to prove that

E{W 2
0 } ≈ E{(Ân − an)2} =

1

M
(a2n − a2n). (6)

Hence, |E{W 2
0 }| ≤ (|a2n| + |a2n|)/M and, by looking at

Table I, we can conclude that the value of (6) will be very
close to 0 (for instance, when ν = 1 and n = 3 its order
of magnitude is 10−11). Therefore, Ân is approximately a
circular bivariate normal r.v. with non-zero mean.

1It is worth noticing that BF coefficients are defined for integers n ∈ N but
such definition could be easily extended to the entire real line by replacing
2πn with a real value ω, and the following analysis would hold identically
also in this more general case.

It is well known that the r.v. R .
= |Ân| approximately

follows a Rice distribution with mean parameter |an| and scale
parameter s, where s is the standard deviation of both its real
and imaginary parts [19]. Similarly as before, we can now
obtain s2 by exploiting the fact that for a Rice distribution

s2 =
E{|Ân|2} − |an|2

2
=

1

2M
(1− |an|2).

As we observed, |an| is lower than 10−4 when n ≥ 3 and
we can reasonably assume |an| ≈ 0, thus considering the
special case of Rice distribution with mean parameter 0, i.e.,
the Rayleigh distribution with scale parameter s = 1/

√
2M .

According to this, we can define p(ân|NQ) (NQ means
“never quantized”) as the probability density function of
obtaining a BF coefficient ân under the hypothesis of no
previous quantization and compute it as follows:

p(ân|NQ) = 2M |ân|e−M |ân|
2

, (7)

where the expression on the right is the Rayleigh pdf with
s = 1/

√
2M . By considering its properties, we have that |ân|

is in any case an overestimate of |an| = 0, where its mean is
given by 1√

M
·
√
π
2 (the expected accuracy increases linearly

with
√
M ) and its variance is given by 1

M · 4−π4 (the expected
accuracy variance decreases linearly with M ).

An example of the model is showed in Fig. 1.

B. Compressed image model

When computing the DCT from an image stored in un-
compressed format that was previously compressed, the DCT
coefficients at a certain frequency have a distribution like in
Fig. 2a. The error affecting the histogram is due to the quan-
tization in the pixel domain after the block-DCT quantization
and the rounding/truncation errors in the DCT computation,
and has been modeled in the literature as a Gaussian r.v. [20].

We propose here an alternative statistical description whose
accuracy has been assessed by extensive numerical tests. We
can restrict our analysis to a single quantization interval and
consider the DCT coefficients contained within it. Without any
loss of generality, we consider the interval Iq

.
= [q− q/2, q+

q/2[ (q is the quantization step) and we denote with Zq the r.v.
representing the DCT coefficients falling in Iq . Then, we can
approximate its distribution with a Laplacian truncated outside
the quantization interval, as in Fig. 2b. Then, the pdf of Zq is
given by

fZq (z) =
L(z; q, σ)

Nσ,q
· 1Iq (z), (8)

where L(·; q, σ) is a Laplacian pdf with mean q and standard
deviation σ (which is unknown and needs to be estimated),
Nσ,q is the integral of L(z; q, σ) over Iq (so that expression
(8) is a pdf), and 1I(·) is the indicator function of Iq

1Iq (z)
.
=

{
1 z ∈ Iq
0 z /∈ Iq.

Starting from this hypothesis, we can define an,q as the
Benford-Fourier coefficients of Zq , and derive their theoretical
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Fig. 1. The figure depicts the behavior of BF coefficients when varying the number M of samples used in the sum (4). For M = 64, 1024, 16384, 262144,
we generated 1000 sets of M elements distributed according to a zero-mean Generalized Gaussian pdf with ν = 1 (which is common for DCT coefficients
of natural images) and varying standard deviation. Then, the estimates of BF coefficient magnitude |ân| (with n = 4) have been computed on each set and
their histograms for the different values of M are plotted (blue bars). The red curves are the Rayleigh pdfs (7) determined by the corresponding value of M
in each case. The goodness of fit of the proposed model is confirmed by the values of the χ2 statistics (computed on 10 equally spaced bins from 0 to the
highest magnitude value obtained in each case).

value as follows:

an,q
.
=

+∞∫
−∞

fZq (z)e
−j2πn log10 zdz

=
1

Nσ,q

∫
Iq

1

σ
√

2
e−

√
2
σ |z−q|e−j2πn log10 zdz

=
1

Nσ,qσ
√

2

(
e−

√
2
σ kq

q∫
q−q/2

e
√

2
σ zz−j

2πn
log 10 dz+

+ e
√

2
σ q

q+q/2∫
q

e−
√

2
σ zz−j

2πn
log 10 dz

)
. (9)

In other words, assuming a Laplacian distribution of Zq and

Absolute values of DCT coefficients
0 10 20 30 40 50 60 70 80 90 100

N
um

be
r o

f c
oe

ffi
ci

en
ts

0

100

200

300

400

500

600

700

Absolute values of DCT coefficients
8 10 12 14 16 18 20 22 24 26

pd
f

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a)

(b)

Fig. 2. In panel (a), histogram of DCT coefficients at a single frequency after
quantization with q = 17. In panel (b), the coefficients corresponding to the
r.v. Z17 are reported and the red curve is the Laplacian pdf estimated from
the histogram.

given an estimate of σ, we can obtain the theoretical value
of an,q from the previous expression in (9) by numerically
computing the integrals.

Now, we can adopt the same approach as the uncompressed
case: consider the sample mean

ân,q =

Mq∑
m=1

e−j2πn log10 z
m
q

Mq
, m = 1, . . . ,Mq, (10)

as estimator of an,q , which is the realization of the r.v.

Ân,q =

Mq∑
m=1

e−j2πn log10 Z
m
q

Mq
, m = 1, . . . ,Mq, (11)

where Mq is the number of DCT coefficients falling in the
interval Iq at the chosen frequency. Then, we need to study
its distribution in order to obtain an expression of p(ân,q|q),
i.e., the probability of obtaining ân,q under the hypothesis
that the DCT coefficients at the chosen frequency underwent
a quantization with step q.

We can partially exploit the logical steps of the uncom-
pressed case reported in Section IV-A. Indeed, exactly in the
same way, we can conclude that

Ân,q ≈ an,q +W0,q,

where W0,q is a complex zero-mean Gaussian random vari-
able. In addition

E{W 2
0,q} =

1

Mq
(a2n,q − (an,q)

2).

Differently from the NQ case, we have no clue on the magni-
tudes of a2n,q, an,q , thus we cannot claim that E{W 2

0,q} ≈ 0
and W0,q is circularly symmetric.
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Fig. 3. The figure depicts the behavior of BF coefficients in case of compression when varying the number of samples belonging to the interval Iq considered.
We studied the case of q = 17 and, for Mq = 500, 5000, 50000, we generated 1000 sets of Mq elements distributed according to a Laplacian pdf with mean
17 and standard deviation σ = 1. Then, the estimate of the complex BF coefficient ân,17 (with n = 4) has been computed on each set and their histograms
(for the complex values, the real and imaginary parts) for the different values of Mq are plotted (pale blue bars). The blue curves beside are the theoretical
pdf for the complex r.v. and the marginal pdfs of the real and imaginary parts, determined as in Section IV-B. The match between the histograms obtained
and the pdfs derived theoretically is confirmed by the value of the χ2 statistics, computed on 25 two-dimensional bins (5 along the real part and 5 along the
imaginary part).

Because of that, we consider the distribution of Ân,q in
the complex plane and we study the real and imaginary parts
of W0,q . For the sake of simplicity, we will denote them as
Wr and Wi, respectively, (i.e., dropping the dependence on n
and q) and treat their joint pdf as a zero-mean real bivariate
Gaussian2.

The analysis is slightly harder than the NQ case, since
here we need to determine the three parameters of a real
bivariate Gaussian: the variances of Wr and Wi (σ2

Wr
and

σ2
Wi

, respectively) and the covariance between Wr and Wi,
Cov(Wr,Wi).

All of them have been theoretically derived in order to ob-
tain closed form expressions and are reported in the following:

• σ2
Wr

, σ2
Wi

We have that σ2
Wr

and σ2
Wi

are given by the variances
of the r.v.’s <(e−j2πn log10 Zq ) and =(e−j2πn log10 Zq ),
respectively, divided by the number of summands in the
sample mean (10). The exact expressions of σ2

Wr
and

σ2
Wi

are derived in the Appendix A in formula (23) and
depend on n, σ and q.
Note that an estimate of σ (the parameter of the Lapla-
cian) is necessary and can be obtained from the data by
means of an unbiased sample variance.

• Cov(Wr,Wi)

2In particular, we treat W0,q as a real bivariate r.v. instead of a complex
normal r.v., i.e., in terms of variance and covariance of the two single parts
instead of complex covariance and pseudo-covariance (as it is usually done
when dealing with complex r.v.’s).

We have that

E{W0,q} = E{W 2
r } − E{W 2

i }+ 2jE{WrWi}

=
a2n,q − (an,q)

2

Mq

and Cov(Wr,Wi) = E{WrWi}. Then, we can obtain

Cov(Wr,Wi) =
=
(

1
Mq

(a2n,q − (an,q)
2)
)

2
. (12)

Fig. 3 depicts an example of the pdf’s obtained by fixing
a Laplacian distribution and generating sample vectors with
varying length Mq . It can be noticed that the derived statistical
models fit the data very accurately.

Finally, we can summarize the necessary steps to obtain
p(ân,q|q) as follows:
• identify the set of DCT coefficients falling in Iq ,
• estimate the parameter σ of the Laplacian distribution by

means of an unbiased sample variance,
• compute the theoretical value of an,q by means of (9) (in

this phase numerical integration will be used),
• compute σ2

Wr
, σ2

Wi
as in (23), and Cov(Wr,Wi) by

means of (12),
• compute the estimate ân,q from the DCT coefficients as

in (10)
• compute the probability of obtaining ân,q under the

hypothesis of quantization with step q as follows

p(ân,q|q) = N2 (µn,q,Σn,q) (13)
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Fig. 4. Scheme of the proposed JPEG compression detectors. For each DCT frequency, the probabilities under the null and alternative hypotheses are computed
(by means of the statistical derivations presented in Section IV) and used to obtain the related likelihood function values. The logL0-test employs only the
value of the likelihood function of the null hypothesis, while the λ-test gathers all the likelihood function values among the different alternative hypotheses.

where N2 (µn,q,Σn,q) is the pdf of a real bivariate Gaus-
sian r.v. of expected value µn,q and covariance matrix
Σn,q , and in our case

µn,q =

[
<(an,q)
=(an,q)

]
,

Σn,q =

[
σ2
Wr

Cov(Wr,Wi)
Cov(Wi,Wr) σ2

Wi

]
.

It is worth observing that these findings are in accordance
with the results we obtained in our previous work [21], where
multiple JPEG compression is addressed. In fact, in that
case we ultimately observed that BF coefficients of images
compressed more than once are normally distributed in the
complex plane. This opens the way to a generalized closed-
form analysis in case of repeated quantization, that will be
subject of future work.

V. JPEG COMPRESSION DETECTION ALGORITHM

Given the statistical characterization of BF coefficients
under both hypotheses of no previous quantization and quan-
tization with a generic step, we can now exploit such results
for JPEG compression detection.

In order to do this, we consider a pool of possible quality
factors {QF1, . . . , QFT } and the corresponding quantization
tables3, and define a hypothesis testing scheme where the null
and alternative hypotheses, respectively, are given by

3In this work, we use quality factors from 1 to 100, for the sake of brevity,
to indicate the related quantization tables, supposing to know their exact
correspondence. However, the method can be generalized to any generic set
of known quantization tables.

H0: the image has never been compressed

H1: the image has been compressed
with a quality factor among QF1, . . . , QFT .

Please, note that we can consider the alternative hypothesis
as composite, since it includes a set of possible parameters, the
potential quality factors. Now, we propose two discriminative
tests based on two different statistics, that will be explored
in detail in Sections V-A and V-B: the λ-test, a hypothesis
testing scheme encompassing statistical models of both null
and alternative hypotheses, and the logL0-test, based on a
full statistical characterization of the Likelihood Function for
the null hypothesis. Both of them automatically determine an
acceptance region for the null hypothesis H0 without the need
of any training phase, thus providing a final binary output on
the subject image (i.e., never compressed or compressed). The
workflow of both algorithms is represented in Fig. 4 and is
described in detail in the following.

A. The λ-test

The first test consists in the application of the Generalized
Likelihood Ratio Test (GLRT) to the given problem. Let F be
the set of DCT frequencies considered, then we can extract the
DCT coefficients and compute for each f ∈ F the respective
BF coefficient estimates. We will indicate such coefficients as
âfn, thus adding as superscript the reference to the DCT fre-
quency. According to the procedure described in Section IV-A,
we can straightforwardly obtain their respective probabilities
p(âfn|NQ) and (assuming statistical independence between
DCT frequencies [20]) we can compute the likelihood function
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value for the null hypothesis as

`0 =
∏
f∈F

p(âfn|NQ). (14)

Moreover, we need to provide a likelihood value for each
parameter of the composite alternative hypothesis, hence for
each quality factor considered. To this end, for each frequency
f and quality factor QFi, the corresponding quantization step
qi,f at that DCT frequency is retrieved. Similarly as the null
hypothesis, we can compute the BF coefficient estimate ân,qi,f
and its probability value p(ân,qi,f |qi,f ) can be obtained as in
Section IV-B, thus obtaining a likelihood function value for
each QFi:

`QFi
=
∏
f∈F

p(ân,qi,f |qi,f ). (15)

Finally, according to the GLRT design, the discriminative
statistic is given by

λ =
`0

maxi∈{1,...,T} `QFi

. (16)

Then, in order to provide a general method that does not rely
on a training phase, we propose to obtain the final decision
on the image as follows:

H0 is accepted if λ ≥ 1
H0 is rejected if λ < 1.

Indeed, setting the threshold to 1 means that we reject the
null hypothesis as soon as we find an alternative one which
achieves a higher value of the likelihood function. Clearly,
such choice is generally suboptimal, as a distribution model
of λ would be required in order to fix an optimal threshold at a
certain false alarm probability upper bound. However, we will
see in Section VI that the results achieved in the experimental
settings considered are comparable to the ones obtained with
an optimal threshold, numerically derived from the data by
means of a false alarm upper bound criterion.

B. The logL0-test

As depicted in Fig. 4, the second proposed test relies on the
value of the likelihood function for only the null hypothesis,
which is thresholded in order to classify an image as never
compressed or compressed. The test only requires the compu-
tation of `0, thus resulting in a lower computational complexity
with respect to the λ-test. Although less comprehensive, using
only the statistical model in case of no compression allows
for a full statistical characterization. Indeed, we can consider
the likelihood function itself as a r.v. L0 depending on the
r.v.’s Âfn and study its distribution. Thus, we can reformulate
expression (14) as

L0 =
∏
f∈F

p(Âfn|NQ) (17)

=
∏
f∈F

2M |Âfn| exp(−M |Âfn|2) (18)

where M is the number of DCT blocks in the image.

Equivalently, we can consider its natural logarithm:

logL0 =#F · log (2M) +
∑
f∈F

log(|Âfn|)−M
∑
f∈F
|Âfn|2

(19)

where #F is the cardinality of F .
Then, by exploiting the fact that each Ân is Rayleigh

distributed (see IV-A) in case of no compression, we can derive
the mean and variance of the random variable logL0 under
the null hypothesis. We refer the reader to the Appendix B for
the complete derivation and we report here the expression of
the mean and variance of logL0

E{logL0} = #F · log (2M)−#F ·
(

logM

2
+
γ

2
+ 1

)
,

V ar{logL0} = #F · π
2

24
,

where γ is the Euler-Mascheroni constant [22].
We can notice that the statistical distribution of logL0 is

properly scaled according to M , i.e., the number of DCT
coefficients involved in the estimation of the Benford-Fourier
coefficients, thus allowing for robustness when analyzing
images of different size. Thanks to these results it is possible
to design a threshold-based test on the value of the likelihood
function by exploiting Chebyshev’s inequality:

p
(
| logL0 − E{logL0}| ≥ k

√
V ar{logL0}

)
≤ 1

k2
, k ∈ Z.

Thus, we can fix a significance level α and by setting
k = ±

√
1/α we have that the probability that logL0 deviates

from E{logL0} more than k times the standard deviation of
logL0 is lower than α. By considering that logL0 expresses
the likelihood of the null hypothesis, we can define the
threshold as follows

τ(α) = E{logL0} −
√

1

α
·
√
V ar{logL0},

and design a threshold-based test as follows:

H0 is accepted if log `0 ≥ τ(α)
H0 is rejected if log `0 < τ(α).

It is worth pointing out that τ(α) can be theoretically de-
termined, thus avoiding again the need of any preliminary
training on data.

VI. EXPERIMENTAL RESULTS

We performed extensive tests in order to assess the ef-
fectiveness of the proposed approach. In the following, we
describe the considered experimental settings and the results
obtained on images coming from diverse sources, comparing
the performance with existing forensic methods.

We consider images belonging to 4 different datasets and ap-
ply the methods to the full-size pictures. In particular, we used
a subset of the database in [23] (LIU, 1000 images, 256x256),
the UCID [24] database (UCID, 1338 images, 384x512), the
Dresden database [25] (DRESDEN, 1488 images, different
size ranging from 3072 × 2304 to 4352 × 3264) and the
RAISE dataset [26] in its 2k version (RAISE2K, 2000 images,



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. XX, XXX XXXX 9

different sizes ranging from 3008 × 2000 to 4928 × 3264).
The different datasets and their size proportions are visually
represented in Fig. 5.

Other seven state-of-the-art methods have been considered
for comparisons, that can be grouped into two categories:
the threshold-based techniques proposed in [7], [8], [10],
[11] and [12] (denoted in the following as BF SINGLE,
BLOCK, DCT, NOISE and FACTOR, respectively) and the
SVM-based techniques proposed in [6] and [13] (denoted in

the following as BF FFT and FSD, respectively). They have
been briefly described in Section II and all of them (except for
BF SINGLE whose threshold is determined as in [7]) require
some preliminary training phase, whose goal is to determine
the discriminative threshold to be adopted for the threshold-
based group and the SVM model for the SVM-based group.
Therefore, each dataset was randomly divided into two parts,
one for training and another one for testing. Thus, for each of
the four datasets we have a training set TR and a training set

TABLE II
RESULTS OBTAINED WITH THE AUTOMATIC THRESHOLDS FOR THE λ-TEST , THE logL0-TEST AND THE BF SINGLE METHOD ON THE DIFFERENT

DATASETS. PERFORMANCE LOSS WITH RESPECT TO THE USE OF P -OPTIMAL THRESHOLDS IS REPORTED.

LIU

τaut τ̃TS Loss

λ-test

TN 97.0 99.3 2.3
TP 99.3 96.4 -2.7

ACC 96.7 96.9 0.1
AUC 0.9957

logL0-test

TN 100 99.5 -0.5
TP 94.3 97.6 3.3

ACC 95.3 97.9 2.6
AUC 0.9918

BF SINGLE

TN 99.3 99.1 -0.2
TP 90.5 92.0 1.5

ACC 92.0 93.2 1.2
AUC 0.9826
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UCID

τaut τ̃TS Loss

λ-test

TN 98.9 99.7 0.8
TP 99.7 99.7 0.0

ACC 99.5 99.7 0.1
AUC 0.9990

logL0-test

TN 99.9 99.7 -0.2
TP 99.6 99.9 0.3

ACC 99.6 99.8 0.2
AUC 1.0000

BF SINGLE

TN 98.9 99.5 0.6
TP 99.2 99.3 0.1

ACC 99.2 99.3 0.1
AUC 0.9997
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DRESDEN

τaut τ̃TS Loss

λ-test

TN 99.9 100 0.1
TP 100 100 0.0

ACC 100 100 0.0
AUC 1.0000

logL0-test

TN 99.3 100 0.7
TP 100 100 0.0

ACC 99.9 100 0.1
AUC 1.0000

BF SINGLE

TN 98.5 99.8 1.3
TP 99.9 99.8 -0.1

ACC 99.7 99.8 0.1
AUC 0.9998
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τaut τ̃TS Loss

λ-test

TN 100 99.9 -0.1
TP 99.8 99.9 0.1

ACC 99.9 99.9 -0.0
AUC 1.0000

logL0-test

TN 95.4 100 4.6
TP 100 100 0.0

ACC 99.2 100 0.8
AUC 1.0000
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AUC 1.0000
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Fig. 5. Samples of test images.

TS. All the images have been compressed at quality factors
{90, 80, 70, 60, 50}, features were extracted from the ones in
the training set and used for determining the optimal threshold
or for obtaining the SVM models.

We first evaluate our detectors designed in Section V and
compare them with the group of threshold based methods
in Section VI-A; then, in Section VI-B the SVM methods
are considered for comparison. The analysis of locally forged
areas is addressed in Section VI-C and, finally, Section VI-D
evaluates the ability of the logL0-test detector in rejecting
the null hypothesis in case of double compressed and then
decompressed images.

A. Comparison with the threshold-based methods

In this section we test our proposed detectors by using the
automatic thresholds introduced in Section V and compare
them to the five threshold-based methods.

First, we illustrate our definition of optimality of a threshold,
according to the Neyman-Pearson criterion. Given a set of
images S and a certain threshold-based test, the discriminative
value can be varied to obtain a Receiver Operating Curve
(ROC). The P -optimal threshold τ̃S(P ) on S is defined as

follows: among the ones leading to a false positive rate on S
not higher than P , we identify the set of discriminative values
that yield the highest true positive rate; then, we find in this
set the value τ̃S(P ) that yields the lowest false alarm rate. In
this section, we always consider P equal to 1% and, for the
sake of brevity, we omit the dependence of τ̃S on P . Other
values of P will be considered in Section VI-B and will be
explicitly reported.

As a first test, we consider our two proposed detectors,
the λ-test and the logL0-test, together with and the BF
SINGLE method4, as all of them allow automatic thresholds.
As no training is needed in this case, we consider only TS
for each dataset. Then, the images belonging to TS of each
dataset are tested in six different versions: negative samples
are uncompressed images and positive samples are the same
images compressed with quality factor 50, 60, 70, 80 and 90.
The three methods are applied in two different ways: first
the automatic thresholds are computed (where the significance
for the logL0-test and BF SINGLE is fixed to 0.01) and
denoted with τaut; then, the P -optimal threshold τ̃TS on TS is
employed.

In Table II, we report the results obtained by applying a
10-fold cross validation strategy (i.e., at each validation step
1/10 of the images in each dataset is used for testing and the
rest for training), which has been adopted through the whole
subsection. Different thresholds used are arranged column-
wise, while the three tests are reported row-wise. We are
interested in observing the results of the detectors but also
in assessing the performance loss when using τaut instead of
τ̃TS. In other words, we can measure how much we “lose” by
employing the automatic thresholds instead of the P -optimal
ones. Then, for each case results are reported in terms of true
negative rate TN, true positive rate TP, accuracy ACC and
Area Under the Curve AUC. Finally, the last column contains

4For all the tests, we fixed the value of n = 4, coherently with our first
approach in [7]. Moreover, for the λ-test and logL0-test we limited
the analysis to the first 10 DCT frequencies in zig-zag order, in order to avoid
a high number of null coefficients.

TABLE III
RESULTS OF STATE-OF-THE-ART THRESHOLD-BASED METHODS IN THE HOMOGENEOUS SCENARIO. PERFORMANCE LOSS IN USING THE P -OPTIMAL

THRESHOLDS OF THE TRAINING SET INSTEAD OF THE TESTING SET FOR EACH DATASET IS REPORTED.

BLOCK

TN
TP

ACC
AUC

DCT

TN
TP

ACC
AUC

NOISE

TN
TP

ACC
AUC

FACTOR

TN
TP

ACC
AUC

LIU

τ̃TR τ̃TS Loss

99.1 99.0 -0.1
78.1 80.7 2.6
81.6 83.8 2.2

0.9695

98.8 99.3 0.5
97.7 98.0 0.3
97.9 98.3 0.4

0.9988

98.9 99.2 0.3
97.8 98.2 0.4
97.9 98.3 0.4

0.9960

98.9 99.7 0.8
99.8 99.8 0.0
99.7 99.8 0.1

0.9991

UCID

τ̃TR τ̃TS Loss

99.5 99.4 -0.1
99.0 99.2 0.2
99.0 99.2 0.2

0.9996

99.1 99.4 0.3
98.0 98.2 0.2
98.2 98.4 0.2

0.9966

98.7 99.2 0.5
97.5 97.0 -0.5
97.7 97.4 -0.3

0.9967

99.3 99.6 0.3
99.7 99.7 0.0
99.6 99.7 0.1

0.9997

DRESDEN

τ̃TR τ̃TS Loss

100 100 0.0
99.9 100 0.1
99.9 100 0.1

1.0000

100 100 0.0
100 100 0.0
100 100 0.0

1.0000

99.9 99.9 0.0
99.8 100 0.2
99.8 99.9 0.1

1.0000

100 100 0.0
99.9 99.9 0.0
100 100 0.0

1.0000

RAISE2K

τ̃TR τ̃TS Loss

100 99.9 -0.1
99.9 100 0.1
99.9 99.9 0.0

1.0000

99.1 99.5 0.4
99.9 99.7 -0.2
99.8 99.7 0.1

0.9998

99.2 99.4 0.2
78.8 73.2 -5.6
82.2 77.6 -4.6

0.9925

100 100 0.0
99.9 100 0.1
99.9 100 0.1

1.0000
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the performance loss between the two thresholds. Thus, if
TN(τ̃TS) and TN(τaut) are the true negative rates obtained with
τ̃TS and τaut, respectively, the loss is computed as

TN(τ̃TS)− TN(τaut),

where a positive (negative) loss means a performance decrease
(increase). The same holds for TP and ACC.

It is worth noticing that the true negative rate TN is the
complementary of the false positive rate (i.e., the minimum
value for optimal thresholds is at least 99.0%) and it is
used equivalently for uniformly defining the performance
loss; moreover, the positive samples are more numerous than
negative samples, thus, the accuracy value is more influenced
by the TP rather than the TN value. In Table II, we also
plot below each dataset the ROC curve of the two proposed
detectors for one TR− TS partition, in order to highlight the
displacement between results obtained with τ̃TS (orange circle)
and τaut (yellow circle).

We can notice that both detectors yield good accuracies

values in any case and outperform BF SINGLE, which is
based on a single Benford-Fourier coefficient. Moreover, the
performance loss is generally limited, in the sense that either
the TP and the TN rates are not significantly compromised.
In particular, it is interesting to notice that the automatic
threshold for the logL0-test, determined with the false
alarm probability upper bound fixed to 0.01, indeed yields a
false positive rate below 1% in every case, with the exception
of the RAISE2K dataset where the false positive rate raise
to 4.3%. By selecting the outlier images from this database
and exploring their statistics, we have noticed that DCT
coefficients in uncompressed images (that are supposed to be
GG distributed) usually present some anomalies, which cause
deviations with respect to the models predicted in Section IV-A
and disappear when the image is decimated by a factor 2 in
each dimension. We conjecture such phenomenon is due to
specific capture settings (all outlier images have been taken
with the same camera) coupled with the high resolution, which
potentially increases the correlation among image blocks.

TABLE IV
PERFORMANCE OF STATE-OF-THE-ART THRESHOLD-BASED METHODS IN THE NON-HOMOGENEOUS SCENARIO. PERFORMANCE LOSS IN USING THE
P -OPTIMAL THRESHOLDS OF THE TRAINING SET INSTEAD OF THE TESTING SET FOR EACH DATASET PAIR IS REPORTED. EACH CELL CONTAINS THE

LOSS IN TERMS OF TRUE NEGATIVE AND TRUE POSITIVE RATE, RESPECTIVELY. THE ROC PLOTS AND THE HISTOGRAMS OF POSITIVE SAMPLE FEATURES
FOR THE TRAINING AND TESTING SET REFER TO THE CASE REPORTED IN BOLD IN THE CORRESPONDING TABLE.

BLOCK

TR LIU UCID DRESDEN RAISE2K

T
S

LIU -0.1/2.6 65.8/-19.2 95.9/-19.3 99.0/-19.3
UCID -0.6/12.0 -0.1/0.2 77.5/-0.8 99.3/-0.8

DRESDEN 0.0/1.7 0.0/0.4 0.0/0.1 1.4/0.0
RAISE2K 0.0/10.7 0.0/1.1 0.0/0.0 0.1/0.0
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DCT

TR LIU UCID DRESDEN RAISE2K

T
S

LIU 0.5/0.3 -0.6/5.2 -0.7/26.8 -0.6/8.3
UCID 6.9/-0.9 0.2/0.2 -0.6/12.0 -0.4/1.0

DRESDEN 10.3/0.0 0.1/0.0 0.0/0.0 0.1/0.0
RAISE2K 21.3/-0.3 1.4/-0.3 -0.3/3.7 0.5/-0.2

FP
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NOISE

TR LIU UCID DRESDEN RAISE2K

T
S

LIU 0.3/0.4 -0.8/13.3 -0.8/25.7 -0.8/54.1
UCID 13.7/-2.6 0.5/-0.5 -0.3/4.0 -0.8/32.4

DRESDEN 42.3/-0.0 0.1/-0.0 0.0/0.1 -0.1/5.7
RAISE2K 49.2/-26.8 8.9/-26.4 3.6/-23.9 0.2/-5.5

FP
0 0.2 0.4 0.6 0.8 1
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FACTOR

TR LIU UCID DRESDEN RAISE2K

T
S

LIU 0.8/0.0 25.6/-0.0 96.5/-0.1 91.2/-0.1
UCID -0.4/0.4 0.3/0.1 80.4/-0.2 87.3/-0.2

DRESDEN 0.0/0.5 0.0/0.1 0.0/0.0 0.0/0.0
RAISE2K 0.0/0.1 0.0/0.0 0.0/0.0 0.0/0.0

FP
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Further investigation on these anomalies will be subject of
future work.

With the same spirit, we perform a similar test for the
4 state-of-the-art threshold-based methods. Since no explicit
models for the statistics they use are available, in order to
find a reference threshold, we used the training sets TR of the
datasets. Thus, for every method and dataset we first determine
numerically by exhaustive search the threshold τ̃TR that is P -
optimal on TR, and then we apply such threshold on TS. We
report the loss performance loss with respect to the specific
τ̃TS, so that results refer to the very same set of images of
Table II.

We first consider an experimental setting where both TR and
TS come from the same dataset. For instance, threshold τ̃TR
obtained from TR of UCID is tested on TS of UCID. For the
second experimental setting, the image set TR from a different
dataset is used to obtain the reference threshold τ̃TR which is
tested on TS from a different dataset. We will indicate these
settings as the homogeneous and non-homogeneous scenarios,
respectively.
Results for the homogeneous scenario are reported in Table III.
In this case the threshold-based methods provide results that
are comparable and in some cases superior to our detectors.

However, when moving to the non-homogeneous scenario
we observe that the performance of the threshold-based detec-
tors is no longer reliable. In Table IV, we report the results for
all the training/testing dataset combinations for each threshold-
based method. Different training sets are arranged column-
wise, while testing sets are placed row-wise. Due to space
constraints, each cell contains only two values, corresponding
to the loss in terms of TN and TP, respectively. Although in
some cases thresholds are relatively robust, we can notice that
the performance often drops in one of these two indicators.

In order to explore the causes of such underperformance,
in one selected case for each dataset (corresponding to bold
numbers in the table) we also plot the ROC curve on the testing

set for one TR − TS partition. The performance obtained
with τ̃TS and τ̃TR is marked with orange and yellow circles,
respectively. Moreover, for the same cases we report the
normalized histogram of the statistic values of the specific
method5 for negative samples (uncompressed images) from
TS (orange line) and TR (yellow line). The corresponding
optimal thresholds τ̃TS (orange circle) and τ̃TR (yellow circle)
are also plotted. We can observe that the two histograms
in the selected cases are substantially different and hardly
predictable, thus causing the optimal thresholds to be far apart
from each other. Then, although the statistics used are actually
discriminative (τ̃TS yields very good results on TS), the choice
of the threshold when dealing with diverse data still represents
a significant issue for threshold-based approaches. On the other
hand, the λ-test and logL0-test come with an automatic
thresholds according to the images tested and, thanks to the
robust and adaptive models, they achieve the stable results
across the different datasets reported in Table II. In other
words, as long as the data follow the GG assumption, as
natural images do, there is no dataset-dependency.

B. Comparison with SVM-based methods

We now compare our method with the SVM-based tech-
niques. In this phase, the SVM models are obtained from the
TR as suggested in the original papers. With respect to the
scenarios introduced in Section VI-A, in these experiments
we adopt the homogenous setting, i.e., a classifier for each
dataset is obtained and tested on the remaining images of the
same dataset.

To perform a fair comparison, we consider the true negative
rate obtained by the considered SVM method on every TR
(denoted in each case as TNTR

SVM) and determine the thresholds
for the λ and L0 statistics as the (1 − TNTR

SVM)-optimal

5For the sake of consistency, in the DCT and NOISE methods we consider
the opposite of the statistic values.

TABLE V
COMPARISON OF THE λ-TEST AND THE logL0-TEST TO [6] WITH TRUE NEGATIVE RATE MATCHING.

LIU

90 80 70 60 50

BF FFT, TNTR
SVM = 74.8

TN 74.2
TP 99.4 99.8 96.6 98.8 98.2

ACC 86.8 87.0 85.4 86.5 86.2

λ-test, τ̃TR(1− TNTR
SVM)

TN 75.2
TP 97.2 98.8 99.4 100 99.2

ACC 86.2 87.0 87.3 87.6 87.2

logL0-test, τ̃TR(1− TNTR
SVM)

TN 78.2
TP 96.0 99.8 99.6 99.6 99.8

ACC 87.1 89.0 88.9 88.9 89.0

UCID

90 80 70 60 50

BF FFT, TNTR
SVM = 92.1

TN 93.6
TP 99.5 99.1 98.0 99.0 98.2

ACC 96.6 96.3 95.8 96.3 95.9

λ-test, τ̃TR(1− TNTR
SVM)

TN 96.0
TP 99.7 99.7 99.9 99.9 99.9

ACC 97.8 97.8 97.9 97.9 97.9

logL0-test, τ̃TR(1− TNTR
SVM)

TN 92.4
TP 99.9 99.9 99.9 100 100

ACC 96.1 96.1 96.1 96.2 96.2

DRESDEN

90 80 70 60 50

BF FFT, TNTR
SVM = 94.9

TN 96.0
TP 100 99.7 97.3 99.9 99.8

ACC 98.0 97.9 96.6 97.6 97.9

λ-test, τ̃TR(1− TNTR
SVM)

TN 100
TP 100 100 99.7 100 100

ACC 100 100 99.9 100 100

logL0-test, τ̃TR(1− TNTR
SVM)

TN 99.9
TP 100 100 100 100 100

ACC 99.9 99.9 99.9 99.9 99.9

RAISE2K

90 80 70 60 50

BF FFT, TNTR
SVM = 93.8

TN 95.3
TP 99.8 99.8 99.5 98.9 99.6

ACC 97.6 97.6 97.4 97.1 97.4

λ-test, τ̃TR(1− TNTR
SVM)

TN 96.1
TP 99.9 100 100 100 100

ACC 98.0 98.0 98.0 98.0 98.0

logL0-test, τ̃TR(1− TNTR
SVM)

TN 94.6
TP 100 100 100 100 100

ACC 97.3 97.3 97.3 97.3 97.3
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TABLE VI
COMPARISON OF THE λ-TEST AND THE logL0-TEST TO [13] WITH TRUE NEGATIVE RATE MATCHING.

LIU

90 80 70 60 50

FSD, TNTR
SVM = 92.8

TN 92.6
TP 87.4 97.8 94.8 87.8 82.8

ACC 90.0 95.2 93.7 90.2 87.7

λ-test, τ̃TR(1− TNTR
SVM)

TN 92.6
TP 87.6 98.6 98.6 99.4 99.0

ACC 90.1 95.6 95.6 96.0 95.8

logL0-test, τ̃TR(1− TNTR
SVM)

TN 94.0
TP 93.8 99.8 99.4 99.6 99.8

ACC 93.0 96.9 96.7 96.8 96.9

UCID

90 80 70 60 50

FSD, TNTR
SVM = 97.6

TN 97.5
TP 96.4 99.1 98.6 96.4 95.5

ACC 96.9 98.3 98.0 96.9 96.5

λ-test, τ̃TR(1− TNTR
SVM)

TN 98.8
TP 99.4 99.6 99.9 99.9 99.9

ACC 99.1 99.2 99.3 99. 99.3

logL0-test, τ̃TR(1− TNTR
SVM)

TN 99.5
TP 99.9 99.9 99.9 99.7 100

ACC 99.6 99.7 99.7 99.6 99.8

DRESDEN

90 80 70 60 50

FSD, TNTR
SVM = 99.7

TN 97.5
TP 98.4 100 98.5 91.1 89.1

ACC 97.9 98.7 98.0 94.3 93.3

λ-test, τ̃TR(1− TNTR
SVM)

TN 100.0
TP 100 100 99.7 100 100

ACC 100 100 99.9 100 100

logL0-test, τ̃TR(1− TNTR
SVM)

TN 99.9
TP 100 100 100 100 100

ACC 99.9 99.9 99.9 99.9 99.9

RAISE2K

90 80 70 60 50

FSD, TNTR
SVM = 93.8

TN 99.2
TP 86.3 96.8 98.5 94.4 91.4

ACC 92.8 98.0 98.9 96.8 95.3

λ-test, τ̃TR(1− TNTR
SVM)

TN 99.9
TP 99.9 99.9 100 100 100

ACC 99.8 99.9 99.9 99.9 99.9

logL0-test, τ̃TR(1− TNTR
SVM)

TN 100
TP 99.9 99.8 100 100 100

ACC 99.9 99.9 100 100 100

threshold on TR, according to the definition given in Section
VI-A. In other words, we allow the false positive rate of our
method to be at most equal to the one obtained by the SVM-
based method on the same TR. We indicate such threshold
as τ̃TR(1− TNTR

SVM), in accordance with the previous section.
The SVM classifiers and thresholds obtained are then applied
to the corresponding TS.

In Tables V and VI, the performance of the λ-test
and logL0-test versus BF FFT and FSD, respectively, are
reported. To get a deeper understanding of the results, we
consider the different quality factors separately and arrange
them column-wise.

We can observe that both proposed detectors yield higher
accuracies and at least one of them outperforms the considered
SVM-based methods in every case. However, it is worth
noticing that this experimental setting is adopted in order to
fairly compare our proposed methods with SVM classifiers by
matching the true negative rates in the training set, while the
possibility of automatically determining the threshold for the
two proposed tests, which is one of the strong advantages of
our methods, is not exploited.

C. Local analysis

The results presented so far were obtained on full frame
images, while the proposed method can also be applied
locally and reveal inconsistencies within the same picture, thus
suggesting that a manipulation occurred. This happens, for
instance, when a JPEG image is manipulated by adding one
or more parts either coming from uncompressed images or
processed so that compression traces disappear. If the image
is finally saved in uncompressed format, the original part will
present traces of compression while the added part will likely
behave as uncompressed in terms of DCT statistics.

In order to synthetically reproduce such situation, we con-
sidered images from the Dresden dataset and compressed

them with a random quality factor from 50 to 100. Then, we
replaced a square part of 1536× 2048 pixels with its original
uncompressed version.

For space constraints and in light of the results obtained
in Section VI-A, we use the logL0-test, which proved to be
accurate on small pictures and requires a lower computational
complexity with respect to the λ-test. We performed a local
analysis by applying the test to non-overlapping windows and
by classifying each of them as compressed or non compressed
according to a threshold on logL0, which is computed as
function of the number of DCT blocks in each window and
the desired significance level (set to 0.01). We have repeated
this operation for three different window sizes and the results,
reported in Table VII, show that the proposed method achieves
rather good accuracies also when the window size is 128×128,
also thanks to its size-adaptive nature. However, when the size
of the window further decreases the detection rate decreases
as well, generally faster than methods in [11] and [12] which
prove to be more suitable for a fine-grained block analysis.
The reason for that is two-fold: fewer DCT coefficients are
used in the estimation and, being drawn from smaller patches
in high resolution images, likely are more correlated to each
other, thus not totally fulfilling the independence assumption
in the model.

TABLE VII
CLASSIFICATION RESULTS OF THE LOCAL ANALYSIS THROUGH ALL THE

IMAGES WITH THE logL0-TEST .

512× 512 256× 256 128× 128
TN 99.5 99.8 100.0
TP 95.7 89.6 79.0

ACC 97.0 92.9 85.7

As further demonstration of the effectiveness of our ap-
proach also in non-synthetic settings, we report in Fig. 6 an
example obtained on a visually compelling manipulated image.
In this case, an object coming from a different picture has
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Fig. 6. A forged image is obtained by composing two JPEG images: an object from a JPEG image (downloaded from the web) has been superimposed on
another JPEG background image (captured with a Nexus 5 smartphone), and the final composite image has been saved in an uncompressed format. The inserted
object underwent strong modifications due to visual requirements, thus essentially losing traces of potential previous compressions, while the background
image still contains those traces. The local value of logL0 has then been computed. Overlapping windows of 120×120 pixels with a stride equal to 2 pixels
have been considered. The logL0 map shows that such local analysis correctly identifies the different statistical properties within the image.

TABLE VIII
RESULTS OF THE logL0-TEST METHOD WHEN TWICE COMPRESSED IMAGES ARE CONSIDERED. PERFORMANCE LOSS WITH RESPECT TO THE USE OF

P -OPTIMAL THRESHOLDS IS REPORTED.

logL0-test

TN
TP

ACC
AUC

LIU

τaut τ̃TS Loss

100 99.4 -0.6
98.6 99.1 0.5
98.8 99.2 0.4

0.9965

UCID

τaut τ̃TS Loss

99.9 99.9 0.0
100 100 0.0
100 100 0.0

1.0000

DRESDEN

τaut τ̃TS Loss

99.7 99.8 0.1
100 100 0.0
99.9 99.9 0.0

1.0000

RAISE2K

τaut τ̃TS Loss

94.9 100 4.6
100 100 0.0
99.1 99.9 0.8

1.0000

been inserted into an existing JPEG image and the composite
image has been saved in an uncompressed format. We can see
from the map that the background is correctly characterized
by lower values of logL0.

D. Rejection of the null hypothesis in case of double com-
pressed images

The ability of distinguishing once-compressed from never
compressed images does not imply that the same detector
would distinguish once-compressed from twice compressed
images. However, it is possible that the logL0-test, which
does not rely on an explicit model for the alternative hypoth-
esis, is able to reject the null hypothesis also when a twice-
compressed (and decompressed) image is tested.

In fact, we have carried out experiments in the same
setting as Section VI-A but the positive images were further
compressed with quality factor 70. We then applied the
logL0-test as we did in Section VI-A, where positive
images are now compressed twice. Results are reported in
Table VIII and show very high true positive rates (also for
images compressed twice with the same quality factor 70),
thus confirming the ability of the logL0-test of correctly
rejecting the null hypothesis.

VII. CONCLUSIONS AND DISCUSSION

We have proposed a novel statistical analysis of BF co-
efficients, which is exploited to design two threshold-based
forensic detectors able to reveal the traces of JPEG compres-
sion in digital images stored in uncompressed formats. Thanks
to the statistical models developed, for both detectors it is
possible to automatically determine the threshold to be used,
thus avoiding any preliminary training phase on data. The
experiments performed on real images of different sizes and

source cameras show that such an approach yields to results
that are comparable to existing methods and has the additional
advantage that there is no need for further training/calibration
of the threshold when testing different kind of images. Indeed,
the proposed detectors are not affected by dataset-dependency
issues, as the automatically determined thresholds lead to
robust and stable results among different datasets. Moreover,
the logL0-test test does not require the knowledge of
the possible quantization tables used, but simply rejects the
hypothesis of no compression when a deviation from the
expected statistics is observed.

However, a number of aspects represent future research
directions, like the extension of our methods to other com-
pression standards, as well as their evaluation in a high quality
scenario or adversarial perspective.

Indeed, we assessed that the proposed detectors lose ef-
fectiveness when the compression is performed at very high
quality. This can be explained by the fact that high factors
(≥ 94/95) involve very small quantization steps (often equal
to 1 for the DCT frequencies used), which result in very
similar statistical properties between never compressed and
compressed/dequantized images so that the model assumed in
Section IV-B might not be accurate. Given the good perfor-
mance obtained by techniques like [11] also in this scenario,
a proper method combination and a smarter selection of the
DCT frequencies could represent a viable option for future
developments, as already explored in [27] in the single vs
double compression scenario. Moreover, while counterforen-
sics methods restoring the Generalized Gaussian distribution
[28] [15] would likely compromise the detection accuracy,
additional compound statistical properties could be studied to
detect and counter JPEG anti-forensics, in a similar way as in
[29] and [30].
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Finally, the encouraging results obtained in Section VI-D,
as well as in the work [21], confirm the effectiveness of BF
coefficients in characterizing DCT coefficients. This suggests
that future work should be devoted to the analysis of more
complex scenarios involving multiple JPEG compression and
other processing operations [31], [32].
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APPENDIX A
DERIVATION OF σ2

Wr,i

In order to obtain the variance of Wr,i, we need to consider
the pdf of Zq and study the real and imaginary parts of the r.v.
e−j2πn log10 Zq , i.e., the r.v.’s C .

= cos(2πn log10 Zq) and S .
=

− sin(2πn log10 Zq), respectively. For the sake of simplicity,
in the following analysis we drop the subscript q of Z. For
deriving the pdf of C, the following r.v. transformations need
to be applied

Z
log10−→ Z ′

·2πn−→ Z ′′
cos−→ C

and the same happens for S by applying − sin(·) as last
transformation.

Since they are monotonic, the first two transformations can
be treated with the formula

fY (y) = fX(h−1(y))·
∣∣∣∣ ∂∂yh−1(y)

∣∣∣∣ , Y = h(X), X ∼ fX(x)

and we obtain

fZ′′(z′′) = L(10
z′′
2πn ) · 10

z′′
2πn · log 10

2πn
.

The third transformation is not monotonic and a generaliza-
tion of formula (A) should be used [33]:

fY (y) =
∑

{x|h(x)=y}

fX(x)∣∣ ∂
∂xh(x)

∣∣ (20)

So, if we define IZ′′ = [2πn log10(q− q/2), 2πn log10(q+
q/2)[, we have that

fC(c) =
∑

{z′′|cos(z′′)=c}∩IZ′′

fZ′′(z′′)
| − sin z′′|

=
∑
Dc

e−
√

2
σ |10

z′′
2πn−q|10

z′′
2πn log 10

σ
√

2Nσ,q2πn

1√
1− c2

where

Dc = {z′′| cos(z′′) = c} ∩ IZ′′

= ∪i∈Z{2πi+ t, 2π(i+ 1)− t} ∩ IZ′′ ,

t
.
= arccos(c).

By definition, the variance of C is given by

σ2
C =

1∫
−1

c2fC(c)dc− µ2
C (21)

=

1∫
−1

c2
∑

z′′∈Dc

e−
√

2
σ
|10

z′′
2πn−q|10

z′′
2πn

σ
√
2Nσ,q2πn

log 10√
1− c2

dc−<(an,q)2.

(22)

The variance σ2
S of S is obtained similarly by replacing c

with s in the first integral and recalling that µS = =(an,q).
Finally, in order to get the variance of the real and imaginary
parts of W0,q = Ân,q − an,q we should consider that it is a
shift (i.e., has the same variance) of Ân,q , the sample mean of
e−j2πn log10 Zq computed from Mq samples. By applying the
Central Limit Theorem on real and imaginary parts, we have:

σ2
Wr

=
σ2
C

Mq
, σ2

Wi
=

σ2
S

Mq
. (23)

APPENDIX B
MEAN AND VARIANCE OF logL0

We can reformulate expression (19) as follows

logL0 = #F · log (2M) +
∑
f∈F

log |Âfn|︸ ︷︷ ︸
Lf

−M |Âfn|2︸ ︷︷ ︸
Bf


︸ ︷︷ ︸

Sf

(24)

The r.v.’s |âfn| are i.i.d. (assuming independency among DCT
frequencies) and they follow a Rayleigh distribution with scale
parameter σ = 1/

√
2M . Starting from this we can study Lf ,

Bf and Sf .
• Each Lf is a log-Rayleigh random variable. According

to [34], we have that

E{Lf} = − logM

2
− γ

2
, V ar{Lf} =

π2

24
,

where γ is the Euler-Mascheroni constant.
• Each Bf is a squared Rayleigh r.v. multiplied by a con-

stant term −M . It can be shown (via r.v. transformation)
that a squared Rayleigh r.v. with scale parameter σ has
an exponential distribution with rate parameter 1/2σ2 (in
our case M ). By scaling with a factor −M , we have that

E{Bf} = −1, V ar{Bf} = 1.

• Each Sf ’s is sum of two r.v., hence we have that

E{Sf} = E{Lf}+ E{Bf} = − logM

2
− γ

2
− 1,

V ar{Sf} =V ar{Lf}+V ar{Bf}+2Cov{Lf , Bf}=
π2

24
as the value of the covariance has been derived by means
of symbolic computation and is equal to −1/2.

• Finally, logL0 is a sum of the iid r.v.’s Sf plus a constant
term #F · log (2M). Then, we have that

E{logL0} = #F · log (2M)−#F ·
(

logM

2
+
γ

2
+ 1

)
,

V ar{logL0} = #F · π
2

24
.
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