
Modeling and Reasoning on Requirements Evolution
with Constrained Goal Models

Chi Mai Nguyen, Roberto Sebastiani, Paolo Giorgini, and John Mylopoulos

DISI, University of Trento, Italy

Abstract. We are interested in supporting software evolution caused by chang-
ing requirements and/or changes in the operational environment of a software
system. For example, users of a system may want new functionality or perfor-
mance enhancements to cope with growing user population (changing require-
ments). Alternatively, vendors of a system may want to minimize costs in im-
plementing requirements changes (evolution requirements). We propose to use
Constrained Goal Models (CGMs) to represent the requirements of a system, and
capture requirements changes in terms of incremental operations on a goal model.
Evolution requirements are then represented as optimization goals that minimize
implementation costs or customer value. We then exploit reasoning techniques to
derive optimal new specifications for an evolving software system. CGMs offer
an expressive language for modelling goals that comes with scalable solvers that
solve hybrid constraint and optimization problems using a combination of Sat-
isfiability Modulo Theories (SMT) and Optimization Modulo Theories (OMT)
techniques. We evaluate our proposal by modeling and reasoning with a goal
model for a standard exemplar used in Requirement Engineering.

1 Introduction

We have come to live in a world where the only constant is change. Changes need to
be accommodated by any system that lives and operates in that world, biological and/or
engineered. For software systems, this is a well-known problem referred to as software
evolution. There has been much work and interest on this problem since Lehman’s
seminal proposal for laws of software evolution [4]. However, the problem of effectively
supporting software evolution through suitable concepts, tools and techniques is still
largely open. And software evolution still accounts for more than 50% of total costs in
a software system’s lifecycle.

We are interested in supporting software evolution caused by changing requirements
and/or environmental conditions. Specifically, we are interested in models that capture
such changes, also in reasoning techniques that derive optimal new specifications for
a system whose requirements and/or environment have changed. Moreover, we are in-
terested in discovering new classes of evolution requirements, in the spirit of [10] who
proposed such a class for adaptive software systems. We propose to model requirements
changes through changes to a goal model, and evolution requirements as optimization
goals, such as ”Minimize costs while implementing new functionality”. Our research
baseline consists of an expressive framework for modelling and reasoning with goals
called Constrained Goal Models (hereafter CGMs) [5]. The CGM framework is founded

on and draws much of its power from Satisfiability Modulo Theories (SMT) and Opti-
mization Modulo Theories (OMT) solving techniques [1, 8].

The contributions of this paper include a proposal for modelling changing require-
ments in terms of changes to a CGM model, but also the identification of a new class
of evolution requirements, expressed as optimization goals in CGM. In addition, we
show how to support reasoning with changed goal models and evolution requirements
in order to derive optimal solutions.

The rest of the paper is structured as follows: §2 introduces the notion of CGM
through a working example; §3 introduces the notion of evolution requirements and
requirements evolution through our working example; §4 formalizes the problem of
automatically handling CGM evolutions and evolution requirements for CGMs; §5 pro-
vides a brief overview of our tool implementing the presented approach; in §6 we draw
some conclusions.

Some of the ideas described here were discussed at conceptual level in a non-
technical short paper at Conceptual Modeling conference, ER’2016 [6]. A longer
and more detailed version of this paper, which includes also a related work section, is
available [7].

2 Background: Constrained Goal Models

SMT(LRA) and OMT(LRA). Satisfiability Modulo the Theory of Linear Rational
Arithmetic (SMT(LRA)) [1] is the problem of deciding the satisfiability of arbitrary
formulas on atomic propositions and constraints in linear arithmetic over the rationals.
Optimization Modulo the Theory of Linear Rational Arithmetic (OMT(LRA)) [8] ex-
tends SMT(LRA) by searching solutions which optimize some LRA objective(s). Ef-
ficient OMT(LRA) solvers like OPTIMATHSAT [9] allow for handling formulas with
thousands of Boolean and rational variables [8, 5].

A Working Example. We recall from [5] the main ideas of Constrained Goal Models
(CGM’s) and the main functionalities of our CGM-Tool through a meeting scheduling
example (Figure 1), a standard exemplar used in Requirements Engineering [11, 3].

Notationally, round-corner rectangles (e.g., ScheduleMeeting) are root goals, rep-
resenting stakeholder requirements; ovals (e.g. CollectTimetables) are intermediate
goals; hexagons (e.g. CharacteriseMeeting) are tasks, i.e. non-root leaf goals; rect-
angles (e.g., ParticipantsUseSystemCalendar) are domain assumptions. We call ele-
ments both goals and domain assumptions. Labeled bullets at the merging point of the
edges connecting a group of source elements to a target element are refinements (e.g.,
(GoodParticipation,MinimalConflict)

R20−−→ GoodQualitySchedule), while the Ris de-
note their labels. The label of a refinement can be omitted when there is no need to refer
to it explicitly.

Intuitively, requirements represent desired states of affairs we want the system-to-be
to achieve (either mandatorily or possibly); they are progressively refined into interme-
diate goals, until the process produces actionable goals (tasks) that need no further
decomposition and can be executed; domain assumptions are propositions about the
domain that need to hold for a goal refinement to work. Refinements are used to rep-

resent the alternatives of how to achieve an element; a refinement of an element is a
conjunction of the sub-elements that are necessary to achieve it.

Suppose we want to capture and analyze requirements for a software system that
schedules meetings (see [11, 3]). The main objective of the CGM in Figure 1 is to
achieve the requirement ScheduleMeeting, which is mandatory. ScheduleMeeting has
only one candidate refinement R1, consisting in five sub-goals: CharacteriseMeeting,
CollectTimetables, FindASuitableRoom, ChooseSchedule, and ManageMeeting. Since
R1 is the only refinement of the requirement, all these sub-goals must be satisfied
in order to satisfy it. There may be more than one way to refine an element; e.g.,
CollectTimetables is further refined either by R10 into the single goal ByPerson or
by R2 into the single goal BySystem. The subgoals are further refined until they reach
the level of domain assumptions and tasks.

Some requirements can be “nice-to-have”, like LowCost, MinimalEffort,
FastSchedule, and GoodQualitySchedule (in blue in Figure 1). They are requirements
that we would like to fulfill with our solution, provided they do not conflict with other
requirements. To this extent, in order to analyze interactively the possible different real-
izations, one can interactively mark [or unmark] requirements as satisfied, thus making
them mandatory (if unmarked, they are nice-to-have ones). Similarly, one can interac-
tively mark/unmark (effortful) tasks as denied, or mark/unmark some domain assump-
tion as satisfied or denied. More generally, one can mark as satisfied or denied every
goal or domain assumption. We call these marks user assertions. Notice that CGMs
can represent both functional requirements (e.g. ScheduleMeeting) and quality require-
ments (e.g. LowCost).

In a CGM, elements and refinements are enriched by user-defined constraints, which
can be expressed either graphically as relation edges or textually as Boolean or
SMT(LRA) formulas. We have three kinds of relation edges. Contribution edges
“Ei

++−−→ Ej” between elements (in green in Figure 1), like
“ScheduleAutomatically

++−−→ MinimalConflicts”, mean that if the source element Ei

is satisfied, then also the target element Ej must be satisfied (but not vice versa). Con-
flict edges “Ei

−−←→ Ej” between elements (in red), like “ConfirmOccurrence
−−←→

CancelMeeting”, mean that Ei and Ej cannot be both satisfied. Refinement bindings
“Ri←→Rj” between two refinements (in purple), like “R2←→R7”, are used to state
that, if the target elements Ei and Ej of the two refinements Ri and Rj , respectively,
are both satisfied, then Ei is refined by Ri if and only if Ej is refined by Rj . Intuitively,
this means that the two refinements are bound, as if they were two different instances
of the same choice.

It is possible to enrich CGMs with logic formulas, representing arbitrary logic con-
straints on elements and refinements. For example, to require that, as a prerequisite
for FastSchedule, ScheduleManually and CallParticipants cannot be both satisfied, one
can add the constraint ”FastSchedule→ ¬(ScheduleManually ∧ CallParticipants)”.

In addition to Boolean constraints, it is also possible to use numerical variables to
express different numerical attributes of elements (such as cost, worktime, space, fuel,
etc.) and constraints over them. For example, in Figure 1 we associate to
UsePartnerInstitutions and UseHotelsAndConventionCenters a cost value of 80AC and
200AC respectively, and we associate “(cost < 100AC)” as a prerequisite constraint for

Fig. 1. A CGM M1, with a realization µ1 minimizing lexicographically: the difference Penalty-
Reward, workTime, and cost.

the nice-to-have requirement LowCost. Implicitly, this means that no realization involv-
ing UseHotelsAndConventionCenters can realize this requirement.

We suppose now that ScheduleMeeting is asserted as satisfied (i.e. it is mandatory)
and that no other element is asserted. Then the CGM in Figure 1 has more than 20 pos-
sible realizations. The sub-graph which is highlighted in yellow describes one of them.
Intuitively, a realization of a CGM under given user assertions (if any) represents one of
the alternative ways of refining the mandatory requirements (plus possibly some of the
nice-to-have ones) in compliance with the user assertions and user-defined constraints.
It is a sub-graph of the CGM including a set of satisfied elements and refinements: it
includes all mandatory requirements, and [resp. does not include] all elements satisfied
[resp. denied] in the user assertions; for each non-leaf element included, at least one
of its refinement is included; for each refinement included, all its target elements are
included; finally, a realization complies with all relation edges and with all constraints.

In general, a CGM under given user assertions has many possible realizations.
To distinguish among them, stakeholders may want to express preferences on the re-
quirements to achieve, on the tasks to accomplish, and on elements and refinements to
choose. The CGM-Tool provides various methods to express preferences:

– attribute rewards and penalties to nice-to-have requirements and tasks respectively,
so that to maximize the former and minimize the latter; (E.g., satisfying LowCost
gives a reward = 100, whilst satisfying CharacteriseMeeting gives a penalty = 15.)

– introduce numerical attributes, constraints and objectives; (E.g., the numerical at-
tribute Cost not only can be used to set prerequisite constraints for requirements,
like “(Cost < 100AC)” for LowCost, but also can be set as objectives to minimize.)

– introduce a list of binary preference relations “�”between elements or refinements.
(E.g., one can set the preferences BySystem � ByPerson, UseLocalRoom �
UsePartnerInstitutions and UseLocalRoom � UseHotelsAndConventionCenters.)

The CGM-Tool provides many automated-reasoning functionalities on CGMs [5].

Search/enumerate realizations. One can automatically check the realizability of a CGM–
or to enumerate one or more of its possible realizations– under a group of user
assertions and of user-defined constraints; (When a CGM is found un-realizable
under a group of user assertions and of user-defined constraints, it highlights the
subparts of the CGM and the subset of assertions causing the problem.)

Search/enumerate minimum-penalty/maximum reward realizations. One can assert re-
wards to the desired requirements and set penalties of tasks, then the tool finds
automatically the optimal realization(s).

Search/enumerate optimal realizations wrt. pre-defined/user-defined objectives. One
can define objective functions obj1, ..., objk over goals, refinements and their nu-
merical attributes; then the tool finds automatically realizations optimizing them.

Search/enumerate optimal realizations wrt. binary preferences. Once the list of binary
preference is set, the tool finds automatically realizations maximizing the number
of fulfiled preferences.

The above functionalities can be combined in various ways. For instance, the realization
of Figure 1 is the one returned by CGMtool when asked to minimize lexicographically,

in order, the difference Penalty-Reward, workTime, and cost. 1 They have been imple-
mented by encoding the CGM and the objectives into an SMT(LRA) formula and a
set of LRA objectives, which is fed to the OMT tool OPTIMATHSAT [9]. We refer
the reader to [5] for a much more detailed description of CGMs and their automated
reasoning functionalities.

3 Requirements Evolution and Evolution Requirements

Here we show how a CGM can evolve, and how we can handle such evolution.

3.1 Requirements Evolution

Constrained goal models may evolve in time: goals, requirements and assumptions can
be added, removed, or simply modified; Boolean and SMT constraints may be added,
removed, or modified as well; assumptions which were assumed true can be assumed
false, or vice versa.

Some modifications strengthen the CGMs, in the sense that they reduce the set of
candidate realizations. For instance, dropping one of the refinements of an element (if
at least one is left) reduces the alternatives in realizations; adding source elements to a
refinement makes it harder to satisfy; adding Boolean or SMT constraints, or making
some such constraint strictly stronger, restricts the set of candidate solutions; changing
the value of an assumption from true to false may drop some alternative solutions. Vice
versa, some modifications weaken the CGMs, augmenting the set of candidate realiza-
tions: for instance, adding one of refinement to an element, dropping source elements
to a refinement, dropping Boolean or SMT constraints, or making some such constraint
strictly weaker, changing the value of an assumption from false to true. In general, how-
ever, since in a CGM the goal and/or decomposition graph is a DAG and not a tree, and
the and/or decomposition is augmented with relational edges and constraints, modifica-
tions may produce combinations of the above effects, possibly propagating unexpected
side effects which are sometimes hard to predict.

We consider the CGM of a Schedule Meeting described in Figure 1 (namely,M1)
as our starting model, and we assume that for some reasons it has been modified into the
CGM of Figure 2 (namely,M2).M2 differs fromM1 for the following modifications:

(a) two new tasks, SetSystemCalendar and ParticipantsFillSystemCalendar, are added
to the sub-goal sources of the refinement R13;

(b) a new source task RegisterMeetingRoom is added to R17, and the binding between
R16 and R17 is removed; the refinement R18 of the goal BookRoom and its source
task CancelLessImportantMeeting are removed;

(c) the alternative refinements R8 and R9 of ManageMeeting are also modified: two
new internal goals ByUser and ByAgent are added and become the single source of
the two refinements R8 and R9 respectively, and the two tasks ConfirmOccurrence
and CancelMeeting become respectively the sources of two new refinements R21

1 A solution optimizes lexicographically an ordered list of objectives 〈obj1, obj2, ...〉 if it makes
obj1 optimum and, if more than one such solution exists, it makes also obj2 optimum, ..., etc.

and R22, which are the alternative refinements of the goal ByUser; the new goal
ByAgent is refined by the new refinement R23 with source task SendDecision.

3.2 Evolution Requirements

We consider the generic scenario in which a previous version of a CGMM1 with an
available realization µ1 is modified into a new CGMM2.

As a consequence of modifying a CGMM1 into a new versionM2, µ1 typically is
no more a valid realization ofM2. 2 E.g., we notice that µ1 in Figure 2 does not repre-
sent a valid realization ofM2: not all source tasks of R13 are satisfied, BookRoom has
no satisfied refinement, and the new goal ByUser and refinement R21 are not satisfied.
It is thus necessary to produce a new realization µ2 forM2.

In general, when one has a sequenceM1,M2, ...,Mi, ... of CGMs and must pro-
duce a corresponding sequence µ1, µ2, ..., µi, ... of realizations, it is necessary to decide
some criteria by which the realizations µi evolve in terms of the evolution of the CGMs
Mi. We call these criteria, evolution requirements. We describe some possible criteria.

Recomputing realizations. One possible evolution requirement is that of always hav-
ing the “best” realization µi for eachMi, according to some objective (or lexicographic
combination of objectives). LetM1,M2, and µ1 be as above. One possible choice for
the user is to compute a new optimal realization µ2 from scratch, using the same criteria
used in computing µ1 fromM1. In general, however, it may be the case that the new
realization µ2 is very different from µ1, which may displease the stakeholders.

We consider now the realization µ1 of the CGM M1 highlighted in Figure 1 and
the modified modelM2 of Figure 2. If we run CGM-Tool overM2 with the same op-
timization criteria as for µ1 –i.e., minimize lexicographically, in order, the difference
Penalty-Reward, workTime, and cost– we obtain a novel realization µlex

2 depicted in
Figure 3. The new realization µlex

2 satisfies all the requirements (both ”nice to have” and
mandatory) except MinimalEffort. It includes the following tasks: CharateriseMeeting,
EmailParticipants, GetRoomSuggestions, UseAvailableRoom, RegisterMeetingRoom,
ScheduleManually, ConfirmOccurrence, GoodParticipation, and MinimalConflicts, and
it requires one domain assumption: LocalRoomAvailable. This realization was found
automatically by our CGM-Tool in 0.059 seconds on an Apple MacBook Air laptop.

Unfortunately, µlex
2 turns out to be extremely different from µ1. This is due to the

fact that the novel tasks SetSystemCalendar and ParticipantsFillSystemCalendar raise
significantly the penalty forR13 and thus forR2; hence, in terms of the Penalty-Reward
objective, it is now better to choose R10 and R6 instead of R2 and R7, even though this
forces ByPerson to be satisfied, which is incompatible with CollectionEffort, so that
MinimalEffort is no more achieved. Overall, for µ2 we have Penalty−Reward = −65,
workTime = 4h and cost = 0AC.

In many contexts, in particular if µ1 is well-established or is already implemented,
one may want to find a realization µ2 of the modified CGMM2 which is as similar as
possible to the previous realizationM1. The suitable notion of ”similarity”, however,

2 More precisely, rather than “µ1”, here we should say “the restriction of µ1 to the elements and
variables which are still in M2.” We will keep this distinction implicit in the rest of the paper.

Sc
he

du
le

Me
eti

ng

Fin
dA

Su
ita

ble
Ro

om

Us
eL

oc
al

Ro
om

Lo
ca

lR
oo

m
Av

ail
ab

le

Bo
ok

Ro
om

Fin
dA

Lo
ca

l
Ro

om

Lis
t

Av
ail

ab
le

Ro
om

s

Ge
t

Ro
om

Su
gg

es
tio

ns

Us
e

Av
ail

ab
le

Ro
om

Us
eH

ote
ls

An
dC

on
ve

nti
on

Ce
nte

rs

Us
e

Pa
rtn

er
Ins

titu
tio

ns

Co
lle

ct
Tim

et
ab

les

By
Sy

ste
m

Pa
rtic

ipa
nts

Us
eS

ys
tem

Ca
len

da
r

Ca
ll

Pa
rtic

ipa
nts

By
Pe

rso
n

Co
lle

ctF
rom

Sy
ste

m
Ca

len
da

r

Ch
ar

ac
ter

ise
Me

eti
ng

Ch
oo

se
Sc

he
du

le

Sc
he

du
le

Ma
nu

all
y

Ma
na

ge
Me

eti
ng

Ca
nc

el
Me

eti
ng

Co
nf

irm
Oc

cu
rre

nc
e

Sc
he

du
le

Au
tom

ati
ca

lly

- -

Lo
wC

os
t

Fa
st

Sc
he

du
le

Go
od

Qu
ali

ty
Sc

he
du

le Mi
nim

al
Co

nfl
ict

s
Go

od
Pa

rtic
ipa

tio
n

++

R 1

R 2
R 3

R 4
R 5

R
6

R 7

R 8

R 1
0

R 12
R 1

3

R 1
4

R 15
R 1

6
R 17

R 19

R 2
0

Re
wa

rd
 =

 10
0

Pe
na

lty
 =

15

Re
wa

rd
 =

 75

Mi
nim

alE
ffo

rt Ma
tch

ing
Ef

for
t

Co
lle

cti
on

Ef
for

tEm
ail

Pa
rtic

ipa
ntsR 1

1

Pe
na

lty
 =

15
Pe

na
lty

 =
15

Pe
na

lty
 =

50
Pe

na
lty

 =
50

Pe
na

lty
 =

50
Pe

na
lty

 =
15

Re
wa

rd
 =

 65

Pe
na

lty
 =

30
Pe

na
lty

 =
30

Pe
na

lty
 =

5

Pe
na

lty
 =

50

Pe
na

lty
 =

15
Pe

na
lty

 =
25

Pe
na

lty
 =

15

Pe
na

lty
 =

10

Pe
na

lty
 =

5

Pe
na

lty
 =

5

Re
wa

rd
 =

 80

Pe
na

lty
 =

35
Pe

na
lty

 =
20

wo
rkT

im
e =

 2h
wo

rkT
im

e =
 1h

wo
rkT

im
e =

 1h

Co
st

= 8
0€

Co
st=

 20
0€

wo
rkT

im
e =

 1h
wo

rkT
im

e =
 3h

(C
os

t <
 10

0€
)

(w
or

kT
im

e <
 5h

)

Pa
rtic

ipa
nts

Fil
lS

ys
tem

Ca
len

de
r

Se
t

Sy
ste

m
Ca

len
da

r

By
Us

er

R 2
1

R 2
2

R 9

By
Ag

en
t

Se
nd

De
cis

ionR 2
3

++

++

- -

Pe
na

lty
 =

10
wo

rkT
im

e =
 1h

Pe
na

lty
 =

5
wo

rkT
im

e =
 0.

5h

Pe
na

lty
 =

5

Re
gis

ter
Me

eti
ng

Ro
om

Pe
na

lty
 =

10

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

PR
OD

UC
ED

 B
Y

AN
 A

UT
OD

ES
K

ED
UC

AT
IO

NA
L P

RO
DU

CT

Fig. 2. The novel CGM M2, with the previous realization µ1 highlighted for comparison. (Notice
that µ1 is no more a valid realization for M2.)

may depend on stakeholder’s needs. In what follows, we discuss two notions of ”simi-
larity” from [2], familiarity and change effort, adapting and extending them to CGMs.

Maximizing familiarity. In our approach, in its simplest form, the familiarity of µ2 wrt.
µ1 is given by the number of elements of interest which are common toM1 andM2

and which either are in both µ1 and µ2 or are out of both of them; this can be augmented
also by the number of new elements inM2 of interest (e.g., tasks) which are denied. In
a more sophisticate form, the contribution of each element of interest can be weighted
by some numerical value (e.g., Penalty, cost, WorkTime,...). This is formalized in §4,
and a functionality for maximizing familiarity is implemented in CGM-Tool.

For example, if we ask CGM-Tool to find a realization which maximizes our notion
of familiarity (see §4), we obtain the novel realization µfam

2 depicted in Figure 4. µfam
2

satisfies all the requirements (both ”nice to have” and mandatory ones), and includes the
following tasks: CharacteriseMeeitng, SetSystemCalendar,
ParticipantsFillSystemCalendar, CollectFromSystemCalendar, GetRoomSuggestions,
UseAvailableRoom, RegisterMeetingRoom, ScheduleAutomatically,
ConfirmOccurrence, GoodParticipation, MinimalConflicts, CollectionEffort, and
MatchingEffort; µfam

2 also requires two domain assumptions:
ParticipantsUseSystemCalendar and LocalRoomAvailable.

Notice that all the tasks which are satisfied in µ1 are satisfied also in µfam
2 , and only

the intermediate goal ByUser, the refinementR21 and the four tasks SetSystemCalendar,
ParticipantsFillSystemCalendar, UseAvailableRoom, and RegisterMeetingRoom are
added to µfam

2 , three of which are newly-added tasks. Thus, on common elements,
µfam

2 and µ1 differ only on the task UseAvailableRoom, which must be mandatorily be
satisfied to complete the realization. Overall, wrt. µlex

2 , we pay familiarity with some
loss in the “quality” of the realization, since for µfam

2 we have Penalty − Reward =
−50, workTime = 3.5h and cost = 0AC. This realization was found automatically by
our CGM-Tool in 0.067 seconds on an Apple MacBook Air laptop.

Minimizing change effort. In our approach, in its simplest form, the change effort of
µ2 wrt. µ1 is given by the number of newly-satisfied tasks, i.e., the amount of the new
tasks which are satisfied in µ2 plus that of common tasks which were not satisfied in
µ1 but are satisfied in µ2. In a more sophisticate form, the contribution of each task of
interest can be weighted by some numerical value (e.g., Penalty, cost, WorkTime,...).
Intuitively, since satisfying a task requires effort, this value considers the extra effort
required to implement µ2. (Notice that tasks which pass from satisfied to denied do
not reduce the effort, because we assume they have been implemented anyway.) This
is formalized in §4, and a functionality for minimizing change effort is implemented in
CGM-Tool.

For example, if we ask CGM-Tool to find a realization which minimizes the number
of newly-satisfied tasks, we obtain the realization µeff

2 depicted in Figure 5. The real-
ization satisfies all the requirements (both ”nice to have” and mandatory), and includes
the following tasks: CharacteriseMeeitng, SetSystemCalendar,
ParticipantsFillSystemCalendar, CollectFromSystemCalendar, UsePartnerInstitutions,
ScheduleAutomatically, ConfirmOccurrence, GoodParticipation, MinimalConflicts,
CollectionEffort, and MatchingEffort; µeff

2 also requires one domain assumption
ParticipantsUseSystemCalendar.

Notice that, in order to minimize the number of new tasks needed to be achieved, in
µeff

2 , FindASuitableRoom is refined by R3 instead of R5. In fact, in order to achieve
R5, we would need to satisfy two extra tasks (UseAvailableRoom
and RegisterMeetingRoom) wrt. µ1, whilst for satisfying R3 we only need to satisfy
one task (UsePartnerInstitutions). Besides, two newly added tasks SetSystemCalendar
and ParticipantsFillSystemCalendar are also included in µeff

2 . Thus the total effort of
evolving from µ1 to µeff

2 is to implement three new tasks. Overall, for µeff
2 we have

Penalty − Reward = −50, workTime = 3.5h and cost = 80AC. This realization was
found automatically by our CGM-Tool in 0.085 seconds on an Apple MacBook Air
laptop.
Combining familiarity or change effort with other objectives. In our approach, fa-
miliarity and change effort are numerical objectives like others, and as such they can
be combined lexicographically with other objectives, so that stakeholders can decide
which objectives to prioritize.

4 Automated Reasoning with Evolution Requirements

CGMs and realizations. We first recall some formal definitions from [5].
A Constrained Goal Model (CGM) is a tupleM def

= 〈B,N ,D, Ψ〉, s.t.

– B def
= G ∪ R ∪ A is a set of atomic propositions, where G def

= {G1, ..., GN}, R
def
=

{R1, ..., RK}, A
def
= {A1, ..., AM} are respectively sets of goal, refinement and

domain-assumption labels. We denote with E the set of element labels: E def
= G ∪A;

– N is a set of numerical variables in the rationals;
– D is an and-or directed acyclic graph of elements in E (or nodes) and refinements

inR (and nodes);
– Ψ is a SMT(LRA) formula onB andN , representing the conjunction of all relation

edges, user-defined constraints and assertions.

The structure of a CGM is an and-or directed acyclic graph (DAG) of elements, as
nodes, and refinements, as (grouped) edges, which are labeled by atomic propositions
and can be augmented with arbitrary constraints in form of graphical relations and
Boolean or SMT(LRA) formulas –typically conjunctions of smaller global and lo-
cal constraints– on the element and refinement labels and on the numerical variables.
Notice that each non-leaf element E is implicitly or-decomposed into the set of its in-
coming refinements {Ri}

def
= RefinementsOf(E) (i.e., E ↔ (

∨
iRi)) and that each

refinement R is and-decomposed into the set of its source elements {Ej} (i.e., R ↔
(
∧

j Ej)). Intuitively, a CGM describes a (possibly complex) combination of alterna-
tive ways of realizing a set of requirements in terms of a set of tasks, under certain
domain assumptions.

LetM def
= 〈B,N ,D, Ψ〉 be a CGM. A realization µ ofM is an assignment of truth

values to B and of rational values to N (aka, a LRA-interpretation) which:

(a) for each non-leaf element E, µ satisfies
(
E ↔ (

∨
Ri∈RefinementsOf(E)Ri)

)
–i.e., E

is part of a realization µ if and only if one of its refinements is in µ;

Fig. 3. New CGM M2, with realization µlex
2 which minimizes lexicographically: the difference

Penalty-Reward, workTime, and cost.
Schedule
Meeting

FindASuitable
Room

UseLocal
Room

LocalRoom
Available

BookRoomFindALocal
Room

List
Available
Rooms

Get
Room

Suggestions

Use
Available

Room

UseHotels
AndConvention

Centers

Use
Partner

Institutions

Collect
Timetables

BySystem

Participants
UseSystem
Calendar

Call
Participants

ByPerson

CollectFrom
System

Calendar

Characterise
Meeting

Choose
Schedule

Schedule
Manually

Manage
Meeting

Cancel
Meeting

Confirm
Occurrence

Schedule
Automatically

- -

LowCost
Fast

Schedule

GoodQuality
Schedule

Minimal
Conflicts

Good
Participation

++

R1

R2
R3 R4 R5

R6
R7

R8

R 10

R 12
R 13

R 14

R 15 R 16 R 17

R 19

R 20

Reward = 100

Penalty = 15

Reward = 75

MinimalEffort

Matching
Effort

Collection
Effort

Email
Participants

R 11

Penalty = 15Penalty = 15

Penalty = 50 Penalty = 50
Penalty = 50 Penalty = 15

Reward = 65

Penalty = 30 Penalty = 30

Penalty = 5

Penalty = 50

Penalty = 15 Penalty = 25

Penalty = 15

Penalty = 10

Penalty = 5

Penalty = 5

Reward = 80

Penalty = 35 Penalty = 20

workTime = 2hworkTime = 1h

workTime = 1h

Cost = 80€ Cost= 200€ workTime = 1hworkTime = 3h

(Cost < 100€) (workTime < 5h)

Participants
FillSystem
Calender

Set
System

Calendar

ByUser
R21

R22

R9

ByAgent

Send
Decision

R23

++

++

- -

Penalty = 10
workTime = 1h

Penalty = 5
workTime = 0.5h

Penalty = 5

Register
Meeting
Room

Penalty = 10

P
R

O
D

U
C

E
D

 B
Y

 A
N

 A
U

T
O

D
E

S
K

 E
D

U
C

A
T

IO
N

A
L

 P
R

O
D

U
C

T

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

P
R

O
D

U
C

E
D

 B
Y

 A
N

 A
U

T
O

D
E

S
K

 E
D

U
C

A
T

IO
N

A
L

 P
R

O
D

U
C

T

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

Fig. 4. New CGM M2, with realization µfam
2 with maximizes the familiarity wrt. µ1.

Schedule
Meeting

FindASuitable
Room

UseLocal
Room

LocalRoom
Available

BookRoomFindALocal
Room

List
Available
Rooms

Get
Room

Suggestions

Use
Available

Room

UseHotels
AndConvention

Centers

Use
Partner

Institutions

Collect
Timetables

BySystem

Participants
UseSystem
Calendar

Call
Participants

ByPerson

CollectFrom
System

Calendar

Characterise
Meeting

Choose
Schedule

Schedule
Manually

Manage
Meeting

Cancel
Meeting

Confirm
Occurrence

Schedule
Automatically

- -

LowCost
Fast

Schedule

GoodQuality
Schedule

Minimal
Conflicts

Good
Participation

++

R1

R2
R3 R 4 R5

R 6
R7

R8

R 10

R 12
R 13

R 14

R 15 R 16 R 17

R 19

R 20

Reward = 100

Penalty = 15

Reward = 75

MinimalEffort

Matching
Effort

Collection
Effort

Email
Participants

R 11

Penalty = 15Penalty = 15

Penalty = 50 Penalty = 50
Penalty = 50 Penalty = 15

Reward = 65

Penalty = 30 Penalty = 30

Penalty = 5

Penalty = 50

Penalty = 15 Penalty = 25

Penalty = 15

Penalty = 10

Penalty = 5

Penalty = 5

Reward = 80

Penalty = 35 Penalty = 20

workTime = 2hworkTime = 1h

workTime = 1h

Cost = 80€ Cost= 200€ workTime = 1hworkTime = 3h

(Cost < 100€) (workTime < 5h)

Participants
FillSystem
Calender

Set
System

Calendar

ByUser
R21

R22

R9

ByAgent

Send
Decision

R23

++

++

- -

Penalty = 10
workTime = 1h

Penalty = 5
workTime = 0.5h

Penalty = 5

Register
Meeting
Room

Penalty = 10

P
R

O
D

U
C

E
D

 B
Y

 A
N

 A
U

T
O

D
E

S
K

 E
D

U
C

A
T

IO
N

A
L

 P
R

O
D

U
C

T

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

P
R

O
D

U
C

E
D

 B
Y

 A
N

 A
U

T
O

D
E

S
K

 E
D

U
C

A
T

IO
N

A
L

 P
R

O
D

U
C

T

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

Fig. 5. New CGM M2, with realization µeff
2 with minimimizes the change effort wrt. µ1.

(b) for each refinement
(
E1, . . . , En

) R−→ E, µ satisfies ((
∧n

i=1Ei) ↔ R) –i.e., R is
part of µ iff and only if all of its sub-elements Ei are in µ;

(c) µ satisfies Ψ –i.e., the elements and refinements occurring in µ, and the values
assigned by µ to the numerical attributes, comply with all the relation edges, the
user-defined constraints and user assertions in Ψ .

We say that an elementE or refinementR is satisfied [resp. denied] in µ if it is assigned
to > [resp. ⊥] by µ. µ is represented graphically as the sub-graph ofM where all the
denied element and refinement nodes are eliminated. We say that M, including user
assertions, is realizable if it has at least one realization, unrealizable otherwise.

As described in [5], a CGMM is encoded into a SMT(LRA) formula ΨM, and the
user preferences into numerical objective functions {obj1, ..., objk}, which are fed to
the OMT solver OPTIMATHSAT, which returns optimal solutions wrt. {obj1, ..., objk},
which are then converted back by CGM-tool into optimal realizations.

Evolution Requirements. Here we formalize the notions described in §3.2. LetM1
def
=

〈B1,N1,D1, Ψ1〉 be the original model, µ1 be some realization of M1 and M2
def
=

〈B2,N2,D2, Ψ2〉 be a new version ofM1. We look for a novel realization µ2 forM2.
Stakeholders can select a subset of the elements, called elements of interest, on

which to focus, which can be requirements, tasks, domain assumptions, and intermedi-
ate goals. (When not specified otherwise, we will assume by default that all elements
are of interest.) Let E∗ ⊆ E1 ∪ E2 be the subset of the elements of interest, and let
E∗1

def
= E∗ ∩ E1 and E∗2

def
= E∗ ∩ E2 be the respective subsets ofM1 andM2. We define

E∗common
def
= {Ei ∈ E∗2 ∩ E∗1 } as the set of elements of interest occurring in bothM1

andM2, and E∗new
def
= {Ei ∈ E∗2 \ E∗1 } as the set of new elements of interest inM2.

Familiarity. In its simplest form, the cost of familiarity can be defined as follows:

FamiliarityCost(µ2|µ1)
def
= | {Ei ∈ E∗common | µ2(Ei) 6= µ1(Ei)} | (1)
+ | {Ei ∈ E∗new | µ2(Ei) = >} |, (2)

where | S | denotes the number of elements of a set S. FamiliarityCost(µ2|µ1) is the
sum of two components:

(1) the number of common elements of interest (e.g., tasks) which were in µ1 and are
no more in µ2, plus the number of these which were not in µ1 and now are in µ2,

(2) the number of new elements of interest which are in µ2.

In a more sophisticate form, each element of interest Ei can be given some rational
weight value wi

3, so that the cost of familiarity can be defined as follows:

WeightFamiliarityCost(µ2|µ1)
def
=

∑
Ei∈E∗common

wi · Int(µ2(Ei) 6= µ1(Ei)) (3)

+
∑

Ei∈E∗new

wi · Int(µ2(Ei) = >), (4)

3 Like Penalty, Cost and WorkTime in Figure 1.

where Int() converts true and false into the values 1 and 0 respectively.
Both forms are implemented in CGM-Tool. (Notice that (1) and (2), or even (3)

and (4), can also be set as distinct objectives in CGM-Tool.) Consequently, a realiza-
tion µ2 maximizing familiarity is produced by invoking the OMT solver on the for-
mula ΨM2

and the objective FamiliarityCost(µ2|µ1) or WeightFamiliarityCost(µ2|µ1)
to minimize.

Change effort. We restrict the elements of interest to tasks only. In its simplest form,
the change effort can be defined as follows:

ChangeEffort(µ2|µ1)
def
= | {Ti ∈ E∗common | µ2(Ti) = >, and µ1(Ti) = ⊥} | (5)
+ | {Ti ∈ E∗new | µ2(Ti) = >} | . (6)

ChangeEffort(µ2|µ1) is the sum of two components:

(5) is the number of common tasks which were not in µ1 and which are now in µ2,
(6) is the number of new tasks which are in µ2.

As above, in a more sophisticate form, each task of interest Ti can be given some
rational weight value wi, so that the change effort can be defined as follows:

WeightChangeEffort(µ2|µ1)
def
=

∑
Ti∈E∗common

wi · Int(µ2(Ti) = >) · Int(µ1(Ti) = ⊥)

+
∑

Ti∈E∗new

wi · Int(µ2(Ti) = >).

Both forms are implemented in CGM-Tool. Consequently, a novel realization µ2 mini-
mizing change effort is produced by invoking the OMT solver on the formula ΨM2

and
the objective ChangeEffort(µ2|µ1) or WeightChangeEffort(µ2|µ1).

Notice an important difference between (1) and (5), even if the former is restricted
to tasks only: a task which is satisfied in µ1 and is no more in µ2 worsens the familiarity
of µ2 wrt. µ1 (1), but it does not affect its change effort (5), because it does not require
implementing one more task.
Comparison wrt. previous approaches. Importantly, Ernst et al. [2] proposed two
similar notion of familiarity and change effort for (un-)constrained goal graphs:

familiarity: maximize (the cardinality of) the set of tasks used in the previous solution;
change effort: (i) minimize (the cardinality of) the set of new tasks in the novel real-

ization –or, alternatively, (ii) minimize also the number of tasks.

We notice remarkable differences of our approach wrt. the one in [2].
First, our notion of familiarity presents the following novelties:

(i) it uses all kinds of elements, on stakeholders’ demand, rather than only tasks;
(ii) it is (optionally) enriched also with (2);

(iii) (1) is sensitive also to tasks which were in the previous realization and which are
not in the novel one, since we believe that also these elements affect familiarity.

Also, in our approach both familiarity and change effort allow for adding weights to
tasks/elements, and to combine familiarity and change-effort objectives lexicographi-
cally with other user-defined objectives.

Second, unlike with [2], in which the optimization procedure is hardwired, we rely
on logical encodings of novel objectives into OMT(LRA) objectives, using OPTI-
MATHSAT as workhorse reasoning engine. Therefore, new objectives require imple-
menting no new reasoning procedure, only new OMT(LRA) encodings. For instance,
we could easily implement also the notion of familiarity of [2] by asking OPTIMATH-
SAT to minimize the objective: | {Ti ∈ E∗common | µ2(Ti) = ⊥, and µ1(Ti) = >} |.

Third, our approach deals with CGMs, which are very expressive formalisms, are
enriched by Boolean and numerical constraints, and are supported by a tool (CGM-
Tool) with efficient search functionalities for optimum realizations. These functionali-
ties, which are enabled by state-of-the-art SMT and OMT technologies [8, 9], scale very
well, up to thousands of elements, as shown in the empirical evaluation of [5]. In this
paper we further enrich these functionalities so that to deal also with evolving CGMs
and evolution requirements.

Fourth, unlike with [2], where realizations are intrinsically supposed to be minimal,
in our approach minimality is an objective stakeholders can set and obtain as a byprod-
uct of minimum solutions, but it is not mandatory. This fact is relevant when dealing
with familiarity evolution requirements, because objective (1) can conflict with min-
imality, because it may force the presence of tasks from the previous solution which
have become redundant in the new model. Thus, sometimes CGM-tool may return a
non-minimal model if the stakeholder prioritizes familiarity above all other objectives.

5 Implementation

CGM-Tool provides support for modeling and reasoning on CGMs [5]. Technically,
CGM-Tool is a standalone application written in Java and its core is based on Eclipse
RCP engine. Under the hood, it encodes CGMs and invokes the OptiMathSAT 4 OMT
solver [9] to support reasoning on CGMs. It is freely distributed for multiple plat-
forms 5. Currently CGM-Tool supports the functionalities in [5]:

Specification of projects: CGMs are created within the scope of project containers. A
project contains a set of CGMs that can be used to generate reasoning sessions with
OptiMathSAT (i.e., scenarios);

Diagrammatic modeling: the tool enables the creation of CGMs as diagrams; it pro-
vides real-time check for refinement cycles and reports invalid links;

Consistency/well-formedness check: CGM-Tool provides the ability to run consis-
tency analysis and well-formedness checks on the CGMs;

Automated Reasoning: CGM-Tool provides the automated reasoning functionalities
mentioned in section 2, and described in detail in [5].

With this work, we have enhanced CGM-Tool with the following functionalities:

4 http://optimathsat.disi.unitn.it
5 http://www.cgm-tool.eu/

Evolution Requirements Modelling and Automated Reasoning: by means of scenar-
ios, stakeholders can generate evolution sessions, which allows for (i) defining the
first model and finding the first optimal realization, (ii) modifying the model to ob-
tain the new models, and (iii) generating automatically the “similar” realization (as
discussed in section 3.2).

As a proof of concept, we have performed various attempts on variants of the CGM
of §3. The automated generation of the realizations always required negligible amounts
of CPU time, like those reported in §3.2.

6 Conclusions

We have proposed to model changing requirements in terms of changes to CGMs. More-
over, we have introduced a new class of requirements (evolution requirements) that im-
pose constraints on allowable evolutions, such as minimizing (implementation) effort or
maximizing (user) familiarity. We have demonstrated how to model such requirements
in terms of CGMs and how to reason with them in order to find optimal evolutions.

Our future plans for this work include further evaluation with larger case studies,
as well as further exploration for new kinds of evolution requirements that can guide
software evolution.

References
1. C. W. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli. Satisfiability Modulo Theories. In

Handbook of Satisfiability, chapter 26, pages 825–885. IOS Press, 2009.
2. N. A. Ernst, A. Borgida, J. Mylopoulos, and I. Jureta. Agile Requirements Evolution via

Paraconsistent Reasoning. In CAiSE, volume 7328 of LNCS, pages 382–397, 2012.
3. M. S. Feather, S. Fickas, A. Finkelsteiin, and A. V. Lamsweerde. Requirements and specifi-

cation exemplars. Automated Software Engineering, 4(4):419–438, Oct. 1997.
4. M. M. Lehman. Programs, Life Cycles, and Laws of Software Evolution. In Proceedings of

the IEEE, pages 1060–1076, Sept. 1980.
5. C. M. Nguyen, R. Sebastiani, P. Giorgini, and J. Mylopoulos. Multi-objective reasoning with

constrained goal models. Requirements Engineering Journal, pages 1–37, 2016.
6. C. M. Nguyen, R. Sebastiani, P. Giorgini, and J. Mylopoulos. Requirements Evolution and

Evolution Requirements with Constrained Goal Models. Short paper. In Proceedings of the
37nd Int. Conference on Conceptual Modeling, ER’2016, volume 9974 of LNCS. Springer,
2016. Available at http://disi.unitn.it/rseba/papers/er16.pdf.

7. C. M. Nguyen, R. Sebastiani, P. Giorgini, and J. Mylopoulos. Modeling and reasoning on re-
quirements evolution with constrained goal models. Extended version of this paper. Available
as http://disi.unitn.it/rseba/papers/sefm17_extended.pdf, 2017.

8. R. Sebastiani and S. Tomasi. Optimization Modulo Theories with Linear Rational Costs.
ACM Transactions on Computational Logics, 16(2), March 2015.

9. R. Sebastiani and P. Trentin. OptiMathSAT: A Tool for Optimization Modulo Theories. In
Computer-Aided Verification, CAV, volume 9206 of LNCS. Springer, 2015.

10. V. E. S. Souza. Requirements-based Software System Adaptation. Phd thesis, University of
Trento, 2012.

11. A. van Lamsweerde, R. Darimont, and P. Massonet. Goal-directed elaboration of require-
ments for a meeting scheduler: Problems and lessons learned. In Proc. RE’95 - 2nd Int.
Symposium on Requirements Engineering, pages 194–203. IEEE, 1995.

