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Abstract

Cooperative automatic driving, or platooning, is a promising solution
to improve traffic safety, while reducing congestion and pollution.
The design of a control system for this application is a challenging,
multi-disciplinary problem, as cooperation between vehicles is obtained
through wireless communication. So far, control and network issues of
platooning have been investigated separately. In this work we design a
cooperative driving system from a joint network and control perspective,
determining worst-case upper bounds on the safety distance subject to
network losses, so the actual inter-vehicle gap can be tuned depending
on vehicle or network performance. By means of simulation, we show
that the system is very robust to packet losses and that the derived
bounds are never violated.

1 Introduction
Traffic congestion and safety are still two major problems of modern trans-
portation on roads. One promising solution to such problems is cooperative
driving. By means of wireless communication, vehicles share information
about their status and the sensed surrounding environment, which drastically
increases the perception of what happens around them, enabling cooperation.
Using only standard in-car sensors, as currently done by prototype self-driving
vehicles, does not empower this ability, thus in many ways self-driving vehicles
share the same limitations of human drivers. As an example, a wireless link
can let a vehicle know the future intended trajectory of another one (at an
intersection, as a long term destination or cruising speed, etc), a feat that no
on-board sensor can do.

To reduce highway congestion, the community has proposed an applica-
tion called Cooperative Adaptive Cruise Control (CACC): a communication-
enhanced version of a standard Adaptive Cruise Control (ACC) that is capable
of maintaining a very small inter-vehicle spacing while ensuring passengers’
safety. The CACC forms trains of vehicles, called platoons, so this application
is also known with the name of cooperative automatic driving, or platooning.
Platooning provides benefits in terms of efficiency, safety, and driving com-
fort [1, 2]. Lowering the inter-vehicle gap results in a better use of the road
infrastructure (where most of the space is now simply wasted due to safety
distances), improves traffic flow and thus reduces congestion and, at the same
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time, the waste of fuel due to start and stop dynamics caused by congestion
itself. Safety is improved because an automated systems takes control over
human driving, which, as shown by statistics, is the cause of more than 90 %
of the accidents [3]. Finally, comfort is improved as there is no longer the
need to focus on driving, so the “former driver” is free to do other activities.

The design of a cooperative driving system is a control-theoretical problem
that is inevitably intertwined with networking problems. The input to the
control algorithm is information about the other vehicles in the platoon,
such as speed, position, or acceleration, which is conveyed via wireless links,
through periodic broadcast (or beaconing), as well as via local sensors that
can improve the precision of distance and relative speed measures. Given the
inherent nature of a wireless link, data packets can be lost, which in turn has
a dramatic impact on the performance of the application. Bad performance
of autonomous driving can result in injuries or loss of life.

Most of the works in the field do not consider, or consider only partially,
the impact of wireless impairments on the performance of the control system.
In this paper we design a cooperative driving algorithm that specifically takes
into account error dynamics due to loss of data and ensures that a predefined
safety bound is never violated, given a particular worst-case scenario. To the
best of our knowledge, this is the first attempt to jointly design a control
algorithm and a dedicated communication protocol that takes into account
packet losses. The main features of our proposal can be summarized as
follows:

• The design jointly considers control and network performance. The
controller parameters can be tuned to obey some predefined bounds on
the position error, given an upper bound on the input error caused by
network impairments (Sections 3 and 4). By means of simulations, we
show that the controller never violates the imposed safety constraints
(Section 5);

• The algorithm is capable to maintain a constant spacing policy thanks
to a leader plus bidirectional control topology, which comes with no
additional network overhead with respect to a commonly assumed leader-
plus predecessor-following scheme (see Sections 2 and 5);

• The vehicles in the platoon share a common target speed, which can
be changed by an external authority, e.g., an optimal speed advisory
infrastructure.
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2 Background and Related Work
The design of a cooperative automatic driving (or platooning) system is
definitely a challenging task, as is witnessed by the large body literature
on the topic. Different solutions have been proposed, with different design
assumptions and thus characteristics. The main goal is to keep the inter-
vehicle gap as small as possible, while ensuring passengers’ safety. The key
difference to standard ACC solutions is the use of wireless communication
for sharing control data with potentially all the vehicles in the platoon.
Wireless communication allows a vehicle to “see” behind other vehicles, which
is not possible by using standard radar sensors. In addition, by means of
communication, a vehicle can inform the others about what it is going to do,
letting them “know the future”.

A key design choice is the logical control topology, indicating from which
members each vehicle is considering data to compute the control action. This
is different from the actual network topology, which is typically broadcast-like.
Even if the network topology is a full mesh, the control algorithm may simply
exploit a subset of the received information. As an example, the controllers
in [4–6] implement a predecessor-following topology, where each vehicle is
using the information of its predecessor only. Other examples include a leader-
and predecessor-following topology [7, 8], which considers in addition the
information of the first vehicle. We also find bi-directional [9] and potentially
all-to-all [10] control topologies.

The choice of the control topology has implications on the system perfor-
mance, in particular with respect to the gap policy. Predecessor-following
control topologies are proven to be string-stable only under a constant time
headway gap policy [4, 7]. This means that the distance is constant in time,
so the faster the vehicles, the larger the gap. If this policy is not respected,
then the string-stability property is violated, so distance errors at the head of
the platoon might be propagated and amplified towards the end, potentially
leading to collisions. By adding a link to the leader, instead, the system can
be string-stabilized with respect to a constant spacing gap, i.e., the distance
is fixed and it is not related to cruising speed [7].

String-stability, however, is not generally related to the distance (or the
time headway) vehicles should maintain to avoid collisions in case of packet
losses. The performance of a cooperative automatic driving system is typically
analyzed with a pure control-theoretic approach, so that a quantitative
characterization of the safety gap as a function of the network conditions is
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hard to find in the literature [11].
Due to this missing link between the control and the networking communi-

ties, we find studies that try to understand the impact of network impairments
a posteriori [12]. In addition, we find several studies working from the net-
work perspective, trying to improve the efficiency of the protocol and thus
maximizing the packet delivery probability.

An example is the work in [13]. The work exploits the intrinsic structure
of the platoon and combines intra-platoon synchronization with transmit
power control, reducing random channel contention and interference to farther
vehicles. Similarly, the work in [14] focuses on synchronization, both from
the communication and from the actuation point of view, showing benefits
and downsides of five different approaches. Other works trying to coordinate
channel access to reduce contention can be found in [15–18]. Some of these
approaches implement a reliable delivery scheme, which detects lost packets
and attempts retransmission, thus recovering lost information.

The work in [19] brings together these ideas (i.e., coordination, transmit
power control, and reliable delivery) with an additional point: a dynamic
message dissemination rate. The idea is to reduce the amount of data injected
in the network by sending packets only when really needed. The message
dissemination rate is changed depending on the jerk, i.e., on how much the
acceleration of the vehicle has changed with respect to the last sent packet.
Missing information is computed by other vehicles through interpolation.

Clearly, all the works focusing only on a single communication technology
do not provide solutions to a complete network black out. In such a case,
the system can fallback to a purely sensor-based system [20] or rely on a
backup communication technology. As an example, modern LED lamps can
be exploited to realize Visible Light Communication (VLC), creating a direct
vehicle-to-vehicle communication channel which perfectly suits platooning
requirements [21–25].

Another potential alternative is a cellular link [26]. 4G and 5G cellular
technology are starting to offer functionalities for direct car-to-car communi-
cation, which could also serve as a backup link. Whether this can really be
used for the purposes of platooning and what the implications for the cellular
network will be are still open issues.

In this work we address communication problems for platooning in a
multi-disciplinary way. We present a joint network and control design of a
cooperative automatic driving system. Our work derives a theoretic bound
on the minimum inter-vehicle distance subject to packet losses is derived in a
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Table 1: Main notation used in the paper.

yi position of vehicle i

v(t) reference speed

d desired distance between vehicles

k elastic coefficient

h inter-vehicle friction coefficient

r vehicle-reference friction coefficient

δi communication-induced disturbance term

NL maximum number of consecutive packets lost

T Beacon interval

worst-case scenario. If the conditions considered for the worst-case analysis
never occur, then the inter-vehicle distance can never be smaller than the
computed bound. To the best of our knowledge, this is the first attempt to
realize such kind of control system.

3 Control Algorithm
The goal of our control model is to empower good cooperative driving perfor-
mance and, at the same time, provide an analytic framework for the design
of the communication system in terms of information loss. We propose a
class of distributed controllers (which can be seen either as spring-damper
mechanical systems, or as impedance-matched electromagnetic systems, [27])
that ensure string stability as proven by Eq. (23) in Section 3.3.

The control action depends on information about the vehicle in front and
the one behind (predecessor-follower topology), and all vehicles are “glued”
together by a common dynamic reference speed v(t), which can be imposed by
the first vehicle of the platoon, thus having a control topology similar to [7],
or can be decided by any other vehicle or taken from an external source (e.g,
speed indications coming from the infrastructure). Even the leader follows
the reference speed with a transient. Table 1 reports the main notation used
throughout the paper.
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We consider the following dynamic model: for vehicle 1 (the leader),

(1)ÿ1 = −k(y1 − y2 − d)− h(ẏ1 − ẏ2)− r(ẏ1 − v) + δ1,

for vehicles i = 2, . . . N − 1,

(2)ÿi = −k(yi − yi+1 − d)− k(yi − yi−1 + d)
− h(ẏi − ẏi+1)− h(ẏi − ẏi−1)− r(ẏi − v) + δi

and, for vehicle N ,

(3)ÿN = −k(yN − yN−1 + d)− h(ẏN − ẏN−1)− r(ẏN − v) + δN ,

where, besides the control algorithm coefficients h, k, and r, δi is a disturbance
factor essentially due to packet losses. Indeed, packet losses are the dominant
source of disturbance, as discussed in Section 4.

3.1 Analysis

To simplify the analysis, we consider the model in Eqs. (1) to (3) with d = 0.
This is equivalent to changing the variables as

ŷi = yi + d(1− i), i = 1, . . . , N,

so that the condition ŷ1 = ŷ2 = · · · = ŷN is achieved when the true distance
between consecutive vehicles is d as desired; we drop the hat to keep the
notation simpler.

Let 1̄ be the all-one vector

1̄> = [ 1 1 . . . 1 ]

and define the average position as

a(t) =

∑N
i=1 yi
N

=
1̄>y

N
.

Then we introduce a new vector z(t) whose components are the differences
zi = yi−1 − yi, i = 2, . . . , N :

z2(t)
z3(t)
...

zN(t)

 =


1 −1 0 . . . 0 0
0 1 −1 . . . 0 0
...

...
... . . . ...

...
0 0 0 . . . 1 −1



y1(t)
y2(t)
y3(t)
...

yN(t)

 , (4)
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which can be synthetically written as

z(t) = Dy(t),

where D ∈ R(N−1)×N is the matrix appearing in Eq. (4). Note that the
compound vector [ a(t) z>(t) ]>, including the average and the differences,
is in one-to-one correspondence with y(t).

Let us now define the Laplacian matrix L ∈ RN×N as

L
.
= D>D =



1 −1 0 0 . . . 0 0 0
−1 2 −1 0 . . . 0 0 0
0 −1 2 1 . . . 0 0 0
...

...
...

... . . . ...
...

...
0 0 0 0 . . . −1 2 −1
0 0 0 0 . . . 0 −1 1


and matrix M ∈ R(N−1)×(N−1) as

M
.
= DD> =



2 −1 0 0 . . . 0 0 0
−1 2 −1 0 . . . 0 0 0

0 −1 2 −1 . . . 0 0 0
...

...
...

... . . . ...
...

...
0 0 0 0 . . . −1 2 −1
0 0 0 0 . . . 0 −1 2


.

As can be immediately verified, the following identities hold:

D1̄ = 0, (5)

L1̄ = 0. (6)

Consider the Singular Value Decomposition of matrix D:

D = P [ 0̄N−1 Ω ]Q>, (7)

where 0̄N−1 is an all-zero vector of size N − 1, matrix Ω ∈ R(N−1)×(N−1)

is diagonal and its positive diagonal entries are the singular values of D,
while P ∈ R(N−1)×(N−1) and Q ∈ RN×N are orthonormal matrices, hence
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P>P = IN−1 and Q>Q = IN (where Ik denotes the identity matrix of size k).
Then we can express the Laplacian matrix as

(8)
L = D>D = Q[ 0̄N−1 Ω ]>[ 0̄N−1 Ω ]Q>

= Q

[
0 0̄>N−1

0̄N−1 Ω2

]
Q>

.
= QΛ2Q>,

where Λ2 ∈ RN×N is a diagonal matrix whose diagonal entries are the eigen-
values of the Laplacian matrix L, given by 0 and the diagonal entries of Ω2.
Since it will be useful later, we recall that the first column Q1 of matrix
Q is the normalized eigenvector associated with the zero eigenvalue of the
Laplacian matrix, hence Q1 = 1̄/

√
N .

Since we can also write

M = DD> = P [ 0 Ω ][ 0 Ω ]>P> = PΩ2P>, (9)

the eigenvalues of matrix M are all the nonzero eigenvalues of L (i.e., the
diagonal entries of Ω2).

With a few algebraic manipulations, the overall system can be written in
matrix form as

ÿ = −kLy − hLẏ − rẏ + r1̄v(t) + ∆, (10)

where ∆ =
[
δ1 . . . δN

]>. To derive the dynamics of the average position a, let
us pre-multiply Eq. (10) by 1̄>/N :

(11)
1

N
1̄>ÿ = − k

N
1̄>Ly − h

N
1̄>Ly − r

N
1̄> ẏ +

r

N
1̄>1̄v(t) +

1

N
1̄>∆

Then, in view of Eq. (6) and since 1
N

1̄>y = a and 1̄>1̄ = N , we get

ä(t) = −rȧ(t) + rv(t) +
1

N
1̄>∆. (12)

Hence, the dynamics of the average position does not depend on k and h,
while it does depend on the reference speed v, on the design parameter r and
on the average components of the disturbance:

∆av
.
=

1

N
1̄>∆.

Note that the effect of the average disturbance ∆av does not affect the inter-
vehicle spacing, since it changes the average position, namely it moves all the
vehicles of the same amount.
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To derive the dynamics of the differences z = Dy, let us pre-multiply
Eq. (10) by matrix D. Since L = D>D, we have

(Dÿ) = −kDD>(Dy)− hDD>(Dẏ)− r(Dẏ) + rD1̄v(t) +D∆.

Then, in view of Eq. (5) and since M = DD>, we have

z̈ = −kMz − hMż − rż +D∆. (13)

Hence, the dynamics of the differences z does not depend on the reference
speed v(t), which can thus be changed as needed, without altering the
dynamics of the system or hampering its safety. Also, it does not depend
on the design parameter r and it only depends on the design parameters k
and h, and on the component of the disturbance that is orthogonal to the
average. As we will see later, the system in Eq. (13) is asymptotically stable;
therefore, in the absence of disturbances, z(t) converges to 0 as desired. In the
presence of disturbances due to packet losses, instead, z can grow; however,
it is fundamental to keep it bounded, since high values of the components of
z (precisely, zi ≤ −d for at least some i) mean that a collision has occurred.

The overall system can now be analyzed by separately studying the
evolution of Eq. (12) and of Eq. (13). Interestingly, also the choice of the
design parameters can be “decoupled”, since r only affects the dynamics of the
average a, while h and k only affect the dynamics of the differences z. In the
following, Section 3.2 investigates the average properties of the platoon, while
Section 3.3 explores the performance in terms of the differential dynamics
between vehicles. We also briefly discuss the error dynamics in Section 3.4.

3.2 The average dynamics

Investigating the average platoon dynamics allows us to provide a criterion
to select the design parameter r.

We consider a transient from zero speed to the desired speed v(t), which
can be studied by considering the system in Eq. (12) with initial conditions
a(0) = ȧ(0) = 0. This means that the platoon is at rest in an initial position
(assumed to be position 0). Its solution yields the average position

a(t) = vt− v

r
+
v

r
e−rt,

with average speed
ȧ(t) = v − ve−rt
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and average acceleration
ä(t) = rve−rt.

At the beginning, the acceleration is maximal and equal to rv. The time
constant

τa =
1

r
(14)

can be controlled by choosing r based on the trade-off between promptness
and comfort.

3.3 The difference dynamics

A smooth average behavior of a platoon is important, but the dynamics of
the differences zi is fundamental for safety and group behavior: zi = d means
that two vehicles are at the double of the desired distance d, while zi = −d
means collision! The key design specification is therefore

|zi|≤ αd, (15)

where 0 < α < 1 is a safety coefficient. As an example, if d = 10 m, then
α = 0.2 (20%) implies that the true distance must be between 8 m and 12 m.

In particular, in the following we will be able to give bounds of the form
‖z| ≤ β, where ‖z‖=

√∑
i z

2
i is the Euclidean norm. This implies that the

bound on all distances is |zi|≤ β. Then, we must keep a safety distance
d > βcs, where cs ≥ 1 is a safety coefficient.

In wireless vehicular control, disturbances are essentially originated by
packet loss. If a packet is not received by a vehicle, then there is a lack of
information on the positions of the preceding and/or following vehicles. The
typical (indeed probably the only reasonable one, given the small beaconing
time) assumption in this case is that the vehicles are at the same distance with
the same speed as the last transmitted information. The discrepancy between
the actual relative position and speed and the estimated ones introduces a
disturbance. Denoting by y

i
the stale old information Eq. (2) yields

(16)ÿi = −k(yi − yi+1
− d)− k(yi − yi−1

− d)

− h(ẏi − ẏi+1
)− h(ẏi − ẏi−1

)− r(ẏi − v).

We can rewrite the dynamics as

(17)ÿi = −k(yi − yi+1 − d)− k(yi − yi−1 − d)
− h(ẏi − ẏi+1)− h(ẏi − ẏi−1)− r(ẏi − v) + δi,
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where
δi = h

d

dt
δyi+1 + h

d

dt
δyi−1 + kδyi+1 + kδyi−1 + rδv. (18)

Equation (18) gives a clear criterion to co-design the parameters h and k
and the communication system to keep the error within safe boundaries:
Once a packet loss has occurred, we can investigate how the system recovers
after the occurrence and how the system behaves if the packet losses occur
repeatedly in a burst, leading to a potentially larger difference between the
true information and the last received one.

Consider Eq. (13) and the perturbation term

D∆ =
√

2
D√

2
∆.

It is not difficult to see that the entries of D∆ are the projections of ∆ on
the differences: for instance, [1 − 1 0 0 . . . ]∆ is the projection of ∆ on
the subspace z2 = y1 − y2. Since M = PΩ2P> in view of Eq. (9), if we
pre-multiply Eq. (13) by P> and we denote δ̂ = P>D∆, we get

P>z̈ = −kP>PΩ2P>z − hP>PΩ2P>z − rP>ż + δ̂,

hence
P>z̈ = −kΩ2P>z − hΩ2P>z − rP>ż + δ̂.

Let us introduce the new variable

x = P>z,

to diagonalise the system, so that it is easier to study its stability. Recall
that P is the orthonormal matrix such that M = PΩ2P> and the diagonal
entries of Ω2 = diag{Ω2

1, . . . ,Ω
2
N−1} are the eigenvalues ofM (i.e., the nonzero

eigenvalues of L). It is important to stress that, since P is orthonormal, it
does not change the Euclidean norm. Hence, ‖δ̂‖= ‖P>D∆‖= ‖Dδ‖ and
‖x‖= ‖P>z‖= ‖z‖.

Then, Eq. (13) can be rewritten as

ẍ = −kΩ2x− hΩ2ẋ− rẋ+ δ̂. (19)

If we apply the Laplace transform, with zero initial conditions, we have

X(s) = [s2I + (hΩ2 + rI)s+ kΩ2]−1∆̂(s) = Γ(s)∆̂(s),
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where Γ(s) is a diagonal matrix of transfer functions

Γ(s) = diag
{

1

s2 + (hΩ2
i + r)s+ kΩ2

i

}
.

The denominators of the transfer functions Γi(s) are second order polynomials
with positive coefficients, hence stability is ensured because their roots (the
poles of the transfer functions) have a negative real part.

For simplicity, we assume the following.

Assumption 1 The poles of the transfer functions Γi(s) are real (and nega-
tive).

With a suitable choice of the design parameters, we can make sure that
the above assumption is always satisfied. In fact, we can prove the following
result.

Proposition 1 Assumption 1 is satisfied if

h >
k

r
. (20)

Proof. The discriminants of the second order polynomials at the denominator
of Γi(s) are ∆Gi

= (hΩ2
i + r)2 − 4kΩ2

i . The roots of these polynomials are
real provided that ∆Gi

> 0. If rh > k, then

(21)
∆Gi

= h2Ω4
i + r2 + 2rhΩ2

i − 4kΩ2
i

> h2Ω4
i + r2 + 2rhΩ2

i − 4rhΩ2
i

= (hΩ2
i − r)2

> 0.

�
Hence, to guarantee that the poles of the transfer functions Γi(s) are real

and negative, it is enough to assume that Eq. (20) holds.
Under this assumption, we now consider two problems:

1. the reaction of the platoon to an erroneous position of one of more
vehicles (with no disturbances);

2. the reaction of the platoon to disturbances that are bounded in norm
as ‖δ̂‖≤ ρ.
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For the first problem, we assume thatD∆ = 0 and that at some time (t = 0
without loss of generality) there is a mismatch in the position: z(0) = z0, with
zero speed. Then, we consider the Laplace transform: since L[z(t)] = Z(s),
L[ż(t)] = sZ(s)− z0 and L[z̈(t)] = s2Z(s)− sz0, from Eq. (13) we get

[s2I + (hM + rI)s+ kM ]Z(s) = [sI + (hM + rI)]z0, (22)

where for simplicity we drop the subscript in the (N − 1)× (N − 1) identity
matrix I = IN−1. By exploiting the equalities I = PP> and M = PΩ2P>,
we get

P [s2I + (hΩ2 + rI)s+ kΩ2]P>Z(s) = P [sI + (hΩ2 + rI)]P>z0.

Since X(s) = P>Z(s) and x0 = P>z0,

X(s) = [s2I + (hΩ2 + rI)s+ kΩ2]−1[sI + (hΩ2 + rI)]x0

.
= Φ(s)x0 = diag

{
s+ (hΩ2

i + r)

s2 + (hΩ2
i + r)s+ kΩ2

i

}
x0.

Then, the components of x evolve independently. Let us consider the inverse
transform φ(t) = diag{φi(t)} = L−1[Φ(s)]. We have that φi(0) = 1, from
the initial value theorem (limt→0 φi(t) = lims→∞ sΦi(s)). Hence φ(0) = I.
Moreover, all φi(t) are strictly decreasing, as can be shown by considering
their derivative:

L[φ̇i(t)] = sΦi(s)− φi(0)

= s
s+ (hΩ2

i + r)

s2 + (hΩ2
i + r)s+ kΩ2

i

− 1

=
−kΩ2

i

s2 + (hΩ2
i + r)s+ kΩ2

i

.

This transfer function has real poles only, no zeros, and a negative coefficient
at the numerator, hence its inverse Laplace transform φ̇i(t) is negative [28,29].
Hence, all φi(t)’s are equal to 1 at t = 0 and converge to 0 for t → ∞
(because the poles of the transfer function are real and negative). Therefore,
they must be always positive and bounded as ‖φ(t)‖≤ 1 for all t. Hence,
|xi(t)|< |x0,i| for t > 0. Coming back to z, the inverse transform of Z(s) is
z(t) = Pφ(t)P>z0. Hence, for a perturbation of size ‖z0‖,

‖z(t)‖= ‖Pφ(t)P>z0‖= ‖φ(t)‖‖z0‖< ‖z0‖, for t > 0. (23)
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The previous inequality ensures string stability. Assume there is a misplace-
ment (error) measured by |zi(0)|= ζ, then ‖z0‖= ζ, this implies that ‖z(t)‖< ζ.
Since the norm is greater or equal than the magnitude of any component,
then |zj(t)|≤ ζ: no component will exceed the initial size ζ. More formally:

Proposition 2 If zi(0) = ζ 6= 0 and zj(0) = 0 for j 6= i, then |zj(t)|≤ ζ for
t > 0.

To determine the effect of a nonzero disturbance ∆, we can consider
Eqs. (13) and (19) indifferently, since the transformation P> is norm-preserving.
Consider Eq. (19), namely

ẍ = −kΩ2x− hΩ2ẋ− rẋ+ δ̂,

and assume that δ̂(t) is bounded in norm as ‖δ̂(t)‖≤ ρ. The transfer function
for this system is Γ(s), hence

X(s) = Γ(s)∆̂(s).

If we assume zero initial conditions and consider the inverse Laplace
transform γ(t) = L−1[Γ(s)], the solution is given by the convolution

x(t) =

∫ t

0

γ(σ) δ̂(t− σ)dσ.

Then

‖x(t)‖=
∥∥∥∥∫ t

0

γ(σ) δ̂(t− σ)dσ

∥∥∥∥
≤
∫ t

0

‖γ(σ)‖‖δ̂(t− σ)‖dσ ≤ ρ

∫ t

0

‖γ(σ)‖dσ

≤ ρ

∫ ∞
0

‖γ(σ)‖dσ = ρmax
k

∫ ∞
0

|γk(σ)|dσ = ρmax
k

∫ ∞
0

γk(σ)dσ.

We removed the absolute value because γk(σ) is a positive function. In fact, it
has real poles only, no zeros and a positive coefficient at the numerator [28,29].
The value of the integral can be computed by means of the final value theorem:∫ ∞

0

γk(σ)dσ =
1

s2 + (hΩ2
i + rI)s+ kΩ2

i

∣∣∣∣
s=0

=
1

kΩ2
i

.
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This results in the bound
‖x(t)‖≤ ρ

1

kΩ2
1

,

where Ω2
1 is the smallest eigenvalue of M (i.e., the smallest nonzero eigenvalue

of L). Recall that ‖x(t)‖= ‖z(t)‖.
As a final consideration, the error given by Eq. (18) scales with k, h and r,

if we assume that v is fixed and exactly known. On the other hand, Eq. (20)
is assumed to hold, hence hr > k. If we take h/k = (1 + ε)/r, with ε > 0, the
overall error scales linearly with k, because we can write

‖δi‖= k

∥∥∥∥hk ddtδyi+1 +
h

k

d

dt
δyi−1 + δyi+1 + δyi−1

∥∥∥∥
= k

∥∥∥∥1 + ε

r

d

dt
δyi+1 +

1 + ε

r

d

dt
δyi−1 + δyi+1 + δyi−1

∥∥∥∥
≤ kδMi

,

hence, since ‖δ̂‖= ‖P>D∆‖ and ‖D‖≤ 2,

‖δ̂(t)‖≤ 2kδM
.
= ρ, (24)

where δM is a bound for the cumulative error of position and speed (according
to some norm). Then, we get the bound

‖x(t)‖≤ 2δM
Ω2

1

, (25)

which depends uniquely on the eigenvalue Ω2
1.

3.4 The error dynamics

We briefly discuss here the dynamics of the error variable e, defined as

e = y − 1̄
1̄>y

N
= [I − 1̄1̄>

N
]y.

The ith component of vector e is the difference between yi and the average
a = 1̄>y

N
:

ei = yi −
1̄>y

N
= yi −

1

N

N∑
j=1

yj.
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Consider Eq. (10) and pre-multiply it by [I− 1̄1̄>

N
]. Since [I− 1̄1̄>

N
]L = L[I− 1̄1̄>

N
]

and [I − 1̄1̄>

N
]1̄ = 0, we get

ë = [I − 1̄1̄>

N
]ÿ

= −k[I − 1̄1̄>

N
]Ly − h[I − 1̄1̄>

N
]Lẏ − r[I − 1̄1̄>

N
]ẏ

+[I − 1̄1̄>

N
]r1̄v(t) + [I − 1̄1̄>

N
]∆

= −kLe− (hL+ rI)ė+ ∆err

where ∆err
.
= [I − 1̄1̄>

N
]∆. Note that the evolution of the error variable does

not depend on v.
We now show that the variance ‖e‖/

√
N is decreasing. Let e0 be a nonzero

initial condition and ∆err = 0. Then, in the Laplace transform domain,

[s2I + (hL+ rI)s+ kL]E(s) = [sI + (hL+ rI)]e0. (26)

Adopting the decomposition Eq. (8) and repeating the same procedure as in
the previous sections,

E(s) = Q[s2I + (hΛ2 + rI)s+ kΛ2]−1[sI + (hΛ2 + rI)]Q>e0,

where Λ2 = diag{0,Ω2}. Define the diagonal transfer function matrix

Ψ(s) = diag
{

s+ (hΛ2
i + r)

s2 + (hΛ2
i + r)s+ kΛ2

i

}
,

whose first diagonal term is equal to 1/s, because the first eigenvalue of the
Laplacian L is Λ1 = 0, while the other diagonal terms are the same as those
in Φ(s):

Ψ(s) = diag
{

1

s
,Φ(s)

}
.

Hence, along the same lines as in the derivation for z, denoting by ψ(t) the
inverse Laplace transform of Ψ(s), we get

e(t) = Qψ(t)Q>e0. (27)

Note that ψ(t) has the same diagonal entries as φ(t) and an extra diagonal
entry (the first) that is equal to 1: ψ11(t) = 1. Therefore, we can conclude
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that ‖e(t)‖ is non-increasing. Now, we observe that an initial condition e0

is meaningful if it has 0 mean. The first row of Q> is equal to 1̄>/
√
N , the

eigenvector associated with the 0 eigenvalue of L, hence the constant term
associated with the mode ψ11(t) = 1 disappears in Eq. (27). This proves that
the variance ‖e(t)‖/

√
N is indeed decreasing and converges to 0 as t grows

large.

4 Mapping Packet Losses to Error Bounds
In cooperative driving the loss of packets is by far the major source of
disturbance: delays are negligible with direct communications, and sensor
errors are limited; the loss of consecutive packet instead means that the
controller is “blinded” for hundreds of milliseconds. Let NL be the maximum
number of consecutive losses (burst) than can occur in the channel with a
certain probability bound. Above this value the network is faulty, and the
system should enter a disaster recovery phase, which is out of the scope of
this paper.

For the worst-case analysis we want to compute the bound imposed by
the loss of NL consecutive packets on the disturbance term δi; we consider
the error in Eq. (18). The error is expressed as the sum of the position, speed,
and reference speed errors multiplied by their coefficients. With respect
to the position and the speed error, the upper bound can be computed by
considering the maximum jerk j̄ (the derivative of acceleration) a vehicle can
implement. We compute the bounds on position and speed error as

δ̄ẏ =

∫ (NL+1)T

0

∫ t

0

j̄dt dt =
j̄

2
((NL + 1)T )2 (28)

δ̄y =

∫ (NL+1)T

0

∫ t

0

∫ t

0

j̄dt dt dt =
j̄

6
((NL + 1)T )3 , (29)

where T is the packet transmission interval. With respect to the reference
speed error, the bound depends on how much the reference can change. In
cruising conditions sharp changes of reference are not needed and we set a
maximum allowed change in reference speed named v̄ between consecutive
packets. By combining Eqs. (18), (28) and (29) we obtain the error bound

(30)δM = 2

(
h
j̄

2
((NL + 1)T )2 + k

j̄

6
((NL + 1)T )3

)
+ rv̄ · (NL + 1).
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Figure 1: Error bound ‖z‖max as function of the platoon size N , for different
maximum jerks j̄ and burst size NL.

It is necessary to double the position and speed error bounds to consider both
preceding and following vehicles. Finally, to compute the maximum possible
error we consider the smallest non-zero eigenvalue Ω2

1 of L = D>D, computed
using the singular value decomposition of matrix D, and we exploit the fact
that ‖z‖≤ 2δM

Ω2
1
, in view of Eq. (25) and of the fact that ‖x‖= ‖z‖. Note that

the value Ω2
1 depends on the number of vehicles: the larger the number of

vehicles, the smaller Ω2
1. Finally, we set the inter-vehicle distance to

d >
2δM
Ω2

1

cs, (31)

where cs ≥ 1 is a safety coefficient.
Figure 1 plots the bound ‖z‖max= 2δM

Ω2
1

and, thus, the minimum safety
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Figure 2: Error bound ‖z‖max as function of the number of consecutive packet
losses NL, for different platoon sizes N and maximum jerks j̄.

distance d as a function of the platoon size N , for different maximum jerks j̄
and number of consecutive losses NL. The remaining parameters are fixed:
T = 100 ms, v̄ = 1 km/h per packet1, k = 0.5, h = 0.71, r = 1. The platoon
size N has the largest impact, as the bound grows more than linearly with N .
The parameters NL and j̄ also play a significant role, but the impact is not as
large. In good network conditions the control system is definitely performing
well, as the worst-case upper bound is below 3 m even with 8 vehicles. In
non-ideal network conditions, instead, there is an important trade-off in the
choice of the parameters. To have small inter-vehicle distances, we either
need to ensure a high network reliability (thus, a low NL) or limit the size
1 This corresponds to 10 km/h per second with the given T , which is much more than the
normal speed change we expect while cruising.
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of the platoon. Indeed, this allows us to easily regulate d and dynamically
adapt it to the network condition. Otherwise, the performance of the vehicle
can also be considered and, if needed, altered for system tuning. For example,
by limiting the maximum jerk to 4 m/s3 the system can maintain a relatively
small distance while being robust to heavy packet losses. This is also shown
in Fig. 2, where we plot the bound ‖z‖max as function of the number of
consecutive losses NL. It is important to remember that the bound ‖z‖max is
computed as a worst-case which, in reality, might never occur. In the next
section we show that the norm of the distance errors in realistic conditions is
much smaller than the bound ‖z‖max.

5 Performance Evaluation
We implement the proposed control system in the platooning simulator
Plexe [30], which allows us to test the performance of platooning control
algorithms under realistic vehicle dynamics and communication models. It
is especially valuable for assessing implementation-related issues as, e.g.,
the effect of asynchronous control data. As the data exchange rate (10 Hz)
between vehicles is slower than the actuation control loop (100 Hz [4]) and
vehicles might not be synchronized, the data provided to the algorithm might
be incoherent from a time perspective. As an example, the own GPS position
might be up to date, while the position of the front and back vehicles is
“frozen” to the value included within the last received beacon.

To cope with this issue the control system includes a predictor, which
computes missing values by interpolation. More formally, assume that ÿt0 , ẏt0 ,
and yt0 are the acceleration, speed, and position of a vehicle at time t0. To
estimate speed and position of such vehicle at the current time t, the control
system computes

ẏt = ẏt0 + ÿt0 (t− t0) , yt = yt0 +
t− t0

2
(ẏt + ẏt0) . (32)

The use of Eq. (32) makes Plexe simulation extremely realistic as this is
what on-board controllers are expected to do.

5.1 Error Dynamics Comparison

We first show the dynamics of the vehicles without network impairments. The
goal is to understand the behavior of the controller, which is qualitatively
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different from the solutions proposed in the literature. We compare our
algorithm with the controller designed in [4], which is a well-known CACC
using a time headway spacing policy.

Figure 3 shows the distance error dynamics between vehicles Vi and Vi−1

for a platoon of 8 cars under a sinusoidal disturbance. For the CACC designed
by Ploeg et. al., the leader changes its speed following the sinusoidal pattern,
while for our controller we change the reference speed v. Figure 3a shows the
classical attenuation of the error dynamics towards the tail of the platoon,
thanks to the string-stability property. Our approach (Fig. 3b) is string stable
as well, but the maximum attenuation occurs at the middle of the platoon
and the dynamics are symmetric with respect to the center.

We can make an analogy between our algorithm and a spring-damper
system (Fig. 5). We can imagine that consecutive vehicles are connected
through a spring, and an additional spring which represents the reference speed
v. When changing the reference speed the vehicles are pushed back/pulled
forward all at the same time, and the “inner” springs take care of attenuating
the internal errors. A non trivial consequence of this controller structure is
that position errors are compensated balancing the control effort between the
front and rear vehicle, while in most other controllers the effort is all on the
rear vehicle. This is in line with the “philosophy” of an autonomous driving
platoon and not of a human-driven vehicle followed by partially automated
vehicles. Further discussion on this topic is beyond the scope of this paper.

5.2 Error Bound Analysis.

As a second analysis we perform a set of simulations to empirically show that
the error bound computed in Section 3.3 is always respected. To this aim,
we implement a scenario where the leader vehicle continuously changes the
reference speed v by an amount v̄ for each packet (i.e., every T seconds).
In addition, we consider a channel causing burst losses at the receivers. In
particular, each received packet has a certain probability of triggering a burst
of losses. If a burst is triggered, the vehicle discards all the incoming packets
received until the time nLT has elapsed, loosing nL consecutive packets for
each vehicle. nL is drawn from a discrete uniform distribution U(1, NL).
After the end of a burst, each receiver waits a minimum amount of time
before starting the next one. The analysis on the bound is indeed valid when
considering the system at steady state. After a burst of losses, the system
needs a certain amount of time to converge (cf. Eq. (14)) to eliminate the
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Figure 3: Qualitative comparison between a classic algorithm and the proposed
solution (distance errors under a sinusoidal disturbance).

accumulated error. However, we also consider very small network up-times (as
small as 100 ms) to show the robustness of our approach. Finally, we consider
first order actuation lag with a time constant τ = 0.5 s, i.e., the response
of the engine and the braking system to actuation commands ÿ is modeled

by the following transfer function ÿreal =
1

τs+ 1
ÿ, which is a common and

verified assumption [4, 6–8]. Table 2 summarizes simulation parameters.
For each simulation s, we compute the norm of the error vector as

‖zs‖= max
k

√√√√ N∑
i=1

(dk,i − d)2, (33)

where dk,i is the distance between vehicles Vi and Vi−1 at simulation step k
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Figure 4: Distance errors dynamics for the proposed approach under a sinusoidal
disturbance for different number of vehicles.

and d is the target distance. We then verify that ‖zs‖≤ ‖z‖max for all the
simulations, where ‖z‖max is the theoretic bound for the norm, computed
upon the parameters chosen for that particular simulation.

In the computation of the theoretic bound, however, the maximum jerk j̄
is not clearly defined. In the real world it can either be a physical limit of the
engine or the braking system, or a design parameter. In the simulations there
is no such limit. For this reason, we post-analyze the maximum jerks obtained
in the simulations. Figure 6 shows an histogram of the maximum jerk value
of each simulation. Small maximum jerks (1.5 m/s3 to 3.5 m/s3) occur when
packet loss events are unlikely and for small values of the r parameter. Recall
that r balances the trade-off between settling time and driving comfort, so a
higher value is more likely to cause large acceleration changes. Medium jerk
values (5.5 m/s3 to 8 m/s3) are caused by a large value of the r parameter
(r = 4), or a small r value combined with moderate packet losses. Finally,
heavy losses cause large maximum jerk values, as the system obtains control
data after long periods of silence, requiring strong actions to compensate the
error. To compute the theoretic error bounds we use the minimum of the
values shown in Fig. 6, i.e., 1.5 m/s3.
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Figure 5: Spring-damper representation of the proposed control system.

Table 2: Simulation parameters.

Parameter Value

k, h, T , τ 0.5, 0.71, 100 ms, 0.5 s

r
√

0.5, 1, 4
nL 1, ∼ U(1, 3), ∼ U(1, 5)
Start burst probability 1 %, 5 %, 10 %, 20 %, 30 %, 40 %, and 50 %
Minimum no-burst time 0.1 s, 0.3 s, 0.5 s, 1 s, and 3 s
v̄ 1 km/h per packet
Repetitions 10

Figure 7 plots the simulation and theoretic bounds for different combina-
tions of the r and NL parameters. Simulation bounds are marked with points,
while theoretic bounds are marked with crosses. The graph clearly shows
that the theoretic bounds are respected. The margin between simulation and
theory is large and this is due to two facts.

First, the bound ‖z‖max is computed on the worst case: a change in the
reference speed, a burst loss of NL packets, and a change in the dynamics
with the maximum jerk should occur at the same time. This is very unlikely
even in a synthetic scenario like the one we consider, especially because the
jerk is a consequence of the control action computed by the algorithm.

Second, the predictor implemented within the control system counteracts
the effects of packet losses, estimating the position and the speed of other
vehicles during network down time. The effectiveness of the predictor is
evident, as the impact of the burst length is smaller compared to the impact
of r.
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5.3 Emergency Braking

We tested the performance of the control system with respect to cruising,
which is the main purpose of a platooning control algorithm. A platoon,
however, is also required to react to emergencies and external inputs. One
example is an emergency braking maneuver [31].

With “emergency braking” we refer here to the action of coming to a
complete stop with a strong deceleration. For strong we mean a deceleration
value which can be perceived as uncomfortable by a passenger, i.e., a value
larger than 4 m/s2 [32]. Differently from conventional CACC systems, where
the leader is controlled by an independent law, our design controls leader’s
behavior as well. Setting the reference speed v = 0 is not enough, as
the algorithm smoothly converges to the desired speed with a comfortable
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Figure 8: Comparison of the speed dynamics when setting the reference speed
v = 0 km/h from v = 100 km/h with and w/o adaptive r.

deceleration and not in “emergency mode”. To realize an emergency braking
maneuver we thus need to modify controller parameters “on the fly”, in
particular by acting on the desired speed v and the vehicle-reference friction
coefficient r. Let us assume that the leader is traveling at speed v0. To
implement the maneuver, we set v = 0 and r =

ddec
v0

, where ddec is the desired
deceleration. This causes the leader to start braking with a deceleration ddec

and progressively reduce the deceleration as its speed approaches 0. Figure 8
shows the comparison between the two approaches when choosing a strong
desired deceleration of 8 m/s2. When the leader sets the reference speed v = 0
(5 s simulation time), but does not adapt r the platoon takes 15 s to come
down to a complete stop, while when r is adapted to the situation of a sudden
unforeseen stop the platoon comes to a complete stop in 3 s to 4 s. The
average behavior is always smooth and depends only hon how r is changed.

Figure 9 shows the differential dynamics of the maneuver in terms of
relative vehicles distance in the same conditions of Fig. 8 in four different
conditions: Without adapting r (Fig. 9a); without adapting r when the
fourth vehicle V3 initiates the maneuver (Fig. 9b); adapting r (Fig. 9c); and
adapting r when the fourth vehicle V3 initiates the maneuver (Fig. 9d). As
expected, changing dynamically r allows a faster deceleration, but ends in
larger deviation from d in inter-vehicles distance, that remain in any case in
the order of tens of cm. Interestingly, if the stop is declared by a vehicle in
the middle of the platoon, a feature this controller enables, distance errors
are smaller. After the platoon comes to a complete stop, the vehicles keep
moving very slowly to bring the inter-vehicle distance exactly to d, but these
are movements of centimeters and vehicles can be conveniently stopped at
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Figure 9: Comparison of the relative vehicles’ position when setting the reference
speed v = 0 km/h from v = 100 km/h without adapting r when V0 (a) and V3

declare the stop, adapting r when V0 (c) and V3 (d) declare the stop.

any distance if desired.
An additional perspective on the dynamics of the manuever is given in

Figs. 10 and 11. The figures show the desired acceleration and the real
acceleration (post actuation) of the vehicles during the maneuver. It is clear
that simply setting the reference speed v = 0 and r to obtain the desired
deceleration value without adapting r simply generates a single “peak of
deceleration”, which smoothly converges to 0 following the speed profile.
Conversely, the adaption of r maintains the deceleration roughly constant,
correctly realizing the emergency maneuver.

One observation to make in this scenario is that the theoretic bound
‖z‖max is not valid during the emergency maneuvers, as the parameters of
the controller change and the scenario is no more a standard cruise, but an
emergency stop. The platoon, however, remains very stable and distances, as
shown by results, remain well within safety, and indeed within the “cruising
bound”, even if it is not theoretically valid.
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Figure 10: Comparison of the control input (desired acceleration) profiles when
setting the reference speed v = 0 km/h from v = 100 km/h without adapting r
when V0 (a) and V3 declare the stop, adapting r when V0 (c) and V3 (d) declare the
stop.

6 Concluding Discussion and Future Work
In this work we designed a cooperative automatic driving algorithm from a
joint network and control perspective. We derived safety upper bounds on
the inter-vehicle distance depending on vehicle dynamics and packet losses
caused by network impairments, showing by means of simulations that such
bounds are never violated. On the contrary, the bounds are respected with a
large margin due to the robustness of the algorithm to packet losses. Hence,
our future work aims at reducing the theoretic error bound by considering
the effect of a predictor or, alternatively, at designing an adaptive message
dissemination algorithm that reduces the broadcast rate depending on the
need. The latter objective would permit to minimize network utilization while
still guaranteeing the safety and the robustness to the system. To the best of
our knowledge, this would be a significant achievement.
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Figure 11: Comparison of the acceleration profiles when setting the reference speed
v = 0 km/h from v = 100 km/h without adapting r when V0 (a) and V3 declare the
stop, adapting r when V0 (c) and V3 (d) declare the stop.
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