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Reconnections and interactions of filamentary coherent structures play a fundamental role in the
dynamics of fluids, redistributing energy and helicity among the length scales and inducing fine-scale
turbulent mixing. Unlike ordinary fluids, where vorticity is a continuous field, in quantum fluids vorticity is
concentrated into discrete (quantized) vortex lines turning vortex reconnections into isolated events,
making it conceptually easier to study. Here, we report experimental and numerical observations of three-
dimensional quantum vortex interactions in a cigar-shaped atomic Bose-Einstein condensate. In addition to
standard reconnections, already numerically and experimentally observed in homogeneous systems
away from boundaries, we show that double reconnections, rebounds, and ejections can also occur as
a consequence of the nonhomogeneous, confined nature of the system.
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I. INTRODUCTION

The interaction and reconnection of filaments are key
aspects in the description of the dynamics of fluids [1–3],
plasmas [4–6], nematic liquid crystals [7], macromolecules
[8] (including DNA [9]), and optical beams [10,11]. In
quantum fluids, vortices are topological defects of the
system’s order parameter, around which the circulation of
the velocity field is quantized [12–15]. Their discrete
filamentary nature makes quantum fluids an ideal setting
for the study of vortex interactions and reconnections. In
particular, reconnections trigger a turbulent energy cascade
[16] in which vortex lines self-organize in bundles [17],
creating the same Kolmogorov distribution of kinetic
energy over the length scales, a signature of a cascade
mechanism that is observed in ordinary turbulence
[16,18–20]. Cascade processes are central in turbulent
motions. A related cascade of wavelike excitations was
in fact recently observed in the momentum distribution
[21], with an exponent consistent with predictions of wave-
turbulence theory [22]. Reconnection events also impact
the evolution of the flow’s topology [23], redistributing
helicity among length scales [24,25]. Finally, in the low-
temperature limit, reconnections are the ultimate process of
dissipation of superfluid kinetic energy since they trigger a
Kelvin wave cascade [26,27] that turns incompressible

kinetic energy into acoustic modes [28], hence, heating.
Previous experimental [29,30], theoretical [31], and numeri-
cal [32–38] studies of reconnections have been performed in
homogeneous systems away from boundaries.
Here, we focus on elongated Bose-Einstein condensates

(BECs) of ultracold atoms confined by magnetic harmonic
potentials, ideal systems that allow for different regimes
of three-dimensional vortex-vortex interactions in the close
presence of boundaries. Anisotropic boundaries induce
vortical filaments to preferentially align along the shortest
direction, minimizing energy. In flat, cylindrically sym-
metric, disk-shaped condensates, vortices are the shortest
when aligned along the axis of symmetry, moving along
two-dimensional trajectories clockwise or anticlockwise,
depending on their sign [39–44]. Instead, vortices in
cylindrically symmetric, cigar-shaped condensates are
the shortest when they lie on radial planes. Moreover,
the boundaries affect the structure of the vortical flow
[45–48] in such a way that two vortices interact only when
their minimum distance is within a range of the order of the
transverse size of the condensate.
In the present work, an innovative imaging technique,

exploiting self-interference effects of outcoupled atoms, is
introduced in order to extract both the position and orienta-
tion of 3D vortex lines from a temporal sequence of
absorption images. We then combine experiments and
numerical Gross-Pitaevskii (GP) simulations to study the
interaction between two vortex lines approaching at various
relative speeds and angles. Our experiments and simulations
show that the interaction between vortex lines in a finite
system is rather different from the one in infinite uniform
superfluids. Boundary-induced effects, such as rebounds,
double reconnections, and ejections, are discussed here in
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detail. These types of processesmay play an important role in
the dynamics of trapped condensates in multivortex and
turbulentlike configurations, and, on a wider perspective,
they can represent novel keys for better understanding the
behavior of superfluids near boundaries.

II. EXPERIMENT

A. Preparation of BECs with vortices

Experimentally, we confine sodium atoms in an elon-
gated cigar-shaped harmonic magnetic trap with axial and
radial frequencies ωx=2π ¼ 9.2 Hz and ω⊥=2π ¼ 92 Hz,
respectively. By means of a radio-frequency forced evapo-
ration, the cold atomic sample undergoes the BEC tran-
sition and, in the end, condensates containing about
N0 ¼ 2 × 107 atoms and a negligible thermal fraction
(T < 150 nK, Tc ≃ 500 nK) are obtained. Thanks to the
Kibble-Zurek mechanism [49,50], the temperature quench
through the BEC transition [40,41,51,52] produces differ-
ent phase domains in the order parameter of the system that
quickly evolve into topological defects. In our geometry,
these defects are vortex lines mainly oriented in the
transverse direction, as those predicted in Refs. [45,46]
and characterized in Ref. [47]. Similar vortices can be
obtained as decay products of phase imprinted dark solitons
in a BEC [53] or a Fermi superfluid gas [54,55]. Here, we
use a cooling rate of 4 μK=s in order to produce, on
average, two vortices in each condensate at the time when
the observation starts, about 250 ms after the phase
transition. Such vortices move in the nonrotating conden-
sate and can be directly imaged in real time [41,56,57]. In

comparison, individual vortex visualization in super-
fluid helium is more intrusive, requiring tracer particles
whose diameter is about 104 times larger than the vortex
core [58].

B. Sample extraction and real-time imaging

A new imaging method allows us to follow the vortex
dynamics in real time, as sketched in Fig. 1. Similar to
Refs. [41,56], a small sample of the atomic system (∼105
atoms) is repeatedly extracted from the BEC every 12 ms
(up to 75 times). The outcoupled atoms freely expand and
fall under the effect of gravity. Each partial extraction is
implemented by coupling the trapped state jF¼1;mF¼−1i
to the nonmagnetic one j1; 0i with a radio-frequency field.
The energy difference between the two states is spatially
dependent because of the inhomogeneity of the trapping
potential (see Appendix A).
The novelty of our technique is represented by the fact

that the rf field is frequency swept linearly in time in order
to match the resonant condition at different positions
throughout the BEC, from top to bottom. An important
point to note is that the phase of the released atoms evolves
more slowly because they do not feel the trapping potential.
As a consequence, thewave functionof theoutcoupled atoms
experiences constructive or destructive self-interference
effects, depending on the phase difference accumulated
between the early-released (upper) and late-released (lower)
atoms and how this relates to the in situ phase on different
sides of the vortex core. We use the GP equation to simulate
the radio-frequency extraction in order to determine how a
vortexwith givenposition andorientation in the trappedBEC

FIG. 1. Sketch of an imaging sequence. A trapped condensate (smaller, light blue ellipsoid) contains a transverse vortex line that
moves and rotates around the trap center; the direction of the atomic flow around the vortex filament is indicated by the yellow arrow. A
small fraction of atoms is repeatedly extracted, typically every 12 ms; these atoms expand and fall in the gravity field, and are imaged in
absorption by a probe laser beam after they are spatially separated from the trapped condensate. Each absorption image contains the
essential features associated with the vortex lines.
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manifests itself in the observed density distribution of the
outcoupled atoms after expansion (see Appendix C).
A microwave field remains on to transfer the extracted

atoms from j1; 0i to j2; 0i, which is detectable with the
probe light. The resonant condition for the transfer is
matched at zr ≈ 280 μm below the trapped BEC, far
enough to leave it unaffected. We probe the extracted
atoms via standard absorption imaging after 13 ms of total
time of flight at zi ≈ 830 μm below the trap center. Such a
time of flight is enough for vortices to become visible with
our imaging resolution.

C. Data analysis

Each absorption image [Fig. 2(a)] is integrated radially
along the z axis and the axial profile is obtained. By fitting
the latter, we calculate the density residuals [see Fig. 2(b)].
This procedure is performed on each extraction and then

the full temporal sequence is reconstructed in order to
follow the vortex trajectories in the trapped condensate, as
in Fig. 2(c).
Thanks to the abovementioned self-interference effect, if

a vortex is present, the density residuals show a strong local
deviation from the unperturbed distribution, as in Fig. 2(b),
and the fit allows us to extract information on the vortex
axial position, as well as on its orientation in the radial
plane at any given time (see Appendix C for details).

(a)

(b)

(c)

FIG. 2. (a) Examples of absorption images of the outcoupled
atoms (the same as in Fig. 1). The vortex axial position is clearly
visible. (b) After integrating radially and fitting the absorption
images, we determine the residuals, which exhibit minima (pink)
and maxima (green) due to interference effects among atoms that
are outcoupled from the trapped condensate at different places
and times. (c) Full temporal sequence of residuals for a given
condensate, showing the real-time evolution of a vortex which
moves axially and rotates around the x axis, from an initial
orientation along y (green-pink) at t1 to an orientation along z
(green-pink-green) in t2 and then along −y (pink-green) at t3. The
relation between the shape of the residuals and the orientation of
the vortex is extracted from numerical simulations.

(a) (b)

(c) (d)

(e) (f)

FIG. 3. Examples of different interaction mechanisms observed
in the case of two approaching vortices. Each temporal sequence
is shown twice with two different color palettes; the red palette
enhances the contrast, so that also vortices close to the edges can
be seen, whereas the pink-green palette better illustrates the
vortex orientation in the radial plane. (a),(b) Vortices approach
and bounce back, (c) their axial trajectories intersect preserving
visibility and orientation, (d) they cross, producing sudden
changes of visibility, and (e),(f) the visibility of one vortex is
almost completely lost after interacting with the other.
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Figure 3 shows examples of the temporal evolution of the
density-residual profiles in BECs containing two vortices.
Two different color palettes are used in order to extract
different pieces of information. The red palette best high-
lights the trajectory contrast. One can track the vortex axial
location in time and, hence, determine the orbit amplitude
and the axial velocity. Notice that in some cases, very faint
trajectories (corresponding to vortices close to the BEC
surface) can also be seen. It is also possible to understand
how the vortex line is oriented in the radial plane and how it
rotates about the long axis of the condensate. The diverging
pink-green palette helps to visualize the shape of the density
modulation from which one can better track the vortex
orientation in time. From numerical simulations we infer
that, at least when the orbiting parameter is not too large, the
vorticity points along y if the interference pattern is green-
pink along x [see Fig. 2(b)]; its antivortex configuration,
oriented toward−y, corresponds to a pink-green pattern; the
symmetric pattern green-pink-green is obtained when the
vortex is aligned perpendicularly to the imaging direction, a
vortex oriented along þz providing the same density
residual as one oriented along −z.

III. NUMERICAL SIMULATIONS

In order to gain closer insight into vortex interactions,
we perform numerical simulations by using the Gross–
Pitaevskii equation [59,60] for a BEC at T ¼ 0. Tempera-
ture effects are expected to be small. In a previous work
[57], we have already observed that the dynamics of single
vortices is very weakly affected by thermal excitations.
This is expected to be true also for vortex-vortex interaction
processes occurring in the central region of our BEC, where
the thermal density is negligible. There is also evidence that
thermal excitations do not affect the rapid motion of vortex
lines during the reconnections [61].
We track the vortices by employing an algorithm based

on the pseudovorticity vector, achieving subgrid resolution
(see Appendix B). Since the experimental BECs are too
large for our computational resources, we simulate smaller
BECs (∼4 × 105 atoms); this implies a reduction of the
ratio R⊥=ξ by a factor of 3, where ξ is the healing length
and R⊥ is the transverse Thomas-Fermi radius. However,
such a difference does not affect the qualitative comparison
between experiment and simulations.
If we imprint a single straight vortex line off center on a

radial plane, we find that it orbits around the center of the
condensate [39,41] along an elliptical orbit that is orthogo-
nal to the vortex line itself. The orbit, which is a trajectory
of constant energy [62] and an isoline of the trapping
potential, is uniquely determined by the orbit parameter
χ ¼ r0=R⊥ ¼ x0=Rx, where r0 and x0 correspond to the
radial and axial semiaxes of the ellipse, while Rx is the axial
Thomas-Fermi radius. The orbital period is maximum
when the vortex moves on a very small orbit (χ ≪ 1)

and corresponds to T0 ¼ 8πμ=½3ℏω⊥ωx lnðR⊥=ξÞ� [57],
while it decreases with increasing χ [62–65].
If instead we imprint two transverse vortices in a given

BEC, we find that the evolution can be divided into two
stages. In the first stage, when the axial separation of the
vortices is larger than R⊥, the vortices move almost
independently; in the second stage, when the axial sepa-
ration becomes smaller than R⊥, we observe a significant
interaction which seems to be determined mainly by the
relative orientation θrel and velocity vrel when they start
interacting.
We first perform simulations in which two orthogonal

vortices are initially imprinted in radial planes at opposite
axial positions �x0; see Figs. 4(a)–4(c) (orthogonality is
chosen because of its maximal dissimilarity with respect to
flat 2D systems). Different x0 values are chosen, corre-
sponding to different orbit parameters χ and, hence, to
different impact velocities. The early stage can be described
as the combination of two single-vortex motions on
mutually perpendicular elliptical orbits.
In fact, in an elongated condensate, the superfluid flow of

each vortex becomes negligible at distances of the order of
R⊥ from the line, as can be verified by solving the stationary
GP equation. This means that when two vortices are at
distances larger than ∼R⊥, they behave as noninteracting
objects, as is indeed observed in time-dependent GP simu-
lations. This is crucial in order to interpret and classify the
vortex-vortex interaction as a collision with well-defined
initial and final velocities and orientations. In a different 3D
geometry, it would be very difficult to define and control a
global “relative velocity and orientation” of a vortex line. If a
nonrotating condensate is confined in a spherical potential, or
is uniform, for instance, the distance between two vortices
and their relative velocity and orientation could be defined
only locally: vortices do not possess a preferred orientation,
they can be easily bent, and each piece of vortex is affected by
a long-range interaction with all other vortices in the
condensate. Our geometry instead naturally provides well-
defined collision events, such as reconnecting or bouncing
lines, occurring in a narrow interaction region.
Only when the minimum distance between the vortices

becomes of the order of R⊥, the vortices start rotating in the
radial plane, attempting to arrange themselves in the
preferred (energy-conserving) antiparallel configuration,
as shown in Figs. 4(a)–4(c). The axial motion of the
vortices towards each other, driven by the inhomogeneous
density, is faster if the vortices are close to the condensate’s
boundary [62,64,65]. The antiparallel configuration which
the vortices attempt to achieve induces them to drift radially
towards the radial center of the condensate. This drift is
similar to the well-known self-induced motion of a pair of
straight antiparallel vortex lines [42,43,66] in a homo-
geneous condensate. The balance between the radial and
axial motions that we describe determines the features of
the second stage of the interaction.
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FIG. 4. The first six columns show radial and axial snapshots from the GP simulations of two interacting vortex lines. On the right, the
axial coordinate x (in units of Rx) of the center of vorticity of each vortex is plotted versus normalized time τ ¼ t=T0. Initial line colors
(red and blue) help identify vortices in the snapshots until they reconnect. After the first reconnection, line colors switch to orange and
green and again to red and blue if a second reconnection occurs. Line transparency indicates how visible vortices are expected to be,
given their orbit amplitude (see Appendix B for further details on line transparency). The gray region highlights the interaction interval
where the minimum distance between the vortices is smaller than R⊥. (a)–(c) Perpendicular vortices are imprinted on opposite radial
planes with corresponding orbit parameters χ ¼ 0.22, 0.25, 0.375, respectively: (a) illustrates a vortex rebound, (b) shows the double
reconnection interaction, with reconnections occurring at τ ¼ 0.208 and τ ¼ 0.221 (see Appendix B for a zoom on the double
reconnection event), and (c) depicts a single reconnection occurring at τ ¼ 0.179, with the consequent triggering of Kelvin waves. Panel
(d) illustrates a nonsymmetrical reconnection (at τ ¼ 0.130) between a vortex imprinted on the central plane of the condensate through
its center (blue) and a vortex (red) imprinted orthogonally to the first one with a large orbit parameter χ ¼ 0.7. One of the reconnected
vortices lies on an even wider orbit (larger χ), where the BEC density is lower and its visibility becomes consequently greatly reduced.
Panel (e) describes the orbiting dynamics between two parallel vortices imprinted on different orbits (χ ¼ 0.33, 0.5). Notice that in
(a)–(c) the first snapshot corresponds to τ ¼ 0, whereas in (d) and (f) the snapshots are all later in time.
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Briefly, if the axial collision velocity is sufficiently high
(i.e., if the vortex lines start interacting in a region
sufficiently close to the boundary [62,64,65]), the two
vortices tend to reconnect before reaching the center of the
condensate, as in Fig. 4(c).
Vice versa, if the interaction begins in a region suffi-

ciently close to the x axis, the radial motion of the vortex
lines is fast enough (with respect to the axial motion) to get
past the radial center of the condensate where they move
axially away from each other due to the reversed velocity
field induced by the inhomogeneous density: a rebound
takes place, as in Fig. 4(a).
An intermediate regime occurs if, while drifting radially

away from the boundary of the condensate towards the
center, the minimum distance between the vortices in the
central region of the condensate is sufficiently small: in this
case, a double reconnection [11] occurs. This happens, for
instance, in the sequence in Fig. 4(b), where the two
vortex lines touch at a point and exchange their tails both at
τ ¼ 0.208 and τ ¼ 0.221, expressed in units of the pre-
cession period T0 (see Fig. 7 in Appendix B for a more
detailed illustration of the double reconnection dynamics).
In addition to the simulations with chemical potential

μ ¼ 10ℏω⊥, we also perform simulations with μ ¼ 5ℏω⊥.
The corresponding dynamics are very similar and the sole
discriminant parameter between the distinct vortex inter-
action regimes is indeed the orbit parameter χ. The critical
value χc switching from rebound to double reconnection
dynamics is 0.25 < χc < 0.28 for μ ¼ 5 and 0.22 < χc <
0.25 for μ ¼ 10, supporting our argument that the value of
μ does not change the essence of the physics.

IV. INTERPRETATION OF THE RESULTS

A. Rebounds

The simulations in Fig. 4(a) show that rebound events are
characterized by nonintersecting vortex trajectories, as we
observe experimentally in a subset of images, e.g., in

Figs. 3(a) and 3(b). For example, Fig. 4(a) can be related to
Fig. 3(b), where the orientations extracted from the
residuals start from an orthogonal configuration before
partially overlapping (however, the trajectories do not
intersect) and then emerge later showing an antiparallel
configuration. A simpler, nonrotational, bounce is the one
in Fig. 3(a), where vortices are already antiparallel before
interacting. Both of the observed rebounds are character-
ized by an increased visibility when vortices are very close
to each other. This is because the residuals are generated by
subtracting the unperturbed density distributions and vor-
tices become more visible where their cores lie within a
region of higher density. The observed increase of vortex
visibility in rebound events is thus consistent with the radial
drift of the vortices towards the x axis seen in numerical
simulations.
By studying the dynamics of hundreds of different

experimental realizations, we make a statistical analysis
which reinforces our interpretation. Figure 5(a) shows the
distribution of events as a function of the relative axial
velocity of two approaching vortices. It is evident that those
events, which are identified as rebounds (with approaching,
but not touching, trajectories), preferentially happen when
the relative velocity is small. As anticipated, the relative
angle θrel in the radial plane matters when discerning
rebound events from reconnections. Figure 5(b) shows
the rebound probability as a function of the vortex relative
angle just before their approach. In order to classify the
events in the three bins of Fig. 5(b), we use the relation
between the shape of the residuals and the orientation of the
vortex as extracted from numerical simulations (see
Fig. 8 in Appendix C) to postselect all collisions for which
we can safely estimate the relative angle to be approx-
imately 0°, 45°, and 90°, within an uncertainty of the order
of ∼30°. Then, in each group we count the fraction of
rebounds. The results confirm that rebounds are most likely
to occur between antialigned vortices, consistent with the
simulations.

(a) (b) (c)

FIG. 5. Statistical analysis of experimental observations. (a) Occurrence of rebound events (purple) as a function of the vortex-vortex
relative velocity, within the ensemble of all collision events (gray). The velocity vrel is normalized to the speed of sound c evaluated at
the center of the BEC. The inset shows the relative occurrence for each bin. (b) Fraction of rebound events as a function of the relative
angle just before the interaction. (c) Occurrence of events (green) in which one vortex line disappears after the interaction, as a function
of the largest orbit parameter of the vortex pair χmax, i.e., the amplitude of the outer vortex orbit in the BEC. The inset shows the relative
occurrence per bin.
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B. Orbiting dynamics

Two parallel vortices can orbit around the center of the
BEC in the same direction with distinct orbit parameters χ,
only weakly interacting when they are at the closest
distance. When imaged from a radial direction, the two
vortices appear to cross periodically; in reality, they pass by
each other without visible changes of the residual pattern,
with, at most, only slight modifications of orbits and
visibility. An example of such orbiting dynamics can be
observed in the experimental image Fig. 3(c), and a similar
case in the numerical simulations is shown in Fig. 4(e).

C. Reconnections

If the initial orientations of the vortices are not parallel
and the axial collision dynamics is sufficiently fast, single
reconnection processes are favored. As simulations show
[Figs. 4(c) and 4(d)], these reconnection processes generate
cusps, which, as they relax, form Kelvin waves [67], i.e.,
helical perturbations of the cores, as, for instance, the ones
visible at τ ¼ 0.192 in Fig. 4(c). The excitation of Kelvin
waves via vortex reconnections was observed in superfluid
helium [30], and similar effects have also been found in
numerical simulations of Fermi superfluids [68]. In our
experiment, such a perturbation of the vortex lines in a
reconnection event implies a sudden change of both the
orbit and the residual pattern, along with a significant
change of visibility of one or both vortices, as illustrated in
Figs. 3(d) and 3(e). The nonlinear interaction among Kelvin
waves might lead to Kelvin wave cascades [26,27].
However, in the confined geometry of our elongated
BEC, the role of Kelvin waves is expected to be reduced
compared to a uniform superfluid, due to finite (transverse)
size effects. This is consistent with the fact that, if we
release the whole condensate from the trap in order to
observe the vortex lines by taking absorption images in the
axial direction, as done in Refs. [47,57], we typically
observe almost rectilinear vortices with only smooth bends
(mostly induced by boundary conditions for off-centered
vortices), even in the presence of two or more vortices in
the condensate.

D. Ejections

When a vortex orbits the outer part of the condensate
(large χ) a fast interaction with another vortex (via either a
reconnection or a close orbiting interaction) can cause the
expulsion of either vortex towards the surface of the BEC,
where the density is too low for observation (the other
vortex remaining inside). Examples of such ejection
processes are shown in Figs. 3(e) and 3(f) (reconnection
induced and orbiting induced, respectively). The numerical
counterpart of Fig. 3(e) is illustrated in Fig. 4(d) (in order to
emphasize this vortex-visibility effect in the numerical
simulations, the thickness and the color of the lines in the
plots reported in the right-hand column of Fig. 4 are

modulated by the Thomas-Fermi density at which the
corresponding vortex core resides; see Appendix B).
A statistical analysis of experimental data is given in
Fig. 5(c): excluding cases where rebounds occur, we count
all events of vortex-vortex interaction as a function of the
largest orbit parameter of the vortex pair χmax. Then, among
them, we show in green those in which the visibility of one
of the two vortex lines is lost in the interaction. The relative
distribution in the inset clearly supports the idea that
ejections occur at large χ, i.e., near the boundary of the
condensate, in agreement with the result of the numerical
simulations. These ejection processes might play a key role
in the early postquench dynamics of the BEC, when most
of the vorticity produced by the Kibble-Zurek mechanism
is progressively lost at the boundaries, eventually leaving
only a few vortex lines in the final BEC [69]. It is also
worth noticing that a similar dynamics was previously
discussed in Ref. [53]. In that case, pairs of dark solitons are
created by an optical phase imprinting technique and their
subsequent dynamics is observed. GP simulations show
that solitons first decay into vortex rings and then into pairs
of solitonic vortices, which, in the experimental conditions,
are still detected as dark soliton stripes. Hence, a collision
between two soliton stripes is actually a collision between
two pairs of vortices. Such collisions can be inelastic and
can also lead to “sling-shot” events where one of the
solitonic vortices is ejected from the condensate. Because
of the different mechanism for the creation of vortices, the
configurations discussed in Ref. [53] involve typically
more than two vortices in each collision, and thus, the
dynamics is more complex than in our case, though
qualitatively consistent.

V. CONCLUSIONS

In conclusion, we develop an innovative experimental
technique which, combined with numerical simulations, is
capable of determining the real-time position and 3D
orientation of vortex lines in an elongated BEC. This
combined technique allows us to investigate vortex dynam-
ics in a 3D quantum system with unprecedented resolution:
novel types of vortex interaction regimes are unambigu-
ously identified beyond standard reconnections already
observed in superfluid helium [29]. While in uniform,
unbounded, and nonrotating superfluids reconnections of
vortex lines moving towards each other are unavoidable,
and their effects have been extensively investigated
[31–38], here we show that in a confined and inhomo-
geneous superfluid, depending on the relative velocity and
orientation, two vortex lines can also rebound, perform
double reconnections, maintain their orbits with negligible
interaction, and undergo ejections. These processes should
play even more important roles when the BEC contains
more than two vortices, for example, in the case of
turbulence [70].
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APPENDIX A: EXPERIMENTAL PROCEDURE
FOR REAL-TIME IMAGING

Atoms are trapped in a harmonic magnetic trap. The
presence of gravity adds a linear potential that shifts the total
potential minimum zs 30 μm below the magnetic field
minimum. This makes the BEC lie in a region of inhomo-
geneous magnetic field, mainly varying in the vertical
direction z. Figure 6 illustrates how the different hyperfine
energy levels vary in space because of the second-order
Zeeman effect.
The rf field couples the trapped state j1;−1i (green) with

the nonmagnetic state j1; 0i (red). The resonant frequency
is scanned linearly in time from above the BEC to below, at
10 kHz=ms. The position zl ¼ zs þ R⊥ ≈ 47 μm corre-
sponds to the lowest boundary of the condensate.

The rf sweep extracts each time a very small fraction of
atoms, ΔN=N0 ≈ 1%, and the extraction process is then
iteratedmany times in order to extract thevortex dynamics in
real time. The extracted atoms expand and fall freely under
the effect of gravity. A microwave field is continuously kept
on to couple j1; 0i and j2; 0i at the position zr ≈ 280 μm, far
enough from the trapped BEC. In this way the extracted
falling atoms are transferred to j2; 0i as soon as they cross
such a surface and become detectable with the D2 probe
light, as sketched in Fig. 6.We probe the extracted atoms via
standard absorption imaging after 13 ms of total time of
flight at zi ≈ 830 μm from the trap center. An example of the
experimental image is shown in the inset on the top: only a
weak diffraction pattern is visible in the trap region, while
the outcoupled atoms become visible through absorption
imaging below the repumper surface for z > zr, when the
sample is promoted to the bright state (cyan).
Experimental images are digitally filtered through a FFT

analysis to remove fringes due to the optics elements along
the imaging path. The two-dimensional optical density
matrix of the sample is integrated along the vertical radial
axis z obtaining a one-dimensional axial profile. Such a
profile is then fitted with a fourth-order polynomial and
residuals are calculated. This procedure is performed on
each extraction and then the full temporal sequence is
reconstructed in order to follow the vortex trajectories in the
trapped condensate. Each sequence is plotted using both a
sequential and a diverging color map, to highlight, respec-
tively, the trajectory of vortices and the pattern in the
residuals resulting from the self-interference of outcoupled
atoms. The axial position of the vortex gives us direct
information on the amplitude of the orbit, and hence the
orbit parameter χ, as well as on the vortex velocity.

APPENDIX B: NUMERICAL SIMULATIONS
OF IN-TRAP DYNAMICS

Real-time dynamical simulations of a harmonically
trapped BEC at T ¼ 0 are performed by solving the
mean-field Gross-Pitaevskii equation,

i∂tΨ ¼
�
−
1

2
∇2 þ 1

2
ðr2⊥ þ λ2x2Þ þ ~gjΨj2

�
Ψ; ðB1Þ

for the complex macroscopic wave function of the con-
densate Ψ ¼ ΨRe þ iΨIm. Here, r⊥ ¼ ðy2 þ z2Þ1=2 is the
radial coordinate and λ ¼ ωx=ω⊥ is the ratio of the axial-to-
radial trapping frequencies. The mean-field coupling con-
stant is ~g ¼ 4πNas=l, where as is the s-wave scattering
length and l ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ=ðmω⊥Þ
p

is the radial harmonic oscil-
lator length. In the simulations reported in Fig. 4, we use
λ ¼ 0.2 and ~g ¼ 7.4 × 103, which corresponds to
R⊥=ξ ¼ 2μ=ðℏω⊥Þ ¼ 20, where μ is the chemical potential
and ξ ¼ ℏ=

ffiffiffiffiffiffiffiffiffi
2mμ

p
is the healing length. With respect to the

experimental setup, in the numerical simulations λ is twice
as large and the chemical potential μ is approximately

FIG. 6. Schematic picture of the outcoupling technique. In the
upper part of the figure, energy levels are reported as a function of
the vertical coordinate. In the lower part, the modulus of the
trapping magnetic field is reported. The sketched outcoupled
atoms in red and cyan are not to scale.
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3 times smaller. This choice is dictated by the computa-
tional resources available, but the key characteristics of the
vortex dynamics remain unchanged.
We start the simulation with a Thomas-Fermi parabolic

profile for the condensate density jΨj2. In order to calculate
the vortex-free ground state, we evolve the GP equation in
imaginary time until the relative decrease of energy ΔE=E
between two consecutive time steps is smaller than the
threshold ϵ ¼ 10−5. Once this ground state is reached, we
numerically imprint the two vortices.
For the numerical simulations illustrated in Figs. 4(a)–4(c),

the vortices are initially imprinted in an orthogonal con-
figuration, intersecting the x axis at the points ðx0; 0; 0Þ and
ð−x0; 0; 0Þ, the first vortex being oriented in the positive z
direction, the second vortex in the negative y direction. The
corresponding values of the orbit parameter χ are 0.22, 0.25,
0.375, for simulations reported in Figs. 4(a)–4(c), respec-
tively. In the simulation illustrated in Fig. 4(d), vortices
are also initially orthogonal, but the lower vortex is imprinted
in the center of the BEC and oriented in the positive y
direction. The orbit parameter χ of the off-centered vortex
is 0.7. Concerning the last simulation, Fig. 4(e), both
vortices are oriented in the positive y direction with
χ ¼ 0.33, 0.5.
Vortex imprinting is accomplished by imposing a Padé

density profile [71] and a 2π phase winding around the
vortex axis. We then let the system evolve in imaginary
time towards the lowest energy state employing the
previously described energy convergence criterion. Once
ΔE=E < ϵ, we start the evolution of the GPE in real time.
Our numerical code employs second-order accurate

finite difference schemes to discretize spatial derivatives;
the integration in time is performed via a fourth-order
Runge-Kutta method. The grid spacings are homogeneous
in the three Cartesian directions (Δx¼Δy¼Δz¼ξ=3¼
0.075l) and the time step is Δt ¼ 0.00125ω−1⊥ . The
number of grid points in the x, y, and z direction are
fNx; Ny; Nzg ¼ f800; 224; 224g, leading to a computa-
tional box f½xmin∶xmax� × ½ymin∶ymax� × ½zmin∶zmax�g ¼
f½−30∶30� × ½−8.4∶8.4� × ½−8.4∶8.4�g, where these values
are expressed in units of l.

Vortex tracking is achieved via an algorithm based on the
pseudovorticity unit vector

ω̂ ≔
∇ΨRe ×∇ΨIm

j∇ΨRe ×∇ΨImj
; ðB2Þ

which is tangent to the vortex line along its length [38,72].
To identify the first (starting) point along the axis of
each vortex, we use criteria based simultaneously on
circulation and density, and then adopt a steepest descent
algorithm to achieve subgrid resolution. Successive
points on vortex lines are determined with separation
distance Δζ ¼ Δz=10.
In the plots reported in the right-hand column of Fig. 4,

the initial line colors refer to the colors of the vortices
illustrated in the snapshots (red and blue) until a recon-
nection event occurs. After the latter, the colors employed
switch to orange and green and again to red and blue if a
second reconnection takes place. The transparency of the
lines and the intensity of the colors employed in the plots
aim to reproduce the expected experimental vortex visibil-
ity. To achieve this aim, we proceed as follows. Since the
experimental visibility is obtained by subtracting the
background (vortex-free) density profile from the optical
integrated densities, the vortex visibility increases for
increasing atom number depletion arising from the pres-
ence of the vortex itself. As a consequence, both the width
and color of the lines plotted in the right-hand column of
Fig. 4 are weighted by the value of the Thomas-Fermi
density evaluated at the center of vorticity of the corre-
sponding vortex, in order to account, at least qualitatively,
for the actual visibility of the vortex in the residual.
Finally, in order to illustrate in more detail the double

reconnection dynamics, in Fig. 7 we report radial and axial
snapshots of vortex configurations for the double recon-
nection event already described in Fig. 4(b), but employing
a finer temporal resolution. The exchange of vortex strands
and the formation of cusps is clearly visible at the
reconnection instants τ ¼ 0.208 and τ ¼ 0.221. After the
second reconnection, evidence for the formation of Kelvin
waves can be observed (at τ ¼ 0.224).

FIG. 7. Temporal sequence of radial (top) and axial (bottom) snapshots from GP simulations showing in detail two interacting vortex
lines undergoing a double reconnection. The snapshots refer to the numerical simulation reported in Fig. 4(b), here illustrated employing
a finer temporal resolution.
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APPENDIX C: NUMERICAL SIMULATIONS
OF EXPANSION

For the purpose of inferring in situ vortex information
from the postexpansion residual densities, we explicitly
simulate the outcoupling and expansion dynamically using
the GP equation. The outcoupled atoms expand as they fall
under gravity relative to the trapped condensate. While the
outcoupled atoms may be fairly dilute, they still experience
significant interactions with the dense trapped portion, for
several milliseconds, until gravity finally separates the
components. The corresponding scattering length between
outcoupled and trapped atoms is the same as that between
trapped atoms, and takes the value 54.54ð20Þa0, where a0
is the Bohr radius. Interactions between outcoupled atoms,
while less important, are also included, and for these the
scattering length is 52.66ð40Þa0 [73].
The partial extraction is performed as a linear-in-energy

sweep such that upper atoms are outcoupled before lower
atoms. The phase of the trapped component is allowed to
evolve during the sweep, which occurs over a few milli-
seconds, but the in-trap vortex dynamics is much slower
and we treat this as fixed. The trapped component’s phase,
owing to a larger potential energy, evolves more rapidly
during the sweep than it does for the released atoms.
Consequently, if we consider the example of a horizontal
vortex (i.e., oriented in the y direction), by the time the
lower atoms are released they have accumulated a greater
phase change than the upper ones, which were released
earlier, such that these layers interfere constructively on one
side of the core and destructively on the other, depending
on the sense of the in situ phase circulation. Furthermore,
the combined effects of gravity and the intercomponent
interactions mean that the speed of the sweep is important.
We choose a sweep speed, both experimentally and
theoretically, which rapidly compresses the outcoupled
cloud in the vertical direction, thus maximizing interference
effects. This enhances the x-direction asymmetry of the
residual, allowing us to determine the orientation and,
for horizontal alignment, the sign of the vortex. When
extracting vortex information and quantifying this asym-
metry, we fit the function

ffitðxÞ ¼
A cos½Bðx − xvÞ þ δ�
cosh2 ½ðx − xvÞ=C�

ðC1Þ

to the 1D residual, where A, B, C, xv, and δ are fitting
parameters. Here, xv represents the axial position of the
vortex while δ is related to the orientation θ of the vortex
line in the radial plane.
To ensure numerical convergence of the residual to ∼1%

when performing a 13-ms expansion, we begin with
a grid that initially represents the in situ density,
fxmax; ymax; zmaxg ¼ f51; 16; 14gl and fNx;Ny; Nzg ¼
f300; 180; 120g, and after several interpolations, end with

a much-enlarged grid, fxmax; ymax; zmaxg ¼ f75; 70; 60gl
and fNx; Ny; Nzg ¼ f180; 180; 600g.
The relation δðθÞ is numerically calculated for a straight

solitonic vortex and the results are displayed in Fig. 8.
Importantly, the fitting function gives a negative value of δ
for a horizontal vortex aligned in the þy direction (θ ¼ 0),
whereas the sign of δ flips for a horizontal vortex of the
opposite sense, i.e., δðθ ¼ πÞ ¼ −δðθ ¼ 0Þ. For vertically
oriented vortices (θ ¼ fπ=2; 3π=2g), one finds δ ¼ 0, and
we reiterate here that since every δ corresponds to two
angles, this method cannot, for example, determine the
sense of a vertical vortex. We note further that the relation-
ship given by Fig. 8 is expected to be modified for vortices
with large orbit parameters.
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