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Abstract In this paper, we reconstruct viable inflationary
models by starting from spectral index and tensor-to-scalar
ratio from Planck observations. We analyze three different
kinds of models: scalar field theories, fluid cosmology, and
f (R)-modified gravity. We recover the well-known R2 infla-
tion in Jordan-frame and Einstein-frame representation, the
massive scalar inflaton models and two models of inhomoge-
neous fluid. A model of R2 correction to Einstein’s gravity
plus a “cosmological constant” with an exact solution for
early-time acceleration is reconstructed.
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1 Introduction

It is well known that all the cosmological observations [1,2]
show with high accuracy that the universe is expanding in an
accelerated way. Moreover, the idea is well accepted accord-
ing to which the universe, after the Big Bang, underwent
another period of strong accelerated expansion, namely the

a e-mail: rmyrzakulov@gmail.com
b e-mail: l.sebastiani@science.unitn.it
c e-mail: zerbini@science.unitn.it

inflation (see Refs. [3–5] for reviews). The inflationary uni-
verse was first proposed by Guth and Sato [6–8] to solve
some problems related to the initial conditions of the Fried-
mann universe: today, despite the constraints that a viable
theory must satisfy to fit the cosmological data, the arena of
the inflationary models is quite large. In general, to reproduce
the accelerated expansion of inflation, we may use a scalar
field representation, work with fluid cosmology, or modify
the gravitational action of General Relativity introducing a
repulsive force at high curvature.

In chaotic inflation [9] an homogeneous scalar field,
namely the inflaton, is subjected to a potential and drives the
accelerated expansion when its magnitude is negative and
very large and satisfies some suitable conditions. After this
stage, the field rolls down toward a potential minimum and
inflation ends, such that the reheating process for the parti-
cle production starts, supported by oscillations of the field
[10,11].

Fluid cosmology is the simplest approach to any desired
cosmological scenario supported by non-perfect fluids differ-
ent from standard matter and radiation [12–18]: some appli-
cations to inflation can be found in Refs. [19,20].

Finally, it is reasonable to expect that inflation might be
related to quantum corrections to Einstein’s theory at high
curvature. Thus, one may take into account higher derivative
terms of the curvature invariants (Ricci tensor, contractions of
the Ricci and Riemann tensors, Gauss–Bonnet, the “square”
of the Weyl tensor, …) in the gravitational action [21–27].
We also mention that it is possible to study chaotic inflation
in the framework of modified gravity (see Ref. [28]). For
reviews on modified gravity theories see Refs. [29–32].

In this work, following the approach presented in Refs. [33,
34], we would like to start from the cosmological data and
reconstruct the models able to reproduce a viable inflation
in the different representations. In this specific case, the last
observations constrain the spectral index as ns ∼ 1 − 2/N ,
and the tensor-to-scalar ratio of cosmological perturbations
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as r ∼ 1/N or, better, as r ∼ 1/N 2, where N is the total
e-folds number of inflation; it must be 55 < N < 65 to
have a sufficient amount of inflation (for de Sitter space-time
ns = 1 and we have an eternal inflation with N → ∞).
Thus, we can see which models satisfy these constraints by
using a reconstruction technique.

The paper is organized as follows. In Sect. 2, we express
all the characteristic quantities of inflation in terms of the
e-folds number left to the end of inflation N , and we will
write the spectral index and tensor-to-scalar ratio in terms
of the total amount of inflation N . The two viable choices
illustrated above are analyzed in Sects. 3 and 4, where two
possible scenarios are investigated in the related subsections:
scalar field representation and fluid cosmology. Section 5
is devoted to f (R)-modified gravity, for which the spectral
index and the tensor-to-scalar ratio must be recalculated. For
every class of models we reconstruct the specific examples
which generate viable inflation. The results are discussed in
Sect. 6.

We use units of kB = c = h̄ = 1 and denote the gravita-
tional constant, GN , by κ2 ≡ 8πGN , so that GN = 1/M2

Pl,
MPl = 1.2 × 1019 GeV being the Planck Mass.

2 Inflation: general features

The inflation is a period of cosmological expansion where
gravity acts as a repulsive force bringing about a strong accel-
erated expansion with a finite event horizon and explaining
the thermalization of the observable universe. In order to
preserve the important predictions of the Standard Model,
inflation must take place in a very short period (t ∼ 10−35–
10−36 s) after the Big Bang. The early-time acceleration may
be described by a large variety of models, and in this section
we would like to recall some basic features of it.

The flat Friedmann–Robertson–Walker (FRW) metric for
a homogeneous and isotropic universe reads

ds2 = −dt2 + a(t)2(dx2 + dy2 + dz2), (1)

wherea ≡ a(t) is the scale factor depending on cosmological
time t . Thus, the Friedmann equations are

3H2

κ2 = ρeff, − (3H2 + 2Ḣ)

κ2 = peff, (2)

where the dot denotes the derivative with respect to the time,
H(t) ≡ H = ȧ/a is the Hubble parameter and ρeff, peff

are the effective energy density and pressure of the universe.
They can be the result of some fluid contents, scalar field,
and also modifications to gravitational action in terms of
higher derivative corrections to Einstein’s gravity. For every
case under investigation we will provide the corresponding
Lagrangian to derive such quantities, but up to now we will

keep this general framework. We may also introduce an effec-
tive Equation of State (EoS):

peff = ωeffρeff, (3)

where ωeff is an effective EoS parameter and in general it is
a function of the Hubble parameter and its derivatives. From
(2) we have the conservation law

ρ̇eff + 3Hρeff(1 + ωeff) = 0. (4)

Inflation is described by a (quasi-) de Sitter space-time, when
the Hubble parameter is close to the Planck mass. It means
that at the beginning of the inflation

1 + ωeff � 0, (5)

but not vanishing in order to have an exit from inflation [33,
34]. We may also require the positivity of (1+ω): if ω passes
through −1, it may be a final attractor of the system and
inflation never ends; on the other side, acceleration vanishes
when the Strong Energy Condition (SEC) is violated with
−1/3 < ωeff. To describe the evolution of (5), we introduce
the e-fold number left to the end of inflation,

N = ln

[
a(tf)

a(t)

]
, (6)

where af ≡ a(tf) is the scale factor at the end of inflation with
tf the related time. The inflation ends when (1+ωeff) ∼ O(1)

and for this reason we may assume the following Ansatz [33]:

1 + ωeff � β

(N + 1)α
, 0 < α, β. (7)

Here, β is a number on the order of the unit.
In terms of the e-folds left to the end of inflation the con-

servation law (4) reads

− dρeff

dN
+ 3ρeff(1 + ωeff) = 0, (8)

where we have taken into account that d/dt = −H(t)d/dN
and we have used (3). As a consequence, from the Ansatz (7)
we find the following solutions:

ρeff � ρ0(N + 1)3β, α = 1, (9)

ρeff � ρ0 exp

[
− 3β

(α − 1)(N + 1)α−1

]
, α �= 1, (10)

with ρ0 an integration constant corresponding to the effective
energy density at the end of inflation at N = 0 in the case of
α = 0, and to the effective energy density at the beginning of
inflation at 1 � N in the case of 1 < α. The quasi-de Sitter
solution of inflation evolves (at the first order approximation)
with the Hubble flow functions

ε1 = − Ḣ

H2 , ε2 = −2Ḣ

H2 + Ḧ

H Ḣ
≡ ε̇1

Hε1
. (11)

First let us assume we deal with situations where the so-called
Jordan frame coincides with the Einstein frame. Thus, for
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the moment, we shall not consider modified gravity models.
Inflation takes place as soon as the quantities above remain
very small (slow-roll approximation). In this specific case we
must have

ε1 � 1, |ε2| � 1, (12)

and acceleration ends when ε1 is on the order of the unit. By
using (2)–(4) we find

ε1 = 3(1 + ωeff)

2
, ε2 = −d ln[1 + ωeff]

dN
, (13)

or, by using the Ansatz (7),

ε1 � 3β

2(N + 1)α
, ε2 � α

N + 1
. (14)

We see that if 1 < α the ε1 parameter is much smaller with
respect to the ε2 parameter. This behavior can be found in all
the models where inflation can be treated at the perturbative
level such that Ḣ2 � H |Ḧ |, but in general the slow-roll
conditions do not imply it. In principle, also the case 0 <

α < 1 where ε1 is larger than ε2 is not excluded.
In order to solve the problem of the initial conditions of the

Friedmann universe, it is necessary to have ȧi/ȧ0 < 10−5,
where ȧi, ȧ0 are the time derivatives of the scale factor at the
Big Bang and today, respectively, and the anisotropy in our
universe is on the order of 10−5. Since in the decelerating
universe ȧ(t) decreases by a factor 1028, one has ȧi/ȧf <

10−33 and if inflation is governed by a (quasi-) de Sitter
solution the number of e-folds at the beginning of inflation,

N ≡ N |t=ti = ln

(
af(tf)

ai(ti)

)
≡

∫ tf

ti
H(t) dt, (15)

must be at least N � 76, but the spectrum of fluctuations of
CMB say that N � 55 is enough to have thermalization of
the observable universe. Typically, it is required that 55 <

N < 65.
Thus, at the end of inflation, the amplitude of the power

spectrum of Newtonian potential (namely the fluctuations of
the effective energy density) is given by

	2
R = κ2H2

8π2ε1
|N=N ≡ 16

9
G2

N

(
ρeff

(1 + ωeff)

)
|N=N , (16)

where we have reintroduced the Newton constant GN . For
the Ansatz (7) with (9)–(10) one derives

	2
R � 16

9
G2

N
ρ0(N + 1)3β+1

β
, α = 1, (17)

	2
R � 16

9
G2

N

ρ0(N + 1)α exp
[
− 3β

(α−1)(N+1)α−1

]
β

, α �= 1.

(18)

Since 	2
R � 10−9 must hold, given the e-folds number

N , we may use the power spectrum to recover the effec-
tive energy density of the universe at the end of inflation,

which reads ρ = ρ0 in the case of α = 1 and ρ =
ρ0 exp [−3β/(α − 1)] in the case of α �= 1.

The spectral index ns and the tensor-to-scalar ratio r are
given by (at the first order)

ns = 1 − 2ε1|N=N − ε2|N=N ≡ 1 − 3(1 + ωeff)

+ d

dN
ln (1 + ωeff) , r = 16ε1|N=N ≡24(1 + ωeff).

(19)

By using (7), one has [33]

ns = 1 −
[

3β + α(N + 1)α−1

(N + 1)α

]
, r = 24β

(N + 1)α
. (20)

In the (ns, r) plane, one has the curve defined by

r = 24β
(

1 − ns − r

8

)α

. (21)

Note that the spectral index ns is smaller than 1, since the
Hubble flow functions are both positive. This is always true
if we want a graceful exit from inflation.

The last observations by the Planck satellite [2] con-
strain the spectral index and the tensor-to-scalar ratio to
ns = 0.9603 ± 0.0073 (68 % CL) and r < 0.11 (95 % CL).
It means that

0.0324 <

[
3β + α(N + 1)α−1

(N + 1)α

]
< 0.0470,

24β

(N + 1)α
< 0.11. (22)

We have the following cases:

1 − ns � 3β + 1

(N + 1)
, α = 1, (23)

1 − ns � α

(N + 1)
, 1 < α, (24)

1 − ns � 3β

(N + 1)α
, α < 1. (25)

Therefore, the cases α = 1 and β = 1/3 and α = 2 withN �
60 are viable [34], the second one with a tensor-to-scalar
ratio much smaller. In the first case, since r = 4(1 − ns), the
tensor-to-scalar ratio is slightly larger than the Planck results
when the spectral index is in agreement with them, but, since
the correct value of this parameter is still a debated question,
in our work we will take in consideration also the class of
models which realizes such a configuration. If α < 1, the
tensor-to-scalar ratio is too big: for example, if α = 3/4 and
β = 1/3 withN � 60, the spectral index satisfies the Planck
constraints, but the tensor-to-scalar ratio is r = 0.37.

Let us analyze now how different models can be recon-
structed to reproduce a viable inflationary scenario.
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3 Inflation with spectral index
1− ns = (3β + 1)/(N + 1): case α = 1

In this section, we would like to analyze different models
to realize viable inflation with spectral index (23): it means
that the Hubble flow functions (11) are on the same order of
magnitude and the EoS parameter in (3) can be written as

ωeff = −1 + 1

3

(
ρ0

ρeff

)
, (26)

where we have used (7) and (9) with α = 1, β = 1/3 to
satisfy the Planck results. Here, ρ0 is the effective energy
density at the end of inflation and whenρeff = ρ0 acceleration
ends. The Hubble flow functions (14) read in this case

ε1 = 1

2(N + 1)
, ε2 = 1

N + 1
, (27)

and the spectral index and the tensor-to scalar ratio are given
by

ns = 1 − 2

N + 1
, r = 8

N + 1
= 4(1 − ns). (28)

First of all, we will revisit chaotic inflation in scalar field
theories.

3.1 Inflation with scalar field

Inflation may be realized by the inclusion of a minimally
coupled scalar field φ, dubbed the inflaton, subjected to the
potential V (φ), whose general Lagrangian reads

Lφ = −1

2
gμν∂μφ∂νφ − V (φ). (29)

For a flat FRW metric the equations of motion (EOMs) are
given by (2) with the following identification:

ρeff = φ̇2

2
+ V (φ), peff = φ̇2

2
− V (φ),

ωeff = φ̇2 − 2V (φ)

φ̇2 + 2V (φ)
. (30)

We get from the first equation in (2) and from the conservation
law (4)

3H2

κ2 = φ̇2

2
+ V (φ), φ̈ + 3H φ̇ = −V ′(φ), (31)

where the prime denotes the derivative with respect to φ.
Chaotic inflation is realized for negative and arbitrarily large
values of the field when the slow-roll approximation is valid.
For a scalar field representation one introduces the slow-roll
parameters

ε = − Ḣ

H2 , η = − Ḣ

H2 − Ḧ

2H Ḣ
≡ 2ε − 1

2εH
ε̇, (32)

which are related to the Hubble flow functions (11) as fol-
lows:

ε = ε1, η = −ε2

2
+ 2ε1. (33)

Thus, in the slow-roll regime (12) we get

ε � 1, |η| � 1. (34)

To realize the quasi-de Sitter solution of inflation with ωeff �
−1, the kinetic energy of the field must be much smaller with
respect to the potential,

φ̇2 � V (φ), |φ̈| � 3H φ̇, (35)

such that Eq. (31) read

3H2

κ2 � V (φ), 3H φ̇ � −V ′(φ), (36)

and the slow-roll parameters (32) and the e-folds N in (15)
can be derived as

ε = 1

2κ2

(
V ′(φ)

V (φ)

)2

, η = 1

κ2

(
V ′′(φ)

V (φ)

)
,

N = κ2
∫ φi

φe

V (φ)

V ′(φ)
dφ. (37)

Finally, the spectral index and the tensor-to-scalar ratio in
(19) are given by

ns = 1 − 6ε|N=N + 2η|N=N , r = 16ε|N=N . (38)

For the case under investigation (23) we have

ε = η = 1

2(N + 1)
, ns = 1 − 2

N + 1
,

r = 8

N + 1
= 4(1 − ns), (39)

where the spectral index and the tensor-to-scalar ratio are
obviously the same as (28). For large e-folds N during infla-
tion the slow-roll parameters are very small and for N � 60,
as we have seen, the spectral index is in good agreement with
this equation, but the tensor-to-scalar ratio does not seem to
be. Inflation ends when the slow-roll conditions in (34) are no
more valid. Typically, the field slowly moves toward a poten-
tial minimum and starts to oscillate, beginning the reheating
process for particle production.

Reconstructing a model for chaotic inflation which real-
izes (23) with β = 1/3 and therefore the spectral index and
the tensor-to -scalar ratio in (39) is quite simple. From (26)
and the last expression in (30) we get

φ = φi +
√

ρ0

3
(t − ti). (40)

Here, the integration constantφi corresponds to the (negative)
value of the field at the beginning of inflation when t = ti.
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Thus, in the slow-roll approximation (35), we can use (36)
to find

V (φ) = (−φ)2m2

2
, H � m(−φ)κ√

6
, (41)

where we have introduced the constant term

m2 = κ2ρ0

2
. (42)

This theory corresponds to a quadratic scalar field inflation.
The boundary value of the field defines the total amount of
inflation, namely N through relation (9) with β = 1/3 as

ρi � 2m2

κ2 (N + 1), (43)

where we have used (42). When ρeff = ρ0 ≡ 2m2/κ2, the
effective EoS parameter ωeff = −1/3 and inflation ends:
at this point, the potential V (φ) = ρ0/3 ≡ 2m2/(3κ2) is
equal to φ̇2 and the slow-roll approximation (35) is no more
valid. Finally, the value of m2 and therefore of ρ0 must be
consistent with the amplitude of the power spectrum in (17)
as 	R � 10−9.

The quadratic potential is not the only one which realizes
chaotic inflation with α = 1 in (23). If we relax the condition
on β in (26) such that

ωeff = −1 + β

(
ρ0

ρeff

) 1
3β

, (44)

where β �= 1/3 remains a number on the order of the unit, in
the slow-roll approximation (35) we find the following rela-
tion between the kinetic energy of the field and the potential:

φ̇ �
√

βρ
1/(6β)
0

V (φ)
1−3β

6β

. (45)

For β = 1/3 one derives (40) again. Thus, by using the
second equation in (36) we obtain

V (φ) = (−φ)6β(3κ2)3βρ0

66ββ3β
, (46)

namely a power-law potential. For example, for β = 2/3 we
get the quartic potential

V = λ(−φ)4

4
, λ = κ4ρ0

16
, (47)

with the slow-roll parameters (32)–(33) and spectral index
and tensor-to-scalar ratio (38)

ε = 1

N + 1
, η = 3

2(N + 1)
, ns = 1 − 3

N + 1
,

r = 16

N + 1
= 16

3(1 − ns)
. (48)

Also in this example, for large e-folds N during inflation
the slow-roll parameters are very small and for N � 60

the spectral index satisfies the Planck data, but the tensor-to-
scalar ratio is too large. All the potentials based on a power-
law function belong to the class (23), in accordance with Ref.
[33]. The only potential which is not disfavored by the Plank
data seems to be the linear potential, which is realized by the
choice β = 1

6 . In this case, one also has r = 8
3 (1 − ns).

3.2 Fluid cosmology

The simplest description of inflation is provided by an exotic
fluid with EoS different from the one of ordinary matter and
radiation [19,20]. Since the inflation is described by a quasi-
de Sitter solution and inflation must end, the EoS parameter
of such a fluid cannot be a constant (like for perfect fluids)
and must depend on the energy density. If we identify ρeff

and peff with the energy density ρ and the pressure p of the
fluid, the EoS (3) with (26) reads

p = ω(ρ)ρ, ω(ρ) = −1 + 1

3

(
ρ0

ρ

)
; (49)

the EoS parameter ω(ρ) of the (inhomogeneous) fluid
depends on the energy density. Thus, from (2) and (4), one
has

H =
√

κ2

3

⎡
⎣h0 − ρ0

2

√
κ2

3
(t − ti)

⎤
⎦ ,

ρ =
⎡
⎣h0 − ρ0

2

√
κ2

3
(t − ti)

⎤
⎦

2

. (50)

Inflation takes place when t is close to ti and H = √
κ2/3h0,

where h0 is the constant value of the de Sitter solution of
early-time acceleration. The energy density of the fluid and,
therefore, the Hubble parameter decrease. The Hubble flow
functions (11) read

ε1 = ρ0

2ρ
, ε2 = ρ0

ρ
. (51)

Since the scale factor can be written as

a(t) = af exp

[
1 − ρ

ρ0

]
, (52)

where af is the scale factor at the end of inflation when ρ =
ρ0, we see that

N + 1 = ρ

ρ0
, (53)

and we recover (27)–(28).
Also in this case, other inhomogeneous fluid models repro-

ducing inflation with Hubble flow functions on the same order
can be found by relaxing the condition on β, namely β �= 1/3
in (26) like in (44),
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ω = −1 + β

(
ρ0

ρ

) 1
3β

, (54)

which seems to define an extended Chaplygin gas [35,36].
In such a case we derive

H =
√

ρiκ2

3
exp

⎡
⎣−

√
ρ0κ2

3
(t − ti)

⎤
⎦ ,

ρ = ρi exp

⎡
⎣−2

√
ρ0κ2

3
(t − ti)

⎤
⎦ , β = 2

3
, (55)

H =
√

κ2

3

⎡
⎣h̃0 −

(
2 − 3β

2

)
ρ

1
3β

0

√
κ2

3
(t − ti)

⎤
⎦

3β
2−3β

,

ρ =
⎡
⎣h̃0 −

(
2 − 3β

2

)
ρ

1
3β

0

√
κ2

3
(t − ti)

⎤
⎦

6β
2−3β

, β �= 2

3
,

(56)

where ρi (in this case, the energy density of the fluid at the
beginning of inflation) and h̃0 are integration constants. For
example, for the case β = 2/3 above, one recovers the spec-
tral index and the tensor-to-scalar ratio in (48).

4 Inflation with spectral index 1− ns = 2/(N + 1):
case α = 2

Now we would like to analyze different models to realize
inflation with spectral index (24), where the Hubble flow
function ε1 in (11) is much smaller than ε2. Since the tensor-
to-scalar ratio is proportional to r ∼ 1/(N +1)2, every value
of β on the order of the unit satisfies the Planck data. In this
case, the EoS parameter in (3) can be written as

ωeff = −1 + 1

9β
log

[
ρeff

ρ0

]2

, (57)

where we have used (7) and (9) with α = 2. Now ρ0 is the
effective energy density at the beginning of inflation, when
ω = −1. The Hubble flow functions (14) read

ε1 = 3β

2(N + 1)2 , ε2 = 2

N + 1
, (58)

and the spectral index and the tensor-to scalar ratio are
derived as

ns = 1 − 2

N + 1
, r = 24β

(N + 1)2 = 6β(1 − ns)
2. (59)

Let us consider some applications.

4.1 Scalar inflation

Let us come back to scalar field inflation described in
Sect. 3.1. From (57) and the last expression in (2), if we
use the slow-roll approximation (35), we have

φ̇ �
√
V (φ)

3
√

β
log

[
ρ0

V (φ)

]
�

√
V (φ)

3
√

β

(
ρ0

V (φ)
− 1

)
, (60)

where we have used the fact that during inflation V (φ) is
close to ρ−

0 . Thus, from the second equation in (36) we get

V (φ) = ρ0

(
1 − c1e

√
κ2/(3β)φ

)
, (61)

where c1 is a constant. In the case c1 = 2 and β = 1/2
we recover inflation in the scalar field Einstein-frame rep-
resentation of the Starobinsky model and we obtain for the
slow-roll parameters introduced in (32)

ε = 3

4(N + 1)2 , η � − 1

(N + 1)2 . (62)

The spectral index and the tensor-to-scalar ratio read

ns = 1 − 2

N + 1
, r = 12

(N + 1)2 = 3(1 − ns)
2, (63)

according with the results of Starobinsky inflation [37] in
the Einstein frame, and we will see in later also in the Jor-
dan frame. Furthermore, in Ref. [38] it has been shown that
also the more general class of R2 models with cosmologi-
cal constant reproduces the inflation in the same way as the
Starobinsky model and the cosmological constant does not
play here any role, since it produces a (negligible) term pro-

portional to ∼ exp
[
2
√

κ2/(3β)φ
]

in the potential.

4.2 Fluid cosmology

The EoS (3) with (57) assumes the following form for an
inhomogeneous fluid:

p = ω(ρ)ρ, ω(ρ) = −1 + 1

9β
log

[
ρ

ρ0

]2

� −1 + 1

9β

[(
ρ0

ρ

)
− 1

]2

. (64)

The asymptotic solutions of (2) and (4) read

H =
√

κ2

3

√√√√
(

1 − 3
√

3β√
κ2ρ0(te − t)

)
,

ρ � ρ0

(
1 − 3

√
3β√

κ2ρ0(te − t)

)
, (65)

in the limit t � te, where te is the time at the end of inflation
(in fact, its duration). Thus, the Hubble flow parameters (11)
are derived as
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ε1 � 9β

2(te − t)2κ2ρ0
, ε2 � 2

√
3√

κ2ρ0(te − t)
, (66)

and the spectral index and the tensor-to-scalar ratio (19)
finally are given by

ns � 1 − 2
√

3

(te − t)
√

κ2ρ0
, r � 72β

(te − t)2κ2ρ0
. (67)

By taking into account that

a(t) � af exp

⎡
⎣

√
κ2ρ0

3
(t − te)

⎤
⎦ , N �

√
κ2ρ0

3
(te − t),

(68)

one recovers (59).

5 f (R)-modified gravity

An alternative description of the early-time acceleration is
given by the modified theories of gravity, where an arbitrary
function of some curvature invariant is added to the Hilbert–
Einstein term in the action of General Relativity. This kind of
corrections may arise from quantum effects or be inspired by
string theories and it is expected that it plays a fundamental
role at high curvatures, during the inflation. Here, we would
like to analyze the simplest class of such models, where the
modification depends on the Ricci scalar only.

Let us consider the following modified gravitational
Lagrangian:

Lgrav = R

2κ2 + f (R), (69)

where f (R) is a function of the Ricci scalar R. For an FRW
metric (1) the modification to gravity can be encoded in the
effective energy density and pressure which appear in (2) by
making the following identification:

ρeff =
[
(R fR − f ) − 6H ḟR − 6H2 fR

]
, (70)

peff =
[
( f − R fR) + 4H ḟR + 2 f̈ R + (4Ḣ + 6H2) fR

]
.

(71)

Here, f (R) ≡ f and the subscript ‘R’ is the derivative with
respect to the Ricci scalar.

As is well known, for a modified theory of gravity, the Ein-
stein frame does not coincide with the Jordan frame, where
the theory is defined. Thus, the Hubble flow functions (11)
have to be replaced by the variables [39,40] (for a review of
inflation in the framework of f (R)-gravity see the Ref. [41]),

ε1 = − Ḣ

H2 , ε3 = κ2 ḟ R
H

(
1 + 2κ2 fR

) , ε4 = f̈ R
H ḟR

, (72)

and the spectral index and the tensor-to-scalar ratio are given
by

ns = 1 − 4ε1 + 2ε3 − 2ε4, r = 48ε2
3 . (73)

From the EOMs (2) with (70)–(71) one has

ε1 = −ε3(1 − ε4). (74)

During inflation |ε1,3,4| � 1 and ε1 � −ε3, such that ε4 �
−3ε1 + ε̇1/(Hε1). It follows that

ns = 1 − 2ε2, r = 48ε2
1 , (75)

where we have reintroduced ε2 in (11). Thus, in analogy with
(19), we find

ns = 1 − 2ε2|N=N ≡ 1 − 2
d

dN
ln (1 + ωeff) ,

r = 48ε2
1 |N=N ≡ 108(1 + ωeff)

2. (76)

By using (7), we derive

ns = 1 − 2α

(N + 1)
, r = 108β2

(N + 1)2α
, (77)

and the choice α = 1 with N � 60 satisfies the Planck
results in (22). The corresponding ωeff ≡ peff/ρeff parameter
is given by ωeff = −1 + β (ρ0/ρeff)

1/(3β), but for simplicity
we will set β = 1/3 recovering ωeff = −1 + ρ0/(3ρeff) as
in (26). It follows from (70)–(71) that

4Ḣ fR − 2H ḟR + 2 f̈ R = ρ0

3
, (78)

with

R = 12H2 + 6Ḣ . (79)

If we use (9) or (10) in the first equation of (2), we can express
the Hubble parameter and its time derivative in terms of the
e-folds left to the end of inflation N . In the case of (9) with
β = 1/3 one has

H =
√

κ2ρ0

3

√
N + 1, Ḣ = −κ2ρ0

6
. (80)

Thus, we can reconstruct the modified gravity models which
realize such a configuration and we get from (78)

− fR +
(

2N + 3

2

)
d fR
dN

+ (N + 1)
d2 fR
dN 2 = 1

2κ2 ,

fR = − 1

2κ2 + γ

(
3

2
+ N

)
, (81)

γ being an integration constant. Since R = κ2ρ0(4N + 3),
one has

fR(R) = Rγ − 2ρ0 + 3γ κ2ρ0

4κ2ρ0
,

f (R) = 3Rγ

4
− R

2κ2 + R2γ

8κ2ρ0
+ λ, (82)
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where λ is a “cosmological constant”. From the last expres-
sion we obtain for the effective energy density (70) with
respect to (80),

ρeff = −λ + ρ0(1 + N ) + γ κ2ρ0

8
, (83)

so that λ has to be

λ = γ κ2ρ0

8
, (84)

in order to satisfy the first equation in (2). Finally, if we set
γ = 2/(3κ2), we obtain

f (R) = R2

12κ4ρ0
+ ρ0

12
, (85)

corresponding to an extension of the so called “Starobinski
model” where f (R) = γ̃ R2, γ̃ being a constant [37]. For
such a model, we recover the spectral index and the tensor-
to-scalar ratio in (63). We also note that, in the limit 1 � N ,
(83) solves asymptotically the first Friedmann equation in
(2) independently of λ if

γ κ2 � 8(1 + N ), (86)

and, in the case of γ = 2/(3κ2), this is always true if
κ2ρ0 � R or, since ρ0 ∼ 1/κ4, M2

Pl/8π = 1/κ2 � R. In
the Starobinsky-like models the Planck mass in κ2 is replaced
by a more general mass term M2, and during inflation the
term R2 can be considered much bigger than the Hilbert–
Einstein contribution to the action. As has been found in
Ref. [38], this class of models produces inflation in the slow-
roll approximation in the same way as the Starobinsky model.
Here, we see also that, if we add a cosmological constant like
in (84), we have an exact accelerated solution for inflation.
In terms of the cosmological time, this exact solution reads

H(t) = H0 − κ2ρ0

6
(t − ti), a(t) = aie

H0te− κ2ρ0
12 (t (t−2ti)),

(87)

where H0 is constant and ti , as usual, is the time at the begin-
ning of inflation; but in principle such a solution, by setting a
suitable value of ρ0, may reproduce also the current accelera-
tion predicting an end of it, since no slow-roll approximation
has been used at all.

6 Conclusions

In this paper, we have investigated viable models for infla-
tion by starting from observations. The Planck results for
the spectral index and the tensor-to-scalar ratio determine
the behavior of the models. In particular, it is possible to
reconstruct a model by starting from the implicit form of
these parameters: a simple Ansatz relates them to the effec-
tive EoS parameter of inflationary universe, and the Hubble

parameter with the effective energy density follow from it.
We have shown how, working in a scalar field representation,
the only viable models which can be derived in such a way are
the well-known massive inflaton theory (but we must remark
that in such a case the tensor-to-scalar ratio is larger than the
Planck result) and the Einstein-frame representation of the
Starobinsky-like model accounting for the R2 correction to
Einstein’s gravity. The reconstruction technique permits us
also to find the viable fluid models for inflation: the inhomo-
geneous fluids producing inflation have been analyzed and
the explicit solutions have been presented.

In the last section, we have considered the f (R)-modified
theories of gravity for inflation. For a modified theory of
gravity the spectral index and the tensor-to-scalar ratio must
be recalculated. Thus, a reconstruction technique can be used
to find the models that reproduce values in agreement with
Planck data for this parameters. We found a model with an
exact solution (without making use of a slow-roll approxi-
mation) for viable inflation, where a R2 correction together
with a cosmological constant is added to the Hilbert–Einstein
action of General Relativity. This model belongs to the class
of Starobinsky-like inflationary theories. It is possible to see
that, by requiring that an accelerated solution appears at high
curvature, all the Starobinsky-like models can be found. As
expected, the related spectral index and the tensor-to-scalar
ratio return be the same as scalar inflation in the Einstein-
frame representation of the Starobinsky model.
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