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Abstract

We develop a new methodology for estimating and testing the form of anisotropy

of homogeneous spatial processes. We derive a generalised version of the isotropy

test proposed by [1] and analyse its properties in various settings. Expanding

on this, we propose a new testing procedure in the frequency domain that al-

lows one to estimate and test under mild conditions any form of anisotropy in

homogeneous spatial processes. The power of the test is studied by means of

Monte Carlo simulations performed both on regularly and irregularly spaced

data. Finally, the method is used to analyse the soybean yields in the US.

Keywords: areal data, semiparametric modelling, directional bias, Fourier

analysis, anisotropy modelling

1. Introduction

Spatial econometric analysis of areal data typically assumes that spatial de-

pendence is equally strong in any direction. This can be noticed if we consider,

for example, the SAR model [see 2] or the CAR model [see 3], where the spa-

tial autoregressive parameter is unique and independent of the direction of the5

neighbours.
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Such a restriction does not necessarily hold in any situation, as many eco-

nomic and social phenomena exhibit a directional bias in their interaction mech-

anisms and in their values. Consider, for example, the North-South change in

the economic and social conditions in several countries, or the importance of10

direction as an explanatory variable for the correlation amongst harvests in

contiguous fields, climatic areas, or geographical regions.

The condition where the characteristics of a phenomenon do not depend on

the direction is called isotropy. In particular, a stochastic spatial process is

said to be isotropic whenever it is stationary with respect to rotations of its15

index set about the origin [4, 10]. The assumption of isotropy may lead to

inconsistent estimates if it is not borne out by data, similarly to what happens

when incorrectly assuming other forms of stationarity. This is the main reason

why that condition should be formally tested before fitting any kind of isotropic

model.20

Over the last decades, the problem of testing isotropy of stochastic spatial

processes has received some attention, and isotropy tests have been proposed

for stochastic surfaces [5], point processes [e.g. 6], lattice data [7], and (regularly

or irregularly-spaced) areal data [1]. In this paper we focus on models for areal

data, as they are particularly important in econometric and regional economic25

analysis, and in this framework the problem has received limited attention in

the econometric literature. In fact, although it is sometimes possible to adapt

isotropy tests like those of [6] or [7] to irregularly-spaced areal data, two issues

may make such adaptations not suitable.

First, the geometric distance between the centroids of the cells may not be30

the best criterion for assessing isotropy of a process that has been modelled

through a weight matrix. Indeed, most of the times the physical distance has a

minor or no role in defining the weight matrix of a spatial model. It follows that,

in these cases, an isotropy test based on variograms [such as 6] or other functions

of the physical distance may be inconsistent with the modelling approach being35

adopted.

Second, samples of irregular areal data are often rather small, especially in
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econometric analysis. This implies that asymptotic isotropy tests can seldom

be used. This is the case, for instance, of the test proposed by [7]; although

that method can be adapted to irregularly-spaced grids, the outcomes are only40

reliable in large samples.

The test proposed by Arbia, Bee and Espa [1] (hereinafter ABE) has been

developed for econometric models, and overcomes both problems just described.

Consider the spatial autoregressive model:y = ρWy +Xβ + ε

ε ∼ Nn(0, σ2I)

, (1)

defined on a (regular or irregular) two-dimensional grid Gn of n cells, where

W ∈ Rn×n is a spatial weight matrix, X ∈ Rn×p is a matrix of p exogenous

explanatory variables (possibly including a unitary column), β ∈ Rp, σ ∈ R+,

and ρ ∈ R is such that I − ρW is positive definite [8].45

The ABE test requires to divide the neighbours of each cell of Gn into two

groups according to a unique reference direction ψ and to fit the model:y = (ρ1W1 + ρ2W2)y +Xβ + ε

ε ∼ Nn(0, σ2I)

. (2)

where W1, W2 ∈ Rn×n are the weight matrices that identify the two groups of

neighbours, and ρ1, ρ2 are the spatial autoregressive parameters.

In the rest of the paper we consider tanψ as the slope of the straight line

which passes through the centre of any cell k ∈ Gn, splits the plane in two parts,

and divides the neighbours of k into two groups. It follows that ψ is the size of50

the angle between the straight line and the axis of abscissa. Hereinafter we will

refer to ψ as reference direction, since it uniquely identifies the related straight

line.

Since the groups of neighbours are exclusively defined according to a direc-

tional criterion, under isotropy they are expected to have the same effect on the55

reference cell. It follows that the isotropy assumption holds if ρ1 = ρ2, and this

is the restriction that the ABE approach formally tests.
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The ABE test works well in many cases, but it may fail to detect some forms

of anisotropies, as the following example shows.

Example 1. Let {yr,u} be a spatial process defined on a square lattice Gn,60

and indexed on Z2 such that yr,u is the value of the process {yr,u} in the r-th

row and the u-th column of Gn. According to the matrix indexation, rows are

numbered from top to bottom whilst columns are numbered from left to right.

Assume that {yr,u} is defined as follows:

yr,u = γ1(yr−1,u + yr,u+1) + γ2(yr+1,u + yr,u−1) + εr,u , (3)

where γ1 6= γ2 are real parameters and {εr,u} is an iid spatial process. The

process (3) is clearly anisotropic (since γ1 6= γ2).65

If we test for isotropy by means of the ABE test, we may split the neighbours

along the NW–SE direction (ψ = 3π/4) and fit the model

yr,u = ρ1(yr−1,u + yr,u+1) + ρ2(yr+1,u + yr,u−1) + ε(1)
r,u . (4)

For this specification of the test, model (4) coincides with (3), and it is possible

to detect anisotropy provided that the sample size is large enough.

Now assume that we split the neighbours along a different direction. For

instance, we may choose the SW–NE direction (ψ = π/4), and fit the model

yr,u = ρ1(yr−1,u + yr,u−1) + ρ2(yr+1,u + yr,u+1) + ε(2)
r,u . (5)

Both (4) and (5) are consistent with the ABE method. However, if model (5)

is fitted, the anisotropy cannot be detected. This happens because both ρ1

and ρ2 measure the spatial dependence originating from half-planes including a70

neighbouring cell with coefficient γ1 and another neighbour with coefficient γ2.

Note that model (4) results from any reference direction ψ such that π/2 <

ψ < π, whilst model (5) is consistent with any 0 < ψ < π/2.

Example 1 reveals two problems. First, the ABE test is not rotation-

invariant, that is, its outcome depends on the direction ψ chosen for splitting75

the neighbours. Second, there may be compensations between the coefficients
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of the neighbours belonging to the same half-plane. Both issues may cause a

substantial reduction of the power of the test.

Having introduced the basic version of the ABE test, we can now outline the

main contributions of this paper. First, we extend the ABE test to a generic80

number q of groups of neighbours (this will be called the q-directional ABE test,

or simply q-ABE test), studying the factors affecting its power and the kind of

anisotropies it is able to detect.

Second, building on this analysis, we propose a new approach that allows

one to estimate and test the form of anisotropy of any given spatial process85

without incurring the problems outlined above. This method leads to a semi-

parametric strategy for estimating and testing spatial anisotropy, based on a

Fourier expansion of the function that describes the directional dependence.

Unlike the q-directional ABE test, this technique does not suffer from mul-

ticollinearity problems when a fine estimation of the directional dependence90

function is required. The approach is flexible and can be easily applied to mod-

els for areal data like spatial autoregressive, spatial error, spatial autoregressive

moving average, conditional autoregressive models, etc. Moreover, many forms

of anisotropy can be detected by estimating a small number of parameters. Last

but not least, the shape, the intensity and the direction of the anisotropies can95

be estimated.

The paper is organized as follows. Section 2 develops a generalization of the

ABE test, focussing on the kind of anisotropies that it can detect, and studying

its power. Section 3 introduces the new methodology and illustrates how the

form of anisotropy can be estimated and tested on both regularly and irregularly100

spaced data. Section 4 illustrates the outcomes of Monte Carlo simulation ex-

periments aimed at assessing the finite-sample properties of the estimators and

the power of the test. In Section 5 the method is used to analyse the soybean

yields in 1430 US counties. Section 6 concludes.
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2. The q-ABE isotropy test105

2.1. Generalisation of the ABE test to q directions

The basic ABE test requires the unrestricted model (2) to be tested against

the restricted model (1). The generalisation of this approach to any number

q ≥ 2 of directions is straightforward, since we can define the q-directional ABE

test as a coefficient restriction test for model

y =

(
q∑
r=1

ρrWr

)
y + ε (6)

which should be compared to

y = ρ

(
q∑
r=1

Wr

)
y + ε , (7)

where ρr (r = 1, . . . , q) are the autoregressive directional parameters andWr (r =

1, . . . , q) are the directional matrices.

Unlike the basic ABE test, the space around each cell is divided into q

sectors which correspond to q portions of the round angle, and can be identified

by means of intervals of the form

Ir ≡
[
ψ +

2π

q
(r − 1), ψ +

2π

q
r

)
,

where r = 1, . . . , q indexes each sector, and ψ ∈ R is the reference direction.

It follows that a neighbour h with Cartesian coordinates ch ∈ R2 of a cell

k with coordinates ck ∈ R2 belongs to the r-th sector if the angle ψkh between

the vector ch − ck and the vector [1, 0]T (that is, the x-axis) belongs to the

r-th interval Ir. This implies that the elements of the r-th directional matrix

(r = 1, . . . , q) are defined as follows:

(Wr)kh ≡ 1{ψkh∈Ir} wkh , (8)

where wkh is the (k, h) element of W and 1{·} is the indicator function.110

The following properties of directional matrices follow from (8):
∑q
r=1Wr = W ,

Wr �Ws = 0 ∈ Rn×n , ∀(r, s) ∈ {1, . . . , q}2 : r 6= s ,
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where � is the element-wise matrix product (also known as Hadamard product,

see e.g. [9]). The former implies that model (6) reduces to (7) when the isotropy

assumption holds (the models are nested); the latter states that each neighbour

of any cell can belong to only one of the q sectors.

2.2. Power of the q-ABE test115

Consider the following generalisation of the spatial process (6):

yk =

n∑
h=1

f(ψkh)wkh yh + εk , (9)

where f : R 7→ R is bounded, has period 2π and is expandable as a Fourier

series. Note that we do not make any assumption about the fundamental (that

is, the minimum-frequency) period of f : we only require that f(ω+ 2π) = f(ω)

for any ω ∈ R. Hence, there may exist a positive constant T < 2π such that

f(ω + T ) = f(ω) for any ω ∈ R. Hereinafter f is referred to as anisotropy120

function.

With this notation, model (9) is isotropic if f(ψkh) does not depend on ψkh

i.e. if f(ψkh) is constant, whereas it corresponds to model (6) if f(ω) = ρQ(ω),

being Q : R 7→ {1, . . . , q} the function that maps angles ω ∈ R to the sector

index {1, . . . , q}.1 It follows that the functional norm ‖f − c0‖22 with c0 ≡125

1
2π

∫ 2π

0
f(ω) dω can be used as a measure of anisotropy, since ‖f − c0‖2 ≥ 0 for

any square-integrable function f , whereas ‖f − c0‖2 = 0 only if f(ω) = c0.

With this notation, (9) corresponds to (6) if f(ω) = ρQ(ω), where Q : R 7→

{1, . . . , q} is the function that maps angles ω ∈ R to the sector index {1, . . . , q},2

1In particular, given an angle ω, the function Q returns the index of the circular sector

where ω is located, provided that there are q sectors with amplitude 2π/q and sector number

one is [ψ,ψ + 2π/q). It can be proved that Q is defined as:

Q(ω) =

⌊
q

(
ω − ψ

2π
−

⌊
ω − ψ

2π

⌋)
+ 1

⌋
,

where b·c is the floor function, and ψ is the reference direction of the q-ABE approximation.
2In particular, given an angle ω, the function Q returns the index of the circular sector

where ω is located, provided that there are q sectors with amplitude 2π/q and sector number
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whereas (9) is isotropic if f(ψkh) does not depend on ψkh i.e. if f(ψkh) is con-130

stant. It follows that the functional norm ‖f−c0‖22 with c0 ≡ 1
2π

∫ 2π

0
f(ω) dω can

be used as a measure of anisotropy, since ‖f−c0‖2 ≥ 0 for any square-integrable

function f , whereas ‖f − c0‖2 = 0 only if f(ω) = c0.

The functional form f in (9) is typically unknown, and the isotropy test aims

at testing whether f is constant (isotropy) or not (anisotropy). Nevertheless,135

when the q-ABE test is performed, the process (9) is approximated by means

of (6), and then the restriction ρ1 = ρ2 = · · · = ρq is tested. It follows that the

hypothesis of isotropy is actually tested for the approximation f̃q,ψ instead of

f , as f̃q,ψ(ω) = ρQ(ω).

If we note that:

ρr =
q

2π

∫
Ir

f(ω) dω , (10)

for any r ∈ {1, . . . , q}, the properties of least squares guarantee that:

‖f̃q,ψ − c0‖22 = ‖f − c0‖22 − ‖f − f̃q,ψ‖
2
2 , (11)

and:

c0 =
1

2π

∫ 2π

0

f̃q,ψ(ω) dω =
1

2π

∫ 2π

0

f(ω) dω .

From Equation (11) it follows that the degree of anisotropy of f is attenuated140

by the q-ABE approximation f̃q,ψ, as ‖f̃q,ψ − c0‖2 < ‖f − c0‖2 unless f = f̃q,ψ,

and such a reduction gets larger as the approximation f̃q,ψ of f worsens. This

affects the power of the q-ABE test, because a small degree of anisotropy in

f̃q,ψ (that is, a small ‖f̃q,ψ − c0‖2) makes it more difficult to reject the null

hypothesis that f̃q,ψ is constant (that is, that ‖f̃q,ψ − c0‖2 = 0) even if f is145

markedly anisotropic (‖f − c0‖2 is large).

Hence, for a given f , it is possible to improve the power of the q-ABE test

by setting a number of directions q and a reference angle ψ that reduce the

one is [ψ,ψ + 2π/q). It can be proved that Q is defined as:

Q(ω) =

⌊
q

(
ω − ψ

2π
−

⌊
ω − ψ

2π

⌋)
+ 1

⌋
,

where b·c is the floor function, and ψ is the reference direction of the q-ABE approximation.
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approximation error ‖f − f̃q,ψ‖2, provided that the effect of the improvement is

not neutralised by the reduction in the degrees of freedom due to the increase150

in the number q of parameters ρ1, . . . ρq.

Theorem 1 provides some results about the effect of q and ψ on the squared

approximation error ‖f̃q,ψ − f‖22. Hereinafter, real functions g : R → R in the

form g(ω) = z einω + z̄ e−inω (with z̄ ∈ C complex conjugate of z ∈ C, and

n ∈ Z), or equivalently g(ω) = a cos(nω) + b sin(nω) (with a, b ∈ R and n ∈ Z)155

are refferred to as harmonics.

Theorem 1. Given a bounded square-integrable anisotropy function f : R→ R

with period 2π and its approximation f̃q,ψ based on a q-ABE model with reference

angle ψ, that such that their Fourier expansions are:

f(ω) =

∞∑
n=−∞

cneinω , f̃q,ψ(ω) =

∞∑
n=−∞

c̃neinω , (12)

with cn, c̃n ∈ C, then:

(a) the contribution of the n-th harmonic to the anisotropy of f in terms of

squared norm ‖f − c0‖22 is |cn|2 + |c−n|2;

(b) the contribution of the n-th harmonic to the squared approximation error160

‖f̃q,ψ − f‖22 is |c̃n − cn|2 + |c̃−n − c−n|2;

(c) for any non-zero integer n (that is, n ∈ Z∗):

c̃n =
i

2πn

q∑
r=1

[
e−in(θ+ 2π

q r)
(

1− ein 2π
q

) q

2π

∫ θ+ 2π
q r

θ+ 2π
q (r−1)

f(s)ds

]
; (13)

(d) limn→±∞ c̃n = 0 ∀ψ ∈ [0, 2π);

(e) limq→∞ c̃n = cn ∀ψ ∈ [0, 2π);

(f) c̃n = 0 when n = kq with k ∈ Z∗.

(g) for any pair (q0, ψ0), it is always possible to construct a sequence of q-165

ABE approximations with parameters {(qn, ψn)} such that f̃qn,ψn
L2

−−→ f as

n→∞;

(h) the effect of the reference direction ψ on |c̃n− cn|2 is null when n = kq (for

any k ∈ Z), it tends to be maximum over [kq, (k + 1)q] for n ≈ (k + 1/2)q

(for any k ∈ Z), and it decreases as n/q diverges;170
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(i) the q-ABE approximation with the smallest number of directions q such that

it does not compensate positive and negative values of the n-th harmonic has

parameters q = 2n and ψ = Arg(cn) (where Arg is the principal argument

of cn; see e.g. [10, ch. 1]);

Proof. See Supplementary Material.175

In order to apply the q-ABE test, it is necessary to set the number of di-

rections q and the reference direction ψ, and Theorem 1 provides some useful

elements for this purpose.

The appropriate values of q and ψ may change depending on the required

accuracy of the approximation of f : if the analysis aims at investigating the180

shape of f , the number of directions q should be larger than when only the

isotropy assumption has to be tested (Point e). In the latter case, the n-th

harmonic can be detected with q ≥ 2n and a proper value of ψ (Point i);3 in

the former case, q should be much larger than 2n, as there is an appreciable

reduction in the squared error when q is close to 6n or larger.4 Nevertheless,185

both solutions have significant drawbacks, as the former leads to a reduction in

the degrees of freedom and increases multicollinearity amongst the regressors,

whereas the latter is useless when n ≈ kq (with k ∈ Z), and it may be unfeasible

when n ≈ (k + 1/2)q (with k ∈ Z) because f is unknown and the optimal ψ

cannot be easily identified.190

Even though Theorem 1 provides some theoretical results about the effect

of q on the contribution of a generic harmonic with angular frequency n to the

overall squared error ‖f̃q,ψ − f‖22, in general the anisotropy function f consists

of several (often countably many) harmonics with various angular frequencies.

It follows that the findings of Theorem 1 can be used to identify the best pair195

3It is worth noting that the condition q ≥ 2n (Point i) identifies the bound defined by

the Nyquist frequency [see e.g. 11], as formalised by the Nyquist-Shannon theorem of signal

theory [see e.g. 12].
4This value resulted from Monte Carlo simulations whose details are available upon request.
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(q, ψ) having a single harmonic as a reference. In the following we call this

harmonic the reference harmonic.

To identify the reference harmonic, we assume that the spectrum of f (that

is, the sequence of Fourier coefficients {cn}) is known. In such a case, it is

possible to identify the harmonics with the largest value of |cn|2 + |c−n|2 and to200

choose amongst them the one with the highest frequency, which can be taken

as the reference harmonic and used to determine q according to Theorem 1.

Obviously, f is and its spectrum are unknown, hence the reference harmonic

cannot be easily identified, but two facts are helpful. First, the q-ABE approxi-

mation implies that, if the reference harmonic and the needed accuracy suggest205

to choose q = m, and a q̃-ABE approximation with q̃ > m is fitted, the results

are still reliable and useful. Nevertheless, there is a reduction of degrees of

freedom and an increase of multicollinearity.

Second, the setup itself should suggest the maximum frequency of relevant

harmonics (that is, the frequency of the reference harmonic), which should allow210

one to determine a reasonable value for q. Consider, for example, data on wheat

trials [see e.g. 13], where eight directions are probably enough in order capture

the relevant anisotropy originating along the four cadinal directions (North,

South, West, East); in this a case the harmonic with angular frequency n = 8

may be assumed as the reference harmonic.215

Once q has been set, a suitable value for ψ needs to be found. Unfortunately,

its optimal value depends on the unknown function f . This problem can be

tackled in two ways: by choosing a larger q, or by fitting several q-ABE models

with various ψ ∈ [0, 2π/q) and choosing the result with the highest p-value as

the ultimate ψ. The former solution relies on Point (e) of Theorem 1, but may220

lead to a substantial absorption of degrees of freedom and to an unbearable

multicollinearity. Moreover, there may be some computational difficulties in

handling a large number of directional matrices (W1, . . . ,Wq ∈ Rn×n) if the

sample size n is large. The latter solution follows from Point (h) of Theorem 1,

but may be unfeasible because of computational constraints deriving from fitting225

several q-ABE models.
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Two more remarks about Theorem 1 are worth of consideration. First,

the practical meaning of Points (d) and (e) has to do with the ability of the

q-ABE test in capturing the anisotropy originating from a given harmonic. In

particular, Point (d) implies that high-frequency components of f (that is, those230

with angular frequency n � q) are poorly approximated by f̃q,ψ, regardless of

the value of the reference angle ψ. On the other hand, Point (e) implies that the

low-frequency components of f (those with angular frequency n � q) are well

approximated by f̃q,ψ, whatever is the value of the reference angle ψ. Second,

the aforementioned multicollinearity arising when q grows stems form the fact235

that the quantities Wry (fot r = 1, . . . , q) in (6) are increasingly correlated,

and this happens when f is nearly constant over several intervals in [0, 2π).

More precisely, it can be shown that the multicollinearity amongst Wry (for

r = 1, . . . , q) increases when the probability mass of the random variable f(U),

with U ∼ U(0, 2π), concentrates on a finite number p of points and q exceeds p.240

3. A new isotropy test

The problem of finding the optimal values of q and ψ is bypassed by the

isotropy test we are going to propose in this section. This new test may be in-

terpreted as a ∞-directional ABE test where the reference angle ψ is no longer

necessary, and one estimates the Fourier coefficients of f instead of the direc-245

tional autoregressive parameters ρrs. In the following we will refer to the new

test as to the FD-test, as it is developed in the frequency domain.

The difficulties discussed in the previous section arise from the discretisation

of the interval [0, 2π), and the related necessity of defining two partitioning

parameters (q and ψ) and integrating the function f . These drawbacks of the250

q-directional ABE test are wiped out when q →∞.

When q →∞, there is an infinite number of autoregressive parameters ρrs,

whose estimation is therefore impossible. However, it is possible to estimate

the Fourier expansion of f : although the Fourier coefficients are infinite too,

usually just a few of them are sufficient to detect anisotropies. For example,255

12



the harmonic with angular frequency m is fully identified by only two Fourier

coefficients (cn and c−n), while the q-ABE test requires q ≥ 2m (Point i of

Theorem 1), that is, at least 2m coefficients have to be estimated in order to

detect the same harmonic.

A further advantage of the FD-test is related to the orthogonality of the260

harmonics in a Fourier series. This property entails that the accuracy of the ap-

proximation of f can be improved without increasing multicollinearity amongst

the regressors. On the contrary, in the q-dimensional ABE test, multicollinearity

increases as q gets larger.

The new testing approach requires to restate the Fourier expansion of f

in (12) as follows:

f(ω) = ρ+

∞∑
m=1

[ρcm cos(mω) + ρsm sin(mω)] , (14)

where ρ ≡ c0, ρcm ≡ (cn + c−n) and ρsm ≡ i(cn − c−n). It follows that (9) can

be rewritten as:

yk = ρ

n∑
h=1

wkhyh+

+

∞∑
m=1

(
ρcm

n∑
h=1

cos(mψkh)wkhyh + ρsm

n∑
h=1

sin(mψkh)wkhyh

)
+ εk ,

or, in matrix notation,

y =

(
ρW +

∞∑
m=1

[ρcmAm �W + ρsmBm �W ]

)
y + ε , (15)

where (Am)kh ≡ cos(mψkh), (Bm)kh ≡ sin(mψkh), and the matrix of angles

(Ψ)kh ≡ ψkh can be computed as follows:

Ψ = Arg (ιn z
T − z ιTn) ,

where z ≡ x+ iy, ιn is an n-vector of ones, Arg(·) is the element-wise principal265

argument, whereas x ∈ Rn and y ∈ Rn are the components of the Cartesian

coordinates of the cell centroids.
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From (15) it follows that the isotropy condition is:

ρc1 = ρc2 = · · · = ρs1 = ρs2 = · · · = 0 , (16)

so that (15) is isotropic when f does not have any harmonic, i.e. it is constant.

If, in addition to (16), we require that ρ = 0, we can test the hypothesis of no

spatial correlation. As is discussed below, specification (15) potentially allows270

one to model, estimate, and test any form of anisotropy based on any function

f : R→ R of period 2π expandable in a Fourier series.

As only a finite number of harmonics can be estimated and tested, only some

terms of the sum in (15) can be included into the model to be fitted. Nonetheless,

a very small number of harmonics can provide an accurate approximation of275

the functions f relevant for applications, as the high-frequency components of f

typically have a marginal role in defining the form of anisotropy. As of this issue,

the following example considers a commonly encountered anisotropy structure.

Example 2. The function

f(ω) = 0.1 + α e−2(ω−κ)2 , (17)

plotted in Figure 1 for various values of α and for κ = π/2, may be suitable for

describing the North-South asymmetries existing among regions or administra-280

tive units in a country.

As Figure 1 shows, (17) with κ = π/2 defines a spatial dependence which is

uniform in all directions except for the North (ω = π/2): as ω gets closer to π/2,

the spatial dependence becomes stronger (when α > 0), weaker (−0.1 < α < 0),

or negative (α < −0.1). The parameters α and κ respectively determine the285

strength and the direction of the anisotropy.

Figure 2 shows the Fourier approximations of f for α = 0.1 truncated at

the second and third term. The function is reasonably well approximated by a

Fourier expansion truncated at the second term, as can be seen from the Fourier

coefficients of f displayed in Figure 3: the first two harmonics explain most of290

the variability of f , and only a negligible improvement is achieved by including

also the third and fourth harmonic.
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Figure 1: The function (17) for κ = π/2

and α equal to (from top to bottom) 0.85,

0.4, 0.15, 0, −0.05, −0.35, −0.6, −1.05.
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Figure 2: Function (17) with κ = π/2

and α = 0.1 (solid line) and its Fourier se-

ries truncated at the second term (dashed

line) and at the third term (dotted line).

Figure 4 shows the Fourier coefficients of the step function:

f(ω) = 0.1 + 0.1 · 1{ω∈(π/4, 3π/4)} , (18)

whose shape is rather different from (17) with κ = π/2. It is worth noting that

also in this case the first two/three harmonics explain most of the variability

of (18).295

The harmonics of f may be given a precise interpretation in terms of the

shape of the anisotropy of a process, especially when there are few components.

In general, the harmonic with angular frequency m describes a stronger (or

weaker) spatial dependence along m directions equally spaced on the round an-

gle. Consider, for example, the harmonic − cos(2ω) illustrated in Figure 5a.300

In this case the harmonic describes a positive and symmetric spatial depen-

dence along the direction identified by angles π/2 (North) and 3π/2 (South),

and a negative spatial dependence along direction 0 (East) and π (West). In

other words, the effect of the harmonic − cos(2ω) consists in (symmetrically)

increasing the positive spatial dependence along the North-South direction, and305

decreasing (or making negative) the spatial dependence along the West-East

direction. Obviously, the overall form of the anisotropy depends also on the
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Figure 3: Fourier coefficients ρ, ρc1,

. . . , ρc10 (upper panel) and ρs1, . . . , ρs10

(lower panel) of the function (17) for κ =

π/2 and α = 0.1.
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Figure 4: Fourier coefficients ρ, ρc1,

. . . , ρc10 (upper panel) and ρs1, . . . , ρs10

(lower panel) of the function (18).

other harmonics of f , the constant term and their relative amplitudes.

It is possible to describe a relevant class of anisotropies by means of only

one or two harmonics, as hinted in Example 2. Figure 5b displays the function

f(ω) = 0.1 + 0.025 sinω − 0.05 cos(2ω) ,

which consists of two harmonics (with angular frequencies m = 1 and m = 2

respectively) and a constant term. The spatial dependence is weak along the310

West-East direction (ω ≈ 0 and ω ≈ π), while it gets stronger and asymmetric

along the North-South direction (ω ≈ π/2 and ω ≈ 3π/2). This shape of f may

be useful for describing a spatial dependence that is both stronger (or weaker)

and asymmetric along one direction.

The specification of model (15) requires some adaptations when the obser-315

vations are regularly spaced. If this is the case, the set of values taken by ψkh

is regularly spaced too, and some components of f may be redundant or un-

dersampled [i.e. there is aliasing; see e.g. 11]. If these components of f are not

removed, the model is not identifiable from a statistical point of view. The

following example discusses this issue when the reference space is a rectangular320

grid.
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(a) f(ω) = − cos 2ω.
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(b) f(ω) = 0.1 + 0.025 sinω − 0.05 cos 2ω.

Figure 5: The functions f associated to a single harmonic (Figure 5a), and to a

superposition of two harmonics with angular frequencies m = 1 and m = 2 (Figure 5b).

Example 3. Consider a square grid Gn. We have ψkh ∈ {0, π/2, π, 3π/2} for

all ψkh ∈ Gn, hence the angular sampling frequency is 4. In this case, accord-

ing to the Nyquist-Shannon theorem, only harmonics with angular frequency 1

and 2 should be considered. Moreover, the component sin(2ω) is useless, since

sin(2ψkh) = 0 for any (k, h) ∈ Gn. Thus, the symmetric anisotropies are cap-

tured only by cos(2ω), while the asymmetries originate from sinω (along the

North-Sourth direction) and cosω (along the East-West direction). Hence, (15)

becomes:

y = (ρW + ρc1A1 �W + ρs1B1 �W + ρc2A2 �W ) y + ε .

The test illustrated in this section can be applied to hypotheses different

from (16). As pointed out above, the restriction ρ = 0 along with (16) defines the

hypothesis of no spatial correlation. A test based on these two restrictions may325

be more powerful in detecting spatial dependence than a test for the restriction

ρ = 0 alone. This happens whenever f has the form (14) with ρ = 0 and some

ρcm or ρsm different from zero.

In some cases, it may be necessary to test for the presence of a specific form

17



of anisotropy, or of asymmetries, or of specific directions in the anisotropy of f .330

Such formal tests may be interesting in themselves, or may be necessary when

the data generating process has to be consistent with certain properties in order

to perform further analyses or to apply particular estimation techniques. This

is the case, for example, of unilateral approximations [14], which can be used

for fitting spatial models defined on a rectangular lattice only if the underlying335

process is symmetric. Hypotheses of this kind can be easily translated in terms

of restrictions on the coefficients of the Fourier expansion of f and tested like

any other parameter restriction.

It is worth noting that the possibility of testing specific forms of anisotropy

represents a strong advantage of this approach with respect to other isotropy340

tests such as the q-directional ABE test or the [7] test, which is implicitly

based on a specification of (15) truncated at the first term (that is, only the

fundamental harmonic with unit angular frequency and the constant term are

considered).

In the present section, the reference data generating process is (1), which345

is referred to as simultaneous autoregressive in the spatial econometric litera-

ture [see e.g. 2]. However, our approach can be easily adapted to other economet-

ric models for areal data like spatial error, Durbin, matrix exponential spatial

specification [see e.g., 2, 15], conditional autoregressive [see e.g. 16, 3], as well

as models based on multiple weight matrices like spatial autocorrelation and350

spatial autoregressive moving average models [2].

4. Simulation Study

In order to study the power of the test in finite samples and compare it to

the power of the ABE test, we perform two Monte Carlo simulation experiments

on regular and irregular grids.355
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4.1. Regular grid

We consider a spatial process on a 20× 20 square lattice defined as follows:
y = (ρ1W1 + ρ2W2)y +Xβ + u

u ∼ Nn(0, σ2I)

, (19)

where y ∈ Rn, X ∈ Rn, β = 1, σ2 = 1, n = 400. The directional weight matrices

W1 andW2 are defined asW1 ≡ C1�W andW2 ≡ C2�W , where C1 ∈ {0, 1}n×n

and C2 ∈ {0, 1}n×n are the contiguity matrices of neighbours along the vertical

and horizontal direction respectively. The matrix W ∈ Rn×n results from a360

row-standardization of a weight matrix based on the rook neighbourhood rule,

and its non-zero elements are independently drawn from the beta distribution

B(2, 0.8). The regressor X consists of n standard normal random variables.

We employ several values of ρ1 and ρ2 (ρ1, ρ2 = −0.9,−0.8, . . . , 0, . . . , 0.8, 0.9

and |ρ1| + |ρ2| < 1; see Table SM.1 of the supplementary material). For each

pair (ρ1, ρ2) we simulate 1000 models and test the isotropy hypothesis (ρ1 = ρ2).

All the models share the same directional weight matrices (W1 and W2) and the

same regressor X. The unrestricted model is based on f(ω) = ρ + ρc2 cos(2ω),

so that the fitted model is:

y = ρWy + ρc2(A2 �W )y +Xβ + ε .

The isotropy hypothesis (ρc2 = 0) is tested by means of the likelihood ratio

test at a significance level of 5%. Complete results are shown in Table SM.1 of365

the supplementary material, while Figure 6 displays the empirical power as a

function of |ρ1 − ρ2|.

It is worth noting that, in this setting, the 2-ABE test should not be able

to detect anisotropy, regardless of the value of ψ, because for any ψ ∈ [0, π)

there is a perfect compensation amongst coefficients of neighbours belonging to370

the same half-plane (the condition n = kq with k = 1 of Theorem 1, Point (f)

is verified). It follows that, when q = 2, anisotropy of model (19) cannot be

detected by means of the ABE test.
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Figure 6: Empirical power of the

FD-test (level of significance: 5%) for

model (19) as a function of |ρ1 − ρ2|.
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Figure 7: Empirical power of the 2-ABE

isotropy test (level of significance: 5%) for

σ = 1 as a function of α for ψ = 0 (solid

line), ψ = π/6 (dot-dashed line), ψ = π/3

(dashed line), and ψ = π/2 (dotted line).

As Figure 6 clearly shows, the power of the new test sharply increases as

the absolute difference between ρ1 and ρ2 exceeds 0.1, and it basically equals 1375

when |ρ1 − ρ2| is larger than 0.50.

4.2. Irregular grid

The simulations in this section are based on data generating process (9) with

the addition of regressors:

yk =

n∑
h=1

f(ψkh)wkh yh + xT

kβ + εk . (20)

We include two regressors with coefficients β = ι2, and a regressor matrix X =

[ιn, X1] ∈ Rn×2, where X1 is a vector of standard normal random variables.

The grid Gn consists of the unit square [0, 1]2 split into 400 irregular convex

polygons obtained by means of a Voronoi tessellation generated by 400 points

drawn from the bivariate uniform distribution on [0, 1]2. The weight matrix

W results from row-standardization of a weight matrix W̄ built according to

the contiguity criterion, and whose non-zero elements equal the areas of the
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Figure 8: Empirical power of the 4-ABE

isotropy test (level of significance: 5%) for

σ = 1 as a function of α for ψ = 0 (solid

line), ψ = π/6 (dot-dashed line), ψ = π/3

(dotted line).
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Figure 9: Empirical power of the 2-ABE

test with ψ = 0 (solid line), the 4-ABE

test with ψ = π/3 (dotted line), the FD

test with ν = 2 (dashed line), and the FD

test with ν = 3 (dot-dashed line) for σ = 1

as a function of α. All tests are performed

at a 5% significance level.

neighbouring cells. That is, the (k, h) element of W̄ is defined as:

(W̄ )kh ≡

Ah if h is a neighbour of k

0 otherwise

,

where Ah is the area of cell h.

Hereinafter, as FD-model we consider model (15) with the summation trun-

cated at the ν-th term; that is, only the first ν harmonics of f are included and380

fitted. The function f is of type (17), and the simulation has been performed for

several values of α, provided that the invertibility condition is satisfied, that is

|f(ω)| < 1 for any ω ∈ [0, 2π). The innovation {εst} is an iid Gaussian process

with standard deviation σ = 1, 1/2, 1/4. For each value of α, σ and ν, 500

models have been simulated, fitted, and tested by means of the likelihood ratio385

test, with a significance level equal to 5%. All the models with the same α, σ

and ν share the matrix of regressors X and the weight matrix W . The grid Gn
is shared too.
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The isotropy hypothesis is tested by means of the 2-ABE and the 4-ABE test

for various values of the reference direction and by means of the FD-test with390

two and three harmonics (ν = 2 and ν = 3 respectively). As for the 2-ABE test,

the reference directions ψ should belong to [0, π), but we employ four equally-

spaced directions in [0, π/2], as the power function is symmetric about π/2. In

the 4-ABE test, the reference directions ψ should lie in [0, π/2), and we use three

reference directions within this interval. In this case we consider two directions395

(π/6 and π/3), which are symmetrically separated from π/4, to check whether

the symmetry of the power function is confirmed by the simulation experiments.

Tables SM.2-SM.4 report the complete results, whilst Figures 7-9 sum up

the most meaningful evidence. According to (10) and the analysis illustrated

in Example 1 and in Section 2, given the anisotropy function (17), the power of400

the 2-ABE test should equal the significance level when ψ = κ, whilst it reaches

the maximum for ψ = κ± π/2.

The outcomes are consistent with the theory (points h and i of Theorem 1),

as the empirical power tends to decrease as ψ increases from 0 (κ−π/2) to π/2

(κ), for any value of σ (see Figure 7). The power of the 4-ABE test is minimum405

for ψ = κ± π/2 and maximum for ψ = κ± π/4. Hence, if κ = π/2, the power

is minimum when ψ = 0, maximum when κ = π/4, monotonically increasing in

[0, π/4], and symmetric about ψ = π/4.

The simulation results are consistent with the theoretical results for any σ,

as the empirical power for ψ = π/6 and ψ = π/3 is higher than the empirical410

power for ψ = 0. Moreover, the symmetry is confirmed by the fact that the

power of the 4-ABE test with ψ = π/6 is not statistically different from the

empirical power recorded for π/3 (see also Figure 8). As expected, the power of

the FD-test is higher than the power of the ABE tests both in case of two and

three harmonic specifications (see Figure 9).415

The power of the FD-test with two harmonics (ν = 2) is not statistically

different from the FD-test specification with three harmonics (ν = 3). In light

of Figures 2 and 3, this is not surprising.
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5. Application: isotropy in US soybean yields

The method illustrated in this paper allows one to both test and estimate

the form of anisotropy that characterises a given spatial process. The spatial

autoregressive model (15) can be generalised by adding a matrix of regressors

X ∈ Rn×k and restated as:y = (FΨ �W )y +Xβ + ε

ε ∼ Nn(0, σ2I)

, (21)

where β ∈ Rk, Ψ ∈ Rn×n is the matrix of angles such that (Ψ)kh = ψkh, and420

FΨ ∈ Rn×n is the matrix with elements (FΨ)kh ≡ f(ψkh).

It can be verified that:

y ∼ Nn

(
(I − FΨ �W )−1Xβ, σ2

[
(I − FΨ �W )T(I − FΨ �W )

]−1
)
. (22)

A precise and reliable estimation of the correlation matrix is particularly

important in agriculture. This issue has been considered in [17], where the

corn yields in Iowa between 1926 and 2007 are analysed at a county level. By

means of an approach similar to the basic ABE test, the authors find that the425

spatial dependence is not independent of the direction, and ascertain that this

would have a sensible impact on the risk assessment outcomes of the insurance

companies.

In this section, we apply the anisotropy test to data on soybean yields for

1430 counties in the United States. The data are provided by the National Agri-430

cultural Statistics Service (NASS) of the United States Department of Agricul-

ture (USDA), and result from the survey on soybean yields in 2014. Soybean

yields are measured in bushels per acre5 as the ratio between the total produc-

5The US bushel (symbol bu) is a unit of measure of volumes. However, in case of dry agri-

cultural products, it is used as a measure of weight. For soybean, the United States Depart-

ment of Agriculture adopts the following conversion for statistical purposes: 1 bu = 27.2 kg.

On the other hand, 1 acre (symbol ac) equals 4046.873 m2, so that 1 bu/ac ≈ 67.212 388 kg/ha.

All this information is taken from [18].
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Figure 10: Map of the counties in the Contiguous United States coloured by soybean

yields level in 2014 (counties out of the sample are light-gray coloured). The white

borders identifies the boundaries of the hydrological basins.

tion in 2014 (first plus successive harvests) and the whole (irrigated and non

irrigated) harvested area.435

We model the logarithm of the soybean yields by means of the SAR model (21),

where the weight matrix W results from a row-standardisation of a contiguous

binary matrix B ∈ {0, 1}n×n (where n = 1430). As regressors, we use nine

dummy variables for each hydrographic basin where the counties in the sample

are located. These variables aim at capturing large-scale spatial effects such as440

the differences in climate and hydrological conditions of the soil.

Figure 10 shows the location of the 1430 counties along with the bound-

aries of the hydrographic basins, as determined by the National Operational

Hydrologic Remote Sensing Center (NOHRSC) of the National Oceanic and

Atmospheric Administration (NOAA). We assign the counties to hydrographic445

basins according to the position of their centroids.
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ν = 0 ν = 1 ν = 2 ν = 3 ν = 4 ν = 5 ν = 6

ρ̂
0.4194 0.4190 0.4192 0.4200 0.4189 0.4190 0.4186
[0.0165] [0.0165] [0.0165] [0.0165] [0.0165] [0.0164] [0.0165]

*** *** *** *** *** *** ***

ρ̂c1
– 0.0071 0.0072 0.0062 0.0064 0.0065 0.0065
– [0.0041] [0.0041] [0.0041] [0.0041] [0.0041] [0.0041]

. .

ρ̂c2
– – -0.0030 -0.0037 -0.0041 -0.0041 -0.0045
– – [0.0045] [0.0045] [0.0046] [0.0046] [0.0046]

ρ̂c3
– – – 0.0071 0.0071 0.0071 0.0072
– – – [0.0046] [0.0046] [0.0046] [0.0046]

ρ̂c4
– – – – 0.0037 0.0037 0.0037
– – – – [0.0034] [0.0034] [0.0035]

ρ̂c5
– – – – – 0.0029 0.0029
– – – – – [0.0033] [0.0033]

ρ̂c6
– – – – – – 0.0007
– – – – – – [0.0029]

ρ̂s1
– 0.0071 0.0066 0.0055 0.0050 0.0050 0.0054
– [0.0044] [0.0044] [0.0044] [0.0044] [0.0044] [0.0044]

ρ̂s2
– – 0.0063 0.0055 0.0049 0.0048 0.0054
– – [0.0049] [0.0049] [0.0049] [0.0049] [0.0049]

ρ̂s3
– – – 0.0094 0.0093 0.0090 0.0089
– – – [0.0044] [0.0044] [0.0045] [0.0045]

* * * *

ρ̂s4
– – – – 0.0060 0.0059 0.0066
– – – – [0.0040] [0.0040] [0.0041]

ρ̂s5
– – – – – -0.0004 -0.0003
– – – – – [0.0032] [0.0032]

ρ̂s6
– – – – – – 0.0048
– – – – – – [0.0031]

loglik 603.31 605.85 606.94 610.58 612.37 612.77 613.95

p-value – 0.07899 0.12278 0.02408 0.02033 0.04119 0.04626

Table 1: Estimated coefficients of the regressions for testing isotropy with various

numbers of harmonics (ν = 0, . . . 6). The table only reports the coefficients of the

components of f , their standard errors (in brackets), and the level of significance (“ . ”

for p-values between 0.1 and 0.05, “ * ” for p-values between 0.05 and 0.01, “ ** ” for

p-values between 0.01 and 0.001, “ *** ” for p-values smaller than 0.001, and nothing

when the p-values are higher than 0.1). All the coefficients of the dummy variables

have a p-value lower than 0.001 for all models. At the bottom of the table we report

the maximized log-likelihood of the estimated model and the p-value of the anisotropy

test.

We carry out the FD isotropy testing procedure by including various numbers

of harmonics (from a minimum of one to a maximum of six). The models are

fitted via maximum likelhood, whereas parameter restrictions are tested using
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the log-likelihood ratio test; the results are summarized in Table 1. The data450

have a slight form of anisotropy, significant at the 5% level. The only singularly

significant harmonic at the 5% level is the third one.

q ψ log-likelihood p-value

2 0 606.01 0.0202∗

2 π/2 604.33 0.1521

3 0 607.53 0.0147∗

3 π/6 605.05 0.1758

3 π/3 604.27 0.3825

6 0 609.11 0.0406∗

6 π/12 605.82 0.0808·
6 π/6 606.72 0.2349

Table 2: Maximised log-likelihood of q-ABE approximations on soybeans yield data

for various specifications (q, ψ). The table reports also the p-values of the log-likelihood

ratio test on the isotropy assumption, and symbols about the level of significance (“ . ”

for p-values between 0.1 and 0.05, “ * ” for p-values between 0.05 and 0.01, “ ** ” for

p-values between 0.01 and 0.001, “ *** ” for p-values smaller than 0.001, and nothing

when the p-values are higher than 0.1). All the coefficients of the dummy variables

have a p-value lower than 0.001 for all models. All fitted models included the same

regressors as those of Table 1.

The q-ABE isotropy test with various specifications (q, ψ) and the same

regressors on hydrographic basins has been performed as well; the results are

summarised in Table 2, where p-values of the log-likelihood ratio test on the455

isotropy hypothesis are reported. The results in Table 2 confirm the problems

of the q-ABE test discussed in Section 2, in particular, it is apparent the marked

sensitivity of the p-value with respect to the reference direction ψ: for any value

of q = 2, 3, 6 there is a specification of the q-ABE test where evidence against

the isotropy assumption is found, however, a little variation of ψ may strongly460

increase the p-value of the test, suggesting a clear evidence in favour of the

isotropy hypothesis.
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Figure 11: The function f (solid line) of the SAR model on soybean yields estimated

by means of the first six harmonics in Cartesian (Figure 11a) and polar (Figure 11b)

coordinates. The shaded area represents the 95% confidence interval on f . The dashed

line is the mean value of f .

The estimates of the harmonic coefficients in Table 1 are very stable amongst

the various specifications of the FD test both in terms of point estimates and

standard errors. This results form the orthogonality property of harmonics465

based on Fourier series, and proves that there is no multi-collinearity amongst

the vectors A1�Wy, . . . , Aν�Wy, B1�Wy, . . . , Bν�Wy in (15). This property

is particularly important from an applicative point of view, as it permits a

reliable estimate of the harmonic coefficients of f included in the fitted model

even if some other relevant harmonics are excluded.470

The shape of the anisotropy estimated by means of the first six harmonics is

plotted in Figures 11a and 11b. It can be noticed that the spatial dependence is

slightly stronger along the East-North-East (ω ≈ π/8), North-West (ω ≈ 3π/4),

and South (ω ≈ 3π/2) directions, whilst it is weaker along the West (ω ≈ π),

and the South-East (ω ≈ 7π/4) directions. The function f estimated with a475

smaller number of harmonics (ν < 6) is rather close to that plotted in Figure 11,

although some peaks are less pronounced.

The analysis suggests that there is anisotropy in the soybean yields in the US
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counties in 2014. Although the directional variation in the spatial dependence

is small, this may have a remarkable effect on the systemic risk of a portfolio of480

insurance policies or derivatives on crop yields. This happens because, according

to (22), the anisotropy function f affects the covariance matrix of the crop yield,

and correlations amongst assets of a financial portfolio heavily affect the profit

and loss distribution, in particular the probability of extremal events [see e.g.

19].485

6. Conclusion

In this paper a generalisation of the ABE isotropy test [1] is proposed and

its theoretical properties are analysed in order to study how its various specifi-

cations can affect the power of the test.

The application and theoretical drawbacks of the q-ABE test are overcome490

by the frequency-domain test proposed in this paper, which permits to test

and estimate the shape of the anisotropy. The semi-parametric nature of this

method makes it applicable to various models for areal data based on weight

matrices, while the algebraic properties of the Fourier series minimise the mul-

ticollinearity problems possibly originated by an accurate specification of the495

anisotropy function f . The Monte Carlo simulations have shown that the FD

test outperform the q-ABE test in terms of power. Moreover, the FD test is

easier to implement than the q-ABE test.

The test relies on the assumption of homogeneity of the data generating

process, and this may be, in some cases, a rather strong assumption. The500

generalisation of the test to non-homogeneous spatial processes is a subject

that deserves further research.

SUPPLEMENTARY MATERIAL

Proofs and complete results of Monte Carlo simulations. Proof of The-

orem 1 and tables with complete results of Monte Carlo simulations on505

regular and irregular grids (see Section 4). (pdf)
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