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Recent advances in theory, algorithms, and computational power make it possible to solve complex, optimal control
problems both for off-line and on-line industrial applications. This paper starts by reviewing the technical details of the
solution methods pertaining to three general categories: dynamic programming, indirect methods, and direct methods.
With the aid of a demonstration example, the advantages and disadvantages of each method are discussed, along with a
brief review of available software. The main result that emerges is the indirect method being numerically competitive
with the performance of direct ones based on non-linear programming solvers and interior point algorithms. The sec-
ond part of the paper introduces an indirect method based on the Pontryagin Minimum Principle (PMP). It also presents
a detailed procedure and software tools (named PINS) to formulate the problem, automatically generate the C++ code,
and eventually obtain a numerical solution for several optimal control problems of practical relevance. The application
of PMP relates to the analytical derivation of necessary conditions for optimality. This aspect—often regarded in the
literature as a drawback—is here exploited to build a robust yet efficient numerical method that formally eliminates
the controls from the resulting Boundary Value Problem, thus gaining robustness and a high convergence rate. The
elimination of the control is obtained either via their explicit formulation function of state and Lagrange multipliers—
when possible—or via an iterative numerical solution. The paper closes presenting a minimum time manoeuvre of a
car using a fairly complex vehicle model which also includes tyre saturation.
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1. Introduction

Complex practical optimal control problems (OCPs) both
for off-line and on-line applications can be solved thanks to
recent advances in theory, the availability of more efficient
optimisation and root finding algorithms, and the increase of
hardware computational power. Solution methods for opti-
mal control (OC) problems can be categorised in three differ-
ent groups: Dynamic programming, indirect Methods, and
direct Methods. However, more than 90% of software avail-
able and solution schemes proposed in the literature are based
on direct methods that—in the essence—transform the OC
into a large, non-linear optimisation problem (or Non Linear
Programming, NLP). In particular pseudo-spectral state vari-
ables and controls approximation is recently wide spreading
in many software implementation. One of the reason of direct
approaches to be so popular is the availability of many ro-
bust and ready-to-use optimisation algorithms (NLP solvers),
which are software that can easily handle different types of
inequality constraints and do not require direct calculation of
co-states (or adjoint) equations as indirect methods do. In
the literature the number of review articles about numerical
methods to solve optimal control problems is wide and the
most recents (1) (2) largely cover the numerical methods pertain-
ing to the direct and indirect approaches with discussion on
numerical issues. From these, more or less openly, it emerges
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that the indirect methods are not computationally efficient as
the indirect ones and less appealing due to the need of more
equations manipulation especially to derive the co-state equa-
tions.

Despite the general opinion emerging from the literature,
the authors of this paper believe that robust and fast con-
verging algorithms based on indirect method are yet possi-
ble, with the advantage of providing solutions with better ac-
curacy and of being suitable for symbolic manipulation to
obtain analytical or semi-analytical solutions.

Therefore, we think that the previous review articles could
be complemented with more insight on indirect methods and
comparisons with direct ones to understand if there is a sub-
stantial difference between the two families of methods both
in term of type of problem which is being solved and the ac-
curacy of the solution obtained.

With this goals in mind the contribution of the paper is two
fold. First it is not a pure description of the theory related
to the different solution methods, as it is done in many re-
view papers, but it also presents and discusses the numerical
implementations by means of a demonstration example and
providing the source code for further analysis of interested
readers. The second contribution is an in-depth analysis of
an indirect approach which is most of the time overlooked
because of historical reasons and essentially the lack of ro-
bust and fast root-finding solvers.

In this work it is shown that the indirect method is flexible,
fast and accurate which also provides, differently than NLP,
the possibility to find analytical solutions.
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The work is essentially structured into two parts. The first
reviews the three different families of solution methods of
OCPs and compares an implementation of each of them with
a simple, yet significative, optimal control problem. Solution
quality and performance results are discussed together with
other implementation issues.

The second part of the paper discusses the details of a pro-
posed indirect method that was successfully applied to many
industrial engineering problems.

2. Optimal Control Problem Definition

An optimal control problem is a constrained optimisation
problem with a dynamical system as constraint. Let us con-
sider the following initial value problem (IVP):

ẋ(t) = f (x(t), u(t), t) , x(0) = x0, t ∈ [0, T ]

· · · · · · · · · · · · · · · · · · · · (1)

where x(t) ∈ R
n are the states of the dynamical system

and u(t) ∈ U ⊂ R
m are the controls. If the control vec-

tor u(t) is known and sufficiently regular (e.g. piecewise
continuous) and f (x, u, t) is regular enough as a function
of (x, u, t) (e.g. continuous in (x, u, t), and Lipschitz in x)
then IVP has an unique solution that depends on the control
history u(t). In more complex problems, the initial condi-
tion x(0) = x0 may be replaced with a general boundary
condition b(x(0), x(T )) = 0. Furthermore, path constraints
c(x(t), u(t), t) ≥ 0 may also be present. However, here, to
simplify the explanation and comparison among the three
families of solution methods for OCP, the path constraints are
here omitted and introduced later on in the article in Sect. 5.

Let us now define a feasible control a control history ū(t) ∈
U, which determines a function x̄(t) (i.e. a history of states)
for the dynamical system (1) that satisfies the set of boundary
conditions, and—when defined—the path constraints. The
pair (ū(t), x̄(t)) is called feasible manoeuvre.

Now, lets introduce a performance functional index:

J[u] =M(x(T )) +
∫ T

0
�(x(t), u(t), t) dt · · · · · · · · · · · (2)

This functional J[u] evaluates to a scalar, where function x(t)
is the solution of the ODE (1) given a control manoeuvre ū.

The termM(·) is called final cost or Mayer’s term, while
�(·) is named running cost or Lagrange’s term.

Under these definitions, the solution of an optimal control
problem is a feasible manoeuvre, or pair of control history
u and state x, which minimises the performance index J[u]
when the dynamical system transits from the initial state to
the final one satisfying the path constraints.

3. Methods to Solve Optimal Control Problems

This section summaries the available methods to solve op-
timal control problems, also providing references to the avail-
able software. It is intended to provide a sufficiently wide
and clear overview of the differences among the available
formulations of optimal control problems and solution tech-
niques, rather than being a thoroughly report of the state-of-
the-art. For a more extensive survey of numerical methods
for optimal control see (1) (2). In short OCPs solution meth-
ods can be classified in three main families: dynamic pro-
gramming, indirect method based on calculus of variations

and direct methods. Figure 1 is one possible visualisation
of both OCPs formulations and solution methods. Each of
these three groups are discussed in details and an example of
implementation for the demonstration problem is provided.
Comparisons, numerical issues and theoretical discussion are
presented based on the result obtained.
3.1 Dynamic Programming Dynamic programming

(DP) methodology was developed in the fifties and sixties
of the 19th century, most prominently by Richard Bellman (3).
Dynamic programming can be easily applied to systems hav-
ing discrete states and control spaces. In case of continuous
time, DP for (1) with performance index (2) and final con-
dition b(x(T ), T ) = 0, can be formulated by introducing the
function describing the cost-to-go to the end when starting at
a given state:

V(y, t) = min
u

{
M(x(T ; u)) +

∫ T

t
�(x(s; u), u(s), s) ds

}
· · · · · · · · · · · · · · · · · · · · (3)

where function x(s; u) is the solution of the ODE (1) in the
range [t, T ] with initial data y and feasible control u(s). Ob-
viously V(x0, 0) is equal to the performance index J[u] when
u is the optimal control of the problem while V(x, T ) =
M(x, T ) for all x. Function V(x, t) is called value function
and satisfies a partial differential equation in the state space,
the Hamilton-Jacobi-Bellman (HJB) equation:

∂

∂t
V(x, t) +min

u∈U
H(x,∇xV(x, t), u, t) = 0, t ∈ (0, T )

· · · · · · · · · · · · · · · · · · · · (4)

V(x, T ) =M(x), x ∈ Rn

where the function H is the Hamiltonian:

H(x, λ, u, t) = �(x, u, t) + λ · f (x, u, t). · · · · · · · · · · · · (5)

The principle of optimality states that each sub-trajectory of
an optimal trajectory is an optimal trajectory too. This means
that Eq. (4) can be solved over a shorter horizon starting from
the end V(x, T ) = M(x) and recursively find the complete
solution proceeding backwards. Having solved the PDE (4),
the optimal feedback control ufb for the state x at time t is
then obtained from:

ufb(x, t) = arg min
u∈U

H(x,∇xV(x, t), u, t). · · · · · · · · · · · (6)

The optimal solution is obtained integrating (1) with the op-
timal feedback control (6), i.e.

ẋ(t) = f (x(t), ufb(x, t), t) , x(0) = x0, t ∈ [0, T ]

· · · · · · · · · · · · · · · · · · · · (7)

3.1.1 Applicability of DP The construction of the
optimal feedback control (6) depends on the availability of
the value function V(x, t). Unless exceptional cases where
value function is analytically computable, the function V(x, t)
must be approximated using numerical technique. For exam-
ple using function expansion, finite difference or finite ele-
ments or other numerical techniques for PDE. This approach
is feasible only for PDE with low dimensional space or equiv-
alently for low dimension of state space. An exception is
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Fig. 1. Classification of different methods to solve optimal control problems and related formulations and
solution algorithms

when the performance functional index (2) is linear quadratic
with linear dynamical system

ẋ(t) = A(t)x(t) + B(t)u(t), x(0) = x0, t ∈ [0, T ]

· · · · · · · · · · · · · · · · · · · · (8)

J[u] =
x(T )T Cx(T )

2
+

1
2

∫ T

0
xT D(t)x + uT E(t)u dt

· · · · · · · · · · · · · · · · · · · · (9)

In this case it is well known that the value function takes the
form V(x, t) = 1

2 xT P(t)x where the matrix function P(t) sat-
isfy the Riccati ODE

P′ + PA + AT P + D − PBE−1 BT P = 0, P(T ) = C

· · · · · · · · · · · · · · · · · · · (10)

and thus the cost for the solution of the problem is very low.
3.1.2 Discrete Version of DP When DP is applied

to discrete time systems with continuous state spaces, some
approximations have to be made, usually by discretization.
The DP solution methods examine all the feasible state tra-
jectory candidates that satisfy the necessary condition, by
breaking down the global problem into local subproblems
for every (reachable) discrete state and time instant. How-
ever, the computation time scales with the number of feasible
state trajectory candidates, which in turn increases exponen-
tially with the number of states and control variables, and
increases linearly with the quantization resolution of the con-
tinuous states. The computation time can be reduced by de-
composing the problem into cascaded of subproblems, or by
approximating the problem (4), or again by applying Differen-
tial Dynamic Programming (DDP), which uses a sequential
quadratic approximation of the value function as central role
to incrementally obtain a solution of the optimal control prob-
lem (5). An efficient implementation of the deterministic DP
approach for optimal control of non-linear, time-variant, con-
strained, discrete-time approximations of continuous-time
dynamic models is presented in (6). The related free software

can be downloaded from http://www.idsc.ethz.ch/research-
guzzella-onder (7) and it is used for solving the demonstration
example in Sect. 4.1.
3.2 Pontryagin Minimum Principle: Indirect Method
Another class of analytical optimisation method relates to

Pontryagin’s minimum principle (8) to derive the necessary
conditions for optimality (9). The method uses the Hamil-
tonian function (5) introduced for the Hamilton-Jacobi-
Bellman equation and the global optimal control problem is
reduced to the solution of the following system of 2Nx equa-
tions given in the form of a two-point boundary value prob-
lem (BVP):

ẋ(t) = +∂T
λH (x(t), λ(t), u(t), t) · · · · · · · · · · · · · · · · · (11)

λ̇(t) = −∂T
xH (x(t), λ(t), u(t), t) · · · · · · · · · · · · · · · · · · (12)

where λ are additional Lagrange multiplier functions. The
boundary conditions are the original ones augmented with the
transversality conditions (because the conditions, not neces-
sarily on the state variables only, are given both at the start
and the end of the time horizon)

x(0) = x0, λ(T ) = ∂T
xM(x(T )) · · · · · · · · · · · · · · · · (13)

Control u(t) = ufb(x(t), λ(t), t) is determined by a local opti-
mization of the Hamiltonian at each time instant:

ufb(x, λ, t) = arg min
u∈U

H(x, λ, u, t). · · · · · · · · · · · · · · · (14)

which let one choose explicitly the decision between the ac-
tual cost and the equivalent cost of the system dynamics. The
problem (11–12–14) provides only necessary conditions that
can be solved numerically (only in few cases analytically) to
obtain candidate solution of the optimal control problem. The
solution need to be checked with the condition obtained for
the second variation. The controls may not appear directly
in the BVP as unknowns since the can be solved using the
condition (14) and substituted back into the differential equa-
tions, es explained in next sections.
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Indirect methods can treat easily different boundary condi-
tion in dynamical system, for example (1) can be substituted
with

ẋ(t) = f (x(t), u(t), t) , b(x(0), x(T )) = 0, · · · · · · (15)

and, thus, boundary conditions (13) becomes⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
b(x(0), x(T )) = 0,

∂T
x(0)b(x(0), x(T )) · ω = λ(0),

∂T
x(T )b(x(0), x(T )) · ω = −∂T

xM(x(T )) − λ(T ),

· · · · · · · · · · · · · · · · · · · (16)

where ω is a multiplier that can be easily eliminated when,
for example, boundary conditions are separated, i.e. when
bi(x(0), x(T )) is a function of x(0) or x(T ) alone. This formu-
lation is further generalised in Sect. 5 but here it is sufficient
to shortly introduce different solution methods and provide a
simple demonstrative example in Sect. 6.1. Solution methods
span from single shooting, to multiple shooting and different
types of collocation being the last one the most robust and
fast converging. An example of indirect method solver is the
one explained in (10).
3.3 Non Linear Programming: Direct Method The

essence of a direct method is the discretisation of the origi-
nal optimal control problem (11) which is then transcribed to
a nonlinear programming problem (NLP) solved numerically
using a well-established optimisation method (12) (13). The cat-
egory of the direct methods is quite broad and encompasses
very different techniques. In particular, methods differs for
the variables to be discretised (i.e. control and states) and
how to approximate the continuous time dynamics. In the
case of the shooting and multiple shooting the control are
parameterised with piecewise linear functions and the differ-
ential equations are solved via numerical integration. These
approaches make use of robust and available ordinary differ-
ential equations solvers but need sensitivity analysis to com-
pute the jacobians of the continuity and boundary conditions
with respect to the initial and intermediate conditions. In
the case of state and control parameterisation (direct collo-
cation), both states and controls are approximated with poly-
nomial functions, therefore the continuous time differential
equations are converted into algebraic constraints. These
constraints are then imposed in the NLP formulation, which
avoid the sensitivity issues of direct shooting methods at the
expense of a larger NLP. A class of direct collocation is the
spectral method where the optimal control problem is tran-
scribed to a NLP by parameterising the state and control us-
ing global orthogonal polynomials (i.e. spectral) and collo-
cating the differential—algebraic equations using nodes ob-
tained from a Gaussian quadrature. The use of global poly-
nomials together with Gaussian quadrature collocation points
is known to provide accurate approximations that converge
exponentially for problems whose solutions are smooth. In
case the solution is non smooth the domain is divided in seg-
ments and different approximation are used in each of them
(pseudo-spectral). Over the last few years, pseudo-spectral
methods for solving optimal control problems have rapidly
widespread in real-world applications making it possible to
solve highly complicated nonlinear optimal control problems
in real-life applications (14)–(16).

Fig. 2. Upper figure shows the scheme of the concept
of the Multiple shooting. The lower figure visualises the
concept of the pseudo-spectral method

Fig. 3. Sketch of the simple model of the longitudinal
dynamics of a vehicle that has to travel stop-to-stop a
maximum distance L in given time T

Figure 2 visualises the essence of the two families of
NLP methods. A list of the most known available soft-
ware in this category are ACADO (17), GPOPS-II (18), PSOPT,
MISER, SOCS, DIRCOL, PROPT (19), RIOTS (20), MUSCOD-
II (21), DIDO (22).

4. Demonstration Example of Optimal Control
Solution

In this section, as an example, a simple, yet numerically
difficult, non linear optimal control problem is used to com-
pare the numerical solution methods pertaining to the three
families above described. The proposed problem, under some
assumptions, has an analytical solution that it is used to com-
pare the accuracy of the numerical methods. The scripts and
codes developed and used in this article to find the numerical
solutions are available at https://github.com/mechatronix/TS-
OCS.

The demonstration example is a simple model of the lon-
gitudinal dynamics of a vehicle with the aerodynamic down-
force. Let us consider the vehicle as a point mass that has
to be moved of a maximum distance in a given fixed time T
from initial zero velocity to final zero velocity:

min {x(0) − x(T )} = min

(
−

∫ T

0
v dt

)
· · · · · · · · · · (17)

subject to: ẋ=v, v̇=u−k0−k1v−k2v
2 · · · · · · · · · · (18)

b.c. x(0) = v(0) = v(T ) = 0, · · · · · · · · · · · · · · · · · · (19)
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control limits: |u| ≤ g + k3v
2 · · · · · · · · · · · · · · · · (20)

The control u is limited between two limits which are func-
tion of the square of the velocity.

For the proposed problem the Hamiltonian (5) becomes:

H (x, v, λ, μ, u) = −v + λv + μ
(
u − k0 − k1v − k2v

2
)

and the control satisfies (14) so that optimal control u� is

u� = arg min
|u|≤g+k3v2

H(x, v, λ, μ, u) = −
(
g + k3v

2
)

sign(μ)

· · · · · · · · · · · · · · · · · · · (21)

The BVP (11–12) becomes:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = ∂λH = v

v̇ = ∂μH = u − k0 − k1v − k2v
2

= −
(
g + k3v

2
)

sign(μ) − k0 − k1v − k2v
2

λ̇(t) = −∂xH = 0

μ̇(t) = −∂vH = 1 − λ + μ (k1 + 2vk2)

· · · · · · · · · · · · · · · · · · · (22)

while boundary condition (of type (16)) with

b(x(0), v(0), x(T ), v(T )) =
(
x(0) v(0) v(T )

)T
,

b(x(0), v(0), x(T ), v(T )) · ω = ω1x(0) + ω2v(0) + ω3v(T )

becomes

x(0) = v(0) = v(T ) = 0, λ(T ) = 0,

λ(0) = ω1, μ(0) = ω2, μ(T ) = ω3

in this case ω1, ω2 and ω3 may take any values and are elimi-
nated, thus, λ(0), μ(0) and μ(T ) are free. Boundary conditions
reduce to

x(0) = v(0) = v(T ) = λ(T ) = 0. · · · · · · · · · · · · · · · · · ·(23)

The optimal control problem, assuming parameters k2 = 0
and k3 = 0, has an analytical solution that can be derived by
solving Eq. (22) with boundary condition (23). From Eq. (21)
and differential equations of Lagrange multipliers one under-
stands that the control depends on the sign of the multiplier
μ which is monotonically increasing with time and therefore
has only one switching point ts. The solution can be easily
found by matching the solution obtained from forward inte-
gration starting from initial conditions with the one obtained
by backward integration starting from final conditions. The
set of four algebraic constraints is augmented with the alge-
braic equation that set the Lagrange multiplier μ to be equal
to zero at ts (i.e. switching condition). The solution for the
optimal control renders as follow:

u(t) =

⎧⎪⎪⎨⎪⎪⎩1 t ≤ ts,

−1 t > ts,
ts =

1
k1

ln
g− + g+ek1T

2 g
,

· · · · · · · · · · · · · · · · · · · (24)

where ts is switching time, g+ = g + k0 and g− = g − k0. The
exact solution for t ≤ ts is given by

s(t) = k−2
1 g−

(
k1t + e−k1t − 1

)
,

v(t) = k−2
1 g−

(
1 − e−k1t),

Fig. 4. The exact solution for an horizon of T = 10s,
and with parameters g = 9.81, k0 = g · 10−2, k1 = g · 10−5,
k2 = 0 and k3 = 0

and for t > ts

s(t) = k−2
1

(
g+ + e−k1t

(
g− − 2 gek1ts

)
+ k1 (2gts − tg+)

)
,

v(t) = k−1
1 g+ek1(T−t),

while multiplier λ(t) and μ(t) satisfy

λ(t) = 0, μ(t) =
1
k1

(
2 g ek1(t−T )

g−e−k1T + g+
− 1

)
Figure 4 show the exact solution for a particular choice of T ,
k0 and k1.
4.1 Numerical Solution with HJB Method The

demonstration example is first solved using the dynamic pro-
gramming approach based on the algorithm explained in (6).
The numerical method evaluates the region of feasible states
and the cost-to-go function backward starting from the fi-
nal condition using the forward Euler approximation for the
given dynamical system:⎧⎪⎪⎨⎪⎪⎩xk+1 = xk + hvk

vk+1 = vk + h
(
uk+1/2 − k0 − k1vk − k2v

2
k

)
that can be synthesised as:

yk+1 = F(yk, uk+1/2, h), y =

(
x
v

)
· · · · · · · · · · · · (25)

The cost-to-go function is initialised as follows:

JN(xi, vi) = p(vi) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (26)

where p(v) is a penalty to enforce the final condition on
the velocity. Then, with a backward iteration for k = N −
1, . . . , 0,∀xi ∈ Xk, the cost-to-go is evaluated:

Jk(yi) = −h v(yi, u�, h) +Jk+1(F(yi, u�, h))

where u� is calculated by solving the local minimisation

u� = arg min
u∈Uk

{−vk(uk+1/2) +Jk+1(F(yk, uk+1/2, h)}

The algorithm simulates the system over one time step by
applying all possible control candidates. A multilinear in-
terpolation is used to find the values of the cost-to-go at the
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Fig. 5. Numerical solution obtained with DPM with
state variables discretised with Nx = 201 points, con-
trol discretised with Nu = 101 points and time discretised
with Nt = 101 points. Final velocity was constrained to
lie in the range [0, 0.1] enforced via the penalty p(vN)

node k-th which is set to a high value if the state is not reach-
able. Finally, with a forward evaluation the optimal control
policy π = {u0(x), u1(x), . . . , uN1 (x)} that respects the initial
and final conditions is searched.

Figure 5 shows the solution obtained with the DP using
algorithm available at (23). The method was setup with the
level-set option to get a more accurate solution yet in less
time. Nevertheless it takes about 270 seconds to find the so-
lution. The small control oscillations, induced by the penalty
function to enforce the final velocity to be zero, could be re-
duced increasing the time and states quantization at the price
of higher computational costs.
4.2 Numerical Solution with Direct Method This

methods numerically solve the Non Linear Programming
(NLP) problem resulting by the direct discretisation of (17-
20). For example using finite difference the following NLP is
obtained:
•Minimize −

∑N

k=1
vk−1/2

•With constraints⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

xk+1 = xk + hv̄k+1/2

vk+1 = vk + h
(
uk+1/2 − k0 − k1v̄k+1/2 − k2v̄

2
k+1/2

)
x0 = 0, v0 = 0, vN = 0,
−g − k3v̄

2
k+1/2 ≤ uk+1/2 ≤ g + k3v̄

2
k+1/2

· · · · · · · · · · · · · · · (27)
where v̄k+1/2 = (vk+vk+1)/2, N is the number of interval of size
h = T/N where the interval [0, T ] split. With fk we denote
the finite difference approximation of function f (t) evaluated
at tk = kh. The unknowns of the problem are collected in
z ∈ R3N+2

z = (x0, . . . , xN , v0, . . . , vN , u1/2, u3/2, . . . , uN−1/2)
T

· · · · · · · · · · · · · · · · · · · (28)

and thus problem (27) can be written as the minimisation of
f (z) with constraints hk(z) = 0 and gk(z) ≥ 0 where

f (z) = −ΣN
k=1 v̄k−1/2 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (29)

hk(z) = xk+1 − xk − hv̄k+1/2 · · · · · · · · · · · · · · · · · · · · · · (30)

Fig. 6. NLP solution (only control u) using IPOPT in
Matlab with N = 100 and also providing the jacobian.
Dent in the control solution at the jump location is due to
control discretisation

hk+N(z) = vk+1 − vk − h(uk+1/2 − k0 − k1v̄k+1/2 − k2v̄
2
k+1/2)

· · · · · · · · · · · · · · · · · · · (31)

h2N+1(z) = x0, h2N+2(z) = v0, h2N+3(z) = vN
· · · · · · · · · · · · · · · · · · · (32)

gk(z) = g + k3v̄
2
k+1/2 + uk+1/2 ≥ 0, · · · · · · · · · · · · · · · · (33)

gk+N(z) = g + k3v̄
2
k+1/2 − uk+1/2 ≥ 0. · · · · · · · · · · · · · · (34)

This problem can be solved using available NLP solver. For
reference the state of art nonlinear optimisation code are
IPOPT (12), KNITRO (24), LOQO (25) and WORHP (26). In this
case IPOPT was used to find the numerical solution via its
Matlab interface. Figure 6 show the obtained solution which
is qualitatively identical to the exact solution.
4.3 Numerical Solution with Indirect Method This

methods numerically solve BVP obtained using the Pontrya-
gin maximum principle (21-22-23). For example using finite
difference denoting with fk the finite difference approxima-
tion of function f (t) evaluated at tk = kh the following non-
linear system is obtained:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xk+1 = xk + hv̄k+1/2

vk+1 = vk + h
(
uk+1/2 − k0 − k1v̄k+1/2 − k2v̄

2
k+1/2

)
λk+1 = λk

μk+1 = μk + h
(
1 − λ̄k+1/2 + μ̄k+1/2

(
k1 + 2v̄k+1/2k2

))
x0 = 0, v0 = 0, vN = 0, λN = 0,

· · · · · · · · · · · · · · · · · · · (35)

where v̄k+1/2 = (vk + vk+1)/2, μ̄k+1/2 = (μk + μk+1)/2, λ̄k+1/2 =

(λk+λk+1)/2, and N is the number of interval of size h = T/N
where the interval [0, T ] split. Moreover

uk+1/2 = arg min
|u|≤g+k3 v̄

2
k+1/2

H(x̄k+1/2, v̄k+1/2, λ̄k+1/2, μ̄k+1/2, u).

= −sign
(
μ̄k+1/2

) (
g + k3v̄

2
1/2

) · · · · · · · · · · · · · · · · · (36)

The unknowns of the problem are collected in z ∈ R4N :

z = (x0, . . . , xN , v0, . . . , vN , λ0, . . . , λN , μ0, . . . , μN)T

Nonlinear system (35) contains discontinuous function
sign(x) which make it hard or impossible to solve. A simple
working strategy is to smooth the problem by approximating
problem (36) with interior point approach

u� ≈ arg min
u∈R

(
H(x, v, λ, μ, u) + b(u)

)
where b(u) is a barrier function:
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Fig. 7. Solution using PINS with N = 100

b(u) = −ε(g + k3v
2) log cos

(
π

2
u

g + k3v2

)
. · · · · · · · · (37)

and the minima satisfy ∂
∂u

(
H(x, v, λ, μ, u) + b(u)

)
= 0, i.e.

0 = μ + ε
π

2
tan

(
π

2
u

g + k3v2

)
· · · · · · · · · · · · · · · · · · · · ·(38)

so that control u as a function of μ and v can be easily com-
puted

u(μ, v) = −2
π

(
g + k3v

2
)

arctan

(
2μ
πε

)
· · · · · · · · · · · · · ·(39)

The nonlinear system (35) with Eq. (39), i.e. uk+1/2 =

u(μk+1/2, vk+1/2) is easier to solve than the original nonlinear
system.

Figure 7 shows the solution obtained using the indirect
solver PINS described in Sect. 5.

Remark 1 Normally controls cannot be solved explicitly
like in Eq. (39). Control are computed as the minimization
respect to u of an Hamiltonian H(x, λ, u) with x the states and
λ the multipliers. Using penalties and/or barriers this mini-
mization is transformed into a nonlinear system that must be
solved: ∂uH(x, λ, u) = G(x, λ, u) = 0. Thus, the computa-
tion of u(x, λ) is reduced to the computation of the solution
of the nonlinear system G(x, λ, u) = 0. The computation of
the partial derivatives ∂xu(x, λ) and ∂λu(x, λ) needed for the
iterative solution of the nonlinear system generated by the in-
direct approach can be computed using implicit function the-
orem from the identity G(x, λ, u(x, λ)) = 0. In the previous
example the identity G(x, λ, u) = 0 is the single Eq. (38) with
x = (x, v)T and λ = (λ, μ)T .

4.4 Discussion of Solution Methods Despite the fact
that DP is more suitable to solve mixed integer and continu-
ous optimal control problems and provides a sufficient solu-
tion for the optimality it is less adopted as solution method
due to the curse of dimensionality. Additionally, it requires
the optimal cost to be sufficiently smooth, which is not al-
ways the case. Our demonstration test clearly shows that to
get a solution with similar accuracy than the direct and in-
direct method it takes a computational time which is at least
two order higher.

On the other hand, direct methods are recognised as hav-
ing many advantages that make them appealing. The direct
transcription and the subsequent NLP allows to easily handle
the inequality constraints via a variety of off-the-shelf robust
optimisation software. The minimisation problem is widely
studied and in general more robust compared to the solution
of a non linear system. However, contrary to common opin-
ion emerging from the literature, the indirect method has at

Table 1. Computational time among different solution
method and solver adopted. IPOPT can use analytic Hes-
sian or approximate it using using BFGS. Matlab fmin-
con do not converge for N > 100. Newton solver is a
simplified Matlab version of HYNESS solver described
in Sect. 5.1. PINS is C++ indirect solver described in
Sect. 5

Method Solver cpu time (s) cpu time (s) cpu time (s)
N = 100 N = 1000 N = 10000

Direct IPOPT (12) (analytic) 0.06 0.4 ≈6
Direct IPOPT (12) (BFGS) 0.17 2.8 ≈31
Direct fmincon 2.8 — —
Indirect lsqnonlin 0.33 1.4 ≈16
Indirect STRSCNE (27) 0.19 1.6 ≈21
Indirect Newton Solver 0.1 0.6 ≈6
Indirect PINS 0.05 0.2 0.85

least the same numerical efficiency and computational speed
of the direct method. However, it must be said that state-
ment is true if the finite difference approximation of the BVP
is used as solution method (or other collocation approxima-
tion) and the resulting non linear system is solved with a ro-
bust non linear solver. For example, the standard Matlab non
linear system solver lsqnonlin() did not converge for the
nonlinear system in (35) with more than 100 points. Instead
using STRSCNE (27) it took about 11s for 10000 mesh points
which is comparable to the solution obtained with IPOPT for
the same problem (i.e. about about 8s).

It is worth it to point out that he dependency on a good
solver it is also an issue for the NLP based approaches.
The optimisation problem (29–34) if solved with Matlab
fmincon() takes 5 seconds for 100 mesh points and for 1000
mesh points does not converge. On the contrary, the state of
art IPOPT solver finds a solution in few seconds about 8s
with a mesh of 10000 points. Table 1 reports all the results
of the numerical tests performed using different solvers and
solution methods. The interested readers may experience the
above results by running the scripts used for the test and that
can be downloaded from https://github.com/mechatronix/TS-
OCS.

The considerations above suggest that there is not a real
difference in the type of problem that is solved between the
two families of methods, but it is the solver adopted that re-
ally makes the difference. To further support this result here
below it is proved that the discretised optimisation problem
for the NLP is almost equal to the discretised BVP resulting
from the Pontryagin Minimum Principle.

The NLP (29–34) can be transformed—like in IPOPT—
by a combination of Langrange multipliers and penalties to
search for the stationary points of f (z) defined as

f (z) = −λ0x0 + μ0v0 − μNvN
h

−
N−1∑
k=0

(
vk+1/2 + b(wk+1/2)

)
−

N−1∑
k=0

(
λk+1/2hk(z) + μk+1/2hk+N(z)

)
· · · · · · · · · · (40)

where hk(z) and hk+N(z) are defined in Eqs. (30)–(31) and
b(u) is a barrier defined in (37) used as in the interior point
method to force uk+1/2 ∈ (−1, 1). The stationary points of f (z)
satisfy ∇ f (z) = 0 and thus

2∂x0 f (z) = (λ1/2 − λ0)/(h/2) · · · · · · · · · · · · · · · · · · · · (41)
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∂xk f (z) = (λk+1/2 − λk−1/2)/h · · · · · · · · · · · · · · · · · · · · · (42)

∂xN f (z) = −λN−1/2/h · · · · · · · · · · · · · · · · · · · · · · · · · · · (43)

2∂v0 f (z) = (μ1/2 − μ0)/(h/2) + λ1/2 − 1 − μ1/2(k1 + 2v1/2k2)

· · · · · · · · · · · · · · · · · · · (44)

∂vk f (z) = (μk+1/2 − μk−1/2)/h + λ̄k − 1 − k1μ̄k − 2k2(μv)k

· · · · · · · · · · · · · · · · · · · (45)

2∂vN f (z) = (μN − μN−1/2)/(h/2) + λN−1/2 − 1

−μN−1/2(k1 + 2vN−1/2k2) · · · · · · · · · · · · · (46)

∂λk+1/2
f (z) = (xk+1 − xk)/h − v̄k+1/2 · · · · · · · · · · · · · · · (47)

∂μk+1/2
f (z) = (vk+1 − vk)/h +

(
k0+k1v̄k+1/2+k2v̄

2
k+1/2−uk+1/2

)
· · · · · · · · · · · · · · · · · · · (48)

∂wk+1/2
f (z) = −μk+1/2 − π2ε tan

(
π

2
wk+1/2

)
· · · · · · · · · · (49)

x0 = v0 = vN = 0 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (50)

uk+1/2 =
(
g + k3v

2
k+1/2

)
wk+1/2 · · · · · · · · · · · · · · · · · · · · · · (51)

where (μv)k = (μk+1/2v̄k+1/2+μk−1/2v̄k−1/2)/2. Equations (41)–(43)
can be interpreted as a finite difference approximation of the
ODE λ′ = 0 with λ(T ) = 0. Equations (44)–(46) can be
interpreted as a finite difference approximation of the ODE
μ′ = μ(k1 + 2k2v) + λ − 1 with free boundary conditions.
Equations (47)–(48) with (50) can be interpreted as a finite
difference approximation of x′ = v and v′ = u−k0−k1v−k2v

2

with x(0) = v(0) = v(T ) = 0. Solution of Eq. (49) with (51)
results in

uk+1/2 = −2
π

(
g + k3v

2
k+1/2

)
arctan

(
2
π

μk+1/2

ε

)
· · · · · · · · (52)

is close to (39) except that the sign function is approximated
using a simpler expression.

Therefore direct and indirect methods approximates the
same problem. One may see that the discretised part of the
dynamical system is coincident for the two methods except
for the calculation of the control uk+1/2.

Furthermore, for the indirect method the discretisation is
second order for both states and multipliers instead for the
direct method the ordinary differential equations of the La-
grange multipliers at the boundary are approximated with fi-
nite difference of the first order. Therefore one will expect the
indirect method to be more accurate than the direct ones. This
is true for smooth controls when multipliers are not affine
functions, but, when control are discontinuous the error is
dominated by the resolution of the mesh and the accuracy is
the same.

Indeed this is the result achieved for our demonstration ex-
ample as explained next. The accuracy of the direct and in-
direct method can be calculated using the analytical solution
derived in Sect. 6.1. The accuracy index is the discrete scaled
2-Norm of the difference between exact and numerical solu-
tion of the control obtained with direct and indirect method
respectively obtained in Sect. 4.2 and Sect. 4.3:

error = ||uh − u||2 =
⎛⎜⎜⎜⎜⎜⎝ 1

N

N∑
k=1

|uh
k−1/2 − uk−1/2|2

⎞⎟⎟⎟⎟⎟⎠
1/2

· · · · · · · · · · · · · · · · · · · (53)

where uh is the numerical solution and u is the exact solution

Table 2. Direct and Indirect method accuracy versus the
number of mesh points

N Direct Indirect

100 0.9570 0.9570
200 0.6597 0.6597
400 0.4424 0.4424
800 0.2788 0.2788
1000 0.2342 0.2342

N Direct Indirect

1600 0.1491 0.1491
3200 0.0374 0.0374
6400 0.06977 0.06977
10000 0.05381 0.05380
12800 0.01196 0.01197

sampled on the computational grid. Table 2 shows that direct
and indirect methods are practically indistinguishable for the
proposed test.

Finally, it can be said that the indirect method may pro-
vide the analytic feedback law for the optimal control u(t) =
Π(x, λ, t). This is in general not always true if inequalities are
present and the dynamical system is non-linear. However, un-
der some conditions semi-analytic solution can be derived as
in (28) (29) and exploited in real life applications. Finally, when
inequalities are enforced as penalty/barrier functions the con-
trols can always be explicitly calculated even in the case of
singular arc without additional effort (at least with a local
sub-iterative solution scheme). In the demonstration exam-
ple it was shown that the explicit solution of the controls an
their formal substitution in the equations of the approximated
problem reduces the computational time and the number of
iterates.

5. An Efficient Symbolic-numeric Indirect Me-
thod

The first part of the paper clearly shown that the indirect
method can be adopted to solve optimal control problems
with the same numerical efficiency of the direct approaches
provided that the solution method is based on the approxi-
mation of the BVP with finite difference or collocation and a
robust non linear solver is available.

The section explains how it is possible to obtain robust
and accurate solution of optimal control problem, even for
real–time applications, using the Indirect Method in combi-
nation with penalty functions to implement path constraints
on controls and states and with a finite different approxima-
tion. The concepts herein presented are implemented in the
code named PINS which is available for free for academic
use under request to the authors.

A more general definition of the optimal control problem
can be the following. Let us consider the domain [ζ0, ζnf ] di-
vided in nf intervals or phases with nf − 1 discontinuity or
interface points ζk such that ζ0 < ζ1 < ζ2 < · · · < ζnf . The ob-
jective is to minimise the following cost function in the Bolza
form:

J[u] =M(x−(ζnf )) +
nf∑

k=1

∫ ζk

ζk−1

L(x(ζ), u(ζ), ζ) dζ

· · · · · · · · · · · · · · · · · · · (54)

subject to the following constraints:

A
(
x(ζ), ζ

)
x′(ζ) = f

(
x(ζ), u(ζ), ζ

)
, · · · · · · · · · · · · · · (55)

q
(
x−(ζk), x+(ζk), ζk

)
= 0, · · · · · · · · · · · · · · · · · · · · · · · (56)

b
(
x+(ζ0), x−(ζnf )

)
= 0, · · · · · · · · · · · · · · · · · · · · · · · · · (57)
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for ζ ∈ (ζk−1, ζk) and k = 1, 2, . . . , nf − 1 where the vec-
tor b defines the boundary conditions, the vector q the in-
terface conditions. A is a non-singular matrix with continu-
ous and piecewise differentiable entries and it corresponds to
the mass matrix of the multibody model considered in many
problems. M(·) is named Mayer term and L(·) the Lagrange
term. The Lagrange term L(·) includes the running cost �(·)
and path constraints c(x(ζ), u(ζ), ζ) ≥ 0 that are approxi-
mated as penalty or barrier functions P(·) (10):

L(x, u, ζ) = �(x, u, ζ) +
nc∑

i=1

Pi(ci(x, u, ζ)). · · · · · · · (58)

Additional constraints of different types could be included
in this formulation using a suitable transformations. For ex-
ample integral constraints are included by adding additional
states and corresponding boundary conditions. Let us now
make use the Theorem of Lagrange Multipliers and transform
the problem into an unconstrained problem as follows:

J[u] =M(
x−(ζnf )

)
+ ω · b(x+(ζ0), x−(ζnf )

)
+

nf∑
k=1

∫ ζk

ζk−1

L(x, u, ζ) + λ(ζ) · f (x, u, ζ) dζ

−
nf∑

k=1

∫ ζk

ζk−1

a (x(ζ), λ(ζ), ζ) · x′(ζ) dζ

+

nf−1∑
k=1

ηk · q (
x−(ζk), x+(ζk), ζk

) · · · · · · · · · · · · (59)

where a (x, λ, ζ) = A(x, ζ)Tλ and λ(ζ), ω, η are respectively
the piecewise continuous, the point wise and the interface
node Lagrange multipliers. Let us now define the hamilto-
nian function H and the vector B that collects all the alge-
braic conditions involving the state x at the boundaries:

H(x, λ, u, ζ) = L(x, u, ζ) + λ · f (x, u, ζ)

B(x0, x f ,ω) =M(x f ) +ω · b(x0, x f
) · · · · · · · · · · · (60)

Let us know perform the first variation obtaining the neces-
sary conditions for the solution of the problem (59) that must
satisfy the following Boundary Value Problem (BVP):

A(x, ζ)x′ − ∂T
λH (x, λ, u, ζ) = 0, · · · · · · · · · · · · · · · (61)

ax(x, λ, ζ)x′ − A(x, ζ)Tλ′ − ∂T
xH (x, λ, u, ζ) = 0,

· · · · · · · · · · · · · · · · · · · (62)

b
(
x(ζ0), x(ζ f )

)
= 0, · · · · · · · · · · · · · · · · · · · · · · · · · · · · (63)

q
(
x−(ζk), x+(ζk), ζk

)
= 0, · · · · · · · · · · · · · · · · · · · · · · (64)

∂T
x0
B(x(ζ0), x(ζ f ),ω) − A(x(ζ0), ζ0)Tλ(ζ0) = 0,

· · · · · · · · · · · · · · · · · · · (65)

∂T
x f
B(x(ζ0), x(ζ f ),ω) + A(x(ζ f ), ζ f )

Tλ(ζ f ) = 0,

· · · · · · · · · · · · · · · · · · · (66)

Q
(
x−(ζk), λ−(ζk), x+(ζk), λ+(ζk), ζk

)
= 0, · · · · · · · · (67)

where ax(x, λ, ζ) = ∂T
x a(x, λ, ζ) − ∂xa(x, λ, ζ) and

u(ζ) = arg min
u∈U

H(x(ζ), λ(ζ), u) · · · · · · · · · · · · · · · · · · (68)

states the Pontryagin Minimum Principle. Vector function

Q contains the additional interface conditions after removing
multiplier ηk. In fact the additional interface conditions are
resumed in equations of the form(

∂T
x−q (x−, x+, ζ)
∂T

x+q (x−, x+, ζ)

)
η =

(
A(x−)Tλ−

−A(x+)Tλ+

)
· · · · · · · · · · · · · (69)

where x− and x+ are the vector of states k = 1, . . . , nf −
1 at left and right interface nodes. The multiplier η
can be computed and eliminated from (69) as a function
η(x−, λ−, x+, λ+, ζ) if the matrix that multiply η is full rank.
This elimination is done symbolically by the software.

Having used the barrier function to implement the in-
equality constraints on the controls it is guaranteed that u is
bounded in a compact setU and the problem is ’smooth’.

The optimal controls are the ones that satisfies the condi-
tion (68) whereH(x, λ, u, ζ) contains the barrier function for
the controls. Let us know assume that the barrier function is:
−ε log dist(u,Rm\U) where dist(u,A) = inf{|u−u∗|, u∗ ∈ A}
which is small and positive for u ∈ U and is ∞ for u � U.
Let us note that as ε becomes small the problem (68) approx-
imates the following minimization:

u = arg min
u∈U

H̃(x, λ, u) · · · · · · · · · · · · · · · · · · · · · · · · · · (70)

where now H̃ is the Hamiltonian of the constrained optimal
control problem (i.e. without the barrier function for the con-
trol bounds but pure inequalities). Equation (70) is part of the
Pontryagin Minimum Principle (8).
5.1 Numerical Solution Approach for Indirect Me-

thod The use of penalty or barrier functions transform
the BVP (61) into a smooth problem therefore any numer-
ical method can be used to approximate the solution of the
BVP (61) such as a second order finite difference (as it was
done in Sect. 6.1 but higher order discretisation or collocation
can be adopted). Additionally, it is assumed that the controls
can be explicitly solved with respect to x and λ since for each
node of the discretisation the optimal control can be obtained
by solving for u in the following:

∂T
uH (x, u, λ) = 0 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (71)

This is possible because the penalty functions used to imple-
ment the inequalities of the control vector u makes the system
unconstrained and therefore the first variation provides the set
of Eq. (71).

The approximation of the BVP (61) with finite difference
yields a large non linear system of equations Φ(Z). Newton
method can be used to solve the non linear system, however,
being the Newton method not globally convergent a good ini-
tial starting point with globalisation techniques are manda-
tory. Line search allows the method to enlarge the solution at-
traction basin. By introducing the notations J(Z) = ∂ZΦ(Z)
a basic scheme can be sketched as follows:
• compute direction d j by solving: J(Z j)d j = −Φ(Z j)
• find dumping factor α j that satisfies Armijo condition on

merit function: mj(α) = ||J(Z j)−1Φ(Z j + α j d j)||2
• update Z: Z j+1 = Z j + α j d j

The merit function makes the algorithm affine invariant
which ensure a good robustness of the approach. Finally, to
improve robustness in particular when the starting point Z0 is
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far from the solution, non-monotone iterations are allowed.
A custom designed, robust and fast non linear solver that ex-
ploits the problem structures of the discretised BVP (61) and
solves in sub-iterations at each node the equations of controls
has been implemented based on the above concepts (10) (30) (31).

Additionally, by using an symbolic algebra computational
environment such as Maple ©, Mathematica © or CasADi
(https://github.com/casadi) one may derive symbolically the
necessary equations and the jacobians required by the New-
ton method. The symbolic equations improve accuracy and
convergence rate as one may easily prove by de-activating the
symbolic jacobian in the tests that uses IPOPT and fminc().

An Optimal Control Suite (https://github.com/mechatro
nix/TS-OCS) has been developed based on the above ap-
proach that is made of a Maple package for equation genera-
tion (called XOptima), a C++ library for Numerical Solution
(called Mechatronix) and a embedded ruby interpreter (called
PINS). Table 2 shows the performance that can be achieved
with this software.

6. Successful Applications of Indirect Method

The approach and software implemented in Sect. 5 has
been extensively used in different engineering fields such as
robot motion planning (10) (32), car and racing motorcycles dy-
namics and in machining applications.

In particular the applications in vehicle dynamic field can
be divided between off-line trajectory optimisation prob-
lems (30) (31) (33)–(35) and on-line receding horizon based imple-
mentation both for driving support (10) (36)–(41) and autonomous
driving (42)–(45). Details can be found in the cited papers. In
manufacturing field we have proposed a prototype for a su-
pervising controller for machining applications where the
controller relies on the definition of an optimal control prob-
lem that aims at calculating the sequence of controls (feed
rate and tool speed) that minimises a multi-objective target
function (46). The indirect approach was also used to imple-
ment an algorithm for CNC kernels that aims at solving the
axes interpolation (47).
6.1 An Example from Vehicle Dynamics The indi-

rect method proposed in Sect. 5 is here applied on a more
complex vehicle dynamic problem to prove its performance.
The proposed problem is the minimum time manoeuvre of a
four wheel vehicle (here for sake of space modelled as single
track) to travel along a U−shaped curve. The model includes
a simplified version of the combined lateral longitudinal tyre
forces as in Pacejka (48). Therefore tyres’ sideslip and longi-
tudinal slip dynamics have to be accounted. The dynamics
is written using the curvilinear coordinate s as independent
variable becomes:

ṡ(s)n′(s) = sin(ξ)u + cos(ξ)v · · · · · · · · · · · · · · · · · · · (72)

ṡ(s)ξ′(s) = Ω − C(s)
1 −C(s)n

(cos(ξ)u − sin(ξ)v)

· · · · · · · · · · · · · · · · · · · (73)

mṡ(s)u′(s) = 2
(
cδFxf − sδFy f + Fxr

)
+ mΩv − kvu

2

· · · · · · · · · · · · · · · · · · · (74)
mṡ(s)v′(s) = 2

(
sδFxf + cδFy f + Fyr

)
− mΩu

· · · · · · · · · · · · · · · · · · · (75)
Izz ṡ(s)Ω′(s) = 2

(
Lf (sδFxf + cδFy f ) − LrFyr

)
· · · · · · · · · · · · · · · · · · · (76)

σy,r ṡ(s)α′r(s) = u arctan ((v −ΩLr)/u) − uαr · · · · · (77)

σy, f ṡ(s)α′f (s) = u arctan

(
LfΩcδ − sδu + cδv

LfΩsδ + cδu + sδv)

)
− uα f

· · · · · · · · · · · · · · · · · · · (78)

σx,r ṡ(s)κ′r(s) = u(κro − κr) · · · · · · · · · · · · · · · · · · · · · · (79)

σx, f ṡ(s)κ′f (s) = u(κfo − κ f ) · · · · · · · · · · · · · · · · · · · · · · (80)

ṡ(s)δ′(s) = vδ · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (81)

cδ = cos(δ), sδ = sin(δ) · · · · · · · · · · · · · · · · · · · · · · (82)

ṡ(s) =
cos(ξ(s))u(s) − sin(ξ(s))v(s)

1 −C(s)n(s)
· · · · · · · · · · · · · (83)

where 0 ≤ s ≤ S with S the length of the track and the
states are x = [n, ξ, u, v,Ω, αr, α f , κr, κ f , δ] where indepen-
dent s, with n(s), ξ(s) are the curvilinear coordinates, C(s) is
the road middle line curvature, u(s), v(s) are components of
absolute centre of mass velocity expressed in moving frame,
Ω(s) is the yaw rate, αr(s) and α f (s) represent the side slip
angles and κr(s) and κ f (s) represent the longitudinal slips,
lastly, δ(s) is the steering angle.

The system input u = [vδ, κro, κ f o] are the steering angle
rate vδ(s) and and target longitudinal slip κro(s) and κ f o(s).
Having chosen the target longitudinal slips as control we im-
plicitly assume that a low level controller is used to track
those references. The optimal control formulates as finding
the controls u in order to minimise the time T spent to travel
along the road:

J[u] = T =
∫ S

0
wT

ds
ṡ(s)
· · · · · · · · · · · · · · · · · · · · · · · · (84)

subject to the following boundary conditions:

n(0) = ξ(0) = v(0) = Ω(0) = δ(0) = 0, · · · · · · · · · · (85)

αr(0) = α f (0) = 0, u(0) = U0, n(S ) = ξ(S ) = 0,

· · · · · · · · · · · · · · · · · · · (86)

and constraints:

|n(s)| ≤ nmax, |δ(s)| ≤ δmax, |vδ| ≤ vδmax ,

|κro(s)| ≤ κmax
ro , |κfo(s)| ≤ κmax

fo .

The functions Fxf = Fxf (κ f , α f ), Fy f = Fy f (κ f , α f ), Fxr =

Fxr (κr, αr) and Fyr = Fyr (κr, αr) are a simplified version of
the combined Pacejka tyre model as follows:

FX(κ, α) = FZμX sin(CX arctan(BXκ))

cos
(
CXa arctan

(
BX1α

/√
B2

X2
κ2 + 1

))
· · · · · · · · · · · · · · · · · · · · · · (87)

FY (κ, α) = FZμY sin(CY arctan(BYκ))

cos
(
CYk arctan

(
BY1α

/√
B2

Y2
κ2 + 1

))
· · · · · · · · · · · · · · · · · · · · · · (88)

where X = xr or x f and Y = yr or y f and FZ = mgLi/(Lf +Lr)
with i = f , r for rear and front axes respectively. In the test
the track is described by the curvature C(s) a piecewise con-
stant function:
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Fig. 8. Trajectory of the vehicle center of mass and
related tyres’ engagements as lateral and longitudinal
forces normalised with vertical loads

Fig. 9. Top graph shows forward speed profile and
below the controls

Table 3. Vehicle dynamics test case parameters

m = 2100 g = 9.82 Izz = 3900 kv = 0 Lf = 1.3
Lr = 1.5 σx, f = 0.5 σx,r = 0.5 σy, f = 0.3 σy,r = 0.3
κmax

ro = 0.2 κmax
fo = 0.2 δmax = 75◦ vδmax= 60◦ nmax = 2.5

μx, f = 1.20 Cx, f = 1.69 Cxa, f = 1.09 Bx, f = 11.7 Bx1, f = 12.4

Bx2, f = −10.8 μx,r = 1.20 Cx,r = 1.69 Cxa,r = 1.09 Bx,r = 11.1

Bx1,r = 12.4 Bx2,r = −10.8 μy, f = 0.935 Cy, f = 1.7 Cyk, f = 1.08

By, f = 8.86 By1, f = 6.46 By2, f = 4.20 μy,r = 0.961 Cy,r = 1.7

Cyk,r = 1.08 By,r = 7.0 By1,r = 6.46 By2,r = 4.20 S = 357.08

C(s) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 for s ∈ [0, 100]

1/50 for s ∈ [100, 100 + 50π]

0 for s ∈ [100 + 50π, 200 + 50π]

· · · · · · · · · · · · · · · · · · · (89)

In general C(s) can be a piecewise linear function and the
resulting road shape is a piecewise clothoid that can be com-
puted fast and accurately (49). The parameter used in the sim-
ulation are found in Table 3 while U0 = 50/3.6 [m/s]. The
path is discretized by 3580 mesh points. The discretized
BVP resulting into a non linear system of 71510 non linear
equations. A continuation approach on parameter wT was
used to ease the convergence. First solution was searched for
wT = 0.01 and progressively increased to 1 in order to have

the original minimum time problem. The overall computa-
tional time is less than 6 seconds for a total of 73 iterations.
It is worth it to mention that no particular initial guess for
states and lagrange multipliers has been used for this prob-
lem. Lagrange multiplier guess is set to zero and the same
for all the states excepts longitudinal speed and yaw rate that
are set equal to u = V0 and Ω = V0C(s) respectively.

7. Conclusions

Differently than what emerges from literature on optimal
control methods and applications, we have shown that indi-
rect method is also a competitive solution approach from all
the points of view and was successfully applied to complex
engineering problem since the end of 90s. However, accord-
ing to our experience, to obtain numerical performance ex-
cellence with indirect method, some practical measures have
to be followed. First of all the resulting BVP has to be ap-
proximated with finite difference (or collocation methods)
to get a large non linear system which is much less sensi-
ble to the initial guess of Lagrange multipliers. Actually, in
all our applications the Lagrange multiplier guess is set to
zero. Secondly a robust non linear solver must be adopted
in combination with continuations on penalty parameters or
on minimum time term. This is very similar to what is done
by state of art NLP solvers such as IPOPT. Finally, the in-
direct method allows to sub-solve the optimal control as a
function of states and Lagrange multipliers—as formal so-
lution or with iterative scheme—and formally get rid of the
controls from the non linear system. This greatly improves
the convergence rate as it is shown in the demonstration ex-
ample Sect. 6.1.

The considerations put forward in this work are sup-
ported by the numerical tests that have been reported
in Sect. 6.1 for the adopted demonstration example—the
source code for all test being available for download at
https://github.com/mechatronix/TS-OCS. Clearly, the opti-
misation solver or equivalently the solver of the non linear
system plays a fundamental role in the numerical perfor-
mance achieved.

Further work is still necessary to better understand the sim-
ilarities and differences among direct and indirect approaches
and compare the results on more complex problems includ-
ing in set of the direct solution methods the multiple shooting
which was not discussed here for sake of space.
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