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Abstract

We theoretically investigate the dynamic structure factor of a strongly interacting Fermi gas at the
crossover from Bardeen—Cooper—Schrieffer superfluids to Bose—Einstein condensates, by developing
an improved random phase approximation within the framework of a density functional theory
(DFT)—the so-called superfluid local density approximation. Compared with the previous random-
phase-approximation studies based on the standard Bogoliubov—de Gennes equations, the use of the
DFT greatly improves the accuracy of the equation of state at the crossover, and leads to a better
description of both collective Bogoliubov-Anderson-Goldstone phonon mode and single-particle
fermionic excitations at small transferred momentum. Near unitarity, where the s-wave scattering
length diverges, we show that the single-particle excitations start to significantly contribute to the
spectrum of dynamic structure factor once the frequency is above a threshold of the energy gap at 2A.
The sharp rise in the spectrum at this threshold can be utilized to measure the pairing gap A. Together
with the sound velocity determined from the phonon branch, the dynamic structure factor provides
us some key information of the crossover Fermi superfluid. Our predictions could be examined in
experiments with °Li or **K atoms using Bragg spectroscopy.

1. Introduction

The realization of ultracold Fermi gases of °Li and “’K atoms near Feshbach resonances provides a new paradigm
for studying strongly correlated many-body systems [1]. At low temperature, these systems display an intriguing
crossover from Bardeen—Cooper—Schrieffer (BCS) superfluids to Bose—Einstein condensates (BEC) [2, 3]. Ata
special point in between the two regimes, where the s-wave scattering length diverges, the gas exhibits universal
properties, which might also exist in other strongly interacting Fermi superfluids [4, 5], such as high-
temperature superconductors or nuclear matter in neutron stars. This is called unitary Fermi gas and
corresponds a novel type of superfluid with neither dominant bosonic nor fermionic character. This new
superfluid has already been intensively investigated [3], leading to several milestone observations.

Theoretical challenges in describing the BCS-BEC crossover arise from its strongly correlated nature: there is
no small interaction parameter to control the accuracy of theories [6]. To date, significant progress has been
made in developing better quantum Monte Carlo (QMC) simulations [7—15] and strong-coupling theories [ 16—
24],leading to the quantitative establishment of a number of properties in conjunction with the rapid
experimental advances. These include the equation of state [6, 25-29], frequency of collective oscillations
[30,31], pairing gap [10, 11, 32, 33], and superfluid transition temperature [9, 29]. However, some fundamental
dynamical properties, such as the single-particle spectral function measured by radio-frequency (rf)
spectroscopy [34-37] and the dynamic structure factor probed by Bragg spectroscopy [38—42], are not well
understood yet.

As an important fingerprint of quantum gases in some certain states, dynamic structure factor contains rich
information of properties of a many-body system [43]. By tuning the transferred momentum or energy from a

©2016 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Table 1. A list of the existing theories for the dynamic structure of
strongly interacting fermions, including the virial expansion [46, 47],
Tan relation [48, 49], two-fluid hydrodynamics [50], diagrammatic
strong-coupling approach [52, 53], and BAG-RPA [38, 55-57]. The
applicable conditions for the transferred momentum g and temper-
ature T, under which each theory is quantitatively useful, are indicated.
Here kp = (312n)\/3, &g = k}/(2m) = (3n*1)*/3 /(2m), and Tpare
the Fermi momentum, energy, and temperature, respectively. T is the
superfluid transition temperature.

Theories q (applicable) T (applicable)
Virial expansion arbitrary T> T
Tanrelation q > kg, w>> e T> T
Two-fluid hydrodynamics q < kg, T<T
Diagrammatic approach arbitrary arbitrary
BdG-RPA q>kp T< T,
SLDA-RPA (this work) q < ke T T,

low value to a high one, we can observe the low-lying collective phonon excitations, Cooper-pair (i.e.,
molecular) excitations and single-particle atomic excitations, respectively. In particular, at finite temperature
the dynamic structure factor can help to judge whether the system is in the superfluid or normal state from the
emergence of the phonon excitations. Also, it is reasonable to anticipate that the dynamic structure factor may
play arole to solve the debate on the existence of pseudogap pairing or pre-pairing states [34, 35].
Experimentally, the dynamic structure factor can be measured via two-photon Bragg scattering technique [39],
atboth low and finite temperatures [41]. Theoretically, since no exact solution exists for strongly interacting
Fermi gases and the numerically exact QMC approach is less efficient for simulating dynamical quantities, one
has to resort to some approximated approaches, which are useful in certain limiting cases [40] (see table 1). For
example, at high temperature, as the fugacity is a small parameter, a quantum cluster expansion has been proven
to be an efficient method [44, 45], and has been used to calculate the dynamic structure factor [46, 47]. In the
limits of both large momentum and high frequency, asymptotically exact Tan relations have been derived to
describe the high-frequency tails [48, 49]. On the other hand, in the limit of long wavelength or small
momentum, the phenomenological two-fluid hydrodynamic theory may provide a useful description [50].

A general theoretical framework of the dynamic structure factor, valid at arbitrary temperature and
momentum, can be developed by using the diagrammatic technique [51, 52] or functional path integral
approach [53], in parallel with the existing strong-coupling theories of interacting Fermi gases [6]. The
expressions for the density and spin responses of strongly interacting Fermi gases have been obtained [53].
However, their numerical calculations turn out to be extremely difficult, except in the limit of zero transferred
momentum [52]. A microscopic approach utilizing correlated basis function theory, with static structure factor
from QMC as input, has also been used to calculate the dynamic structure factor [54]. A more commonly used
approach is the random-phase approximation (RPA) on top of the mean-field Bogoliubov—de Gennes (BdG)
theory [38, 55-57]. By comparing the BAG-RPA predictions with the experimental data for the dynamic
structure factor of strongly interacting fermions and with the QMC results for the static structure factor [56], it
has been surprisingly shown by two of the present authors that the BAG-RPA theory works quantitatively well at
sufficiently large transferred momentum (i.e., g ~ 5k, where kris the Fermi momentum). At small transferred
momentum, i.e., ¢ S kg, apparently, the BAG-RPA only provides a qualitative description of the dynamic
structure factor at the BCS-BEC crossover, since both the sound velocity (associated with the phonon
excitations) and pairing gap (associated with the single-particle fermionic excitations) are strongly over-
estimated within the BAG framework [3].

In this work, we aim to develop a quantitative theory for the dynamic structure factor of strongly interacting
fermions at low transferred momentum and at low temperature, which is amenable for numerical calculations.
For this purpose, we adopt a superfluid local density approximation (SLDA) approach [58—60], within the
framework of density functional theory (DFT) [62—64], as recently suggested by Bulgac and his co-workers. The
SLDA theory assumes an energy density functional (i.e., a function of the density function) to describe a unitary
Fermi superfluid and uses the QMC results for the chemical potential and order parameter as two important
inputs. It can be well regarded as a better quasi-particle description than the mean-field BAdG theory. It has been
shown that at low-energy the SLDA theory provides useful results for the equation of state [60] and real-time
dynamics [65, 66] of a strongly interacting Fermi superfluid.

Here we apply the random phase approximation on top of the SLDA theory. The use of SLDA in place of the
standard BdG equations improves the predictions for the dynamic structure factor in the BCS-BEC crossover
near unitarity. The static structure factor at small momentum transfer is in excellent agreement with the results
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of thelatest QMC |14, 15, 55]. A more stringent test can be obtained in the near future by comparing our
predictions with the experimental data [42], without any adjustable parameters.

Our paper is organized as follows. In the next section (section 2), we introduce the SLDA theory. In section 3,
we review the main idea of RPA. The expression for the dynamic structure factor is derived in section 4. In
sections 5 and 6, we present our main results of dynamic structure factor in the unitary limit and the crossover
regime, respectively. Finally, section 7 is devoted to conclusions and outlooks. For convenience, we set
72 = kg = 1in the following discussions.

2. Superfluid local density approximation

The DFT developed by Hohenberg and Kohn [62], together with the local density approximation (LDA) by Kohn
and Sham [63], is a powerful tool to understand the properties of many-electron systems. The DFT was initially
used for electrons in the normal, non-superconducting state. It is based on the assumptions that there is a unique
mapping between the external potential and the total wave function of the system (or the normal density), and that
the exact energy of the system can be written as a density functional. A limitation of the DFT is that the exact form
of the density functional is often not known. Therefore, approximated phenomenological functionals are
introduced, which should be optimized for a specific system. Typically, those functionals rely on the Kohn-Sham
orbitals [64] and thus can not effectively deal with superfluidity. The generalization of the DFT to superfluid cold-
atom systems—referred to as SLDA as we mentioned earlier—was recently introduced by Bulgac and Yu [58—60].
This SLDA originates from a similar DFT previously used in the context of nuclear physics [59, 66].

A nice feature of ultracold fermions is that, in the unitary limit the form of the energy density functional is
restricted by dimensional arguments. Another advantage is the availability of ab initio QMC results and accurate
experimental data for both homogeneous and inhomogeneous systems, which can be used to fix the parameters
of the density functional, as we shall see below.

For a superfluid atomic Fermi gas, two atoms with mass m in different spin state can form a Cooper pair. Asa
result, the system possesses an anomalous Cooper-pair density v (r, t), in addition to the number density
n(r, t). The energy density functional £[7 (x, t), n(x, t), v (r, t)] of the system must include the kinetic density
7 (r, t), number density n (r, t), and also the anomalous density v (r, t)[59,60]:

3(37r )

Elr, n, v] = a T4+ L3 7 V]2, (D)

/3

where the kinetic density 7, number density nand anomalous density v are given by,

T = ZZ|VV](|2, n = ZZ|V1(|2) V= ZUka(k, (2)
k k k

and uy (r, t) and vy (r, t) are the Bogoliubov quasiparticle wavefunctions with k labeling the quasiparticle
states. Three dimensionless constants, the effective mass parameter a, Hartree parameter f and pairing
parameter y, are introduced. These parameters are determined by requiring that the SLDA reproduces exactly
the zero temperature chemical potential, pairing gap and energy per particle that are obtained by either QMC
simulations or accurate experimental measurements for a uniform system [60, 66].

In the unitary limit at zero temperature, the simple form of the energy density functional equation (1) is
inspired by the dimensional analysis: the first and third terms are the unique combination required by
the renormalizablity of the theory [58]; while the second term is the only possible form allowed by the
scale invariance at unitarity [4]. The above energy density functional has been successfully used by Bulgac and his
co-workers to understand the thermodynamics [60] and dynamics [65, 66] of a unitary Fermi gas at zero
temperature. It is reasonable to assume that the energy density functional equation (1) can be applied also away
from unitarity, but close to it, and at non-zero temperature, but significantly below T...

Asboth the kinetic and anomalous densities diverge due to the use of a pairwise contact interaction, a
regularization procedure is needed for the pairing gap and for the energy density [58]. After regularization, the
energy density functional with regularized kinetic density 7. (r, t) and anomalous density v, (r, ) takes the
following form [60],

2y2/3
£=am—r + 820 4 gl 3
2m 0
where the effective coupling constant g is given by
1 mn'/3 m
L_mm @
8eft Y |1(|<A04k

We note that, g . scales to zero once the cut-off momentum A runs to infinity. The order parameter A(r, t)is
related to the anomalous density v by
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A(r, t) = —g 1 (1, 1). 5

The stationary SLDA equations for the quasiparticle wave functions are obtained by the standard functional
minimization with respect to the variations uy and vy. One obtains

[HSA; g H5A+ u][zﬂ = B [511:] (6)

with a single quasiparticle Hamiltonian

2 2,1 2/3 2
M. = —ai + 5(37r n) _ A @

2m 2m 3ymn2/3’

and the chemical potential y.

By requiring that a homogeneous Fermi gas of the number density n = N/V = ki/(37%) has an energy per
particle E/N = (3/5)&gcp, a chemical potential /1 = ¢, &, and a pairing order parameter A = nepatzero
temperature, one can determine the value of dimensionless parameters a, f and y in equation (3) through the
following equations, which are independent on the cut-off momentum (i.e., A — c0):

"= 2(1 - ik) ®)

K Ex
mn'/3 m 1
Y a k (m - E)) ©
and
3 k? " A
’E _B) = |1 -3k =
SErn &y — 0) ;[am(l Ek) ZEk] (10)

where § = ak?/(2m) + [ — 372?30 /(67) — §,Jerand B = | & + 2.Inthese three constraint
equations, & 7 and & are the three inputs, whose value can be reliably determined by using QMC simulations
[11-13] or from the experimental measurements [28, 29, 32]. The parameter « can be determined using the
single particle dispersion, near the unitary limit, typically the parameter a is very close to 1 [60, 61], indicating
that the effective mass only differs slightly from the bare atomic mass m. For simplicity, throughout the work we
take @ = 1and use the density equation equation (8) and the gap equation equation (9) to determine the
parameters f#and y. As we shall see, this simple choice also ensures that the f~sum rule of the dynamic structure
factor is strictly satisfied.

For a unitary Fermi superfluid, where §, = & = ¢ due to the scale invariance [4], the latest auxiliary field
QMC provides £ ~ 0.372 [12], which is quite close to the experimental value £ = 0.376(5) [29]. Other field
theoretical approaches provide very similar predictions. These include the dimensional e- expansion
(& = 0.377 £ 0.014 at the next-to-leading order [20] and £ = 0.360 + 0.020 at the next-to-next-to-leading
order [23]), self-consistent Luttinger-Ward theory (£ = 0.36) [21], and non-self-consistent Gaussian pair
fluctuation theory (£ = 0.401) [19, 22]. As to the parameter 7, its accurate value is to be determined yet. An
earlier rf-spectroscopy experiment reports 7 =~ 0.44 [33] and the latest QMC resultis = 0.504 [10, 11]. The
field theoretical predictions (i.e., 7 = 0.46 from both the Luttinger-Ward theory [21] and Gaussian pair-
fluctuation theory [19, 22]) also give similar results. In this work, for a unitary Fermi gas we choose the
experimental result ;1 = 0.376¢g for the chemical potential and the QMC prediction A = 0.5¢f for the pairing
gap. Thisleadsto § = —0.430and 1/ = —0.0767. It is worth noting that, when o« = 1, our SLDA result
reduces that of the standard BdG theory, if we set fand 1 /-y to zero.

Away from the unitary limit, the knowledge on the pairing gap is not complete. We use the predictions of a
Gaussian pair fluctuation theory [19, 22] as the inputs, since these theoretical results have already been shown to
provide a satisfactory explanation for the experimentally measured chemical potential [28].

3. Random phase approximation

If a superfluid Fermi gas is perturbed by a small external potential, usually the number density and anomalous
density will fluctuate. Due to the interatomic interactions, the fluctuating densities will feedback and induce an
additional perturbation potential. One way to include these fluctuation effects is to use the linear response
theory within the RPA [38, 55, 67—70]. The essential idea of RPA is that the induced fluctuation potential is
assumed to be a self-generated mean-field potential experienced by quasiparticles, due to the local changes in the
number densities 1; (r, t) and n (r, t), and Cooper-pairs density v (r, t) or its complex conjugate v*(r, t).In
the following, for convenience, we denote these four densities 114, 1}, v and v* as ny, ny, n3 and ny, respectively.
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In the SLDA energy density functional, it is easy to see that the interaction contribution to the functional is
given by,
A(r, t)?
L 1B@ P
8eff

Em =0 n>/3(xr, t)

3(3m%)*3
L. 11
5 (11

The resulting fluctuating potential is simply >~ EIJI 6n;, where [70]

0%
Ej= - (12)
871,' 811]- 0

and 6m;_1 5 3 4 are the density fluctuations around equilibrium, which are to be determined. The suffix 0 indicates
that the derivatives are calculated at equilibrium. Therefore, together with the external potential V, the total
effective perturbative potential takes the form,

Vi = Vig + Y Ejién;. (13)
j

Using this effective perturbation, the density fluctuations 6n; can be written down straightforwardly, according
to the standard linear response theory,

on; = ng Vi (14)
j

where X is the bare response function of the quasiparticle reference system described by the SLDA equation (6),
which is easy to calculate (see appendix ). By combining equations (13) and (14), we arrive at,

on; = ZX:’;’ Vi (15)
j

where y is the RPA response function,

x = x"[1 — x°E'T". (16)
Once the bare response function x° and the second order derivative Ef] are known, we obtain directly y. The
density response function x/, is a summation of X;; in the density channel:
Xp = X1+ X2 + Xa1 T Xa2 = 2(x; + Xp2)- The dynamic structure factor is connected to the imaginary part
of the density response function,

1 Imxp(q, iv, — w+ i0%)
- —w/T > (17)

S(q)w): 1 — e

with q and w being the transferred momentum and energy, respectively.

The RPA on top of the mean-field BAG theory has previously been used to study the dynamic structure factor
[67] and collective oscillations [68] of weakly interacting Fermi superfluids. A dynamical mean-field approach,
identical to the RPA but based on kinetic equations, was also developed to investigate dynamic and static
structure factors and collective modes of strongly interacting Fermi superfluids [38, 55]. Some properties of the
density response of unitary Fermi gas for the SLDA has also been studied in [71]. In the following, we examine
the improved RPA based on the SLDA theory.

4. Dynamic structure factor in SLDA theory

The calculation of the second-order derivative matrix E' is straightforward. It reads,

Tuer/n Luer/n Lugg o8y
Tuer/n Iuer/n L8 Tuguy
L& L& 0 8eff
18 Lu&eir  Setr 0

E' = , (18)

where Z,, and Z, are two dimensionless variables,

_25 Gryr A

7, >
"3 9y &%
G
6")/ EF

We note the existence of the crossing term Z,,, due to the (implicit) coupling between the number density and
the anomalous Cooper-pair density in the interaction energy density functional equation (11). In the unitary
limit, in comparison to the BAG-RPA theory, we note also that the matrix element in the number density
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channel, 7,er/n, changes from a vanishingly small number (i.e., at the order of g,4) to a finite value. The
response function of the quasiparticle reference system x° can be constructed by solving the stationary SLDA
equation (6). Itis a 4 by 4 matrix. However, as we shown in appendix, only six of all 16 matrix elements are
independent:

0 .0 0 0
Xt X2 Xis X14
0 .0 0 0
o | X2 Xin Xis o Xig .
X - 0 0 0 0 > ( )
Xis Xig — X2 Xz
0 .0 0 0
X3 Xi3 Xy — Xp2
The detailed expressions of the elements X?l, X?z’ X%, X‘f " Xg ,and X23 are we show in appendix. By solving the

RPA equation (16), we obtain all the matrix elements ;; of the RPA response function y. The resulting density
response function is given by,

0 0 0 0
Xio T X1~ Xga8er — Xi38et
Xp=2| 24, 1= X58x X0 |/11— XE'L (20)
0 0 0
2Xi3 X8t L = Xy38et

Itis well known that the anomalous density correlated functions, Xg " and Xis’ are divergent, because of the
use of the contact interatomic interaction [68]. Thus, we introduce the regularized functions Yy, = X3, — 1/g.¢
and Y f3 = XZ3 -1 / &> With which the density response function now takes the form,

_ (Bnl - 28712)

Xp =2——— . (1)
|1 - XOEll/gesz
Here,
B = (X101 + X?z)[~304Xf3 - (X?z)z]y
B =2,X05 X T 003Xy + 00 X
To obtain the expression of |1 — Y°E/| / gesz, it should be noted that g is a vanishingly small quantity.
Therefore, it is useful to arrange different terms in terms of the powers of g, . For instance, for the matrix
elements of E,,, Z,,er/n has the order of [g,]°, while Z, g ¢ has the order of [g,]". For the determinant
|1 — XPEl|, there are no terms at the order of O(g,;) or O(1), as anticipated. The order of most terms is
O([g.419. By collecting those terms, we find that,
L= X1 _ 47 B, + 2128y — 2T, (Bt — 2Bu) + T0X0 — (0, 22
g—z - B + vRPv2 T n( nl — n2) + X34X43 - (Xlz) > ( )
eff

where

Bt = xXi5 + XXy T X3 Xay + XX

B2 = () + )@, + Xay + Xgp) — 2045 — X%
In the unitary limit, if we setboth Z,, and Z, tozero, |1 — x°E!|/, gesz isjust Yo, Xy — (xY,)? and then we recover
the BAG-RPA expression for the density response function [38, 56, 57].

We use equations (21) and (22) to obtain the density response function y, and then calculate the dynamic
structure factor S(q, w) via the fluctuation-dissipation theorem equation (17). To take the analytic continuation
numerically, i.e., iv, — w + i, where § = 0T, we use a small broadening parameter § = 10~ 3¢g, unless
specified elsewhere.

5. Dynamic structure factor of a unitary Fermi superfluid

In this section, we present the results for the dynamic structure factor of a unitary Fermi gas at zero temperature
within SLDA-RPA, and justify our theory at low transferred momentum g < kr by comparing the resulting
static structure factor equation (23) with the latest QMC data [15].

Figure 1 reports a contour plot of S(q, w) in the momentum range from g = 0to q = 2kgp. Two types of
contributions are clearly visible: one is the collective Bogoliubov-Anderson phonon excitations within the
energy gap w < E, = 2A [38], which exhibit themselves as a sharp 5-peak in the structure factor spectrum.
Right above the energy gap, a much broader distribution emerges, which should be attributed to the fermionic
single-particle excitations by breaking Cooper pairs.
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Figure 1. The contour plot of the dynamic structure factor of a unitary Fermi gas at zero temperature, obtained by using SLDA-RPA.
The slope of the low-energy branch is given by the sound speed ¢; = 0.354vy, while the horizontal threshold at w ~ & is equal to the
minimum energy 2A to break a Cooper-pair. The color bar indicates the value of the dynamic structure factor, which is measured in
units of N /er and changes from 0 (blue) to 0.5 (red).

10 T :| T T
§o e BdG-RPA

8T § ——SLDA-RPA]
S1 :
«Lk 6k .:i 4
= i
? 4L ¢y p,=0.354v, EE Cpac=0-444v, E
= i
O) 2 L J IE; -

0 L . ]

0.000 0.005 0.010 0.015 0.020
oo/ssF

Figure 2. The phonon peak of the dynamic structure factor of a unitary Fermi gas in the low-¢ limit. The blue solid line is our SLDA-
RPA’s prediction, while the red dashed line is the result from the BAG-RPA theory. Here, to better represent the distribution of a delta
function at small g, abroadening width § = 10~*c has been used. The dynamic structure factor is measured in units of N /e.

A close examination of the phonon excitations is shown in figure 2 for a very small transferred momentum
q = 0.01kg. For comparison, we also plot the result of the standard BAG-RPA prediction by a red dashed line. It
is anticipated that the dispersion of the phonon excitations should follow w = ¢,q, where c;is the sound velocity.
By fitting the position of the phonon peak as a function of g, we numerically extract a value ¢; =~ 0.354vg, which
coincides, within the accuracy of our numerical calculations, with the value obtained using the macroscopic
definition of the sound speed, ¢; = \/ (n/m)ou/on = \/ §,,/3 vr. This value s also consistent with the results
determined from the experiments and from the ab initio Monte Carlo calculations. The agreement is not

surprising, since the SLDA parameters have been chosen to reproduce the known equation of state and hence the
sound speed. It is worth noting that a similar phonon peak is also predicted by the BAG-RPA theory (i.e., using
the BAG energy density functional). However, the BAG-RPA theory predicts a sound speed ¢, =~ 0.444v, which
is about 30% larger than the above mentioned SLDA-RPA result.

Atlarger transferred momentum, i.e., g 2 0.5k, the single-particle excitations start to make a notable
contribution to the dynamic structure factor above the threshold w = 2A = g, as shown in figure 3. The sharp
rise of the single-particle contribution at w = 2A is unlikely to be destroyed by the possible residue interactions
between Cooper pairs and unpaired fermions, which is not accounted for in our theory. Therefore, it could serve
as a useful feature to experimentally determine the pairing gap in the two-photon Bragg scattering experiments
[42]. We also note that, compared with our SLDA-RPA results, the BAG-RPA theory predicts a much weaker
response of the single-particle excitations at a larger threshold. This difference between the SLDA- and BdG-
RPA predictions could be easily resolved experimentally.
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Figure 3. The dynamic structure factor of a unitary Fermi gas, in units of N /&g, at g = 0.5kr (a) and g = kg (b). The blue solid and
red dashed lines show the results of the SLDA-RPA and BAG-RPA theories, respectively. We note that, the scale for the vertical axis in
(a) and (b) is different.
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Figure 4. The static structure factor of a zero-temperature unitary Fermi gas, calculated by the SLDA-RPA theory (blue solid line), in
comparison with the QMC result (black circles) [15] and the BAG-RPA prediction (red dashed line). Our SLDA-RPA theory is
expected to be quantitatively reliable at ¢ < kg, as highlighted by the yellow area.

A test of the accuracy of the theory can be obtained by looking at the static structure factor
S@ = [dws(g, w) 23)

for which QMC results are available [ 15, 55]. The comparison of our SLDA-RPA predictions with the latest
diffusion Monte Carlo data [15] is shown in figure 4, together with the predictions of BAG-RPA. The excellent
agreement between SLDA-RPA and QMCat g < kg is non-trivial and suggests that our theory can be
quantitatively reliable at small momentum transfer. Above the Fermi momentum, instead, there are significant
deviations. It is worth noticing that the BAG-RPA theory gives results closer to QMC at large momentum
transfer, where the physics is dominated by single-particle excitations and where BAG-RPA theory is known to
work well [56].

In figure 5, we show the dynamic structure factor at the momentum q = 4kg. Atsuch alarge momentum,
one can still separately resolve the bosonic Cooper-pair excitations (i.e., a molecular peak structure at
w = q*/4m = 8¢p) and fermionic single-particle excitations (i.e., the broader distribution at
w = q*/2m = 16¢g). Compared with the BAG-RPA result, our SLDA-RPA theory predicts a much smaller
molecular peak. This is understandable, since the SLDA theory is effectively a low-energy theory and hence
becomes less efficient at w > p. We note that, experimentally, there is a finite energy resolution in the
measurement of the dynamic structure factor [56]. The notable difference in the predictions for the molecular
peak will be easily smeared out by the finite energy resolution. As a result, the SLDA-RPA approach may predict
nearly the same line shape as the BAG-RPA theory. The difference in the line shape is characterized by the relative
difference in the static structure factor, which is about 5%. In the sense of predicting the experimental line shape
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Figure 5. The dynamic structure factor of a zero-temperature unitary Fermi gas (in units of N /&) at alarge momentum transfer
q = 4kg, calculated by using the SLDA-RPA (blue line) and BAG-RPA theories (red dashed line).

for the dynamic structure factor, we may argue that the SLDA-RPA is semi-quantitatively valid at large
transferred momentum q > kg.
It should also be noted that an independent check of the SLDA-RPA theory is provided by the f~sum rule [51]

2
f dwwS(q, w) = N_q’ (24)
2m

which should be satisfied. We have numerically checked that our SLDA-RPA calculations obey this sum-rule
within 1% relative accuracy.

6. Dynamic structure factor at the BCS-BEC crossover

In this section, we apply the SLDA-RPA theory to determine the dynamic structure factor at the whole BCS-BEC
crossover, by using the zero-temperature chemical potential and pairing gap calculated from a Gaussian pair
fluctuation theory [19] as the inputs. The energy density functional equation (1)—obtained under the scale
invariance assumption—is supposed to work well slightly away from the unitary limit.

Figure 6 reports the dynamic structure factor at the BCS-BEC crossover at two different transferred
momenta g = 0.5kg (a) and g = kg (b). On the BCS side, the single-particle contributions become significant,
as one may anticipate. Furthermore, at g = krand 1 /(kpa) = —0.4, where the bosonic peak position wp ~ ¢;q
is close to the two-particle scattering threshold 2A, there is a strong overlap between the phonon and single-
particle contributions, leading to an interesting peak-dip-bump structure. When the system crosses over to the
BEC limit with increasing 1/(kra), the phonon peak moves to the low energy, due to the decreasing sound
velocity. The single-particle contributions get suppressed very quickly. In particular, at ¢ = 0.5k, the broader
single-particle distribution can be barely seen on the BEC side with 1 /(kga) > 0.

Apparently, the experimental determination of the phonon peaks can be ideally used to measure the sound
velocity across the BCS-BEC crossover. The measurement of the broader single-particle contributions may also
be useful to determine the pairing gap on the BCS side.

7. Conclusions

In summary, we have developed a random phase approximation theory for calculating the dynamic structure
factor of a strongly interacting Fermi gas at unitarity and in the BCS-BEC crossover, within the framework of a
DFT approach [60, 66]. The theory is expected to be quantitatively reliable at low transferred momentum (i.e.,

q < kg)and atlow temperature (i.e., T < T;), where the predicted static structure factor agrees excellently well
with the result of the latest ab initio diffusion QMC [15]. Therefore, our theory is useful to understand the
dynamic structure factor in the previously un-explored territory of low transferred momentum, as schematically
illustrated in figure 7 by a red rectangle. A stringent test of the applicability of our theory could be obtained by
comparing our predictions with the results of on-going experiments [42].
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Figure 6. The dynamic structure factor (in units of N /) at the BCS-BEC crossover and at the tansferred momentum g = 0.5k (a)
and g = kg (b).
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Figure 7. An illustration of the existing theories of the dynamic structure factor of a strongly interacting Fermi gas, including the virial
expansion [46, 47], BAG-RPA theory [38, 55, 56] and diagrammatic approach [52, 53]. The applicable parameter space of our SLDA-
RPA theory is enclosed by the red dashed line at small transferred momentum g < kg and atlow temperature T' < T.. The two-
photon Bragg scattering experiment has so far been carried outat g ~ 0.5kp [42]and q > 3kg [39, 41]. The dashed borders of the
domains should not be considered as sharp boundaries, but just as an illustrative guide.

Acknowledgments

We are grateful to Chris Vale, Sandro Stringari, Aurel Bulgac, Michael McNeil Forbes and Lianyi He for fruitful
discussions, and Stefano Giorgini and Stefano Gandolfi for sharing their QMC data. PZ is indebted to the BEC
Center at Trento for hospitality when this work started. This work was supported by the ARC Discovery Projects:
FT130100815 and DP140103231 (HH), DP140100637 , and FT140100003 (XJL). RS acknowledges support
from DAE, Government of India. The work is also supported by Provincia Autonoma di Trento (FD).
Correspondence should be addressed to PZ at phy.zoupeng@gmail.com.

Appendix. The response function y°

In this appendix, we discuss how to calculate the response function x?, by solving the stationary SLDA equation.
The existence of four different densities means that there will be 16 correlation functions in x°:

4)

<n1n1>0 <Tl1”2>o <ﬂ1n3>o (nln 0

0 _ (mam)o (mamg)o (mans)o (mana)o

= <n3n1>0 <713”2>0 <”3”3>0 <n3n4>0 ’ (A1)
<”4ﬂ1>0 <”4712>0 <ﬂ4”3>0 <"4”4>0

where the abbreviation Xg = (n;nj)ois used. The derivation of these matrix elements is cumbersome. We show

here, as an example, the derivation of X(T)T = X(l)l' According to the Wick theorem, and following the BCS theory,
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which assume that only propagators—Ilike (\II%T\I/T), <\I/1(\Ifl>, (%) and (\II%T\I'I) —have anon-zero value, the
imaginary-time Green’s function X?l (r, v, 7) = — (T [A;(xr, T)A (', 0)]) can be written as

X = — (W, )T, 0)) (Ty(r, WX, 0)), (A2)
where 7 is the imaginary time and we assume 7 > 0. By using the Bogoliubov transformations
Wy =l (et + v e,
i
W) = Do uf0c] et — v (mre ], (A3)
i
for the field operators W, and \III,, one finds
X (@ ¥ ) = =Y uF @) ui () uj () uf () f (E)f (—EjeE b, (A4)
ij
Here we use (c; ¢j) = f (Ej)6;and (c, N = f(—E) bjand f (x) = 1/(e®T + 1)is the Fermi distribution

function of quasiparticles. The spin 1ndex has been removed owing to the existence of a one-to-one
correspondence between the solutions of spin-up and spln down energy levels. By taking the Fourier

transformation in the imaginary time, xn(r, , 1y,) = f dTe‘V"TX (r, 1, 7),where v, = 2nmkp T is the
bosonic Matsubara frequency, one obtains,

f(E) - f(E)

A5
n+(E7E) (45)

X (@ s ) = ) u () u (1) uf (1) -

i,j

For the homogeneous gas, a set of plane wave functions can be used to expand the eigenfunctions u; in the form
u; (r) — ure™. By defining the transferring momentum p = k/ — k and the relative coordinate 6r = r — r/,
then

. E) — f(E
X?l (6r, iv,) = Zluk|2|uk+p|2€1pér .f( ) — f (Ex+p)

. (A6)
k,p 1y + (Ek - Ek+p)

By taking the Fourier transformation of the relative coordinate, X, (g, w,) = f dérx?, (6r, iw,)e 9%, we find
that,

(B) — f (Bxsp)

X1 (@ i) = Zlukl | pI2 !

(A7)
Vp + (Ek - Ek+p)
Using the expressions for uy and uy ,, at zero temperature we obtain,
1 AN Ex + Ex
Xll(‘b lyn) = Z I 1 P i P (AS)
X 2 ExEx+q (ivy)” — (Bx + Ek+q)

Through a similar process, we can derive the other 15 matrix elements of x°. In fact, after checking their
expressions, only six of them are independent. The remaining expressions are simply related to each other by, for
example, the replacement k — —k — q. In the following, we list the other five expressions for X}, X{3» X14 Xoy

and ng at zero temperature:

Zl Eyx + Exyq (A9)
2 ExEiciq (ivn)? — (B + Biig)?
W= é i+ Sitrg) Ex + Eiiq R i, (A10)
" 4 ExExiq (0n)? — (B + Exiq)®  \Ex  Eiiq)(n)? — (Bx + Exig)?
- é €k + Ekrg) Ex + Eixiq n 1 N 1 iv, (ALD)
14 4 ExExiq  (ivn)* — (B + Eiiq)® Ex  Exiq)(n)? — (Ex + Eiyq)?
& E + E 13 i
+ Sk fk k+q : - k k+q - + g + k+q : . 1/, | (AIZ)
(i)” — (Bx + Ek+q) Ex Ek+q (ivy)” — (Bx + Ek+q)

X34 =
0
Xg3 =

5!
— 1
2 [ Ey Biiq

§k §k+q] Ex + Eiiq _ (& + €k+‘l] i ] (A13)
(il/n)2 (iVn)

1
2 Ek Exyq — (Ex + Exiq)? Ex  Exiq — (Ex + Exiq)?

0

We note that, X34

and \° 43 Should be regularized in order to remove the ultraviolet divergence.
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