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Abstract
We theoretically investigate the dynamic structure factor of a strongly interacting Fermi gas at the
crossover fromBardeen–Cooper–Schrieffer superfluids to Bose–Einstein condensates, by developing
an improved randomphase approximationwithin the framework of a density functional theory
(DFT)—the so-called superfluid local density approximation. Comparedwith the previous random-
phase-approximation studies based on the standard Bogoliubov–deGennes equations, the use of the
DFT greatly improves the accuracy of the equation of state at the crossover, and leads to a better
description of both collective Bogoliubov-Anderson-Goldstone phononmode and single-particle
fermionic excitations at small transferredmomentum.Near unitarity, where the s-wave scattering
length diverges, we show that the single-particle excitations start to significantly contribute to the
spectrumof dynamic structure factor once the frequency is above a threshold of the energy gap at D2 .
The sharp rise in the spectrum at this threshold can be utilized tomeasure the pairing gapΔ. Together
with the sound velocity determined from the phonon branch, the dynamic structure factor provides
us some key information of the crossover Fermi superfluid.Our predictions could be examined in
experiments with 6Li or 40K atoms using Bragg spectroscopy.

1. Introduction

The realization of ultracold Fermi gases of 6Li and 40K atoms near Feshbach resonances provides a new paradigm
for studying strongly correlatedmany-body systems [1]. At low temperature, these systems display an intriguing
crossover fromBardeen–Cooper–Schrieffer (BCS) superfluids to Bose–Einstein condensates (BEC) [2, 3]. At a
special point in between the two regimes, where the s-wave scattering length diverges, the gas exhibits universal
properties, whichmight also exist in other strongly interacting Fermi superfluids [4, 5], such as high-
temperature superconductors or nuclearmatter in neutron stars. This is called unitary Fermi gas and
corresponds a novel type of superfluidwith neither dominant bosonic nor fermionic character. This new
superfluid has already been intensively investigated [3], leading to severalmilestone observations.

Theoretical challenges in describing the BCS-BEC crossover arise from its strongly correlated nature: there is
no small interaction parameter to control the accuracy of theories [6]. To date, significant progress has been
made in developing better quantumMonteCarlo (QMC) simulations [7–15] and strong-coupling theories [16–
24], leading to the quantitative establishment of a number of properties in conjunctionwith the rapid
experimental advances. These include the equation of state [6, 25–29], frequency of collective oscillations
[30, 31], pairing gap [10, 11, 32, 33], and superfluid transition temperature [9, 29]. However, some fundamental
dynamical properties, such as the single-particle spectral functionmeasured by radio-frequency (rf)
spectroscopy [34–37] and the dynamic structure factor probed by Bragg spectroscopy [38–42], are not well
understood yet.

As an important fingerprint of quantum gases in some certain states, dynamic structure factor contains rich
information of properties of amany-body system [43]. By tuning the transferredmomentumor energy from a
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low value to a high one, we can observe the low-lying collective phonon excitations, Cooper-pair (i.e.,
molecular) excitations and single-particle atomic excitations, respectively. In particular, at finite temperature
the dynamic structure factor can help to judgewhether the system is in the superfluid or normal state from the
emergence of the phonon excitations. Also, it is reasonable to anticipate that the dynamic structure factormay
play a role to solve the debate on the existence of pseudogap pairing or pre-pairing states [34, 35].
Experimentally, the dynamic structure factor can bemeasured via two-photonBragg scattering technique [39],
at both low and finite temperatures [41]. Theoretically, since no exact solution exists for strongly interacting
Fermi gases and the numerically exactQMCapproach is less efficient for simulating dynamical quantities, one
has to resort to some approximated approaches, which are useful in certain limiting cases [40] (see table 1). For
example, at high temperature, as the fugacity is a small parameter, a quantum cluster expansion has been proven
to be an efficientmethod [44, 45], and has been used to calculate the dynamic structure factor [46, 47]. In the
limits of both largemomentum and high frequency, asymptotically exact Tan relations have been derived to
describe the high-frequency tails [48, 49]. On the other hand, in the limit of longwavelength or small
momentum, the phenomenological two-fluid hydrodynamic theorymay provide a useful description [50].

A general theoretical framework of the dynamic structure factor, valid at arbitrary temperature and
momentum, can be developed by using the diagrammatic technique [51, 52] or functional path integral
approach [53], in parallel with the existing strong-coupling theories of interacting Fermi gases [6]. The
expressions for the density and spin responses of strongly interacting Fermi gases have been obtained [53].
However, their numerical calculations turn out to be extremely difficult, except in the limit of zero transferred
momentum [52]. Amicroscopic approach utilizing correlated basis function theory, with static structure factor
fromQMCas input, has also been used to calculate the dynamic structure factor [54]. Amore commonly used
approach is the random-phase approximation (RPA) on top of themean-field Bogoliubov–deGennes (BdG)
theory [38, 55–57]. By comparing the BdG-RPApredictionswith the experimental data for the dynamic
structure factor of strongly interacting fermions andwith theQMC results for the static structure factor [56], it
has been surprisingly shownby two of the present authors that the BdG-RPA theoryworks quantitativelywell at
sufficiently large transferredmomentum (i.e., ~q k5 F , where kF is the Fermimomentum). At small transferred
momentum, i.e., q kF , apparently, the BdG-RPAonly provides a qualitative description of the dynamic
structure factor at the BCS-BEC crossover, since both the sound velocity (associatedwith the phonon
excitations) and pairing gap (associatedwith the single-particle fermionic excitations) are strongly over-
estimatedwithin the BdG framework [3].

In this work, we aim to develop a quantitative theory for the dynamic structure factor of strongly interacting
fermions at low transferredmomentum and at low temperature, which is amenable for numerical calculations.
For this purpose, we adopt a superfluid local density approximation (SLDA) approach [58–60], within the
framework of density functional theory (DFT) [62–64], as recently suggested by Bulgac and his co-workers. The
SLDA theory assumes an energy density functional (i.e., a function of the density function) to describe a unitary
Fermi superfluid and uses theQMC results for the chemical potential and order parameter as two important
inputs. It can bewell regarded as a better quasi-particle description than themean-field BdG theory. It has been
shown that at low-energy the SLDA theory provides useful results for the equation of state [60] and real-time
dynamics [65, 66] of a strongly interacting Fermi superfluid.

Here we apply the randomphase approximation on top of the SLDA theory. The use of SLDA in place of the
standard BdG equations improves the predictions for the dynamic structure factor in the BCS-BEC crossover
near unitarity. The static structure factor at smallmomentum transfer is in excellent agreement with the results

Table 1.A list of the existing theories for the dynamic structure of
strongly interacting fermions, including the virial expansion [46, 47],
Tan relation [48, 49], two-fluid hydrodynamics [50], diagrammatic
strong-coupling approach [52, 53], and BdG-RPA [38, 55–57]. The
applicable conditions for the transferredmomentum q and temper-
atureT, underwhich each theory is quantitatively useful, are indicated.
Here ( )p=k n3F

2 1 3, ( ) ( ) ( )e p= =k m n m2 3 2 ,F F
2 2 2 3 andTF are

the Fermimomentum, energy, and temperature, respectively.Tc is the
superfluid transition temperature.

Theories q (applicable) T (applicable)

Virial expansion arbitrary >T TF

Tan relation q kF , w eF T TF

Two-fluid hydrodynamics q kF , <T Tc

Diagrammatic approach arbitrary arbitrary

BdG-RPA q kF T Tc

SLDA-RPA (this work) q kF T Tc

2
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of the latestQMC [14, 15, 55]. Amore stringent test can be obtained in the near future by comparing our
predictionswith the experimental data [42], without any adjustable parameters.

Our paper is organized as follows. In the next section (section 2), we introduce the SLDA theory. In section 3,
we review themain idea of RPA. The expression for the dynamic structure factor is derived in section 4. In
sections 5 and 6, we present ourmain results of dynamic structure factor in the unitary limit and the crossover
regime, respectively. Finally, section 7 is devoted to conclusions and outlooks. For convenience, we set
 = =k 1B in the following discussions.

2. Superfluid local density approximation

TheDFTdeveloped byHohenberg andKohn [62], togetherwith the local density approximation (LDA)byKohn
and Sham [63], is a powerful tool to understand the properties ofmany-electron systems. TheDFTwas initially
used for electrons in thenormal, non-superconducting state. It is based on the assumptions that there is a unique
mapping between the external potential and the totalwave functionof the system (or the normal density), and that
the exact energyof the systemcan bewritten as a density functional. A limitation of theDFT is that the exact form
of the density functional is oftennot known. Therefore, approximated phenomenological functionals are
introduced,which shouldbe optimized for a specific system.Typically, those functionals rely on theKohn-Sham
orbitals [64] and thus cannot effectively deal with superfluidity. The generalization of theDFT to superfluid cold-
atomsystems—referred to as SLDAaswementioned earlier—was recently introduced byBulgac andYu [58–60].
This SLDAoriginates froma similarDFTpreviously used in the context of nuclear physics [59, 66].

A nice feature of ultracold fermions is that, in the unitary limit the formof the energy density functional is
restricted by dimensional arguments. Another advantage is the availability of ab initioQMCresults and accurate
experimental data for both homogeneous and inhomogeneous systems, which can be used tofix the parameters
of the density functional, as we shall see below.

For a superfluid atomic Fermi gas, two atomswithmassm in different spin state can form aCooper pair. As a
result, the systempossesses an anomalous Cooper-pair density ( )n tr, , in addition to the number density

( )n tr, . The energy density functional [ ( ) ( ) ( )] t nt n t tr r r, , , , , of the systemmust include the kinetic density
( )t tr, , number density ( )n tr, , and also the anomalous density ( )n tr, [59, 60]:

[ ] ( ) ∣ ∣ ( ) t n a t b
p

g n= + +n
m m

n
mn

, ,
1

2

3 3

10

1
, 1

2 2 3
5 3

1 3
2

where the kinetic density τ, number density n and anomalous density ν are given by,

∣ ∣ ∣ ∣ ( )*å å åt n=  = =v n v u v2 , 2 , , 2
k

k
k

k
k

k k
2 2

and ( )u tr,k and ( )v tr,k are the Bogoliubov quasiparticle wavefunctions with k labeling the quasiparticle
states. Three dimensionless constants, the effectivemass parameter α, Hartree parameter β and pairing
parameter γ, are introduced. These parameters are determined by requiring that the SLDA reproduces exactly
the zero temperature chemical potential, pairing gap and energy per particle that are obtained by eitherQMC
simulations or accurate experimentalmeasurements for a uniform system [60, 66].

In the unitary limit at zero temperature, the simple formof the energy density functional equation (1) is
inspired by the dimensional analysis: the first and third terms are the unique combination required by
the renormalizablity of the theory [58]; while the second term is the only possible form allowed by the
scale invariance at unitarity [4]. The above energy density functional has been successfully used by Bulgac and his
co-workers to understand the thermodynamics [60] and dynamics [65, 66] of a unitary Fermi gas at zero
temperature. It is reasonable to assume that the energy density functional equation (1) can be applied also away
fromunitarity, but close to it, and at non-zero temperature, but significantly belowTc.

As both the kinetic and anomalous densities diverge due to the use of a pairwise contact interaction, a
regularization procedure is needed for the pairing gap and for the energy density [58]. After regularization, the
energy density functional with regularized kinetic density ( )t tr,c and anomalous density ( )n tr,c takes the
following form [60],

( ) ∣ ∣ ( ) a t b
p

n= + +
m m

n g
1

2

3 3

10
, 3c c

2 2 3
5 3

eff
2

where the effective coupling constant geff is given by

( )
∣ ∣
åg a

= -
L<g

mn m

k

1
. 4

keff

1 3

2

Wenote that, geff scales to zero once the cut-offmomentumΛ runs to infinity. The order parameter ( )D tr, is
related to the anomalous density ν by

3
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( ) ( ) ( )nD = -t g tr r, , . 5ceff

The stationary SLDA equations for the quasiparticle wave functions are obtained by the standard functional
minimizationwith respect to the variations uk and vk . One obtains

( )
*





m
m

- D
D - +

=
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

u
v E

u
v , 6

s

s

k

k
k

k

k

with a single quasiparticleHamiltonian

( ) ∣ ∣ ( ) a b
p

g
= -


+ -

D
m

n

m mn2

3

2 3
, 7s

2 2 2 3 2

2 3

and the chemical potential μ.
By requiring that a homogeneous Fermi gas of the number density ( )p= =n N V k 3F

3 2 has an energy per
particle ( )x e=E N 3 5 E F , a chemical potential m x e= m F , and a pairing order parameter heD = F at zero
temperature, one can determine the value of dimensionless parameters α, β and γ in equation (3) through the
following equations, which are independent on the cut-offmomentum (i.e., L  ¥):

( )å
x

= -
⎛
⎝⎜

⎞
⎠⎟n

E
1 , 8

k

k

k

( )åg a
= -

⎛
⎝⎜

⎞
⎠⎟

mn m

Ek

1

2
, 9

k k

1 3

2

and

( ) ( )åx b a
x

- = - -
D⎡

⎣⎢
⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥E n

m E E

k3

5 2
1

2
, 10F E

k

k

k k

2

where ( ) [ ( ) ( ) ]x a b p h g x e= + - - mmk 2 3 6 Fk
2 2 2 3 2 and x= + DEk k

2 2 . In these three constraint
equations, xm, η and xE are the three inputs, whose value can be reliably determined by usingQMC simulations
[11–13] or from the experimentalmeasurements [28, 29, 32]. The parameter α can be determined using the
single particle dispersion, near the unitary limit, typically the parameter α is very close to 1 [60, 61], indicating
that the effectivemass only differs slightly from the bare atomicmassm. For simplicity, throughout theworkwe
take a = 1and use the density equation equation (8) and the gap equation equation (9) to determine the
parameters β and γ. Aswe shall see, this simple choice also ensures that the f-sum rule of the dynamic structure
factor is strictly satisfied.

For a unitary Fermi superfluid, where x x x= =m E due to the scale invariance [4], the latest auxiliaryfield
QMCprovides x 0.372 [12], which is quite close to the experimental value ( )x = 0.376 5 [29]. Other field
theoretical approaches provide very similar predictions. These include the dimensional ò- expansion
(x = 0.377 0.014 at the next-to-leading order [20] and x = 0.360 0.020 at the next-to-next-to-leading
order [23]), self-consistent Luttinger-Ward theory (x = 0.36) [21], and non-self-consistent Gaussian pair
fluctuation theory (x = 0.401) [19, 22]. As to the parameter η, its accurate value is to be determined yet. An
earlier rf-spectroscopy experiment reports h 0.44 [33] and the latest QMC result is h = 0.504 [10, 11]. The
field theoretical predictions (i.e., h = 0.46 fromboth the Luttinger-Ward theory [21] andGaussian pair-
fluctuation theory [19, 22]) also give similar results. In this work, for a unitary Fermi gaswe choose the
experimental result m e= 0.376 F for the chemical potential and theQMCprediction eD = 0.5 F for the pairing
gap. This leads to b = -0.430 and g = -1 0.0767. It is worth noting that, when a = 1, our SLDA result
reduces that of the standard BdG theory, if we set β and g1 to zero.

Away from the unitary limit, the knowledge on the pairing gap is not complete.We use the predictions of a
Gaussian pair fluctuation theory [19, 22] as the inputs, since these theoretical results have already been shown to
provide a satisfactory explanation for the experimentallymeasured chemical potential [28].

3. Randomphase approximation

If a superfluid Fermi gas is perturbed by a small external potential, usually the number density and anomalous
density willfluctuate. Due to the interatomic interactions, thefluctuating densities will feedback and induce an
additional perturbation potential. Oneway to include thesefluctuation effects is to use the linear response
theorywithin the RPA [38, 55, 67–70]. The essential idea of RPA is that the induced fluctuation potential is
assumed to be a self-generatedmean-field potential experienced by quasiparticles, due to the local changes in the
number densities ( )n tr, and ( )n tr, , andCooper-pairs density ( )n tr, or its complex conjugate ( )*n tr, . In
the following, for convenience, we denote these four densities n↑, n↓, ν and *n as n1, n2, n3 and n4, respectively.

4
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In the SLDA energy density functional, it is easy to see that the interaction contribution to the functional is
given by,

( ) ( ) ∣ ( )∣ ( ) b
p

= +
D

m
n t

t

g
r

r3 3

10
,

,
. 11int

2 2 3
5 3

2

eff

The resultingfluctuating potential is simply då E nj ij
I

j, where [70]

( )
=

¶
¶ ¶

⎛
⎝⎜

⎞
⎠⎟E

n n
12ij

I

i j

2
int

0

and d =ni 1,2,3,4 are the densityfluctuations around equilibrium,which are to be determined. The suffix 0 indicates
that the derivatives are calculated at equilibrium. Therefore, together with the external potentialV i

ext, the total
effective perturbative potential takes the form,

( )å dº +V V E n . 13i i

j
ij
I

jeff ext

Using this effective perturbation, the density fluctuations dni can bewritten down straightforwardly, according
to the standard linear response theory,

( )åd c=n V , 14i
j

ij
i0
eff

where c0 is the bare response function of the quasiparticle reference systemdescribed by the SLDA equation (6),
which is easy to calculate (see appendix ). By combining equations (13) and (14), we arrive at,

( )åd c=n V , 15i
j

ij
i
ext

where χ is the RPA response function,

[ ] ( )c c c= - -E1 . 16I0 0 1

Once the bare response function c0 and the second order derivative Eij
I are known,we obtain directly χ. The

density response function cD is a summation of cij in the density channel:
( )c c c c c c c= + + + = +2D 11 12 21 22 11 12 . The dynamic structure factor is connected to the imaginary part

of the density response function,

( )
( )

( )w
p

c n w
= -

 +
- w

+

-
S q

q
,

1 Im , i i0

1 e
, 17D n

T

with q andω being the transferredmomentum and energy, respectively.
The RPAon top of themean-field BdG theory has previously been used to study the dynamic structure factor

[67] and collective oscillations [68] ofweakly interacting Fermi superfluids. A dynamicalmean-field approach,
identical to the RPAbut based on kinetic equations, was also developed to investigate dynamic and static
structure factors and collectivemodes of strongly interacting Fermi superfluids [38, 55]. Some properties of the
density response of unitary Fermi gas for the SLDAhas also been studied in [71]. In the following, we examine
the improved RPAbased on the SLDA theory.

4.Dynamic structure factor in SLDA theory

The calculation of the second-order derivativematrix E I is straightforward. It reads,

( )

   

   

 

 

e e
e e

=

n n

n n

n n

n n

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥
E

n n g g

n n g g

g g g

g g g

0

0

, 18I

n F n F e e

n F n F e e

e e

e e

ff ff

ff ff

ff ff eff

ff ff eff

where n and n are two dimensionless variables,

( )

( )





b p
g e

p
g e

= +
D

=
D

n

2

3

3

9
,

3

6
.

n
F

F

2 2 3 2

2

2 2 3

Wenote the existence of the crossing term n , due to the (implicit) coupling between the number density and
the anomalousCooper-pair density in the interaction energy density functional equation (11). In the unitary
limit, in comparison to the BdG-RPA theory, we note also that thematrix element in the number density

5
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channel,  e nn F , changes from a vanishingly small number (i.e., at the order of geff ) to afinite value. The
response function of the quasiparticle reference system c0 can be constructed by solving the stationary SLDA
equation (6). It is a 4 by 4matrix. However, as we shown in appendix, only six of all 16matrix elements are
independent:

( )c

c c c c

c c c c

c c c c

c c c c

=
-

-

⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥
, 190

11
0

12
0

13
0

14
0

12
0

11
0

13
0

14
0

14
0

14
0

12
0

34
0

13
0

13
0

43
0

12
0

The detailed expressions of the elements c11
0 , c12

0 , c13
0 , c14

0 , c34
0 and c43

0 arewe show in appendix. By solving the
RPA equation (16), we obtain all thematrix elements cij of the RPA response function χ. The resulting density
response function is given by,

∣ ∣ ( )c

c c c c

c c c

c c c
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+ - -

-

-

-

g g

g g

g g

E2 2 1

2 1

1 . 20D
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14
0

eff 13
0
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0
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0
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0

eff

13
0

12
0

eff 43
0

eff

0

It is well known that the anomalous density correlated functions, c34
0 and c43

0 , are divergent, because of the

use of the contact interatomic interaction [68]. Thus, we introduce the regularized functions c c= - g134
0

34
0

eff

and c c= - g143
0

43
0

eff , withwhich the density response function now takes the form,
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∣ ∣
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0 2

34
0

14
0 2

43
0

To obtain the expression of ∣ ∣c- E g1 I0
eff
2 , it should be noted that geff is a vanishingly small quantity.

Therefore, it is useful to arrange different terms in terms of the powers of geff . For instance, for thematrix
elements ofEn,  e nn F has the order of [ ]geff

0, while ngeff has the order of [ ]geff
1. For the determinant

∣ ∣c- E1 I0 , there are no terms at the order of ( ) geff or ( ) 1 , as anticipated. The order ofmost terms is
([ ] ) geff

2 . By collecting those terms, wefind that,

∣ ∣ ( ) ( ) ( )       
c

c c c
-

= + - - + -n n n n
E

g

1
4 2 2 2 , 22

I

n n n

0

eff
2 1

2
2 1 2 34

0
43
0

12
0 2

where

( )( ) ( )
 

 





c c c c c c c c

c c c c c c c

= + + +

= + + + - -

n

n

,

2 2 ,

1 12
0

13
0

12
0

14
0

13
0

34
0

14
0

43
0

2 11
0

12
0

12
0

34
0

43
0

13
0

14
0 2

In the unitary limit, if we set both n and n to zero, ∣ ∣c- E g1 I0
eff
2 is just ( ) c c c-34

0
43
0

12
0 2, and thenwe recover

the BdG-RPA expression for the density response function [38, 56, 57].
We use equations (21) and (22) to obtain the density response function cD and then calculate the dynamic

structure factor ( )wS q, via the fluctuation-dissipation theorem equation (17). To take the analytic continuation
numerically, i.e., n w d +i in , where d = +0 , we use a small broadening parameter d e= -10 F

3 , unless
specified elsewhere.

5.Dynamic structure factor of a unitary Fermi superfluid

In this section, we present the results for the dynamic structure factor of a unitary Fermi gas at zero temperature
within SLDA-RPA, and justify our theory at low transferredmomentum q kF by comparing the resulting
static structure factor equation (23)with the latest QMCdata [15].

Figure 1 reports a contour plot of ( )wS q, in themomentum range from q=0 to =q k2 F . Two types of
contributions are clearly visible: one is the collective Bogoliubov-Anderson phonon excitations within the
energy gap w < = DE 2g [38], which exhibit themselves as a sharp δ-peak in the structure factor spectrum.
Right above the energy gap, amuch broader distribution emerges, which should be attributed to the fermionic
single-particle excitations by breakingCooper pairs.
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A close examination of the phonon excitations is shown infigure 2 for a very small transferredmomentum

=q k0.01 F . For comparison, we also plot the result of the standard BdG-RPAprediction by a red dashed line. It
is anticipated that the dispersion of the phonon excitations should follow w = c qs , where cs is the sound velocity.
Byfitting the position of the phonon peak as a function of q, we numerically extract a value c v0.354s F , which
coincides, within the accuracy of our numerical calculations, with the value obtained using themacroscopic

definition of the sound speed, ( ) m x= ¶ ¶ = mc n m n v3s F . This value is also consistent with the results

determined from the experiments and from the ab initioMonteCarlo calculations. The agreement is not
surprising, since the SLDAparameters have been chosen to reproduce the known equation of state and hence the
sound speed. It is worth noting that a similar phonon peak is also predicted by the BdG-RPA theory (i.e., using
the BdG energy density functional). However, the BdG-RPA theory predicts a sound speed c v0.444s F , which
is about 30% larger than the abovementioned SLDA-RPA result.

At larger transferredmomentum, i.e., q k0.5 F , the single-particle excitations start tomake a notable
contribution to the dynamic structure factor above the threshold w e= D =2 F , as shown infigure 3. The sharp
rise of the single-particle contribution at w = D2 is unlikely to be destroyed by the possible residue interactions
betweenCooper pairs and unpaired fermions, which is not accounted for in our theory. Therefore, it could serve
as a useful feature to experimentally determine the pairing gap in the two-photon Bragg scattering experiments
[42].We also note that, comparedwith our SLDA-RPA results, the BdG-RPA theory predicts amuchweaker
response of the single-particle excitations at a larger threshold. This difference between the SLDA- andBdG-
RPApredictions could be easily resolved experimentally.

Figure 1.The contour plot of the dynamic structure factor of a unitary Fermi gas at zero temperature, obtained by using SLDA-RPA.
The slope of the low-energy branch is given by the sound speed c v0.354s F , while the horizontal threshold at w eF is equal to the
minimum energy D2 to break aCooper-pair. The color bar indicates the value of the dynamic structure factor, which ismeasured in
units of eN F and changes from0 (blue) to 0.5 (red).

Figure 2.The phonon peak of the dynamic structure factor of a unitary Fermi gas in the low-q limit. The blue solid line is our SLDA-
RPA’s prediction, while the red dashed line is the result from the BdG-RPA theory. Here, to better represent the distribution of a delta
function at small q, a broadeningwidth d e= -10 F

4 has been used. The dynamic structure factor ismeasured in units of eN F .
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A test of the accuracy of the theory can be obtained by looking at the static structure factor

( ) ( ) ( )ò w w=S Sq qd , 23

for whichQMC results are available [15, 55]. The comparison of our SLDA-RPApredictionswith the latest
diffusionMonte Carlo data [15] is shown infigure 4, togetherwith the predictions of BdG-RPA. The excellent
agreement between SLDA-RPA andQMCat q kF is non-trivial and suggests that our theory can be
quantitatively reliable at smallmomentum transfer. Above the Fermimomentum, instead, there are significant
deviations. It is worth noticing that the BdG-RPA theory gives results closer toQMCat largemomentum
transfer, where the physics is dominated by single-particle excitations andwhere BdG-RPA theory is known to
workwell [56].

Infigure 5, we show the dynamic structure factor at themomentum =q k4 F . At such a largemomentum,
one can still separately resolve the bosonic Cooper-pair excitations (i.e., amolecular peak structure at
w e= =q m4 8 F

2 ) and fermionic single-particle excitations (i.e., the broader distribution at
w e= =q m2 16 F

2 ). Comparedwith the BdG-RPA result, our SLDA-RPA theory predicts amuch smaller
molecular peak. This is understandable, since the SLDA theory is effectively a low-energy theory and hence
becomes less efficient at w eF .We note that, experimentally, there is afinite energy resolution in the
measurement of the dynamic structure factor [56]. The notable difference in the predictions for themolecular
peakwill be easily smeared out by thefinite energy resolution. As a result, the SLDA-RPA approachmay predict
nearly the same line shape as the BdG-RPA theory. The difference in the line shape is characterized by the relative
difference in the static structure factor, which is about 5%. In the sense of predicting the experimental line shape

Figure 3.The dynamic structure factor of a unitary Fermi gas, in units of eN F , at =q k0.5 F (a) and =q kF (b). The blue solid and
red dashed lines show the results of the SLDA-RPA andBdG-RPA theories, respectively.We note that, the scale for the vertical axis in
(a) and (b) is different.

Figure 4.The static structure factor of a zero-temperature unitary Fermi gas, calculated by the SLDA-RPA theory (blue solid line), in
comparisonwith theQMC result (black circles) [15] and the BdG-RPAprediction (red dashed line). Our SLDA-RPA theory is
expected to be quantitatively reliable at q kF , as highlighted by the yellow area.
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for the dynamic structure factor, wemay argue that the SLDA-RPA is semi-quantitatively valid at large
transferredmomentum >q kF .

It should also be noted that an independent check of the SLDA-RPA theory is provided by the f-sum rule [51]

( ) ( )ò ww w =S
N

m
q

q
d ,

2
, 24

2

which should be satisfied.We have numerically checked that our SLDA-RPA calculations obey this sum-rule
within 1% relative accuracy.

6.Dynamic structure factor at the BCS-BEC crossover

In this section, we apply the SLDA-RPA theory to determine the dynamic structure factor at thewhole BCS-BEC
crossover, by using the zero-temperature chemical potential and pairing gap calculated from aGaussian pair
fluctuation theory [19] as the inputs. The energy density functional equation (1)—obtained under the scale
invariance assumption—is supposed toworkwell slightly away from the unitary limit.

Figure 6 reports the dynamic structure factor at the BCS-BEC crossover at two different transferred
momenta =q k0.5 F (a) and =q kF (b). On the BCS side, the single-particle contributions become significant,
as onemay anticipate. Furthermore, at =q kF and ( ) = -k a1 0.4F , where the bosonic peak position w ~ c qB s

is close to the two-particle scattering threshold D2 , there is a strong overlap between the phonon and single-
particle contributions, leading to an interesting peak-dip-bump structure.When the system crosses over to the
BEC limit with increasing ( )k a1 F , the phonon peakmoves to the low energy, due to the decreasing sound
velocity. The single-particle contributions get suppressed very quickly. In particular, at =q k0.5 F , the broader
single-particle distribution can be barely seen on the BEC sidewith ( ) >k a1 0F .

Apparently, the experimental determination of the phonon peaks can be ideally used tomeasure the sound
velocity across the BCS-BEC crossover. Themeasurement of the broader single-particle contributionsmay also
be useful to determine the pairing gap on the BCS side.

7. Conclusions

In summary, we have developed a randomphase approximation theory for calculating the dynamic structure
factor of a strongly interacting Fermi gas at unitarity and in the BCS-BEC crossover, within the framework of a
DFT approach [60, 66]. The theory is expected to be quantitatively reliable at low transferredmomentum (i.e.,
<q kF) and at low temperature (i.e., T Tc), where the predicted static structure factor agrees excellently well

with the result of the latest ab initio diffusionQMC [15]. Therefore, our theory is useful to understand the
dynamic structure factor in the previously un-explored territory of low transferredmomentum, as schematically
illustrated infigure 7 by a red rectangle. A stringent test of the applicability of our theory could be obtained by
comparing our predictionswith the results of on-going experiments [42].

Figure 5.The dynamic structure factor of a zero-temperature unitary Fermi gas (in units of eN F) at a largemomentum transfer
=q k4 F , calculated by using the SLDA-RPA (blue line) andBdG-RPA theories (red dashed line).
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Appendix. The response function c0

In this appendix, we discuss how to calculate the response function c0, by solving the stationary SLDA equation.
The existence of four different densitiesmeans that therewill be 16 correlation functions in c0:

( )c º

á ñ á ñ á ñ á ñ
á ñ á ñ á ñ á ñ
á ñ á ñ á ñ á ñ
á ñ á ñ á ñ á ñ

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥

n n n n n n n n

n n n n n n n n

n n n n n n n n

n n n n n n n n

, A10

1 1 0 1 2 0 1 3 0 1 4 0

2 1 0 2 2 0 2 3 0 2 4 0

3 1 0 3 2 0 3 3 0 3 4 0

4 1 0 4 2 0 4 3 0 4 4 0

where the abbreviation c = á ñn nij i j
0

0 is used. The derivation of thesematrix elements is cumbersome.We show

here, as an example, the derivation of c cº
0

11
0 . According to theWick theorem, and following the BCS theory,

Figure 6.The dynamic structure factor (in units of eN F) at the BCS-BEC crossover and at the tansferredmomentum =q k0.5 F (a)
and =q kF (b).

Figure 7.An illustration of the existing theories of the dynamic structure factor of a strongly interacting Fermi gas, including the virial
expansion [46, 47], BdG-RPA theory [38, 55, 56] and diagrammatic approach [52, 53]. The applicable parameter space of our SLDA-
RPA theory is enclosed by the red dashed line at small transferredmomentum q kF and at low temperature T Tc . The two-
photon Bragg scattering experiment has so far been carried out at ~q k0.5 F [42] and q k3 F [39, 41]. The dashed borders of the
domains should not be considered as sharp boundaries, but just as an illustrative guide.
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which assume that only propagators—like †áY Y ñ  ,
†áY Yñ  , áYY ñ  and † †áY Y ñ  —have a non-zero value, the

imaginary-timeGreen’s function ( )c t¢r r, ,11
0 [ ˆ ( ) ˆ ( )]tº -á ¢ ñtT n nr r, , 01 1 can bewritten as

( ) ( ) ( ) ( ) ( )† †c t t= -áY Y ¢ ñáY Y ¢ ñ   r r r r, , 0 , , 0 , A211
0

where τ is the imaginary time andwe assume t > 0. By using the Bogoliubov transformations

[ ( ) ( ) ]

[ ( ) ( ) ] ( )

†

† †

*

*

å

å

Y = +

Y = -

  
-

 

    
-

 

 

u c v c

u c v c

r r

r r

e e ,

e e , A3

j
j j

E t
j j

E t

j
j j

E t
j j

E t

i i

i i

j j

j j

for thefield operators Ys and †Ys, one finds

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )* *åc t¢ = - ¢ ¢ - t-u u u u f E f Er r r r r r, , e . A4
i j

i i j j i j
E E

11
0

,

i j

Herewe use ( )† dá ñ =c c f Ei j i ij and ( )† dá ñ = -c c f Ei j i ij, and ( ) ( )= +f x 1 e 1x T is the Fermi distribution
function of quasiparticles. The spin index has been removed owing to the existence of a one-to-one
correspondence between the solutions of spin-up and spin-down energy levels. By taking the Fourier

transformation in the imaginary time, ( ) ( )òc n t c t¢ = ¢
b n tr r r r, , i d e , ,n11

0

0
i

11
0n , where n p= n k T2n B is the

bosonicMatsubara frequency, one obtains,

( ) ( ) ( ) ( ) ( )
( ) ( )

( )
( )* *åc n

n
¢ = ¢ ¢

-

+ -
u u u u

f E f E

E E
r r r r r r, , i

i
. A5n

i j
i j j

i j

n i j
11
0

,
i

For the homogeneous gas, a set of planewave functions can be used to expand the eigenfunctions ui in the form
( ) u ur ei k

kri . By defining the transferringmomentum = ¢ -p k k and the relative coordinate d = - ¢r r r ,
then

( ) ∣ ∣ ∣ ∣
( ) ( )

( )
( )åc d n

n
=

-

+ -
d

+
+

+
u u

f E f E

E E
r, i e

i
. A6n

nk p
k k p

p r k k p

k k p
11
0

,

2 2 i

By taking the Fourier transformation of the relative coordinate, ( ) ( )òc w d c d w= d-q r r, d , i en n
q r

11
0

11
0 i , wefind

that,

( ) ∣ ∣ ∣ ∣
( ) ( )

( )
( )åc n

n
=

-

+ -
+

+

+
u u

f E f E

E E
q, i

i
. A7n

nk
k k p

k k p

k k p
11
0 2 2

Using the expressions for uk and +uk p, at zero temperaturewe obtain,

( )
( ) ( )

( )åc n
x x

n
= -

+

- +
+

+

+

+

⎛
⎝⎜

⎞
⎠⎟E E

E E

E E
q, i

1

2
1

i
. A8n

nk

k k q

k k q

k k q

k k q
11
0

2 2

Through a similar process, we can derive the other 15matrix elements of c0. In fact, after checking their
expressions, only six of them are independent. The remaining expressions are simply related to each other by, for
example, the replacement  - -k k q. In the following, we list the otherfive expressions for c12

0 , c13
0 , c14

0 , c34
0

and c43
0 at zero temperature:

( ) ( )
( )åc

n
=

D +

- ++

+

+E E

E E

E E

1

2 i
, A9

nk k k q

k k q

k k q
12
0

2

2 2

( )
( ) ( ) ( ) ( )

( )åc
x x

n
n

n
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D + +

- +
- +

- +
+

+

+

+ + +

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥E E

E E

E E E E E E4 i

1 1 i

i
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n

n
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k k q

k k q

k k q

k k q k k q k k q
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0

2 2 2 2
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n
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Wenote that, c34
0 and c43

0 should be regularized in order to remove the ultraviolet divergence.
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