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Abstract. Let an algebraic group be given, acting on a vector space.
We consider the problem of deciding whether a given element of the
vector space lies in the closure of the orbit of another given element. We
describe three methods for dealing with this problem that have appeared
in the literature. We illustrate the methods by examples.

1 Introduction

Actions of linear algebraic groups appear in many contexts. In some of them
the following problem is of interest: given an algebraic group G ⊂ GL(V ) and
v, w ∈ V , decide whether w lies in the (Zariski-) closure of the orbit G · v. This
problem arises for example in the theory of degenerations of algebraic structures
(see [3]), and when one studies geometric properties of the orbits of an algebraic
group ([21], [22]), and in the theory of unipotent classes of semisimple Lie groups
([29]).

We note that since the closure of G · v is G-stable, the problem above is
equivalent to deciding whether the orbit G · w lies in the closure of G · v.

In this paper we review three approaches to this problem. The first one is a
straightforward reduction to elimination using Gröbner bases (Section 3). The
second method, due to Popov, is based on the effective Nullstellensatz (Sec-
tion 4). Both these methods use an open subset of the group, isomorphic to an
“easy” affine algebraic set. This is described in Section 2. The third method is
specific for reductive groups that are constructed as so-called θ-groups (Section
5). Throughout we assume that the base field is algebraically closed and of char-
acteristic 0, as many constructions that we use (e.g., the correspondence between
a linear algebraic group and its Lie algebra) only work well in characteristic 0.

We illustrate the methods by examples. We also comment on the practical
usefulness of them. Although it is possible to compute some instances of the
problem using the first method, the use of Gröbner bases makes it very difficult
to use it for larger examples. The second method elegantly reduces the problem
to a system of linear equations. However, the number of unknowns in these
equations is so large that it is questionable whether this method can be used for
any nontrivial instance of the problem. The third method is rather efficient, and
can be used to compute many nontrivial cases. However, it is only applicable to
θ-groups.



The main ideas underlying the algorithms presented here, are all taken from
sources in the literature. However, the examples that we computed have not
appeared elsewhere. Also we remark that in some of the examples we report
running times of the various programs used; these have been obtained on a 3.16
GHz machine with 32GB of memory.

Notation and Terminology

Throughout we use standard terminology of algebraic geometry (see [27]) and lin-
ear algebraic groups (see [15]). In particular, by An we denote the n-dimensional
affine space. By a closed set we mean the zero locus in some An of a set of poly-
nomials in n indeterminates. By k we will denote an algebraically closed field
of characteristic 0. A linear algebraic group is a subgroup of GL(n, k) given as
the zero locus of a set of polynomials in the matrix entries. If G is an algebraic
group, then g will denote its Lie algebra.

2 An Embedding

Let G ⊂ GL(n, k) be an algebraic group. Here we describe a method to obtain
a closed set X in an affine space, together with a regular map σ : X → G such
that the image of σ contains a dense and open subset of G. The closed set X
will be given by “easy” polynomial equations, so that it will be straightforward
to compute in the coordinate ring k[X] of X. The use of such an embedding for
algorithmic purposes was first proposed in [26].

Lemma 1. Let G ⊂ GL(n, k) be a connected algebraic group with Lie algebra g.
Suppose that there are algebraic subalgebras g1, g2 of g such that g is the direct
sum of vector spaces, g = g1 ⊕ g2. Let G1, G2 be the connected subgroups of
G with Lie algebras g1, g2 respectively. Furthermore, let X1, X2 be closed sets in
two affine spaces, and let φi : Xi → Gi be regular maps. Let xi ∈ Xi and suppose
that the differential of φi at xi, (dφi)xi

: Txi
(Xi)→ gi is surjective, for i = 1, 2.

Define φ : X1 × X2 → G by φ(y1, y2) = φ1(y1)φ2(y2), for yi ∈ Xi. Then the
differential of φ at (x1, x2) is surjective.

Proof. Note that φ is the composition of the maps X1 ×X2 → G1 × G2, given
by (y1, y2) 7→ (φ1(y1), φ2(y2)) and G1 ×G2 → G, given by (g1, g2) 7→ g1g2. The
differential of the latter map is (x, y) 7→ x+ y. This implies the lemma. ut

2.1 Unipotent Case

Let U ⊂ GL(n, k) be a unipotent algebraic group with Lie algebra u ⊂ gl(n, k).
Let u1, . . . , us be a basis of u. Let α1, . . . , αs ∈ k, then exp(

∑s
i=1 αiui) lies in U .

Moreover, the map As → U given by (α1, . . . , αs) 7→ exp(
∑s
i=1 αiui) is bijective

and regular (see [4], Ch. V, §3, No. 4, Proposition 14). Its differential (at the
point (0, . . . , 0)) is the map (α1, . . . , αs) 7→

∑s
i=1 αiui.



2.2 Diagonalisable Case

For a subset E ⊂ Zn set

TE = {diag(α1, . . . , αn) ∈ kn |
n∏
i=1

αeii = 1 for all e = (e1, . . . , en) ∈ E}.

Then TE is an algebraic subgroup of GL(n, k), with Lie algebra

tE = {diag(α1, . . . , αn) ∈ kn |
n∑
i=1

eiαi = 0 for all e = (e1, . . . , en) ∈ E}.

It is clear that TE = TΛ, where Λ ⊂ Zn is the lattice generated by E.

Now let T ⊂ GL(n, k) be an algebraic group consisting of diagonal matrices.
Then there is an E ⊂ Zn such that T = TE (see [30], §22.5). So, if t ⊂ gl(n, k) is
an algebraic Lie algebra consisting of diagonal matrices, then there is an E ⊂ Zn
with t = tE . Let Λt ⊂ Zn be the lattice defined by

Λt = {(e1, . . . , en) ∈ Zn |
n∑
i=1

eiαi = 0 for all diag(α1, . . . , αn) ∈ t},

then t = tE , where E is a basis of Λt. Moreover, t is the Lie algebra of the group
TE .

Remark 2. Concerning the problem to compute a basis of Λt we remark the
following. Of course it suffices to have

∑n
i=1 eiαi = 0, where diag(α1, . . . , αn)

runs through a basis of t. If the αi lie in a fixed number field K, then this leads
to linear equations for the ei with coefficients in Q (after expressing the αi as
linear combinations of a fixed basis of K over Q). Then a basis of Λt can be
found by the saturation algorithm. The paper [11] contains a description of such
an algorithm, based on the Smith normal form algorithm. Magma ([2]) contains
an implementation of a different algorithm for computing saturations.

Let E = {e1, . . . , er} be a basis of Λt. Let L ⊂ Zn be the lattice consisting
of all d = (d1, . . . , dn) such that

∑
i die

k
i = 0 for 1 ≤ k ≤ r. Let {d1, . . . , ds}

be a basis of L. Define ψj : k∗ → TE by ψj(t) = diag(td
j
1 , . . . , td

j
n). Then the

differential of ψj at 1 maps α ∈ k to αdiag(dj1, . . . , d
j
n). Now consider the map

ψ : (k∗)s → TE , given by ψ(t1, . . . , ts) = ψ1(t1) · · ·ψs(ts). By Lemma 1 its
differential at the point (1, . . . , 1) is surjective.

Finally, let T̃ ⊂ GL(n, k) be a diagonalisable connected algebraic group, i.e.,

there is an A ∈ GL(n, k) such that T = AT̃A−1 consists of diagonal matrices.
By the construction above we get a regular map ψ : (k∗)s → T with a surjective

differential. So also the differential of ψ̃ : (k∗)s → T̃ , ψ̃(a) = A−1ψ(a)A is
surjective.



2.3 General Case

Let G ⊂ GL(n, k) be a connected algebraic group, with Lie algebra g ⊂ gl(n, k).
Let s denote the solvable radical of g, and l a Levi subalgebra of g, and n the
largest ideal of g consisting of nilpotent elements. Then by [4], Chapter V, §4,
Proposition 5 (see also [24]), s has a commutative subalgebra d consisting of
semisimple elements, with the following properties

1. s = d + n (semidirect sum),
2. [l, d] = 0,
3. n is the set consisting of all nilpotent elements of s.

There exist algorithms to obtain bases of s and l, cf. [10]. Moreover, in [11]
algorithms are described for obtaining bases of d, n. Let h be a Cartan subalgebra
of l, and n+, n− the sums of the positive, respectively negative, root spaces with
respect to h (relative to a choice of positive roots). Then

g = n− ⊕ h⊕ n+ ⊕ d⊕ n.

All these subalgebras are algebraic. Furthermore, they either consist of nilpotent
elements, or are diagonalisable. So by applying the constructions of Sections 2.1,
2.2, along with Lemma 1, we get

– an affine space A2r+s, with coordinate ring k[x1, . . . , xr, y1, . . . , yr, z1, . . . , zs],
– a closed set Xr,s of A2r+s, given by the equations xiyi = 1 for 1 ≤ i ≤ r,
– a regular map σ : Xr,s → G, and a point x of Xr,s such that the differential

of σ at x maps Tx(Xr,s) surjectively onto g.

The last statement implies that the image of σ contains a nonempty open subset
of G (since the image of σ contains an open subset of its closure (see [27], §I.5.3,
Theorem 6) which is G).

Remark 3. Suppose that G and hence g are defined over the subfield K of k (e.g,
over Q). Then it can happen that the Cartan subalgebra h is not split over K. In
that case the image of σ will not be defined over K, but over a finite extension
of K.

Example 4. In this example we give a basis of an algebraic and reductive Lie
subalgebra of gl(6, k. For this the 6 × 6-matrix with a 1 on position (i, j) and
zeros elsewhere will be denoted ei,j .

Let g = n− ⊕ t ⊕ n+ ⊂ gl(6, k), where t is diagonalisable (in fact, diagonal)
and spanned by

−e3,3−e4,4+e5,5+e6,6, −e1,1−e2,2+e3,3+e4,4, 2e1,1+e3,3−e4,4+e5,5−e6,6,
2e2,2 − e3,3 + e4,4 − e5,5 + e6,6,

n+ is spanned by

xα1 = −e5,3 − e6,4, xα2 = −e3,1 − e4,2, xα3 = −e5,1 − e6,2,



and n− is spanned by

x−α1
= −e3,5 − e4,6, x−α2

= −e1,3 − e2,4, x−α3
= −e1,5 − e2,6.

This Lie algebra is reductive, with semisimple part of type A2. The x±αi
are the

root vectors, with α3 = α1 + α2.
We apply the construction of Section 2.2 to t. Here we get that Λt is spanned

by
(1,−1, 0, 0,−1, 1), (0, 0, 1,−1,−1, 1).

Furthermore, a basis of L (the lattice perpendicular to Λt) consists of

(1, 0, 0,−1, 0,−1), (0, 1, 0, 1, 0, 1), (0, 0, 1, 1, 0, 0), (0, 0, 0, 0, 1, 1).

Consider the affine space A8 with coordinate ring k[x1, . . . , x4, y1, . . . , y4]. Let
Xt be the closed set in A8 given by xiyi = 1 for 1 ≤ i ≤ 4. Then we get the
map ψ : Xt → T (where T ⊂ GL(6, k) is the connected algebraic group with Lie
algebra t), given by

ψ(t1, . . . , t4, s1, . . . , s4) = diag(t1, t2, t3, s1t2t3, t4, s1t2t4).

Let N+ (respectively N−) be the connected algebraic subgroup of GL(6, k) with
Lie algebra n+ (respectively, n−). Using the construction of Section 2.1 we get
maps φ+ : A3 → N+, φ− : A3 → N− given by

φ+(u1, u2, u3) = exp(u1(−e5,3 − e6,4) + u2(−e3,1 − e4,2) + u3(−e5,1 − e6,2))

=


1 0 0 0 0 0
0 1 0 0 0 0
−u2 0 1 0 0 0

0 −u2 0 1 0 0
1
2u1u2 − u3 0 −u1 0 1 0

0 1
2u1u2 − u3 0 −u1 0 1

 ,

and

φ−(v1, v2, v3) = exp(v1(−e3,5 − e4,6) + v2(−e1,3 − e2,4) + v3(−e1,5 − e2,6))

=


1 0 −v2 0 1

2v1v2 − v3 0
0 1 0 −v2 0 1

2v1v2 − v3
0 0 1 0 −v1 0
0 0 0 1 0 −v1
0 0 0 0 1 0
0 0 0 0 0 1

 .

Denote the coordinate ring of k[A14] by k[x1, . . . , x4, y1, . . . , y4, z1, . . . , z6]. Let
X4,6 ⊂ A14 be given by the equations xiyi = 1, i = 1, . . . , 4. Then we get the
map σ : X4,6 → G, given by

σ(t1, . . . , t4, s1, . . . , s4, u1, u2, u3, v1, v2, v3) =

φ−(v1, v2, v3)ψ(t1, . . . , t4, s1, . . . , s4)φ+(u1, u2, u3).

It has the property that its image contains a non-empty open subset of G.



3 Computing the Closure by Gröbner Elimination

Here we show how polynomial equations defining the closure of an orbit can be
computed by a technique based on Gröbner bases. To the best of our knowledge,
this approach was first described by Popov in [26].

Let G ⊂ GL(n, k) be a connected algebraic group with Lie algebra g ⊂
gl(n, k). Let Xr,s ⊂ A2r+s and σ : Xr,s → G be as in Section 2. Let V = kn be
the space on which G acts, and let v ∈ V . Let Y ⊂ V be the closure of G · v.
Define a map σv : Xr,s → Y by σv(x) = σ(x) · v. Then σv is a regular map, and
its image contains a nonempty open subset of Y . So the closure of the image of
σv is Y .

Defining equations for the closure of the image of a regular map can be
computed using elimination techniques based on Gröbner bases (see, for example,
[5]). In the situation considered here this works as follows. Let e1, . . . , en be a
fixed basis of V . Write σv(x) =

∑n
i=1 σ

i
v(x)ei. Then σiv : Xr,s → k is a regular

map, i.e., it is the restriction of a polynomial in k[x1, . . . , xr, y1, . . . , yr, z1, . . . , zs]
to Xr,s; we denote this polynomial also by σiv. Now let T1, . . . , Tn be auxiliary
indeterminates, and let R be the polynomial ring over k with the indeterminates
xi, yi (1 ≤ i ≤ r), zj (1 ≤ j ≤ s) and Tm (1 ≤ m ≤ n). Let I be the ideal
of R generated by xiyi − 1 for 1 ≤ i ≤ r and Tm − σmv for 1 ≤ m ≤ n. Use a
monomial order relative to which any monomial involving at least one of xi, yi
or zj is bigger than any monomial involving only the indeterminates Tm. Let G
be a Gröbner basis of I with respect to such an order. Then G ∩ k[T1, . . . , Tn] is
a Gröbner basis of J = I ∩ k[T1, . . . , Tn]. Moreover, the closed set in V defined
by J is Y .

Example 5. Let the notation be as in Example 4. Let v = e5 + e6 (where ei de-
notes the i-th elementary basis element of k6). Then σ(t1, . . . , t4, s1, . . . , s4, u1, u2, u3, v1, v2, v3)·
v is

(t4( 1
2v1v2 − v3), s1t2t4( 1

2v1v2 − v3),−t4v1,−s1t2t4v1, t4, s1t2t4).

Let I be the ideal constructed as above. Magma computes a Gröbner basis G
of I, with respect to an elimination order, in 0.02 seconds. The intersection of G
with k[T1, . . . , T6] is

{T2T3 − T1T4, T2T5 − T1T6, T4T5 − T3T6}.

So the closure Y of G · v is the set of
∑6
i=1 αiei such that α2α3 = α1α4, and so

on. We see that e5 and e6 lie in Y , so their orbits do as well. On the other hand,
e4 + e5 does not lie in Y .

4 Popov’s Algorithm

In this section we describe an algorithm due to V. L. Popov ([26]). It is a method
for deciding whether a given w lies in the closure of G · v.



4.1 Conical Groups

We say that an algebraic group G ⊂ GL(n, k) is conical if λIn ∈ G for all nonzero
λ ∈ k, where In is the n× n-identity matrix. If G is conical, then also an orbit
G · v is conical, i.e., w ∈ G · v if and only if λw ∈ G · v for all nonzero λ ∈ k.

Now let G ⊂ GL(n, k) be an algebraic group. Set V = kn, the natural G-
module. Let V0 = kn+1 and write elements of V0 as (α0, v), where α0 ∈ k and
v ∈ V . A g ∈ G acts on V0 by g · (α0, v) = (α0, g · v). By G0 we denote the
corresponding image of G in GL(V0). Let IV0

be the identity endomorphism of

V0 and let D0 = {λIV0 | λ ∈ k, λ 6= 0}. Set G̃ = G0D0. Then G̃ is an algebraic
subgroup of GL(V0).

Lemma 6. Let v ∈ V . A w in V lies in the closure of G · v if and only if (1, w)

lies in the closure of G̃ · (1, v).

Proof. Let I be the vanishing ideal of G · v in k[x1, . . . , xn], and J the vanishing

ideal of G̃·(1, v) in k[x0, x1, . . . , xn]. Since the latter orbit is conical, J is spanned
by homogeneous polynomials. By k[x1, . . . , xn]≤d we denote the space of poly-
nomials of degree at most d. By k[x0, x1, . . . , xn]d we denote the space of poly-
nomials of degree d. Consider the maps γ : k[x0, x1, . . . , xn]d → k[x1, . . . , xn]≤d,
δ : k[x1, . . . , xn]≤d → k[x0, x1, . . . , xn]d given by γ(f) = f(1, x1, . . . , xn), δ(g) =
xd0g(x1/x0, . . . , xn/x0). These are inverses of each other. Set I≤d = I∩k[x1, . . . , xn]≤d
and Jd = J ∩ k[x0, x1, . . . , xn]d. It is straightforward to see that γ(Jd) ⊆ I≤d,
δ(I≤d) ⊆ Jd. So in fact these inclusions are equalities. Let w lie in the closure
of G · v, then f(w) = 0 for all f ∈ I. Let h ∈ Jd, then h = δ(f) for a certain
f ∈ I≤d. This implies that h(1, w) = 0. We conclude that (1, w) lies in the clo-

sure of G̃ · (1, v). The reverse implication is shown analogously. ut

We conclude that we may assume that the algebraic group, and hence the
orbit, is conical.

4.2 The Degree of G

Let X ⊂ An be a closed set of dimension `. Let Ω ⊂ An be a plane of dimension
n − `, “in general position”. Then the number of points of X ∩ Ω is called the
degree of X. For a closed set Y ⊂ Pn the concept of degree is defined in the
same way (see [14]). Now suppose that the vanishing ideal of X is spanned by
homogeneous polynomials. Then we can also view X as a closed set in Pn−1.
Moreover, the notions of degree of X, seen as closed set in An, and degree of X,
seen as closed set in Pn−1, coincide.

A closed set Y in projective space gives rise to a polynomial known as the
Hilbert polynomial (see [14]). If the degree of Y is d and the dimension is `, then
the leading term of this polynomial is d

`!x
`.

Bayer and Stillman ([1]) have described algorithms for computing the Hilbert
series, and Hilbert polynomial of a closed set in projective space. So using that
it is possible to compute the degree of such a closed set, or of a conical closed



set in affine space. Since, by the previous subsection, we may assume that the
group that we are dealing with is conical, (this implies that it is an open set of
a conical closed set) we can compute the degree of the group in this way.

Example 7. Polynomial equations for the group G, given its Lie algebra, can be
computed using the methods of [11]. For the group of Example 4 this computa-
tion, performed in Magma, took 19669 seconds. The result is a set of homoge-
neous equations defining a closed set G′ in End(V ). Furthermore, G consists of
all g ∈ G′ such that det(g) 6= 0. The Hilbert polynomial of G′ is then computed
in 0.000 seconds. It is

1
403200X

10 + 83
725760X

9 + 23
10080X

8 + 625
24192X

7 + 1171
6400X

6 + 29111
34560X

5+
102293
40320 X

4 + 177911
36288 X

3 + 291197
50400 X

2 + 9397
2520X + 1.

From the leading term we see that the dimension is 10 (we knew that already),
and the degree is 9.

We see that a disadvantage of this approach is the necessity to know defining
polynomials of G. However, if they are available from the start, then this is a
good way to compute the degree.

In the case where G is reductive there exists a different method based on a
formula due to Kazarnovskĭı ([20]). Here we do not describe this formula (for
that see Kazarnovskĭı’s paper, or [7], Section 4.7, or [26]), but instead illustrate
it for the group G of Example 4.

Example 8. Let the notation be as in Example 4. Then T is a maximal torus of
G. The elements of T are

t = diag(t1, t2, t3, t
−1
1 t2t3, t4, t

−1
1 t2t4).

The characters, χ : T → k∗ are given by χ(t) = td11 · · · t
d4
4 , where di ∈ Z. We let

X be the character group of T , written additively: so it is a free Z-module with
basis χ1, . . . , χ4, where χi(t) = ti, and a character χ as above corresponds to
d1χ1 + · · ·+ d4χ4. We also represent χ by the row vector (d1, . . . , d4). Now the
basis vectors e1, . . . , e6 of V = k6 are weight vectors of T . The corresponding
weights are

(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (−1, 1, 1, 0), (0, 0, 0, 1), (−1, 1, 0, 1).

We let P ⊂ E = R4 be the polytope that is the convex hull of these points along
with (0, 0, 0, 0).

The group G acts on g via g ·x = gxg−1. For this action the x±αi
are weight

vectors of T , and we denote the corresponding characters by ±αi. Then

α1 = (0, 0,−1, 1), α2 = (−1, 0, 1, 0), α3 = (−1, 0, 0, 1).

Let W = NG(T )/T be the Weyl group of G. This group acts on X, and hence
on E. We need a W -invariant inner product ( , ) on E, which we get as follows.



We can also view the elements of X as elements of the dual space of t. Here a
χ ∈ X corresponds its differential (at the identity) dχ ∈ t∗: for χ as above and
u ∈ t we have dχ(u) = d1u11 + d2u22 + d3u33 + d4u55. As W ∼= NG(t)/ZG(t), it
also acts on t. A W -invariant nondegenerate positive definite bilinear form on t
is given by (x, y) = Tr(xy). Using this bilinear form we identify t and its dual
space. By this identification we then also get a W -invariant bilinear form on the
dual of t, and hence on E. In the basis of the χi this form is given by the matrix

4 2 1 1
2 4 −1 −1
1 −1 4 1
1 −1 1 4

 .

Now we consider the functions α∨i : E → R given by α∨i (v) = 2(v,αi)
(αi,αi)

. Let v =∑
i diχi. Then α∨1 (v) = −d3 +d4, α∨2 (v) = −d1−d2 +d3, α∨3 (v) = −d1−d2 +d4.

Let I be the value of the integral of the function (α∨1 )2(α∨2 )2(α∨3 )2 over P. The
package LattE integrale ([6]) can perform this integration. After 0.01 seconds
the program returned I = 1

16800 .
Now let m1, . . . ,mr be the exponents of W (see [16], §3.16). Here the root

system is of type A2, and therefore r = 2, m1 = 1, m2 = 2. According to
Kazarnovskĭı’s formula we have

deg(G) =
dim(G)!

|W |(m1!m2!)2
I = 9.

4.3 The Algorithm

Here we let G ⊂ GL(n, k) be a conical algebraic group. By d we denote its de-
gree. Let σ : Xr,s → G be an embedding as constructed in Section 2. Here Xr,s ⊂
A2r+s, and the coordinate ring ofXr,s isRr,s = k[x1, . . . , xr, y1, . . . , yr, z1, . . . , zs]/Ir,s,
where Ir,s is generated by xiyi − 1, 1 ≤ i ≤ r. Note that a basis of Rr,s is given

by the set of monomials xk11 · · ·xkrr z
m1
1 · · · zms

s , with ki ∈ Z and mi ∈ N (here we
write x−1i in place of yi). So it is straightforward to compute in the ring Rr,s.

Let v ∈ kn, and let Y be the closure of the orbit G · v. Then we consider the
regular map ψ : Xr,s → Y given by ψ(a) = σ(a) ·v. Since the image of σ contains
a dense and open subset of G, also the image of ψ is dense in Y . Let k[T1, . . . , Tn]
be the coordinate ring of kn. We view the elements of k[T1, . . . , Tn] as functions
kn → k (i.e., by fixing a basis of kn), and let T i be the restriction of T i to Y .
Let ψ∗ : k[Y ] → Rr,s be the comorphism of ψ (i.e., ψ∗(f)(a) = f(ψ(a))). Set
Si = ψ∗(T i).

Theorem 9. Let w ∈ kn and write w = (w1, . . . , wn). Let j1, . . . , jm be the
indices such that T jk 6= 0. Suppose that wi = 0 if i 6∈ {j1, . . . , jm}. Then w 6∈ Y
if and only if there are F1, . . . , Fm ∈ k[Z1, . . . , Zm] such that deg(Fi) ≤ 2d − 2
and

m∑
k=1

(Sjk − wjk)Fk(Sj1 , . . . , Sjm) = 1.



Proof. (Sketch) Note that w 6∈ Y if and only if there is no point of Y where the
functions T jk − wjk simultaneously vanish. By Hilbert’s Nullstellensatz this is
equivalent to the existence of f1, . . . , fm ∈ k[Y ] such that

∑m
i=1(T jk−wjk)fk = 1.

Now the effective Nullstellensatz (see [17]) strengthens this by also giving a
bound on the degrees of the fi. Here the bound turns out to be deg((T jk −
wjk)fk) ≤ 2 deg(X)− 1.

The degree of an f ∈ k[Y ] is the minimum degree of an f̂ ∈ k[T1, . . . , Tn]
whose restriction to Y equals f . Since Y is irreducible and conical we have
that deg(fg) = deg(f) + deg(g) for all f, g ∈ k[Y ]. Moreover, deg(T jk) = 1 for
1 ≤ k ≤ m.

Also, since Y is (the closure of) the image of G under the map End(V )→ V ,
g 7→ g · v, we have deg(Y ) ≤ deg(G) = d (see [7], Proposition 4.7.10).

It follows that we get the bound deg(fk) ≤ 2d−2. Now mapping the equality∑m
i=1(T jk − wjk)fk = 1 with ψ∗ to Rr,s, we get the statement of the lemma.

Note that ψ∗ is injective, as the image of ψ contains a dense open subset of
Y . ut

The idea of the algorithm is to write F1, . . . , Fm ∈ k[Z1, . . . , Zm] of degree
2d− 2, with unknowns as coefficients. Then the condition in the theorem yields
a set of linear equations for these unknowns, since we have a basis of Rr,s. Then
w ∈ Y if and only if these equations have no solution. So the number of unknowns
in the equations that we get is

m

(
m+ 2d− 2

m

)
.

The number of equations is equal to the number of different monomials in Rr,s
that appear when evaluating a monomial of k[Z1, . . . , Zm], of degree ≤ 2d − 2,
in S1, . . . , Sm.

Example 10. We let the notation be as in Example 4. As seen in Examples 7, 8,
here we have d = 9. With v as in Example 5 we get m = 6. So the number of
unknowns in this case will be 447678.

Remark 11. It is also possible to base a different algorithm on Theorem 9. Let
A be the subalgebra of Rr,s generated by Sj1 , . . . , Sjm . By elimination based on
Gröbner bases we can compute all polynomial relations among these generators.
So we get an isomorphism k[U1, . . . , Um]/J → A. Now w 6∈ X if and only if the
ideal of k[U1, . . . , Um] generated by J and Uk − wjk contains 1. This again can
be checked by a Gröbner basis computation. However, note that computing the
polynomial relations among the Sjk leads to the same computation as computing
defining polynomials for the closure of G · v, cf. Example 5.

5 Closures of Nilpotent Orbits of θ-Groups

The algebraic groups known as θ-groups are reductive, and arise from gradings of
(semi-) simple Lie algebras. They have been introduced and studied by Vinberg



in the 70’s ([31], [32], [33]). We divide this section in a number of subsections.
In the first of these we sketch how θ-groups come about; for more detailed
information we refer to the above mentioned papers of Vinberg. The second
contains some general facts on nilpotent orbits of θ-groups. In the remaining
sections we sketch an algorithm from [9] to decide whether a given nilpotent
orbit is contained in the closure of another one.

5.1 θ-Groups

Let g be a (semi-) simple Lie algebra over k. Let G be the connected component
of the identity of the automorphism group of g. This group has Lie algebra
adg, which we identify with g. By Zm we denote the group Z/mZ, which, by
convention, is equal to Z if m =∞. We consider Zm-gradings of g:

g =
⊕
i∈Zm

gi.

This means that the gi are subspaces of g such that [gi, gj ] ⊂ gi+j . In particular,
g0 is a subalgebra, and it can be shown that it is reductive. Let G0 be the
connected subgroup of G with Lie algebra g0 (or, more precisely, adg0). Since
[g0, g1] ⊂ g1 we also get that G0 stabilizes g1. The corresponding representation
of G0 is called a θ-representation, and G0 is called a θ-group.

Example 12. In this example we consider the Lie algebra of type D4. We start
by giving a multiplication table of g. Let Φ be the root system of type D4, with
basis of simple roots ∆ = {β1, β2, β3, β4}. The simple roots correspond to the
nodes of the Dynkin diagram in the following way

e1 e uu
42
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Let Q denote the Z-span of ∆. We define a bilinear form ( , ) on Q by
(βi, βi) = 2, (βi, βj) = −1 if i 6= j and i, j are connected in the Dynkin diagram.
Otherwise (βi, βj) = 0. Also we define a group homomorphism ε : Q × Q →
{1,−1} (where the latter is a multiplicative group), by ε(βi, βj) = −1 if i = j
or i 6= j and i < j and i, j are connected in the Dynkin diagram. Otherwise
ε(βi, βj) = 1. Also we define ε̃ : Φ× Φ→ {1,−1, } by ε̃(β, β′) = ε(β, β′) if both
β and β′ are positive, or exactly one of them is positive and β + β′ is negative.
Otherwise ε̃(β, β′) = −ε(β, β′).

Let g be the 28-dimensional vector space spanned by h1, . . . , h4, along with
xβ for β ∈ Φ. On g we define the Lie bracket by

[hi, hj ] = 0

[hi, xβ ] = (β, αi)xβ

[xβ , x−β ] = hβ

[xβ , xβ′ ] = ε̃(β, β′)xβ+β′ ,



where we set hβ =
∑4
i=1mihi for β =

∑4
i=1miβi, and xγ = 0 if γ ∈ Q \ Φ.

With this Lie bracket, g is a simple Lie algebra of type D4 (cf. [18], Proposition
7.8, and also [10], Proposition 5.13.4). (We use ε̃ instead of ε because in the
mentioned references the relation [xβ , x−β ] = −hβ is used.)

Next we define a grading on g. The simple roots corresponding to the black
nodes in the Dynkin diagram have degree 1, the others have degree 0. Also, the
degree of a sum of simple roots will be the sum of the degrees. Finally, the degree
of a negative root β is minus the degree of −β. Then we define a Z-grading of
g by letting g0 be equal to the span of the hi along with all xβ such that the
degree of β is 0. Furthermore, gi will be the span of all xβ such that the degree
of β is i.

Then g0 is the sum of a simple Lie algebra of type A2, and a 2-dimensional
torus. The space g1 is spanned by xβ3 , xβ4 , xβ2+β3 , xβ2+β4 , xβ1+β2+β3 , xβ1+β2+β4 .

The image of g0 in gl(6, k) (corresponding to the action on g1) is the Lie
algebra considered in Example 4. The matrices given in that example are defined
relative to the basis above.

5.2 Nilpotent Orbits of θ-Groups

Let the notation be as in the previous subsection. Let e ∈ g1. Then the orbit
G0e is said to be nilpotent if the (Zariski-) closure of G0e contains 0. We say
that e ∈ g1 is nilpotent if the orbit G0e is nilpotent. It can be shown that this
is equivalent to ade being a nilpotent endomorphism of g.

Let e ∈ g1 be nilpotent. Then there are h ∈ g0, f ∈ g−1 such that [e, f ] = h,
[h, e] = 2e, [h, f ] = −2f . We say that e lies in the homogeneous sl2-triple (h, e, f).
The element h is called a characteristic of e.

Let ei ∈ g1, for i = 1, 2, be nilpotent elements lying in homogeneous sl2-
triples (hi, ei, fi). Then the following are equivalent:

– e1, e2 are G0-conjugate,
– (h1, e1, f1), (h2, e2, f2) are G0-conjugate,
– h1, h2 are G0-conjugate.

This equivalence yields an algorithm to list the nilpotent orbits of G0 (see
[12]). Alternatively, Vinberg has devised a method, using so-called carrier al-
gebras, to list the nilpotent orbits of a θ-group ([33], see also [12]). Also an
algorithm by Popov ([25]) can be used to list the nilpotent orbits of a θ-group.
Furthermore, Kawanake ([19]) considered the question of listing the nilpotent
orbits of a θ-group also for base fields of characteristic p > 0.

We let h0 be a fixed Cartan subalgebra of g0. Then, after acting with an
element of G0, we may assume that h1, h2 ∈ h0. Furthermore, h1, h2 ∈ h0 are
G0-conjugate if and only if they are conjugate under the Weyl group W0 =
NG0

(h0)/ZG0
(h0), which is a finite group, isomorphic to the Weyl group of the

root system of g0.

Example 13. Let the notation be as in Example 12. We let h0 be the Cartan
subalgebra of g0 spanned by h1, h2, h3, h4 (this is a Cartan subalgebra of g as



well). Since we deal with a Z-grading there are only nilpotent orbits. Using the
implementation of the algorithms of [12], in the SLA package ([13]) of GAP4
([8]) we immediately get the list of nilpotent orbits, O1, . . . ,O4, each given by a
homogeneous sl2-triple:

O1 : (h1 + h2 + h3, xβ1+β2+β3
, x−β1−β2−β3

)

O2 : (h1 + h2 + h4, xβ1+β2+β4
, x−β1−β2−β4

)

O3 : (2h1 + 2h2 + h3 + h4, xβ1+β2+β3
+ xβ1+β2+β4

, x−β1−β2−β3
+ x−β1−β2−β4

)

O4 : (2h1 + 4h2 + 2h3 + 2h4, xβ2+β4
+ xβ1+β2+β3

, 2x−β2−β4
+ 2x−β1−β2−β3

).

In this example W0 is the Weyl group of type A2, generated by si = sβi
, i = 1, 2.

A reflection sβ acts on h0 by sβ(h) = h − (β, βh)hβ , where βh =
∑4
i=1 aiβi if

h =
∑4
i=1 aihi.

5.3 The Algorithm

We set V = g1. Corresponding to a homogeneous sl2-triple (h, e, f) we define
the spaces

Vk(h) = {v ∈ V | [h, v] = kv} and V≥2(h) =
⊕
k≥2

Vk(h).

Let (h′, e′, f ′), (h, e, f) be two homogeneous sl2-triples. The algorithm to
decide whether G0e

′ lies in the closure of G0e is based on the following theorem.
One of the main ingredients of the proof, which here is omitted, is the following
result from [34], Theorem 5.6: the closure of G0e is equal to G0(V≥2(h)).

Theorem 14. G0e
′ is contained in the closure of G0e if and only if there is a

w ∈ W0 such that Uw = V2(h′) ∩ V≥2(wh) contains a point of G0e
′. Moreover,

in that case the intersection of U and G0e
′ is open and dense in Uw.

Deciding whether a given u ∈ Uw lies in G0e
′ is straightforward: this is

equivalent to the existence of f ′′ ∈ g−1 such that (h′, u, f ′′) is an sl2-triple ([9],
Lemma 2.6), and the latter can be established by solving a small system of linear
equations.

So the previous theorem yields a straightforward algorithm:

1. For each w ∈W0 take a random element u of Uw, and check whether u ∈ G0e
′

2. If this holds, then G0e
′ lies in the closure of G0e.

3. If u 6∈ G0e
′ then show that Uw ∩ G0e

′ = ∅, and go to the next element of
W0.

The last step contains an algorithmic problem that we haven’t solved yet.
This will be the subject of the next subsection.



Example 15. Let the notation be as in Examples 12, 13. Let ρ : g0 → gl(g1) be
the representation given by the action of g0 on g1. We give a ρ(x) by its matrix
relative to the basis of g1 given in Example 12. Then for the characteristics of
the nilpotent orbits we have

ρ(h1 + h2 + h3) = diag(1,−1, 1,−1, 2, 0)

ρ(h1 + h2 + h4) = diag(−1, 1,−1, 1, 0, 2)

ρ(2h1 + 2h2 + h3 + h4) = diag(0, 0, 0, 0, 2, 2)

ρ(2h1 + 4h2 + 2h3 + 2h4) = diag(0, 0, 2, 2, 2, 2).

From this, the given representatives of the orbits in Example 13, and Theorem 14
we immediately get that O1,O2 ⊂ O3 and O3 ⊂ O4. The only possible inclusion
relation remaining is the one between O1 and O2. They have the same dimension
(3), so one cannot be contained in the closure of the other. It can also be seen
using Theorem 14. The W0-conjugates of h1 +h2 +h4 are h2 +h4 and h4. In all
cases we get that Uw = 0.

5.4 Deciding Emptiness

Let (h, e, f) be a homogeneous sl2-triple. Let U ⊂ V2(h) be a given subspace.
Here we describe an algorithm for deciding whether U ∩G0e = ∅.

Consider the subgroup Z0(h) = {g ∈ G0 | g · h = h}, with Lie algebra
z0(h) = {x ∈ g0 | [x, h] = 0}. From the representation theory of sl2 it follows
that ade : z0(h) → V2(h) is surjective. But that is the differential of the map
Z0(h)→ V2(h), g 7→ g ·e. It follows that Z0(h)e contains a nonempty open subset
of V2(h). Moreover, G0e ∩ V2(h) = Z0(h)e (see the proof of [9], Lemma 2.6). It
follows that a given v ∈ V2(h) lies in G0e if and only if it lies in Z0(h)e; but that
happens precisely when dimZ0(h)v = dimV2(h). Furthermore, dimZ0(h)v =
dim[z0(h), v].

Now let v1, . . . , vs, x1, . . . , xn be bases of V2(h) and z0(h) respectively. Let
ψ1, . . . , ψs be the dual basis of V2(h) (i.e., ψj(vi) = δi,j). For a v ∈ V we define
the n× s-matrix Bv by

Bv(i, j) = ψj([v, xi]).

Let u1, . . . , ur be a basis of U , and consider the field of rational functions F =
k(U1, . . . , Ur). Let u0 = U1u1 + · · · + Urur ∈ F ⊗ U , and set BU = Bu0 . (The
entries of this matrix are linear polynomials in the Uk.)

Lemma 16. U ∩G0e 6= ∅ if and only if the rank of BU is s.

Proof. Let z0(h)v = {x ∈ z0(h) | [x, v] = 0}. Let x =
∑
i αixi and write α =

(α1, . . . , αn). Then x ∈ z0(h)v if and only if ψj([v, x]) = 0 for all j if and only if α·
Bv = 0. Hence dim[z0(h), v] = rank(Bv). So from what is said above, U contains
elements of G0e if and only if it contains elements u such that rank(Bu) = s, if
and only if rank(BU ) = s. ut



Example 17. Here is an example of a matrix that has been produced by a cal-
culation of this type:

0 U1 0 0 0 0 0 0 0 −U6 0 −U8 0 0
0 0 U2 0 0 0 U4 0 −U5 0 0 0 −U9 0
0 0 0 0 0 U3 0 0 0 −U7 −U8 0 0 0
0 0 U1 0 0 0 0 −U4 U6 0 0 −U9 0 0
0 0 0 U2 0 0 −U3 0 −U7 0 U9 0 0 0
0 0 0 U1 0 0 0 U3 U8 U9 0 0 0 0
U2 0 0 0 0 0 0 0 0 0 −U5 0 −U7 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −U8

0 0 0 0 U4 0 0 0 0 0 0 −U5 −U6 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −U7

0 0 0 0 0 0 0 0 0 0 0 0 0 U6

0 0 0 0 0 0 0 0 0 0 0 0 0 U5

0 0 0 0 0 0 0 0 0 U5 U6 U7 U8 U9

2U1 U2 0 0 0 0 0 0 0 −U5 0 −U7 0 0
0 −U2 0 0 U3 U4 0 0 0 −U5 0 −U7 0 0

−U1 U2 0 0 0 0 0 0 0 U5 −U6 U7 −U8 0
0 −U2 0 0 0 −U4 0 0 0 −U5 0 0 U8 −U9

0 0 0 0 −U3 U4 0 0 0 U5 U6 −U7 −U8 0

.

It has rank 13.

Lemma 16 reduces the problem of deciding whether U∩G0e = ∅ to computing
the rank of a matrix over a function field, whose entries are linear polynomials.
This is known as Edmonds’ problem (see [23]). There is a straightforward algo-
rithm, namely to do a Gaussian elimination over a function field. That method
suffers from coefficient explosion, but works reasonably well if the matrices are
not too big. For the matrices arising from the examples considered in [9] (in-
cluding the adjoint representation of E8, and a Z/3Z-grading of E8), Magma
was able to compute the rank.

Remark 18. The straightforward algorithm, based on Lemma 16, is not always
used in the algorithm of [9]. In some cases a more efficient variant can be used; we
will not go into that here. Furthermore, in some cases there are easy criteria that
show that there is no inclusion (for example, if the orbits have equal dimension).
Also, in [9], in order to loop over the orbit W0 ·h, a tree structure is used, due to
Snow ([28]), where the nodes correspond to the elements of the orbit. A criterion
is given that makes it possible, in many cases, to “prune” this tree, that is, if a
space Uw, corresponding to a certain node of the tree, has no point of G0e

′, and
the criterion is fulfilled, then the same thing immediately follows for the entire
subtree below, so that it can be skipped. This makes it possible to execute the
algorithm also for cases where W0 is very large, as for example, when considering
the adjoint representation of E8 (where |W0| = 696729600).



6 A Somewhat Larger Example

Here we consider a θ-group arising from the Lie algebra of type E6. The Dynkin
diagram is

e1 e3 u ee e54

2

6

The corresponding Lie algebra g is constructed exactly as in Example 12. The
Z-grading is also constructed in the same way: the simple root α4 has degree 1,
and the others have degree 0. In this case g0 is the direct sum of a semisimple Lie
algebra of type 2A2 +A1 and a 1-dimensional torus. The space g1 has dimension
18. Moreover, there are 17 orbits. Regarding the various methods described here
to compute the orbit closures we remark:

– When computing the equations defining the closure of one particular orbit
(Section 3), Magma ran for 7 days and 8 hours, and got out of memory.

– Computing the degree of G0 with Kazarnovskĭı’s formula (as in Example 8)
led to the number

20!

72 · (2!2!)2
1

169344000
= 12471030.

If this number is correct, then the number of unknowns in the equations
produced by the method of Section 4 is truly astronomical.

– The method of Section 5, which has been implemented in the SLA package
of GAP4, computed all the orbit closures in 0.9 seconds.

This illustrates what in our view is a general pattern. Algorithms for com-
puting with linear algebraic groups tend to be efficient if they use the corre-
spondence with Lie algebras, and even more so if the combinatorics of roots and
Weyl groups can be employed. On the other hand, algorithms that mostly rely
on the geometric properties of the group tend to more generally applicable, but
also to have difficulties when used in practice.
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