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Abstract
The recent experimental realisation of Bose–Fermi superfluidmixtures of dilute ultracold atomic
gases has opened newperspectives in the study of quantummany-body systems. Depending on the
values of the scattering lengths and the amount of bosons and fermions, a uniformBose–Fermi
mixture is predicted to exhibit a fullymixed phase, a fully separated phase or, in addition, a purely
fermionic phase coexistingwith amixed phase. The occurrence of this intermediate configuration has
interesting consequences when the system is nonuniform. In this workwe theoretically investigate the
case of solitonic solutions of coupled Bogoliubov–deGennes andGross–Pitaevskii equations for the
fermionic and bosonic components, respectively.We show that, in the partially separated phase, a
dark soliton in Fermi superfluid is accompanied by a broad bosonic component in the soliton,
forming a dark–bright solitonwhich keeps full spatial coherence.

1. Introduction

A long standing problem in the context of quantumfluids is the description ofmixtures composed of two kinds
of interacting superfluids belonging to different statistics. Thefirst theoretical analysis of superfluid 4Hemixed
with superfluid 3He dates back to the 70s (see, for example, [1, 2] and references therein). In experiments,
however, the simultaneous superfluidity of the two components of liquid 3He–4Hemixtures has never been
realised, since themiscibility of 3He in 4He is very small (a few percent) and the temperature needed to reach
superfluidity of fermions in themixture is too low to be reachedwith available cryogenic techniques. Dilute
ultracold atomic gases are instead excellent candidates for studying superfluid properties ofmixtures.
Superfluidity has been recently obtained experimentally in amixture of a Bose condensed gas and a superfluid
Fermi gas of two lithium isotopes, 6Li and 7Li [3, 4], where a newmechanism for superfluid instability was
observed, related to the dynamical instability of the supercurrent counterflow rather than to themore standard
Landau criterion [5, 6]. In addition, in ultracold atomic gases the strength of the interspecies and intraspecies
interaction can be varied bymeans of an externalmagnetic field, thanks to the occurrence of Feshbach
resonances. One can thus foresee the exploration of thewhole phase diagramof themixture, which is expected
to be very rich [7–15].

In the present work, we focus on the casewhere the bosonic superfluid is theminority component, while the
fermionic superfluid exhibits a dark soliton.We choose this case as a paradigmatic configuration inwhich the
interplay betweenmiscibility and immiscibility, together with superfluidity, gives rise to a peculiar behaviour
which reveals the crucial effects of nonlinearity caused by interactions. The opposite limit of bright solitons in a
mixturewith fermions as theminority component was discussed in [16].

In pure Fermi superfluids of dilute atomic gases, theoretical predictions of the structure and dynamics of
dark solitons [17–24] have recently stimulated experimental investigations [25]. The experiments confirm the
theoretical expectation that dark solitons in a three-dimensional fermionic superfluid quickly decay into vortical
excitations due to snaking instability [26], as it was earlier observedwith bosons [27, 28].With bosons very long-
lived dark solitons have been generated by filling the solitonwith atoms in another hyperfine state [29–31], thus
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creating a dark–bright solitonic structure of a two-component Bose–Bose superfluid [32]. Herewe theoretically
investigate the analogue dark–bright soliton in a Bose–Fermi superfluidmixture, themain difference between
the two cases being that the Bose–Fermi phase diagram is known to admit, in addition to a fullymixed phase and
a fully separated phase, also a third phase consisting of pure fermions in equilibriumwith amixture of fermions
and bosons. The stability conditions of such an intermediate phase in a uniform systemwere studied in [7] by
using the equation of state of an ideal Fermi gas weakly interactingwith a dilute Bose gas. Such a phase is
predicted to occur also in the strongly interacting regime [11]. Amore refined equation of state, including the
interaction among fermions, was later applied also to nonuniform configurations by treating the interaction
energy in local density approximation [8]. However, since a dark soliton is localised on the length scale of the
healing length of the superfluid, which is of the order of the inverse Fermiwave vector for fermions at unitarity,
its characterisation requires a theory which properly includes non-local effects, beyond the local density
approximation. For this purpose, we use coupled Bogoliubov–deGennes (BdG) andGross–Pitaevskii (GP)
equations for the fermionic and bosonic components respectively.

Our paper is organised as follows: in section 2we discuss the stability condition of the uniformphase of a
Bose–Fermimixturewhen the Fermi gas is at unitarity (infinite scattering length); in section 3wewrite the
mean-field equations, which are subsequently used tofind the stationary solitonic configurations of the system;
in section 4we analyse the behaviour of solitons of a Bose–Fermimixturewhen fermions are at unitarity.We pay
special attention to the transition from themiscible state to the so called partially separated phase and to the fully
separated state.Wefind that, in the partially separated phase, the density depletion of fermions possesses a
solitonic character and the phase coherence between the left- and right-hand sides ismaintained; conversely, in
the fully separated phase, the depletion in the Fermi density is completely filled by bosons (the density of the
fermions vanishes) and the phase coherence between the two sides is lost. Finally in section 5we investigate the
behaviour of solitons along the crossover from the Bardeen–Cooper–Schrieffer phase to Bose–Einstein
condensation (BCS–BEC crossover), andwe conclude that, while on the BCS side the system exhibits a
behaviour similar to that at unitarity, on the BEC side the partially separated configuration disappears as
expected for a Bose–Bosemixture.

2. Phase separation

Let usfirst discuss the conditions for the stability of the homogeneous phase of themixture, which is a crucial
point in order to understand the numerical results of the following sections. The phase diagramof aweakly
interacting Bose–Fermimixture, at zero temperature, can be derived starting from the following expression for
the energy density:

h= + +[ ] ( ) n n g n g n n E n,
1

2

3

5
. 1f b bb b

2
bf b f F f

Here nb and nf are the densities of the Bose and Fermi gas respectively, and = E k m2F
2

F
2

f is the Fermi energy,
with p= ( )k n3F

2
f

1 3. In the above expressionwe assume that the Fermi gas is at unitarity (infinite scattering
length) and η is the dimensionless Bertsch parameter [33–35], which simply rescales the energy density of the
Fermi gaswith respect to the ideal gas expression. The quantities gbb and gbf are the bosonic intraspecies and the
Bose–Fermi interspecies coupling constants, which are related to the corresponding scattering lengths according
to p= g a m4bb

2
bb b and p= +( ) ( )g a m m m m4 2bf

2
bf b f b f , wheremf andmb are themasses of fermions

and bosons.We assume that the Bose–Fermi scattering length does not depend on the internal state of the Fermi
atoms, as in the case of the recent experiments with lithium atoms [3, 4]. Equation (1)was first used in [7] and
[36] to describe the phase diagramof a dilute Bose gas interactingwith an ideal Fermi gas (h = 1). In [7] the
phase diagramwas explored as a function of the densities of the two components and the existence of three
phaseswas predicted for a positive Bose–Fermi scattering length: (i) a uniformmixture, where both components
occupy the entire space at constant densities; (ii) a partially separated phase, where part of the space is occupied
by pure fermions and part by a Bose–Fermimixture; (iii) a fully separated phase, where bosons and fermions are
completely separated. The same happens at unitarity, with the only difference that the Fermi energy is
renormalised by the universal Bertsch parameter η. It is worth noticing that the existence of three phases is
peculiar of the Bose–Fermimixture. In fact a Bose–Bosemixture only admits themixed uniformphase and the
fully separated phase, because of the different power-law dependence on the densities in the equation of state.

The stability condition predicted by the energy density(1) for the uniformmixture is

p h( ) ( )n
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g

g

2

3
6

2
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1 3 2 2 3
2

f
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bf
2

For nf larger than this critical value the uniformmixture is unstable and the system exhibits either partial or full
phase separation.
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3.Mean-field equations

In order to describe both uniform and nonuniform configurations of themixture, including solitons, we use the
BdG equations [35] for the interacting superfluid fermions and theGP equation [37] for the Bose-condensed
bosons, which are coupled via the interspecies interaction term,fixed by gbf.We also use a simple geometry
consisting of a three-dimensional rectangular boxwith hardwalls in the longitudinal direction z (box size L) and
periodic boundary conditions in the transverse directions x and y (box size L̂ ). The system is assumed to be
uniform in the transverse directions and all spatial variations are along z.

The Fermi gas is described in terms of a set of quasiparticle amplitudes { }uj and { }vj , solutions of the BdG

equations, which in our case take the form: = ^^
^ ^

^( ) ( ) ( )·u k L u zr ej jk
k r

k, F
i

, and

= ^^
^ ^

^( ) ( ) ( )·v k L v zr ej jk
k r

k, F
i

, , with = ^( )zr r , and j is the generic quantumnumber associated to the
longitudinal degrees of freedom.With this choice, the BdG equations become

eD
D -

=^

^
^

^

^
( )

*
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

H
H

u
v

u
v a, 3

j

j
j

j

j

k

k
k

k

k

,

,
,

,

,

where m y= - ¶ - +^( ) ∣ ∣H m gk 2z
2 2 2

f f bf b
2 is an effective single quasiparticle grand-canonical Hamilto-

nian, while

åD = -
^ ^

^ ^
( ) ( ) ( ) ( )*z

g

L
u z v z b, 3

j
j j

k
k k

ff
2

,
, ,

å=
^ ^

^( ) ∣ ( )∣ ( )n z
L

v z c
2

, 3
j

j
k

kf 2
,

,
2

are the order parameter (gap function) and the density of the superfluid fermionic component. The quantity mf
is the chemical potential of fermions, and the eigenvalues e ^j k, are the quasiparticle energies.

The Bose-condensed component is instead described by theGP equation for the bosonic order parameter
(macroscopic wave function) yb:

y y y y m y-  + + =∣ ∣ ( )
m

g g n d
2

, 3
2

b

2
b bb b

2
b bf f b b b

where mb is the chemical potential of bosons and the density is y=( ) ∣ ( )∣n z zb
2.

The four equations (3a)–(3d)must be solved self-consistently. An energy cutoff =E E50c F is used to solve
the BdG equations; this implies a proper renormalisation of the Fermi–Fermi coupling constant, for whichwe
use the relation p p= +( ) ( )k a E g k E E1 8 2F ff F ff F

3
c F [18]. The key parameter characterising the interaction

among fermions is k a1 F ff , andwe perform calculations in the range-  k a1 1 1F ff , in the crossover from
the BCS regime (negative values) to the BEC regime (positive values), passing through unitarity ( =k a1 0F ff ).

4. Solitonic solutions in the unitarity regime

In the followingwewill consider amixture where the number of bosons is about 10% of the number of fermions.
For simplicity we also imposemb=mf, which is a reasonable approximation formixtures of two isotopes of the
same atomic species, but this assumption does not affect themain results of thework.We typically solve
equations (3a)–(3d)with »N 500f fermions and »N 50b bosons in a boxwith = -L k70 F

1 and =^
-L k15 F

1.
We start from trial functionsD( )z and y ( )zb and iterate till convergence to a stationary solutionwhich does not
depend on the initial choice.

Examples are given infigure 1 for the case of fermions at unitarity. The Fermiwave vector kF is the same in all
figures and is related to the bulk density of fermions in the pure phase, n0, by p=k n3F

3 2
0. The corresponding

bulk value of the order parameter at unitarity isD = E0.680 F. Let us concentrate on the first columnwherewe
plot the density profiles of fermions (blue lines) and bosons (red lines) for the ground state in the box, for three
different values of the parameter ( )g n g E

bf
2

0 bb F . The three values are chosen as representative of the different

phases: a fullymixed phase for the smallest value of ( )g n g E
bf
2

0 bb F (top panel), a fully separated phase for the
largest one (bottompanel), and an intermediate partially separated phase (middle panel). In the latter case
fermions occupy thewhole volume, partly as a pure phase and partly in amixed phase, and the interface between
the two regions is significantly wider than the domainwall found for the fully separated phase (bottompanel),
where thewidth of the interface is of the order of the healing lengths of the two superfluids. The healing length of
bosons ismuch smaller than the size of the box in our case, becausewe have chosen the value of gbb such that the
solution of theGP equation is well approximated by the Thomas–Fermi approximation

m= -( ) ( ( ))n z g n z gb b bf f bb, except near the box boundaries.
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To gain further insight, we perform calculations for several values of ( )g n g E
bf
2

0 bb F and, in each case, we

calculate the overlap integral ò ( ) ( )z n z n zd f b . The results are shown asmarkers infigure 2. The overlap integral
is 1 in the fullymixed phase and vanishes in the fully separated phase. The instability of the uniformmixture is
clearly visible as a sharp deviation from1, which occurs at the critical value of ( )g n g E 0.4

bf
2

0 bb F  . In an infinite
system (i.e., in the thermodynamic limit, where surface and interface effects are ignored) this value is expected to
bewell approximated by the linear stability condition (2); by using themean-field value of the Bertsch

Figure 1. Left column: density profiles of the ground state of fermions (blue line) and bosons (red line), with fermions at unitarity
( =k a1 0F ff ), for three sets of interaction parameters such that =( )n g g E 0.150 bf

2
bb F , 0.6 and 1.69, from top to bottom. The number

of bosons is 10% of the number of fermions. The three panels represent examples of fullymixed, partiallymixed and fully separated
phases. Central columns: same as before, but for stationary states with a dark soliton in the Fermi component. In the top panel the
dark soliton is slightlymodified by bosons; in the central panel the two superfluids form a dark–bright soliton; in the bottompanel the
two components are fully separated. Right column: order parameterΔ of the Fermi superfluid for the same configurations of the
central column; the value in the bulk of pure fermions isD = E0.680 F.

Figure 2.Transition frommiscible to immiscible phases of themixture. The overlap integral ò ( ) ( )z n z n zd f b is calculated in the

ground state obtained for different values of ( )g n g Ebf
2

0 bb F , and the results are shown asmarkers (scale on the left axis).When this
quantity deviates from 1 the fullymixed phase becomes unstable. The vertical green dashed line indicates the instability threshold
predicted by equation (2) in the thermodynamic limit, with h = 0.59. For large values of ( )g n g Ebf

2
0 bb F the two components fully

separate and the overlap eventually vanishes. The three letters A, B andC indicate the solutions reported in the left columnoffigure 1.
The thick dashed and solid lines show the percentage of volume occupied by pure fermions and pure bosons, respectively (scale on the
right axis). Near the instability threshold, afinite interval of ( )g n g Ebf

2
0 bb F exists where a significant part of the box isfilled by pure

fermions, while bosons are still in amixed phase in the remaining volume; this corresponds to the partiallymixed phase of the
mixture. The vertical shaded area is the regionwherewefind a stable dark–bright soliton.
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parameter, h = 0.59 [35], this threshold is ( )g n g E 0.6
bf
2

0 bb F  (vertical green dashed line). In the samefigure
we also show the percentage of space occupied by the pure Fermi gas (thick dashed line) and the pure Bose gas
(solid line). One can see that, by increasing ( )g n g E

bf
2

0 bb F above the critical value 0.4 , pure fermions start
occupying a significant part of the boxwhile bosons remain stillmixedwith fermions, which is another
indication of the occurrence of the intermediate phase.

Having discussed the ground state as a test case, let us now concentrate on the second columnoffigure 1,
wherewe show the density profiles in the presence of a dark soliton in the Fermi component. The parameters are
the same as in the first column. The dark soliton is imprinted in the Fermi superfluid by imposing a node
(D = 0) of the order parameter at the centre of the box (z= 0) and aπ phase difference between the two sides. In
a purely fermionic superfluid, the stationary solution of the BdG equationwith such constraints exhibits a deep
density depletion of width of the order of -kF

1 [18]. If bosons are present, depending on the values of the
interaction strengths gbf and gbb, they can be attracted into the soliton, thus changing its structure. Thefigure
shows that, for small values of gbf (top panel), the system favours a uniformmixed configuration in agreement
with the condition (2) and only a small fraction of bosons is attracted by the soliton, which remains almost
unaltered. The resulting structure is analog to the dark–anti-dark soliton pairs that are predicted for Bose–Bose
mixtures [38, 39]. In the opposite limit of large gbf (bottompanel) all bosons form a pure phase at the centre,
pushing fermions apart, and the soliton is replaced by two domainwalls separating pure bosons frompure
fermions. The central case is themost interesting: bosons like to staymixedwith fermions, but fermions like to
form a pure phase. The net effect is that all bosons are pushed into the soliton butwith a broad overlap between
the two components. The overall structure keeps its solitonic character and becomes a bright–dark soliton. The
shaded area infigure 2 is the interval of ( )g n g E

bf
2

0 bb F wherewefind stationary solutions having such a bright–
dark soliton structure, with both the node of the order parameter and theminimumof the fermionic density at a
single point, z=0. The resulting scenario shares interesting analogies with the dark–bright solitonic structure
exhibited by two-component Bose superfluids [32].Wefind similar solutions also for different values of the
bosonic fraction: =N 20%b , 30% and 50% ofNf.

For the three dark soliton solutions in the second columnoffigure 1 the phase of the order parameter isπ for
negative z and 0 for positive z, which implies thatD( )z is a real function. The third column of the same figure
shows the corresponding profiles ofD( )z . However, in the case of complete separation (bottompanel) the phase
difference between the two sides is irrelevant, because the two regions of pure fermions, separated by the central
Bose gas, behave as independent superfluidswith no phase coherence; in fact, we have numerically checked that,
by arbitrarily changing the phase difference of the order parameter, both nf and D∣ ∣ remain unchanged in the
solution of the coupled BdG andGP equations.Moreover, addingmore bosonswould simply result in further
separating the fermionic superfluids, keeping the same structure of the domainwalls. This is not the case of the
partiallymixed phase shown in the central panel where, if we suddenly change the sign ofΔ on the left side, for
instance, the solitonic structure is quickly lost and the solution converges to onewithout soliton, as in the first
column. This proves that the dark–bright soliton in the intermediate partiallymixed phase has indeed solitonic
character, being an effect of nonlinearity and phase coherence.

5. Fermions in the BCS andBEC regimes

Nowwe discuss what happenswhen the fermionic component of themixture is in the BCS–BEC crossover, away
fromunitarity.

In the BCS regime ( <k a1 0F ff ) fermions can also phase-separate frombosons either partially or
completely. This is not surprising, as the BCS and the unitary regimes sharemany similar features as suggested,
for example, by the fact that the chemical potential is positive in both cases. The qualitative picture of phase
separation is the same: a uniformmixture is stable for small values of the the parameter ( )g n g E

bf
2

0 bb F , a partial
phase separation occurs for larger values, and a complete phase separation for an even larger coupling. As a
consequence, also the structure of the solitonic solutions is expected to be similar. Infigure 3we show the results
for = -k a1 1F ff , for the same parameters used at unitarity in the central columnoffigure 1. Apart frommore
pronounced Friedel oscillations and a shallower solitonic depletion in the density distribution of fermions [18],
wefind that the results look indeed very similar. If onemoves further into the BCS regime, however, the solitonic
structure becomes broader and broader, and less robust against instabilitymechanisms associated to the
fermionic degrees of freedom [23].

In order to discuss the BEC regime ( >k a1 0F ff )wehave to recall that the fermionic superfluid of ultracold
atoms in the BCS–BEC crossover is actuallymade of an equally populated two-spin-component Fermi gas and
the s-wave scattering length aff accounts for the interaction between atomswith different spins. Due to pairing,
this two-component gas behaves as superfluid described by an order parameterΔ and the total density nf, as we
have done so far. However, in the BEC regime fermionswith opposite spins form tightly bound bosonic dimers,

5
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which in turn form aBose–Einstein condensate. In this situation neither equation (1)nor (2) hold. TheBose–
Fermimixture thus behaves as a Bose–Bosemixture, where one of the two bosonic components is the
condensate of dimers, and the system can be described by two coupledGP equations

y y y y y y

y y y y y y

¶ =-  + +

¶ =-  + +

∣ ∣ ˜∣ ∣

∣ ∣ ˜∣ ∣ ( )

 

 
m

g g

m
g g

i
2

,

i
2

, 4

t

t

d

2

d

2
d dd d

2
d b

2
d

b

2

b

2
b bb b

2
b d

2
b

where themass of the dimer is =m m2d f and the coupling constants of the dimer-dimer and dimer-boson
interactions, in thefirst Born approximation, are given by =g g2dd ff and =g̃ g2 bf (note that, though the exact
many-body values for these parameters are different [35], we use themean-field expressions for consistencywith
the BdG equations). Replacing the BdG equation for the order parameterΔ of paired fermionswith aGP
equation for the order parameter yd of bosonic dimers is expected to be a good approximation for ( )k a1 F ff of
the order of, or larger than one. An important consequence is that the region of the phase diagramof themixture
where onefinds the intermediate, partiallymixed phase becomes narrower whenmoving fromunitarity towards
the BEC regime [8] and eventually disappears in the deep BEC limit. An example is given infigure 4, wherewe
show the density profiles of fermions (blue lines) and bosons (red lines) of the Fermi–Bosemixture, obtained by
solving the coupled BdG andGP equations (3a)–(3d) for =k a1 1F ff , the other parameters remaining the same
as in the central row offigure 1. The solution in the top panel corresponds to the casewhere the phase of the
order parameterΔ is constant, while the one in the bottompanel is obtained by imposing aπ phase difference
and a node at the centre. Twomain comments are in order: (i) the comparisonwithfigure 1 shows that the
partiallymixed phase, whichwas present at unitarity for the same value of ( )g n g E

bf
2

0 bb F , is lost in the BEC
regime in favour of a fully separated phase; (ii) if we calculate the density profile by solving the coupledGP
equations (4) (dashed lines) instead of the the coupled BdG andGP equations (3a)–(3d) (solid lines), we find very
similar results.

These considerations suggest that the unitary regime is themost suitable and interesting for the investigation
of dark–bright solitons in Fermi–Bosemixtures.

6. Conclusions

In this workwe theoretically study amixture of Bose and Fermi superfluids by using amean-field theory based
on the solutions of coupled BdG andGP equations.We tune the interaction between fermions in the BCS–BEC
crossover, andwe also vary the interspecies and intraspecies interactions in order to explore the three regimes of

Figure 3.Density profiles of fermions (blue line) and bosons (red line) for solitonic states as in the central column offigure 1, with the
same interaction parameters, but with fermions in the BCS regime ( = -k a1 1F ff ). The structure is qualitatively the same as at
unitarity, but the soliton is shallower and the fermionic density exhibits Friedel oscillations. The order parameter, not shown, is also
similar to the one in the right columnof figure 1, but withD = E0.220 F.

6
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fullymixed, partiallymixed and fully separated phases. The focus of thework is on solitonic solutions, andwe
find that, in the regime of partialmixing, a dark soliton in the Fermi component becomeswider and deeper,
taking all bosons in, butmaintaining phase coherence. This dark–bright solitonic structure can serve to stabilise
dark solitons in Fermi superfuids against snaking instability, but it is also interesting in itself as an example of
many-body state where nonlinearity and coherence play a relevant role. Herewe have found that bosons favour
and amplify an inhomogeneous (soliton-like) order parameter of fermions. A similarmechanismmight also
favour the realisation of the Fulde–Ferrell–Larkin–Ovchinnikov phase in the unitary regime of the Fermi gas,
which involves densitymodulations and could be enhanced by the presence of bosonswith spin-dependent
interaction, thusmaking the observation of such elusive phase easier.

Wefinally notice that the range of parameters inwhichwefind partialmixingmay be experimentally
accessible using, for instance,mixtures of 6Li–7Li, 6Li–87Rb or 23Na–87Rb.When themass of the two
components is different, and particularly when m m 1f b  , the situation is expected to be evenmore
favourable. In fact, by expressing equation (2) in terms ofmasses and scattering lengths, onefinds that the
condition for the stability of themiscible phase becomes µ +( ) ( ) [ ( )]n a a m m m m1f

1 3
crit bb bf

2
f b f b

2 and
phase separation can be reached for smaller densities, possibly accessible to current experiments.
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