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Bose polaron problem: Effect of mass imbalance on binding energy
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By means of quantum Monte Carlo methods we calculate the binding energy of an impurity immersed in a
Bose-Einstein condensate at T = 0. The focus is on the attractive branch of the Bose polaron and on the role
played by the mass imbalance between the impurity and the surrounding particles. For an impurity resonantly
coupled to the bath, we investigate the dependence of the binding energy on the mass ratio and on the interaction
strength within the medium. In particular, we determine the equation of state in the case of a static (infinite mass)
impurity, where three-body correlations are irrelevant and the result is expected to be a universal function of the
gas parameter. For the mass ratio corresponding to 40K impurities in a gas of 87Rb atoms, we provide an explicit
comparison with the experimental findings of a recent study carried out at JILA.

DOI: 10.1103/PhysRevA.94.063640

I. INTRODUCTION AND METHOD

In two recent experiments [1,2] the energy of an impurity
immersed in a Bose-Einstein condensate (BEC) was measured
using rf spectroscopy and a Feshbach resonance to tune the
impurity-bath interaction strength. The most striking result
is the existence of a well-defined quasiparticle peak which,
on the attractive branch of the Bose polaron, extends up to
the unitary point where the impurity is resonantly interacting
with the medium. In the experiment carried out at JILA [1] a
low-density gas of fermionic 40K impurities was superimposed
onto a BEC of 87Rb atoms, whereas researchers in Aarhus
used two different hyperfine states of bosonic 39K atoms.
Even though the qualitative results are similar in the two
experiments, quantitative differences in the energy spectrum
arise due to the different mass ratio, mB/mI ≃ 2 in Ref. [1] and
mB/mI = 1 in Ref. [2], where mB is the mass of the particles
in the BEC and mI is the mass of the impurity, as well as due
to the different gas parameters of the medium, respectively,
na3 ≃ 3 × 10−5 and na3 ≃ 2 × 10−8 in the JILA and Aarhus
experiment, with n being the density and a the scattering length
describing interactions within the BEC. Further differences,
concerning in particular the width of the spectrum at resonance,
probably arise from the coupling to the continuum of excited
states which affects the measured response function [2].

The fermionic analog of this problem, i.e., an impurity
immersed in a Fermi sea, has already been the object of
many experimental and theoretical studies [3]. In particular,
on the theory side, the Fermi polaron problem has been
addressed using quantum Monte Carlo (QMC) methods which
are best suited to dealing with the regime of strong correlations
between the impurity and the medium. The binding energy
of the attractive polaron was calculated exactly by means
of the diagrammatic Monte Carlo technique [4,5], whereas
projection Monte Carlo methods implementing the fixed-node
approximation were used to calculate the equation of state of
highly imbalanced Fermi mixtures both with equal [6] and
unequal masses [7].

In a previous study [8] we characterized the properties of
the Bose polaron using QMC methods in the case where the

impurity and the particles in the BEC have the same mass.
In particular, we determined the dependence of the binding
energy of the impurity resonantly interacting with the bath by
varying the gas parameter of the BEC. In the present work
we extend the previous calculations by analyzing how this
energy changes also as a function of the mass ratio mB/mI .
We report on results ranging from the value mB/mI = 2 of the
light impurities used in the JILA experiment [1] to mB/mI =
0 corresponding to the limit of a static impurity. This latter
case is an interesting reference problem, which has an exact
solution for an impurity in a Fermi sea [9], and for the Bose
polaron is expected to have a universal dependence on the gas
parameter of the bath. We also calculate the binding energy of
the attractive branch for the parameters of the JILA experiment
in order to allow a direct comparison.

We calculate the ground state of the following Hamiltonian

H = − !2

2mB

N∑

i=1

∇2
i +

∑

i<j

VB(rij )

− !2

2mI

∇2
α +

N∑

i=1

VI (riα), (1)

describing a system of N bosons of mass mB and one
impurity of mass mI . The particle coordinates are denoted
by rα and ri (i = 1, . . . ,N) for the impurity and the bosons.
The pair potentials VB(r) and VI (r) denote, respectively, the
boson-boson and the boson-impurity interaction and depend
on the distance between the two particles. Similar to Ref. [8],
we model VB using hard spheres with diameter a, which
corresponds to the value of the interboson s-wave scattering
length. For the boson-impurity interaction VI we use a zero-
range potential characterized by the scattering length b. The
diffusion Monte Carlo (DMC) method used in the simulations
has been already described in Ref. [8] and we refer the reader
to this reference for details on the numerical technique.

The mass-ratio dependence, arising from mI ̸= mB , is
accounted for in the DMC simulations by the properly
corrected contribution of the impurity kinetic energy. Another
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TABLE I. µ/µ0 as a function of the mass ratio mB/mI and the gas parameter na3.

mB/mI na3 = 5 × 10−4 na3 = 2.66 × 10−5 na3 = 1 × 10−6 na3 = 3 × 10−7

0.0 −0.029(3) −0.35(5) −0.39(1) −0.44(3)
0.2 −0.037(3) −0.33(3) −0.38(4) −0.34(7)
0.5 −0.080(3) −0.47(4) −0.50(1) −0.47(1)
0.8 −0.219(3) −0.63(6) −0.70(1) −0.73(3)
1.0 −0.317(4) −0.81(5) −0.99(5) −1.06(1)
1.5 −0.600(1) −1.21(2) −1.74(6) −2.1(1)
2.0 −0.9(2) −1.56(4) −2.4(5) −4.4(4)

slight modification compared to the method described in
Ref. [8] concerns the trial wave function

ψT (rα,r1, . . . ,rN ) =
N∏

i=1

fI (riα)
∏

i<j

fB(rij ) , (2)

and arises from the zero-range nature of the impurity-boson
potential. The boson-boson Jastrow correlation term fB coin-
cides with the one used in Ref. [8], whereas the impurity-boson
function is given by

fI (r) =
{

1 − b
r

r < R̄,

B + C(e−αr − e−α(L−r)) R̄ < r < L/2 .
(3)

Here the parameters B and C are fixed by the continuity
condition of the function fI and its first derivative at the
matching point R̄. This latter and the parameter α are
optimized using a variational procedure on the total energy.
It is important to stress that the Jastrow term (3), which
is singular in r = 0, allows one to remove completely the
interaction potential VI from the calculation of the energy
and to substitute it with the contact boundary condition
fI (r) = 1 − b/r , fixed by the impurity-boson scattering length
b. This procedure of replacing a short-range potential with the
corresponding Bethe-Peierls boundary conditions has been
already introduced in DMC simulations [10,11], where also
a particular sampling technique was implemented to handle
the zero-range interaction. We find that the branching process
in the DMC method [12], by suppressing the weight of
configurations with two or more bosons close to the impurity,
reduces significantly the problem of large variance affecting
variational calculations and allows one to carry out simulations
without ad hoc sampling. We have checked that all the results
reported in Ref. [8] for the square-well potential VI with the
smallest range are faithfully reproduced by the choice (3) of
the trial wave function [13].

II. RESULTS

The binding energy of the impurity is defined as the energy
difference

µ = E0(N,1) − E0(N ) (4)

between the ground states of the system with N bosons and
the impurity and of the clean system with only N bosons. Both
energies are calculated using the DMC method described in
Ref. [8] for fixed values of N in a box with periodic boundary
conditions. The extrapolation to the thermodynamic limit is

achieved by ensuring that N is large enough to make finite-
size effects negligible. To this aim calculations are repeated
for different numbers N , typically N = 32, 64, and 128. All
energies are measured in units of the following convenient
scale provided by the bath:

µ0 = !2(6π2n)2/3

2mB

, (5)

which corresponds to the Fermi energy of a single-component
Fermi gas with the same density and mass.

In Table I we report the results of the binding energy µ at
the resonant value of the impurity-boson interaction (1/b = 0)
for different values of the mass ratio mB/mI and of the gas
parameter na3. The same results are shown in Fig. 1. The
chosen values of the mass ratio range from mB/mI = 0,
corresponding to the case of a static impurity with infinite
mass, to mB/mI = 2. For lighter impurity masses (mB/mI >
2) the calculation of µ becomes increasingly difficult because
of instabilities toward the formation of cluster states. We
notice that at a given interaction strength within the bath, the
binding energy increases in absolute value when the mass
ratio increases. This effect is small for mass ratios up to
mB/mI = 0.5, while a larger drop of µ is seen when the
impurity gets lighter than the particles in the medium.
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FIG. 1. Binding energy of the polaron for resonant coupling
(1/b = 0) as a function of the mass ratio mB/mI . Results corre-
sponding to different values of the interaction strength in the bath
are shown. In particular, the value na3 = 2.66 × 10−5 refers to the
conditions of the JILA experiment [1].

063640-2



BOSE POLARON PROBLEM: EFFECT OF MASS . . . PHYSICAL REVIEW A 94, 063640 (2016)

0 0.01 0.02 0.03 0.04
(na3)1/3

-3

-2.5

-2

-1.5

-1

(µ
/µ

0)-1

Static Impurity
Mobile Impurity

FIG. 2. Inverse binding energy of the polaron for resonant
coupling (1/b = 0) as a function of the gas parameter in the bath.
Results are shown for a mobile impurity with mB/mI = 1 (see
Ref. [8]) and for a static impurity (mB/mI = 0). The solid (static
impurity) and dashed line (mobile impurity) are polynomial fits to
the data including first- and second-order terms in n1/3a.

The case of a static impurity (mB/mI = 0) resonantly
coupled to the medium is particularly interesting. First of
all, as visible from the results in Fig. 1, it applies also to
physically relevant situations where mI is significantly larger
than mB . Second, it is a reference problem which in the
case of the equivalent Fermi polaron, i.e., a static impurity
resonantly coupled to a single-component Fermi sea, features
the exact solution µ/µ0 = −1/2 [9]. The bosonic counterpart
is not exactly solvable; nevertheless, since Efimov physics is
irrelevant due to the vanishing mass ratio [14] and also tetramer
and larger bound states should not play any role, one expects
that µ/µ0 is a universal function of the gas parameter in the
BEC.

The results for the inverse binding energy (µ/µ0)−1 are
presented in Fig. 2 as a function of n1/3a. One finds that |µ|
increases with decreasing gas parameter, remaining, however,
always smaller than the value 1/2 of the Fermi polaron
mentioned above. In Fig. 2 we also report the corresponding
results for the mass ratio mB/mI = 1 [8] which exhibit a
similar trend as a function of na3, but the value of µ is about a
factor of 2 larger than that for the static impurity. Noticeably,
the resonant Fermi polaron shows a much weaker dependence
on the mass ratio as it reaches µ/µ0 ≃ −0.58 for equal masses
[15].

One should also notice that, for both values of mass ratio
in Fig. 2, the dependence of the energy µ on the interaction
strength na3 in the bath is sizable. Large variations are also
predicted for the mass ratio mB/mI = 2, as shown in Fig. 1.
We point out that such a strong dependence is completely
underestimated in other theoretical approaches to the Bose
polaron problem where interactions within the condensate are
either completely neglected, as in the variational approach of
Ref. [16], or produce only small effects, as in the T-matrix
approximation of Ref. [17]. In Ref. [18], instead, the effect
of three-body correlations is investigated and a significant
decrease of the polaron energy is found as a result of the
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FIG. 3. Binding energy of the impurity along the attractive branch
as a function of the impurity-bath coupling 1/(n1/3b). The mass ratio
is mB/mI = 2 and is close to the case of 40K impurities in a BEC of
87Rb atoms as in the JILA experiment [1]. The gas parameter has also
been chosen to reproduce the experimental value na3 = 2.66 × 10−5.
The experimental points are reproduced from Fig. 3 in Ref. [1]. The
blue dashed line corresponds to the prediction of perturbation theory
including first- and second-order terms.

avoided crossing between the quasiparticle and the deepest
Efimov state.

We investigated the presence of cluster states, i.e., bound
states of the impurity with two or more bosons, at resonant
coupling for both the mass ratio mB/mI = 0 and mB/mI = 1.
While in this latter case we find very shallow bound states of
up to five bosons [8], in the case of a static impurity no bound
states are found within our model of hard-sphere boson-boson
interactions. The role of such cluster states, and in particular
of Efimov trimers, becomes important in the proximity of
the resonance by adding new length scales to the problem
and thereby suppressing the universal character of the polaron
energy in terms of the gas parameter of the surrounding BEC
[18]. We believe that our results for mB/mI = 1 describe
correctly the polaron ground state provided the energy of the
deepest Efimov trimer is much smaller than µ0.

We decided to plot the results for the binding energy in
Fig. 2 in terms of (µ/µ0)−1 in order to discuss more properly
the limit na3 → 0. For the static impurity at 1/b = 0, one can
easily verify that an ideal Bose gas, featuring a = 0, is unstable
against collapse and yields a binding energy µ which scales
with the N1/3 law of the number of bosons [19]. Results in
Fig. 2 show instead that 1/µ does not scale to zero as na3 → 0,
provided that one first takes the thermodynamic limit at fixed
na3 and only after allowing the gas parameter to approach zero.
The mobile impurity with mass ratio mB/mI = 1 exhibits a
similar behavior (see Fig. 2). However, in this case, one expects
that for small enough densities the energy µ approaches the
binding energy of the deepest cluster state.

Finally, in Fig. 3, we compare the binding energy obtained
from our DMC simulations with the results of the JILA
experiment [1]. The values of the chosen mass ratio, mB/mI =
2, and the interaction strength, na3 = 2.66 × 10−5, are close
to the parameters of the experiment. The results cover the
whole attractive branch of the Bose polaron with b < 0
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from the weakly interacting regime, where |b| is on the
order of the interparticle distance n−1/3 and good agreement
is found with the prediction of second-order perturbation
theory [20], to the resonant point achieved at 1/b = 0. The
quantitative agreement between theory and experiment is
good, although the large experimental uncertainty does not
allow a stringent comparison. In the Aarhus experiment [2],
where na3 ≃ 2 × 10−8 and mB/mI = 1, our results would
predict µ ≃ −1.2µ0 at 1/b = 0, which is more than a factor
of 2 smaller than the measured value. A possible explanation
for this discrepancy is the coupling to the continuum of excited
states above the polaron ground state, which is crucial to
giving a proper account of the measured spectral response
and produces a shift toward higher energies of the signal peak
[2]. It is, however, unclear why such effects appear to be less
important in the JILA experiment, where the quasiparticle peak
remains well defined up to the resonant point [1].

In conclusion, we calculated the binding energy of the
Bose polaron resonantly coupled to the surrounding bath as

a function of the mass ratio and of the interaction strength
within the medium, thereby extending the analysis of Ref. [8]
where only the equal-mass case was considered. Furthermore,
we determine the equation of state of a static impurity in terms
of the gas parameter of the BEC. These results can be useful in
understanding to what extent the properties of the Bose polaron
are universal functions of the boson-impurity scattering length
and of the strength of interactions in the medium. For the recent
JILA experiment [1], our results for the corresponding value
of the mass ratio are in good agreement with the measured
polaron energy along the attractive branch.
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