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Neonicotinoid-induced impairment 
of odour coding in the honeybee
Mara Andrione1, Giorgio Vallortigara1, Renzo Antolini1,2 & Albrecht Haase1,2

Exposure to neonicotinoid pesticides is considered one of the possible causes of honeybee (Apis 
mellifera) population decline. At sublethal doses, these chemicals have been shown to negatively 
affect a number of behaviours, including performance of olfactory learning and memory, due to 
their interference with acetylcholine signalling in the mushroom bodies. Here we provide evidence 
that neonicotinoids can affect odour coding upstream of the mushroom bodies, in the first odour 
processing centres of the honeybee brain, i.e. the antennal lobes (ALs). In particular, we investigated 
the effects of imidacloprid, the most common neonicotinoid, in the AL glomeruli via in vivo two-photon 
calcium imaging combined with pulsed odour stimulation. Following acute imidacloprid treatment, 
odour-evoked calcium response amplitude in single glomeruli decreases, and at the network level 
the representations of different odours are no longer separated. This demonstrates that, under 
neonicotinoid influence, olfactory information might reach the mushroom bodies in a form that 
is already incorrect. Thus, some of the impairments in olfactory learning and memory caused by 
neonicotinoids could, in fact, arise from the disruption in odor coding and olfactory discrimination 
ability of the honey bees.

The effects of sublethal doses of neonicotinoid pesticides on pollinating insects have been extensively investi-
gated1. Neonicotinoids, whose application has grown considerably over the last 20 years, have been reported by 
many studies to play a role in the observed decline of honeybee colonies2 representing a serious environmental 
and economic concern3,4. Various modifications in honeybee behaviour, which seem to be associated with cog-
nitive impairment, have been described. General motion5,6, waggle dancing7, homing flights8–10, and olfactory 
learning and memory11–14 were shown to be disrupted by chronic and acute treatment with various neonicoti-
noids at doses comparable to those experienced by animals in the field.

The action of neonicotinoid pesticides on the insect brain and their influence on behaviour are caused by an 
interference with the acetylcholine pathway. All commercially available neonicotinoids are, in fact, agonists of the 
insect’s nicotinic acetylcholine receptors (nAChRs), perhaps the most widespread receptors in the insect central 
nervous system15. Nicotinic receptors are, among others, pivotal to the flow of olfactory information throughout 
the brain.

In the honeybee, odorants activate olfactory receptors (ORs) expressed at the surface of olfactory receptor 
neurons (ORNs) hosted in the antennae. ORNs forward the information to the antennal lobe (AL) glomeruli. 
There, ORN axons synapse with dendrites of projection neurons (PNs)–the second order neurons of the olfac-
tory pathway–and with local neurons (LNs). Glomeruli receive direct input from a single OR family, and are 
interconnected by the LNs, which are mainly inhibitory. The olfactory information is then transferred by the PNs 
through five main tracts (the medial- and lateral-antenno-protocerebral tracts, m-APT and l-APT, and three 
mediolateral-antenno-protocerebral tracts, ml-APTs) to higher brain areas, such as the calyxes of the mushroom 
bodies (MBs) and the lateral horns (LHs). There, it is integrated with information from other sensory modalities 
and with previous memories, providing context16.

nAChRs are present both at the synaptic interface between the ORNs and the AL cells17 and between the PNs 
belonging to the m-APT17,18 and the mushroom bodies’ Kenyon cells (KCs).

Imidacloprid, the most widely used neonicotinoid pesticide, is a partial ligand of the insect nAChR, with a 
reported EC50 between 0.53 μ M19 and 25 μ M20 for cultured KCs at different developmental stages, and between 
0.83 μ M21 and 3.4 μ M22 for cultured adult AL neurons. Imidacloprid has been shown to impair olfactory learning 
and memory in a number of studies11,13,14,23–25. As revealed by in vivo electrophysiological recordings, imidacloprid 
application produces a tonic inward current in Kenyon cells of the MBs, making them unresponsive to acetylcholine. 
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This current is blocked by d-tubocurarine, and can therefore be ascribed to the sustained activation of KC nAChRs26. 
This result confirmed and extended in vitro evidence previously collected from dissociated cells19,20.

The above-described inactivation of Kenyon cells is thought to be the main cause of the impairments observed 
in bee navigation and in learning and memory. Indeed, these cells represent a major site of convergence for infor-
mation across different sensory modalities and play an essential role in establishing and retrieving memories27. 
However, forming odour-specific memories requires correct stimulus encoding. Antennal lobes (ALs) are the 
brain areas responsible for this processing stage.

Nicotinic receptor expression in the ALs has been described before17. Dissociated cells from the AL have 
been shown to be affected by imidacloprid, although the identity of the responsive cells was not specified21,22. The 
experiments reported here aimed to elucidate the effects of acute imidacloprid treatment on signal processing in 
the AL and on the resulting response code in the PNs, the AL’s output units. These effects could not be predicted 
from results of in vitro studies, due to the cell type discrimination problem that was mentioned before but also, 
in particular, due to the network structure of the AL, which involves complex interactions among the single 
components.

To visualize the odour response maps, an in vivo functional imaging approach was used28. This technique has 
the advantage of preserving the multidimensionality of the odour code, since it allows simultaneous recordings 
from several distinct glomeruli. We monitored intracellular calcium changes within PNs over many cycles of 
stimulus repetitions with different odorant molecules and measured the effects of an acute application of imida-
cloprid on these activity patterns.

Results
Staining PNs with fura 2-dextran allowed in vivo functional imaging of the AL glomerular responses upon stim-
ulation with different odorants (1-hexanol, 1-octanol, acetophenone, and benzaldehyde).

Experiments were designed to allow continuous imaging of odour-stimulated activity from the same AL area 
(a single focal plane allowed access to 14 to 21 glomeruli depending on the bee) before, during, and after treat-
ment of the brain with an imidacloprid solution. This was achieved via controlled perfusion of the brain with a 
buffer solution, to which substances could be added during well-defined periods, without creating interruptions 
or movement artefacts in the images.

The administration of a 10 μ M solution of imidacloprid for 1 min, followed by washing with physiological 
solution, resulted in significant reduction in the mean and peak odour-evoked calcium responses within single 
glomeruli (see Fig. 1 and Supplementary Fig. S1). A control experiment using single-dose administration under 
static conditions produced comparable results on the glomerular response at as little as one-tenth of that concen-
tration (see Supplementary Fig. S2).

The onset of the effects on brain activity was slightly different among bees. This might be due to variations in 
the kinetics of perfusion and diffusion of the substance into the tissue. Around 1 min after the end of imidacloprid 
application, however, the effect on the odour-evoked responses was visible in all bees. A few minutes after imida-
cloprid administration, on the other hand, the response amplitude in some of the glomeruli recovered to initial 

Figure 1. Example of two representative glomeruli of the odour response pattern relative to each odour in a 
control bee (left; blue) and a treated bee (right; red). Odour-evoked responses (− Δ F/F) are averaged over the 
200–400 ms interval after stimulus onset, for each of the 25 stimuli repetitions (shown on the x-axis). Odours 
are reported on the right. Shadows: administration of Ringer’s solution (blue) or imidacloprid (red).
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values (Fig. 1 and Supplementary Fig. S1), though calcium transient dynamics could still be different. In one case, 
not all odour responses followed the same trend, and the recovery was odour-specific (Fig. 1, Glomerulus T1–37).

Due to the temporal variability mentioned above, and in order to compare effects across animals, we focused 
on three time windows, each encompassing three stimulus repetitions (≈ 1.5 min): before treatment, 1 min after 
the end of treatment (EOT), 8 min after EOT.

First, we evaluated the distributions of “excitatory” and “inhibitory” odour-evoked responses (see Methods) in 
the two groups relative to the three moments (Fig. 2a). Shrinkage of the excitatory response distribution in treated 
animals following treatment (red, 1 min after EOT) suggested that these responses diminish in both intensity and 
number compared with those of control bees. We tested this hypothesis by comparing the number of excitatory/
inhibitory responses and their average intensity in bees of each group (Fig. 2b).

Indeed, we found that both number and average intensity of excitatory responses were reduced in treated bees 
following treatment. The two-way repeated measures ANOVA on response number revealed significant effects 
of group: F1,8 =  17, p =  0.003 and group ×  time interaction: F2,16 =  3.9, p =  0.042, while time was not significant: 
F2,16 =  2.0, p =  0.16. The two-way repeated measures ANOVA on average intensity showed a significant effect of 
time: F2,16 =  9.4, p =  0.0020 and group ×  time interaction: F2,16 =  4.7 p =  0.025, but not group: F1,8 =  1.1, p =  0.33. 
These effects did not occur in inhibitory responses (two-way repeated measures ANOVA on number: time: 
F2,16 =  0.86, p =  0.44, group ×  time: F2,16 =  0.53, p =  0.60, group: F1,8 =  2.2, p =  0.18; two-way repeated measures 
ANOVA on intensity: time: F2,16 =  1.5398, p =  0.24; group ×  time: F2,16 =  0.3, p =  0.74, group: F1,8 =  4.5, p =  0.07).

Parallel to this analysis, we computed average delays in onsets of odour-evoked responses in the same three 
time windows. Odour-evoked responses from treated bees show a significant increase in onset delay at both time 
points after the treatment (see Supplementary Fig. S4). This is probably contributing to the incomplete recovery 
that emerges from the analysis of average responses (calculated between 200 and 400 ms after stimulus onset; see 
Supplementary Fig. S3).

The results on the individual odour-evoked responses led to the question of how the odour codes and odour 
discrimination would be affected by the treatment.

To answer this question, as a measure of distinguishability, Euclidean distances (EDs) between pairs of 
odour-response patterns were computed, and the dynamics of this measure over the course of the 25 stimulations 
around imidacloprid administration were studied. ED dynamics relative to an example control bee and a treated 
bee are shown in the Supplementary Fig. S5.

Again, to compare changes in EDs across bees, we focused on the three time windows described above 
(before treatment, 1 min after EOT, 8 min after EOT). In each bee, we extracted EDs relative to each period (see 
Supplementary Fig. S6). Then, we computed a measure of normalized change in ED: (EDafter −  EDbefore)/EDbefore, 
for both time points after EOT. Normalized changes in ED were averaged across odour pairs, and compared 
across bees of both groups (Fig. 3).

The treated group showed a significant reduction in the diversity of the odour codes following treatment, 
with respect to the control, at both time points after treatment (two-way repeated measures ANOVA revealed a 
significant effect of group: F1,8 =  8.3. p =  0.020, but not of time: F1,8 =  0.28, p =  0.61, or group ×  time interaction: 
F1,8 =  0.29, p =  0.61).

To visualize the alteration of the response codes relative to the 4 odour stimuli during and after the treatment, 
we reduced the dimensionality of the coding space by a principal component analysis (PCA). Transforming the 
n-dimensional space of all recorded glomeruli in all bees (n =  172) we find that the first three principal compo-
nents (PCs) explain all variance across mean activities. Subsequently, we averaged mean activities in PCs across 
bees within each group (n =  5). In this way we obtain for each odour a temporal sequence of the mean group 
response to the 25 repeated stimuli. The evolution of the mean responses to all odours for treatment and control 
group is shown in the three-dimensional PC space (Fig. 4).

The odour representations within the control group (Fig. 4a) were confined to a given area of the coding space, 
remaining stable over the course of 25 stimulation cycles. On the contrary, in the treated group (Fig. 4b) the rep-
resentations of the 4 odours, which were well separated at the beginning, collapsed after treatment (administered 
on average between trials 4.6 and 6.6; see marker 5 and following, Fig. 4b) onto the origin of the coding space. A 
trend was noticeable in the final stimulation cycles (see e.g. marker 25, Fig. 4b) of some of the odours to separate 
again within the glomerular coding space. However, the overall distances between different odorants were still 
reduced compared to the initial condition.

Discussion
Effects of imidacloprid on the dissociated antennal lobe cells have been previously described21,22. However, in 
those studies, it was not possible to determine the identity of the recorded cells, and it was therefore impossible to 
make any hypotheses on how this substance would affect the AL network when tested in vivo.

We have shown here that the odour-specific calcium transients evoked in the AL PNs are greatly reduced 
by imidacloprid application. This reduction is probably due to inactivation of PNs. Indeed, it has been demon-
strated that, at least in the case of Kenyon cells, imidacloprid induces a tonic inward current, making the cells 
unable to respond to acetylcholine26. We assume the same happens in PNs, which would explain the vanishing 
of all odour-induced calcium response soon after treatment. The partial reversibility of the observed effect can 
be explained by a progressive detachment of imidacloprid molecules from their binding sites, supported by the 
sustained washing with the physiological solution. Additionally, a delayed recovery of the intracellular calcium 
concentration, initially raised by imidacloprid29, might contribute.

However, the observed reversibility was not complete, as it did not encompass all glomeruli. Moreover, in glo-
meruli in which the response amplitude was restored, sometimes the shape of the odour-evoked calcium transient 
was different compared to that of pre-treatment, as we showed in the case of response onsets, which were often 
delayed. All this prevented the odour code from being fully regained. In fact, the Euclidean distances–measures 
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Figure 2. Odour-evoked glomerular responses were gathered and automatically classified in excitatory, 
inhibitory, or no response. This was done for responses before treatment (Before), 1 min after EOT (1 min) 
and 8 min after EOT (8 min). The intensity (average − Δ F/F between 200 and 400 ms after odour onset) 
distributions of excitatory (top) and inhibitory responses (bottom) are shown in (a), with data from control 
animals (n =  5) reported in blue and those from treated animals (n =  5) in red. Boxplots indicate median, 
quartiles, and outliers of the distributions. In (b), the average intensity (− Δ F/F; left) and the number (right) of 
both excitatory and inhibitory responses across bees are shown (control bees, n =  5, in blue, and treated bees, 
n =  5, in red). Error bars represent SEM. Average intensity of excitatory responses varied following treatment 
(two-way repeated measures ANOVA showed a significant effect of time F2,16 =  9.4, p =  0.0020 and group ×  time 
interaction, F2,16 =  4.7 p =  0.025). Number of excitatory responses were also reduced by the treatment (two-
way repeated measures ANOVA showed a significant effect of group ×  time interaction, F2,16 =  3.9, p =  0.042, 
and group: F1,8 =  17, p =  0.003). Pairs of measurements were further compared via paired and unpaired t-tests, 
respectively (*p <  0.05, **p <  0.01).
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of distinguishability between odour pairs –, remained below initial values during the complete post-treatment 
period. So, even if the recovery on a single-glomerulus scale seemed to have saturated within ≈ 10 min after the 
EOT, some important part of the odour code was probably never regained. It has been previously suggested that 
different nAChRs might be expressed at different locations in AL22, and a possible explanation for our results 
is that these receptors show different sensitivity to imidacloprid. This is a point that will need to be further 
elucidated.

Figure 3. Normalized changes in Euclidean Distances over time (EDafter − EDbefore)/EDbefore in treated 
and control bees. There is no significant effect of time on ED measurements, nor of time ×  group interaction. 
However, EDs are significantly reduced in the treated group at both time points after EOT (1 min: 1 min after 
EOT, shown in violet, and 8 min: 8 min after EOT, shown in fuchsia) with respect to the control group (n =  5 
bees per group; two-way repeated measures ANOVA, group: F1,8 =  8.3, p =  0.020). Error bars represent SEM.

Figure 4. Average odour representation in time (n =  5 bees per group; ACP: acetophenone, shown in blue, 
BZA: benzaldehyde, in cyan, 1-HEX: 1-hexanol, in yellow, and 1-OCT: 1-octanol, in red) during 25 stimulus 
repetitions (repetitions are marked by numbers along the trajectories) in control (a) and treated (b) bees. 
Imidacloprid was administered on average between trials 4.6 and 6.6 to the treatment group (b), while, in 
the same window, the control group (a) was administered with Ringer’s solution from a second vial. Odour 
responses are shown in principal components (PCs) in order to reduce the coding space dimensionality. PCs 
and axes are identical for (a,b), allowing comparison of odour code separation.
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It seems reasonable to argue that PNs are not the only cell type responsible for the effects we observed. This is 
suggested e.g. by the response pattern of glomerulus T1–37 (Fig. 1 and Supplementary Fig. S3). Within the same 
glomerulus, two different odour-evoked responses were differently affected by the treatment, implying that the 
information pertaining to those two odorants is conveyed to these PNs via two distinct cellular pathways, i.e. as 
direct input from ORNs and via the LNs. Therefore, we hypothesise that this latter cell type (most probably also 
expressing nAChRs) might not be able to restore its normal activity after the treatment.

Thus, the effect could be not only glomerulus-specific, but rather nAChR-type-specific (in terms of sub-
unit composition19) and cell-type-specific. Neuronal actors other than PNs and inhibitory LNs might also be 
involved. Excitatory cholinergic LNs have been described in the fruit fly, Drosophila melanogaster30–32, and there 
may be homologs in the honeybee. Moreover, the equivalent of a putative feedback neuron, ALF-133, transmit-
ting information from the mushroom bodies back to the ipsilateral antennal lobes, has been demonstrated in 
the fruit fly to be a cholinergic neuron34. Finally, cholinergic feedback onto the ORNs might also contribute to 
glomerulus-specific effects.

Another non-cholinergic effect that may contribute to imidacloprid’s interference with odour coding is its par-
tial blocking of GABA-induced currents, observed for the first time in Kenyon cells20. All of these contributions 
might accumulate and give rise to the complex effects that we observed.

Our results add to evidences collected by others in conditioning studies showing that imidacloprid and other 
neonicotinoids interfere with olfactory learning11–14. We demonstrated here that malfunctioning of the olfactory 
pathway under neonicotinoid exposure starts as soon as at the AL level, where odour coding is disrupted. We sug-
gest that imidacloprid impairs olfactory learning in several ways by acting at different locations in the bee brain. 
Along the odour processing pathway, odour discrimination is the first function to be impaired.

Finally, we would like to discuss an apparent contradiction between our results and those of Williamson 
and colleagues12, who in a classical conditioning study reported enhanced odour discrimination following acute 
treatment with imidacloprid (1.28 ng/bee). However, at higher doses23 or under chronic treatment11, imidacloprid 
impairs acquisition, memory, and discrimination. So, effects on the olfactory pathway are strictly dependent on 
doses. Our treatment is also acute, but instead of oral administration, the pesticide is bath-applied to the brain. 
Concentrations reaching the synapses are hard to compare but most likely higher in our case.

To conclude, we demonstrated for the first time an effect of a neonicotinoid pesticide, imidacloprid, on the 
AL functionality in the honeybee, Apis mellifera. The experimental result–that imidacloprid disrupts odour cod-
ing within the AL, reducing the EDs between odour pairs –, allows the inference of a decreased odour distinc-
tion capacity35. Diminished odour discrimination is likely to contribute to the previously reported impairment 
of olfactory learning and memory, since specific and robust stimulus encoding is necessary to form and recall 
odour-specific memory.

Methods
Animal preparation and staining. The procedure is adapted from Galizia and Vetter36. Forager honey-
bees were collected at the entrance of the beehive in a Plexiglass pyramid and fixed on a mounting stage after 
immobilisation at 4 °C. PNs were backfilled with the calcium indicator fura-2 in its dextran-conjugated form 
(ThermoFisher Scientific). A small volume of the crystallized dye was manually injected via a custom-made glass 
capillary at the intersection of the lateral- and medial-antenno-protocerebral tracts between medial and lateral 
calices of the MBs (for an image of the injection site see Paoli et al.37). To avoid lateral biases, left and right ALs 
were prepared alternately38,39. After injection, animals were fed on a 50/50 w/w sucrose solution and kept in the 
dark until imaging on the following day, allowing the dye to diffuse retrogradely into the AL.

Data acquisition. Imaging was performed via a two-photon fluorescence microscope (Ultima IV, Bruker) 
combined with an ultra-short pulsed laser (Mai Tai Deep See HP, Spectra-Physics-Newport), tuned to 800 nm 
for fura-2 excitation28. The beam was focussed by a water-immersion objective (20x, NA 1.0, Olympus). The 
fluorescence was collected in epi-configuration, selected by a dichroic mirror, and filtered with a band-pass filter 
centred at 525 nm with 70 nm bandwidth (Chroma Technology Corp). Finally, it was detected by photomultiplier 
tube (Hamamatsu Photonics). An optimal signal-to-noise ratio was achieved with a laser power ≈ 10 mW, without 
any sign of photobleaching. The AL was repeatedly scanned by a set of galvanometric mirrors along a spiral line 
of interest crossing all glomeruli within a selected focal plane. The frame rate was ≈ 30 Hz. Changes in the intra-
cellular calcium concentration manifested themselves as temporal variations of the fura-2 fluorescence intensity.

Odour stimulation. Odour stimulation was performed through a custom-made olfactometer40, where a 
constant air stream is split into eight channels, each composed of two alternate paths: an odour chamber (1:500 
dilutions in mineral oil) and a blank chamber (mineral oil). Single channels are switched by electronic valves con-
trolled by a PCIe-6321 multifunction board (National Instruments) and programmed via a LabView-based user 
interface41. Acetophenone, benzaldehyde, 1-hexanol, 1-octanol (all Sigma-Aldrich) were applied sequentially as 
pulsed stimuli. Each odour pulse (duration: 1 s, inter-stimulus interval: 7 s) was repeated 25 times. Because the 4 
odours were alternated, this produced an interval of 32 s between subsequent stimulations with the same odour.

Imidacloprid administration. During the imaging sessions, the bee brain was continuously perfused via 
input and output capillaries, embedded laterally in the imaging mount. Via a peristaltic pump, Ringer’s solu-
tion (130 mM NaCl, 6 mM KCl, 4 mM MgCl2, 5 mM CaCl2, 160 mM sucrose, 25 mM glucose, 10 mM HEPES  
(all Sigma Aldrich), pH 6.7, 500 mOsm/L)42, was injected at a flow rate of ≈ 1 ml/min. During the treatment phase 
perfusion was switched for 60 s to Ringer’s with 10 μ M imidacloprid (Sigma Aldrich) added to it.

Data analysis. Images acquired via the microscope software Prairie View were de-noised and processed 
using custom-written MATLAB (Mathworks) codes. Glomerular response signals were extracted by manual 
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identification of single glomeruli centres and averaged over 5-pixel intervals (1 μ m/pixel) around those. The mean 
pre-stimulus activity F (averaged over 1 s) was subtracted and served as a normalization factor. The time series 
of this relative activity − Δ F/F were the basis for further analysis. The mean odour-response activity in each of 
the recorded glomeruli was obtained by averaging over a time window between 200 and 400 ms after stimulus 
onset. This period shows the maximal separation of PN odour response patterns in most bees. Glomeruli were 
identified as responsive if their average activity over the whole stimulus period deviated significantly from the 
background activity (p <  0.05: |Δ F|> F + 2σ), and classified as either “excitatory” or “inhibitory” based on their 
sign. Response delays were calculated for significant responses, as the time from stimulus onset to time when half 
of the maximum activation was reached. To quantify odour separation in the n-dimensional glomerular space  
(n is the number of glomeruli recorded in each bee), Euclidean distances were calculated. The Euclidean distance 
dx,y between two stimuli x and y is defined as the sum over all glomerular response differences:

∑= −
=

d x y( )
(1)

x y
i

n

i i,
1

2

where xi and yi are the responses relative to odour x and odour y within glomerulus i, and n is the number of 
recorded glomeruli. To visualize the dynamics of the treatment effects on the odour response, dimensionality of 
that coding space was reduced by a principal component analysis (PCA). To be able to compare all bees within 
common coordinates, a transformation projected the whole coding space spanned by all glomerular responses 
(n =  172 (86 glomeruli pertaining to treated bees and 86 to control bees) ×  4 odours) to principal components 
(PCs). The first 3 PCs explained all variance between the 172 ×  4 glomerular responses averaged over the 4 
pre-treatment stimuli (PC1: 47%, PC2: 36%, PC3: 17%). In the PC space, responses to each odour were averaged 
over the bees within the single groups (n =  5), producing a time sequence of 25 points corresponding to the 25 
subsequent stimuli.

Statistical analyses. 
•	 Figure 2b: the number of responding glomeruli and the average intensity of both excitatory and inhibitory 

responses were averaged across bees within each group (control bees: n =  5, and treated bees: n =  5). After 
assessing approximate normality of residuals and homoscedasticity of the samples (via Kolmogorov-Smirnov 
test and Levene’s test, respectively), in each case a two-way repeated measures ANOVA was performed (with 
time as within-subject factor and group as between-subject factor). Where ANOVA showed significant 
effects, pairs of values were further compared through paired (within one group) and unpaired (between 
groups) sample t-tests.

•	 Figure 3: EDs were calculated relative to the six odour pairs and the three time windows in each bee. ED 
changes were normalized with respect to the pre-treatment values: (EDafter −  EDbefore)/EDbefore, applied to both 
time points 1 min and 8 min after end of treatment (EOT). We then averaged across odour pairs (n =  6) and 
bees per group (n =  5). Results were compared via a two-way repeated measures ANOVA (after assessing 
normality of residuals and homoscedasticity of the samples), with time as repeated measure and group as 
between-subject factor.

•	 Figure S1: the first 24 repetitions of 1-octanol stimulation in a treated bee were averaged in groups of 4 to 
obtain the six subsequent windows shown in this figure. One-way ANOVA (after assessing normality of resid-
uals and homoscedasticity of the samples) was performed to compare values of peak response (the maximum 
after stimulus onset) and the integral of the response (area under the curve of response from stimulus onset to 
return to baseline) in these six “groups”. Via Dunnett’s post-hoc test, all later time windows were tested against 
the first.

•	 Figure S4: glomeruli that showed significant odour-evoked responses both before treatment and after EOT–
either at 1 min after EOT or 8 min after EOT–were used for comparisons. Differences in onset delays were 
extracted from pairs of significant responses and compared via two-way ANOVA, with time and group as 
two between-subject factors. Two-way ANOVA was chosen because we wanted to test a possible effect of 
interaction of these two factors. However, since the analysis showed no significant effect of time ×  group, we 
further compared the two groups via a Kruskal-Wallis test, more suitable in this case, as residuals deviated 
from normality.
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