=0 UNIVERSITY

Department of OF TRENTO - Italy

Information Engineering
and Computer Science

DISI - Via Sommarive, 9 - 38123 POVO, Trento - ltaly
http://disi.unitn.it

Dependability Assessment of
SOA-based Cyber-Physical Systems

with Contracts and Model-Based Fault
Injection

Autore: Loris Dal Lago

Curatori: Orlando Ferrante, Roberto Passerone
February 2017

Technical Report # DISI-17-003

UNIVERSITA DEGLI STUDI DI TRENTO

DEPARTMENT OF INFORMATION ENGINEERING AND
COMPUTER SCIENCE

UNIVERSITY OF TRENTO - Italy

Master Degree in Computer Science

Final Thesis

Dependability Assessment of SOA-based
Cyber-Physical Systems with Contracts
and Model-Based Fault Injection

Advisor: Roberto Passerone

Co-advisor: Orlando Ferrante

Candidate: Loris Dal Lago

ACADEMIC YEAR 2014/2015

To my family.

Acknowledgements

This thesis is the outcome of an internship in ALES (Advanced Laboratory
on Embedded Systems). Mainly I am grateful to Orlando Ferrante for giv-
ing me the opportunity to work on this project and for being supportive
all throughout the period of my stay at the company. I also want to thank
professor Roberto Passerone, firstly for being my advisor and second for
making himself available for help whenever I was asking him for. My under-
standing of contracts in the first place would not have been as clear without
his help. Also I would like to express my gratitude to Thi Thieu Hoa Le for
her positive karma in giving help to people: her technical assistance helped
me in more than one occasion to sort things out. Thank you Hoa. These
were the people to whom I partly owe the scientific work of this thesis.

I cannot conclude this fragment though without acknowledging the immense
support, mostly moral, that I received from my friends and family through-
out my years at the university, in my country and when I was abroad. I
want to thank my mum, dad, grandmother and sis, because you have always
been the best people around, cheering and inspiring without even knowing.
Thanks to all my closest friends too, for giving rest to my unconditional
study efforts. That has been so vital. Lastly, I would like to send my thanks
to all the people who have been part of my study career, including also those
who can smile to the words: Loris doesn’t like beauty.

Abstract

In the era of interconnected systems it is becoming more and more impor-
tant to address issues of scale in system safety and dependability assessment.
Concurrency has no longer to be understood only as a concern within indi-
vidual systems - but rather also and mostly as between them.

Yielding the correct deployment of such systems is thus challenging. Besides
technical complications also social collaborations between engineering teams
intertwine, whereby the need of communicating unambiguously their compo-
nent’s potentials and needs is both paramount and difficult to attain. This
is a major concern in the development of Cyber-Physical Systems (CPSs),
where computation is put at service of the physical world to let constituent
embedded components accomplish some given goal.

The main objective of this thesis is the development of novel techniques
for the dependability analysis of highly distributed systems structured over
the concept of Service-Oriented Architecture (SOA), with particular consid-
eration to needs coming from the industry sector. Focusing on component
services as the central means at the core of each interaction, our methodol-
ogy will thus show how existing techniques applicable to plain digital compo-
nents can be lifted to the broader area of complex Cyber-Physical Systems.

We will commit on modeling Cyber-Physical Systems of different sorts, first
accounting for their cyber-physical aspects and then considering changes in
topology typical of SOA. For this we will stick to the UML language exten-
sions of SoaML and SysML, being them particularly amenable to industry.
We will then advocate the intensive use of contracts, already well-established
for the design of heterogeneous CPSs, as an indispensable and perfectly
tailored concept for services. We will demonstrate how non-functional re-
quirements, such as timing, can be incorporated in the presented framework.

At the end of the presentation we will demonstrate how the employment of
XSAP, a tool for the safety analysis of state-based systems based on nuXmv,
can be adapted to accommodate the dependability analysis of SOA-based
Cyber-Physical Systems. To that aim we will show how to model and an-
alyze two specific use case examples inspired by the literature by featuring
XSAP in a novel way. We will present the results of the analysis with respect
to our findings and conclude with a discussion over the whole methodology
and future directions.

Contents

Introduction
Motivation e
Objectives o .
Contributions
Organization of the thesis

I State of the Art

1 Fault Injection
1.1 A first quick overview of FI techniques
1.2 The three types of Fault Injection.
1.3 Contract Based Design & Fault Injection: CBSA
1.4 Summary of the chapter

2 SOA modeling and error management
2.1 Injecting Faults, classically
2.2 Modeling of SOA and relative faults
2.3 Property Verification of Cyber-Physical Systems
2.4 Final considerations

3 Contracts for System Design
3.1 An algebra of contracts
3.2 Interface Components
3.3 Contracts, issues and interface theories
3.4 A novel approach to system design

4 The tool XSAP
4.1 Functionality
4.2 Formal Nutsand Bolts
4.3 Using XSAP

IT Novel Contributions

5 Use Cases
5.1 Modeling Languages
5.2 The simplified CAE example
5.3 The SOA based Thermostat

6 XSAP injection
6.1 Thermostat injection L.
6.2 CAEinjection
6.3 Positive-XSAP

Final Considerations and Future Work

71

75
75
79
80

95
96
114
125

133

Introduction

The design of behaving computing systems without the employment of auto-
matic verification tools is nowadays simply not a viable option. The complex
interactions and high concurrency typical of those systems make the employ-
ment of these tools, in fact, obligatory.

Model checkers, intended as systems based on the verification of state ma-
chines, have been in the past and still are the majorly employed solution
in industry[32]. For the embedded systems community in particular, sym-
bolic model checkers have been pivotal for the verification of systems with
an enormous number of states, that were before insurmountable. Finally,
the introduction of bounded model checking techniques gave the final strike
for the adoption of model checkers in industry to even infinite systems, pro-
viding a technique that, albeit incomplete, could quickly find bugs, alias
property counterexamples, in the system models.

Despite the nice properties that come with model checking, there is a big
gap that makes them not entirely congruent with the embedded systems’
demands, given by the abstraction-level/implementation separation. For
how close a model of the system might be to reality, it will never be able
to capture completely all of its little details. And there is more. Today’s
computing systems’ are made up of different heterogeneous components,
combined to reach goals collaboratively. An automobile comprising an ABS
controller and a power steering system represents one such collaborative
interaction between two components. Most failures in such collaborating
systems, it turns out, do not happen because of single components’ failures,
but rather because of unintended interactive actions between components.
This fact is understood by acknowledging that, while single components are
responsibility of single distributors — thus mostly much robust and prone to
reuse — the design of a system that exposes those components as interactive
units is constructed ad-hoc and depends, heavily, on how well the system
description and requirements are captured first and interpreted by the de-
sign and system engineers next. This segment of the system development
cycle, where the human interaction has its larger influence, is the weakest

part of the process and studied as an engineering branch by itself [68]. This
weakness is the basic reason why system verification is always accompanied
by — fused with, more recently — system validation®.

Cyber-Physical Systems (CPSs) represent a class of complex computing
systems that are typically deployed on the physical world and tightly in-
tegrated with it, in a collaborative way. Characteristically, CPSs are built
of heterogeneous components in a flexible structure topology. This means
that components are independently developed, using different techniques
and tools, by different people, with bindings that are not known in advance,
before deployment.

Integration of such component systems is a challenge by its own, with the
specific scheme typically — but not quite lately — agreed beforehand, when
the overall system is conceived. If all the specifics are known in advance and
the system architects are in position to create a standard for the specific
application, the simplest thing to component integration is using predefined
interfaces, purely as methods’ signatures that the single components are
explicitly required to match. This has been at the essence of the Remote
Procedure Call (RPC) paradigm since the early distribution of computing
power on networks. However, along with the recognition of Cyber-Physical
Systems as a new-standing concept, a more principled and structured ap-
proach of communication is needed.

Evolving the RPC paradigm, Service Oriented Architectures (SOAs) put
services at the heart of systems, rather than components with their func-
tionality. This shift has been inspired by web architecture design practice,
in some application scenario even integrated with it.

We will present the modeling of Cyber-Physical Systems as SOAs, where
the single components constitute SOA participants, requiring services from
one another. Service orientation is becoming the new trend in the field, given
its generality, several-year groundwork and disposition towards handling of
dynamicity. For their distributed nature it will be easier for us to treat the
communications between components as service choreographies, without a
central control. This will also be convenient for having a global system view
and promote its verification.

The service-oriented nature of the systems that we are going to consider

'To understand the difference between verification and valudation, it is commonly
proposed the following pun as an answer: Verification answers the question: Are we
building the product right?, whereas Validation answers to: Are we building the right
product?

will bring us to the restatement of these architectures in terms of contracts,
a popular formalism in the cyber-physical community for describing, neatly,
functional behaviours of the system participants in terms of their assump-
tions from the environment and provided guarantees. We will talk about
methods for the dependability assessment of systems and circuits by means
of fault injection and eventually show how those techniques have gradually
taken a more and more abstract appeal for the principled adoption since the
earliest stages of system development.

Before discussing the themes of this thesis in detail, we outline its driv-
ing motivations, planned objectives and realized contributions, in order to
delineate the frame where this thesis finds context. We then introduce the
structure of the presentation, as an orientation for the reader.

Motivation

Developing reliable systems has always been a matter of concern for indus-
try. This problem is commonly tackled by the adoption of formal verification
methods, which are although known to be insufficient to release trustworthy
dependable systems. In order to address dependability it is necessary to
understand how systems can deviate from the normal behaviour, actuating
unexpected actions, and how the system should respond to those. Tradi-
tionally, hand-crafted artifacts that outline this behaviours are developed as
the result of a combined effort between safety and design engineers. These
artifacts comprise Fault Trees and FMEA tables, that are visualizations of
how a system can fail in the wake of fault occurrences [24]. In the past
decade, new automatic constructions of theses artifacts have been proposed,
mainly supported by model-checking activities.

Our work finds its motivations in studying SOA-based Cyber-Physical Sys-
tems in context of their dependability assessment using techniques similar
to those employed in the past for the digital system context. Challenges
will be the large-scale, the non-functional aspects of those systems and the
possibility of acceptance by the industry sector.

Objectives

Programmed for 2015, Fondazione Bruno Kessler (FBK) releases a tool for
the support and integration of the engineering activities of system design
and safety assessment. This tool, named XSAP, builds on top of the NuS-
MV /nuXmv model checker and features a wide range of functionalities from
the system verification to the automatic generation of fault trees, passing

through a model-based variant of fault injection that we will recurrently
call model extension. We will discuss fault injection practice and the tool
XSAP in detail in chapter 1 and 4, respectively. The intended support
provided by the XSAP tool has been driven by needs from the strict Em-
bedded Systems engineering area, for the safety analysis of digital circuits
and Cyber-Physical digital circuits.

Our objectives cover a broader application domain that is pushed by European-
sponsored industrial activities, that have the analysis of large distributed
systems as target, comprising their architectures and design principles, with
particular regard to scalability issues. We focus on Service-Oriented dis-
tributed Cyber-Physical Systems. Keeping scalability and service-orientation
at the center of our concerns, our objective will thus be to understand the
context and its intrinsic dynamics, find out ways for the modeling in industry
and delineate systematic methodologies to address automatic dependability
resources, culminating in an activity workflow for the engineering of large-
scale systems to take on, based on tool automation for how much as it is
meaningful to conceive.

Contributions

The contributions of this thesis go from a theoretical comprehension of the
context of Cyber-Physical Systems to the proposal of novel practical activi-
ties and modeling techniques for their dependability analysis, motivated by
the arguments that we summarized above. Moved by the objectives out-
lined in the last section we probe the validity of our techniques by practical
implementations of the suggested techniques on simple use case examples.

Our contributions include showing what languages are available to model
such systems at the industry side of concerns, which ones are convenient
and which one are not yet mature beyond the academic walls, ending up in
a proposed adoption the UML language derivatives of SysML and SoaML
for system design, compliant with our approaches and modeling needs, still
applicable in the industry practice.

We showed how contracts can involve in service orientation and how much
conforming is their adoption with respect to existing literature formalisms.
With their power at hand we showed how they can support the modeling
of non-functional properties, such as timing, in a consistent way with the
rest of the methodology. After modeling two simple use case examples in
SYsSML+SoAML first and nuXmv therefore, the safety analysis tool XSAP is used
for the assessment of their dependability using model-based fault injection. Our
contribution in this sense is showing its application on systems other than digi-
tal. Moreover we will propose a novel and simple approach that exploits duality
in XSAP in order to infer activities for system design and planning for free. Open

questions throughout the exposition aiming at future work constitute an important
part of our work.

Organization of the thesis

The thesis is divided in two parts. The first part covers the state of the art and
effective background needed throughout the second part. This will be concerned
with the construction of novel design and dependability assessment techniques for
the development of highly complex SOA-based Cyber-Physical Systems.

Before analyzing the techniques proposed by this thesis, we will spend a few words
discussing where the branch of fault injection stemmed from originally, and how
we are going to use this term against its various meanings. This will be subject of
chapter 1, where we survey fault injection techniques and stress on their effective
need in industrial concerns.

After that, in chapter 2 we will detail about SOA and discuss existing modeling
and verification trends on those systems, with an eye kept on the Cyber-Physical
basis that they will have to be compliant with according to our objectives. From
this analysis of the literature we will identify a number of interesting features that
we aim at handling, including scalability and interface behaviour of components in
the Cyber-Physical scenario.

Following those lines, in chapter 3 we will make considerations about the adoption
of a lately developed mathematical framework and design paradigm for the the
development of complex systems. We will also discuss its integration as a basis for
our analysis. It will be our objective there to provide the reader with a feeling of
legitimacy in the adoption of the framework.

Finally, in chapter 4 we will present the tool XSAP, devised for (although not re-
stricted to) the automatic construction of engineering artifacts in the context of
digital systems and utilized in the second part of the thesis in the context of SOA-
based Cyber-Physical systems. Here we will describe the algorithmic availabilities
of the tool and the artifact’s construction procedure. At the end we will outline
the pragmatic prerequisites for using the tool, its input language in particular.

From there it will stem the second part, which builds on the in-depth descrip-
tion of the techniques proposed in this thesis. We will indicate two derivations of
UML, namely SYsSML+SoAML, as a modeling tool amenable to industry and then
present two use case examples taken from the literature in chapter 5. Those same
use cases will be used in chapter 6, when we will finally present the core of our
contributions by describing our scheme, developing the analysis using applications
of XSAP in a novel way. We will summarize the gist of the thesis and outline our
programmed future work, eventually, in the last chapter of the thesis.

10

Part 1

State of the Art

11

Chapter 1

Fault Injection

This chapter offers a chronological journey in the realm of Fault Injection. We
present it as a few survey glances in the literature for approaching the subject and
appreciating how this methodology could evolve with time through application do-
mains.

As we will see, the original understanding of the subject founded on the depend-
ability assessment of hardware systems and electrical circuits, only later moving to
the injection of programming errors in software and up to model fault injection,
inspired by that line. The first and second trends are presented, respectively, by the
two survey papers that we revisit as a start. After that we consider a more recent
tendency to assess complex systems’ dependability that uses logical abstractions of
system’s details and model-checking techniques in combination with the injection
of faults. This will be the case that we will focus on in the second part of the thesis,
therefore we will spend some more words for them.

A clear distinction between the three cases hinted above is then outlined and an
example of a wrong conception is put forward. The recent development of Con-
tract Based Safety Analysis for component-based Embedded Systems is detailed
and new prospects indicated. For all the above instances relevant scientific works
are discussed and alternative side cases illustrated.

1.1 A first quick overview of FI techniques

Fault injection in its original flavour developed as the electrical engineering prac-
tice to corrupt signals at the hardware level in order to simulate the occurrence of
faults in the system and test its robustness against. This practice, widely known
as Hardware Fault Injection, has then been forwarded to the software layer to cor-
rupt registers’ or memory’s bit values via hardware instructions, obtaining a less
effective but more broadly applicable method that eludes the risk of compromising
the hardware physically. This later method is known in the literature as Software
Implemented Hardware Fault Tolerance (SIHFT), or sometimes with the simpler
and less evocative name of Software Fault Injection (see [88] for a tutorial). Fur-
ther developments in this direction use Simulation-Based Fault Injection (primarily
through VHDL models) and Emulation-Based Fault Injection (using FPGAS) to as-
sess system robustness, with the aim of being faithful to the hardware architecture

13

and timing model.

The topic is thoroughly surveyed in [96] where a rigorous presentation is followed,
highlighting pros and cons of a wide range of tools. In that work the authors also
identify the necessary requirements for a fault injection environment to be such.
In particular they find that all approaches in this area, no matter the modality,
feature:

1. a fault injector to perform the task
2. a library of admissible faults for the system to pull out and inject
3. a workload generator of admissible system inputs and

4. a a monitor, that collects runtime information and displays summary statis-
tics at the end.

Noticeably those four components have been a constant in all types and variants
of Fault Injection since, always showing up in one way or another as distinctive
features.

Lately, the technique of Fault Injection has been extended to more abstract frame-
works in order to test, in particular, software and hardware logically, by injecting
faults in their abstracted semantics. This trend is unexplicitly presented in [60],
where system dependability is examined as a compound of reliability (correct, con-
tinuous performance of the system, without failures), availability (continuous oper-
ation regardless of system failures), safety (correct detection of system faults and
ability to have appropriate countermeasures), integrity (non-corruption of data in
time) and maintainability (ease to fix the system in response to a failure). Security
is not considered here as part of the dependability picture and seldom has been in
the field.

A distinction is made in [60] between fault prevention, tolerance, forecasting and
removal. Stress is put in particular on tolerance - i.e. the ability to tolerate faults
during system execution - being it what most systems base their dependability as-
sessment on. In that work, and in most of the literature as well, faults are regarded
as physical defects or imperfections that lead, possibly, to failures (in the sense
of expected behaviour). The transit from faults to failures is normally conceived
as through deviations from the expected behaviour called errors. Failures, if not
contained, may in turn trigger other system faults and lead the system, cyclically,
to an unmanageable disaster.

Fault

Failure e

3%

14

However, despite the great popularity that the cyclic causality model has been
acknowledged of in the past, today’s Cyber-Physical Systems appear not to be fol-
lowing it anymore. What instead happens is that, given the strongly heterogeneous,
intertwined and multi-functional characteristics of these systems, wrong specifica-
tions/interpretations of both functional and non-functional system requirements by
the development parties, lead to nasty failures that are not due to behavioral is-
sues of components, rather else to intricate interactions between them [46][94]. The
cyclicity of the loop above is thus broken and a whole lot of unpredictability gets
into the picture, calling for a different modeling of faults and failures, that may be
triggered independently without the need of a causality event chain.

As a response to this necessity another approach has been proposed, that starts
palely from [22] and [23], where the tool FSAP/NUSMV-SA is presented. The idea
at its basis is to rise of one level of abstraction and inject faults in the model speci-
fication instead than inside the actual system implementation. As an enrichment of
the standard specification procedure, requirements are listed according to how the
system is expected to react to faults and then checked against the formal model.
Requirements in this sense may ask, using temporal modalities, whether after a
state is hit by a fault, the system always gets to safe states that respond to the
fault in some appropriate way. Moreover, the system also supports the automatic
generation of Fault Trees (which are causality trees) and offers Fault Traceability
capabilities to track how and in what order the system may be led to failure. This
is done through extensions of standard counterexample-based model-checking tech-
niques together with minimality requirements, using reachability procedures and
BDD-based minimization of boolean functions[42][21].

Noticeably this approach to fault injection is design-oriented. It is not its phi-
losophy to assess dependability of the finalized system as the previous approaches
used to, rather it finds a broader application at the early stages of system devel-
opment and right through to the end system, virtually providing support to all
system-design phases.

As a matter of truth, the system in [23] was not yet mature for confronting itself
with the big challenges of the aforementioned today’s design activities, but it has
certainly to be given credit for taking the first steps in that direction. The model is
still quite faithfully cyclic and causal as in the picture above, it uses fault trees to
carry out the analysis. However, although an overall view of the system as a whole
is not present, only the behavioral model is considered for the injection. Unlike
the earlier approaches to fault injection, [23] runs the causality model on the logic
of the component, not on its software implementation, not on its hardware. The
result of this is that it combines model checking to Fault Injection, in a novel way.

The work in [23] gave rise to a number of efforts in the research community to
provide model-based means for dependability analysis, majorly from the same re-
search group, but not only. It is worth mentioning in fact the research activity run
by Ezekiel et al. [49][50] on epistemic model extension. The general idea is based
on [23] but extended to work in multi-agent scenarios, modeling each entity with
knowledge and cooperation skills through time, using epistemic and temporal rea-
soning modalities in combination [70]. The system is modeled using the ISPL lan-

15

guage where the faulty behaviour is automatically injected using a model-intrusive
separate agent. Their research activity targets network protocols in particular, aim-
ing at the study of their knowledge robustness and recoverability under bit/packet
losses.

Ounly recently in [51] they presented a work on fault tolerance of an autonomous
vehicle subject to degraded underwater environment conditions. The different parts
of the embedded system are modeled as single epistemic agents and endowed with
temporal reasoning skills. The objective is ensuring a correct cooperative self-
diagnosis of the parts in case of fault, and an admissible response to such faults. In
this work, following in the footsteps of [23], they propose their method as an en-
gineering utility to prepare the system with the intended requirements and correct
model behaviour.

To do this they first translate a Matlab/SimuLink model of the vehicle to ISPL
language (by discrete abstraction of its continuous behaviour), inject faults auto-
matically from a library (a table of possible faults) and model-check the resulting
formal model against system requirements with the MCMAS model-checker. In case
of a negative answer to the model-checking problem, MCMAS returns a counter-
example that is then translated back to the Matlab/SimuLink framework with a
nominal inverse procedure, in order to assist system engineers to understand the
fallacies of the model in a simple and familiar form. This is seen as a refinement
step that goes on until the specification is positive to model-checking.

Although interesting and effective, this approach has limitations. To begin with,
the underlying temporal reasoning engine is based on CTL and, as such, it does not
have native means of reasoning about the dynamic behaviour of an hybrid system
such as the underwater vehicle they consider. The authors rely on a non better
specified notion of discrete abstraction for that, plus its reverse procedure, with no
mention to preservation or loss of language expressiveness in either. Moreover, a
satisfactory comparison between using their dependability assessment techniques
in embedded systems domains with and without the epistemic modalities is not
present, whence one can wonder whether the same results could be achieved exclu-
sively with temporal operators (and at what ease).

We will see this logic-based fault injection further developed later on in the chapter.
For now let us just recap and give structure to what we have seen so far, introducing
- by distinguishing - three types of Fault Injection.

1.2 The three types of Fault Injection

At this point we show the relation of Fault Injection techniques to system depend-
ability, separating practices by their level of abstraction. As mentioned above, we
will allow ourselves to distinguish three types of Fault Injection techniques, all car-
rying the same name but none being functionally related to the other application-
wise.

16

Injection of the first type

Following the lines drawn at the beginning of section 1.1, the first type of injection
concerns hardware faults and consists of testing dependability of hardware in system
components. The purpose of this type of fault injection is that of seeing hardware
responses to physical uncontrollable events such as thermal aging, electromagnetic
radiation, etc. This type of injection is performed by either hardware manufacturers
or software companies wanting this kind of third party faults to not compromise
their code, limited to the hardware manipulations they need to rely on. Importantly
it is an injection activity that is undertaken just before deployment.

The results of the analysis highly depend on the hardware and architecture of the
system.

Injection of the second type

A different story goes for the injection of faults aimed at software bug tolerance.
This type of Fault Injection, rather called bug injection, aims at seeing how soft-
ware responses to software bugs and how catastrophic their effect can be at worst,
highlighting fragile parts of software code and have a more or less general feeling
about software robustness. As an activity, it is taken just before deployment and
the results depend exclusively on software logic. Traditionally this type of fault in-
jection has been applied to complex end-user software, although lately also focused
on interface interactions between software components [75][3].

Recent work in the area [64] has highlighted common deficiencies of fault injec-
tion approaches as interface interactions are exploited for the injection of faults.
In particular the authors show that obtaining representativeness at the interface
level is not straight-forward and needs to undergo a handful of care measures. For
example they show that buggy code of a library is most likely to corrupt several bits
at once rather than only one as it is usually assumed in the literature. In addition
they show that control-flow errors (i.e. errors due to unexpected executions of code
in terms of instructions) are most often statistically correlated with data-errors in
main memory. The gist of their work, as long as it concerns our interests, suggests
that it may not be trivial to inject faults at the software interface level if a lot of
care fails to be put in the process. Moreover, if we were to augment their results
to be more faithful in how errors’ side effects propagate in a general computing
architecture, we could introduce registers, caches and parallelism in the picture,
and if we further were to vary the code compiler and the machine where the code
is run it is not hard to imagine how far spread the propagation of errors would go.

For software certification of safety-critical systems, where the architectural prop-
erties and code evolution model are not supposed to change much at deployment
time, the authors implement the tool SAFE [41], that uses the considerations in [64]
and similar to inject only representative faults in the interface code of the system
components. This is done automatically after an appropriate selection of fault types
from a given fault library by system engineers. At the end of the procedure, SAFE
provides summary statistics of the system robustness, obtained by non-intrusive
monitoring of the code runs, in terms of user-defined predicates over the system
traces.

17

Injection of the third type

The third type of fault injection is model extension, where the whole system is
considered in its design-modeling abstration and augmented with faulty behaviours
there. The works published in [23] and [49] belong to this category. The fault injec-
tion and dependability assessment of the system is performed parallel to engineering
and grounded to support the notion of refinement at every step of development.
Importantly, the results of the analysis have connections to hardware, software and
implementation details to the only extent to which the abstraction is concerned
and no more. In the common case this boils down to assuming, effectively, only
behavioral connections between the model and the actual system implementation.

The peril of mixing types

By the very reason that all three types of injection go under the same name in the
scientific production, trickiness may arise. A possible source of confusion involves
Software Fault Injection, because not always it gets explicit whether STHFT or bug
injection or other forms of injection that make use of software grounds, are intended
to be.

An example of that kind of misconception is present in [66], where the authors
aspire to assess SHIFT effectiveness in a symbolic way, moved by the claimed lack
of coverage of standard SHIFT techniques. This idea is flawed.

The whole point of assessing system dependability using STHFT, as we saw in sec-
tion 1.1, is to avoid to change bits and memory values directly by hardware, in
order to protect its physical integrity. Still, in STHFT, it is hardware where the
stress is to be placed and the program semantics needs to be kept very separate.
As opposed to that, in [66] the authors rely, mistakenly, on a logical representation
of the computation model, not on its actual implementation on the machine as it
is claimed there.

Fault Injection for Model-Based Design

From the main three classes of fault injection reported in this section, others branch.
In a recent paper [87] the problem of perturbing model-based simulation runs in
Matlab/SimuLink is tackled; we may call this approach Perturbation-Based Fault
Injection. The purpose is to check, although in a non-complete way, that always
small perturbations at the input interface level of system components lead to small
perturbations to the output. To do this the authors superpose (i.e. inject) the
interface signals with artificial spikes, shifts and white noise in a systematic way,
up to a fixed tolerance threshold, to see how the system behaves in response. They
develop a computationally feasible algorithm for that injection and propose geo-
metrical optimizations based on convex representations of the faulty signals.

They propose their work to be used at the early phases of system design, to identify
lacks of robustness of system models since the early beginning of its construction, di-
rectly in the well-established environment of Matlab/SimuLink. The idea, although
certainly novel, does not exploit the typical modularity aspect of Matlab/SimuLink
models, yielding to a huge number of states to be checked, by simulation, for even

18

a small set of interface signals. For the same reasons this approach cannot afford
re-usability, which is of clear key importance in standard model-based design prac-
tice.

Notice that in this work, the injection obtains on the model-based system simula-
tion and, as such, it eludes the categorization in either of the three types of Fault
Injection outlined earlier in the section. Likewise the literature presents works that
exploit fault injection in some other unexpected ways. We focus on the outlined
three types only, because those only are needed to understand for our concern to
understand the birth and evolution of model extension.

1.3 Contract Based Design & Fault Injection: CBSA

An interesting prominent example of fault injective model extension, as a derived
evolution of [23], is covered in [20], where contract-based design (CBD) is exploited
as a development basis of the system and the fault injection is put forward at each
phase of refinement. This approach, referred to as Contract Based Safety Analysis
(CBSA), stems from the need of:

(1) supporting a top-down and automatic fault-tree construction starting from
the definition of a Top Level Event (TLE) and

(2) understanding its logical causes in terms of contracts’ basic interactions.

The approach consists of taking a correct hierarchical contract-based tree-like

architecture (the model) of a system and augmenting the top-level contract spec-
ification with two boolean ports f; and f5 that are to represent, respectively, the
failure of the assumption and the breaking of the guarantee (the extension). Given
the top-level contract! C' = (4, Q) they define the new, extended top-level contract
CX = (A%, G¥) setting AX = (=f; — A) and GX = (=fz = Q).
The informal semantics of f; and f; is of disengaging the expected component as-
sumptions or guarantees to observe their side-effects in the model. Interface ports
of the sub-contracts are automatically inferred, later, from the refinement specifi-
cations in a provably sound refinement-preserving way. After that is all set up, the
fault tree can be built as a refinement process, starting from the top-level event
down to the leaf-refinements.

The strength of the approach lays on the contract-based policy, that allows the
embedding of the fault injective model extension at every stage of the development
process, pairing up the fault-tree construction, step by step, with contract refine-
ment. This possibly gives insights about problems and weaknesses of the system
during design. Moreover, due to its hierarchical, modular architecture, scalability
and re-usability is easier to achieve than using traditional methods.

In the paper the comparison with the techniques in [23] is also discussed. Tra-
ditional techniques tend to construct single fault trees for each component imple-

n [20], contracts are pairs composed of of sets of traces, represented symbolically
as LTL formulae. We will offer a thorough presentation of contracts and their use in
engineering in chapter 3.

19

mentation (which is typically trivial) and present the final tree as a disjunction
of those. As a result, a flat two-level tree is obtained with no much information
about structural dependencies of faults and poor scalability in general. With the
contract-based framework this all disappears and the fault tree gets to be con-
structed incrementally assisting the system construction.

Despite its prospective usability, the proposed approach in [20] is although still
not ready for a complete utilization. First of all it has to be said that the contract-
based engine lying below the model extension is built on OCRA [39], which supports
the temporal logic of HRETL [38] natively, sugared by the OTHELLO syntax [39].
It would not be surprise to see an extension of [20] towards the support of that
language expressiveness in the near future. Moreover, as suggested by the very au-
thors at the conclusion of the paper, the faults can be themselves specialized from
mere boolean ports to full temporal formulae - although this passage does not not
look trivial from the automatic injection point of view - in order to spot what truly
is critical for the system. Strengthening the language expressiveness as mentioned
not far earlier would also be of help for that same aim.

1.4 Summary of the chapter

We described in the present chapter common conceptions and trends of Fault In-
jection technologies. From fault tolerance of hardware (Hardware Fault Injection),
its evolution is depicted towards the dependability assessment of whole complex
software systems (Software Fault Injection, or Bug Fault Injection), either seen as
OS-based colossi or interactive embedded parts. Different types of injections are
described for different needs and objectives, intentionally driving our discussion
converge towards Model Fault Injection (or Model Extension) and the contract-
based fault injective CBSA, as an interesting in-progress proposal.

Importantly, we saw that tracking how faults get to propagate in software sys-
tem implementations is hardly attainable in general and a model-based approach
offers a good alternative to that by looking, from a logical perspective, at what
can go wrong at the component interface level, where components are specified by
assumption-guarantee gadgets (contracts) whose actual cause of failure is no more
relevant than the fact itself that either of contract elements gets broken.

20

Chapter 2

SOA modeling and error
management

Service-Oriented Architectures (SOAs) are getting growing attention by the sys-
tem engineering community because of their ability to provide customizable ways
to make systems interact and build well-defined complex systems. Lately also
Cyber-Physical Systems are adopting this paradigm and formal methods are thus
needed as a means for ensuring their correct working according to design expec-
tations. Formalisms have been proposed to tackle the problem of formally secure
their behavior but no work is present at the best of our knowledge on the rigorous
analysis of their faulty behavior in terms of Fault Tree Analysis (FTA), Failure
Mode and Effects Analysis (FMEA), etc.

Here a brief overview on the analysis techniques of such systems is proposed, with
particular attention to their safety aspects and differences from the traditional
paradigm of regarding such systems. We present a network-based fault injection
technique that has been applied to the field first, then we overview published tech-
niques to model Cyber-Physical, possibly SOA based, Systems. We present them
according to the purpose of their conception, stressing the innovative aspects when-
ever possible.

Importantly, here we are not targeting the survey of modeling techniques of Service-
Oriented Architectures from their design point of view: this subject will be later
minded within the matters of chapter 5. Instead we will talk about existing ab-
stractions and different options to highlight dependability challenges and put the
problem that we are about to address into context.

There have been countless attempts to model SOA systems in the literature, at
every level of abstraction and every domain where those techniques could find ap-
plication. All of these works try to grasp fundamental architectural aspects targeted
at the specific domain where the authors intended to put their own interest. This
chapter elucidates on this topic with respect to our needs, presenting relevant works
related to ours. Considerations are given in the final part of the chapter, were we
outline a list of common desirable properties that languages for the modeling of

21

SOA, we expect, should have.

2.1 Injecting Faults, classically

When new implementation paradigms are encountered in software engineering and
in industry especially, it is common and recurrent practice to submit the relative
products to the V&V unit, that has to figure out ways to assess their correct work-
ing, pursuant to design expectancy. This is done through testing on the one side,
and formal methods on the other. In a similar fashion the story replicates when
the V&V unit confronts system dependability. This is treated, primarily, through
hardware and software fault injection and through model extension only at a later
stage, once automatic tools are available. The latter option is still not as popular
at the industry level, whereas hardware and software fault injection is seen as part
of ordinary testing activities.

The material on model extension is thus limited, in the field of SOAs, where even
the paradigm itself is not solidly established over the cyber-physical domain. This
section only considers classical injection of faults, without further digression on
model extension.

There is a consistent number of works on the injection of faults in SOA-based
Cyber-Physical Systems, among which we decided to mention only [73][71]}. From
there we also took inspiration for one of our use cases of chapter 5, the Thermostat
example, that we slightly modified and enriched. Despite not being classical fault
injection the focus of our study, it is at least fair to mention the explorations faced
by the cited work and differences with respect to ours.

The approach adopted there is based on injecting faults at the network level —
when messages are already in place to be encoded and sent through — by per-
turbing the Remote Procedure Call (RPC) parameters within the communication
protocol at the middleware layer. This differs from other approaches in which faults
are injected at the code level, which act on the construction of messages within the
service software procedure. A tool, WS-FIT for Web Services — Fault Injection
Technology, is presented. With the intent of focusing on the exchanged messages
instead than on the modification of code they show how comparable performances
can be obtained to code-based approaches.

Their fault model is thus focused on communication between services in a net-
work. Their dependability is bound to be resilient to crash of services (either client
or server side), hang of services, corruption of data in middleware, duplication,
omission or delay of messages [72]. Protocol messages are parsed, injected by user-
defined scripts and re-emitted to the network in protocol format. As shown in the
paper, this procedure is overall effective.

As a foundational point for their work, the authors provide a list of SOA related

1We refer to chapter 1 to recall the possible alternatives to this approach, that can be
adapted to the context of SOA by considering them as large software systems.

22

QoS requirements (i.e. desirable non-functional properties), that we report in the
following and discuss:

— Auwailability: are services always reachable?
— Accessibility: does the system reply to accepted requests or does it hang?

— Performance: does the system perform well time-wise, in terms of internal
latency of servicing a request and throughput (mean fraction of time to serve
a request)?

— Reliability: to what extent can the system cope with internal/external faults?
— Security: can services be trusted?

— Integrity: is the state of the system always consistent with its expected be-
haviour?

— Regulatory: is the system compliant to specifications and protocol standards?

Noticeably they do not include jitter, but that is probably already part of the
throughput in this view. Now we will move right to the analysis of each item, to
understand which ones we will be able to handle, which ones to abstract and which
ones to discharge. This will be, we claim, an adequate analysis on QoS for SOA.

Among those outlined ones, the authors of the work select only the first four to
conduct their evaluation, most likely because it is problematical to define suitable
measures compatible with all seven. In the model-based view of the system pre-
sented in the second part of the thesis, we will consider only reliability and perfor-
mance. This is due to the level of abstraction with which properties will be defined.

Regulatory has to be statically checked when the service is provided, non com-
pliance being synonym of absence. Security is normally delivered using apposite
security protocols whereas integrity is often ensured using checksums or similar
methods at the middleware layer, so that they lay beyond our modeling concerns.
Finally both accessibility and availability can be subsumed by a single bit indicating
presence/absence of the required service, thus abstracting away the actual details
from the models. Reliability is clearly at the core of our study and we will have all
the structural means for its handling. Performance will need a good host of care,
but it will nonetheless find its place in our contract-based system design picture.

For this latter issue notice the difference between classical fault injection and the
model-based approach: where the former can exercise the actual system by simply
adding no-operation cycles between receiving one message and sending its response
(as it is proposed in the article for the internal latencies) we will more clumsily need
to model time explicitly. This is the price to pay for abstraction; nevertheless its
treatment will find the greatest elegance — as already mentioned — by leveraging
on contracts.

By injecting faults at the network level instead than on the software implemen-
tation of the protocol, the presented paper emphasizes the need of rethinking the
way of how fault injection should be conceived, upgrade to a more abstract tier,
with less complications.

23

Yet the fault injection of [72] is not logic-based (in the sense that we defined in
chapter 1): it is still on the side of the V&V process where the system is tested,
in phase of implementation. In the next sections we will make a move towards
the other side of the V&V process, focusing on a more principled logical treatment
of Service-Oriented Architectures and general Cyber-Physical Systems (i.e. not
necessarily SOA-based CPSs) suitable for their early understanding in design and,
ultimately, for their verification.

2.2 Modeling of SOA and relative faults

In this section we report modeling criteria that have been devised in the past for
the modeling of SOAs and their faults, with the explicit intention to get rid of
implementation details and make their logical properties explicit, instead. There
is no aim, except for the last work of section 2.2.2, towards the verification of
requirement over SOA systems for the works presented in this section: the only
purpose is on understanding what can be ameliorated in the design by considering
a purer view of the architectural meta-model and identify issues that may arise in
the topological architecture.

2.2.1 First attempts to formalize services

In [40] the authors provide a simple formal fault model for web-based SOA by
abstracting all the implementation details away, confined to no architecture or net-
work topology.

From the perspective of users of web services, they define a fault with general-
ity as a triplet (al, tp, ssp), which represents:

1. The architectural level where the fault occurs, which is a phase among Ser-
vice Discovery Infrastructure, Server-side End Point, Client-side End Point
and Service Provision Infrastructure.

2. The time phase when the fault occurs, which enumerates in Infrastructure
Discovery, Client or Service Registration, System Configuration and others.

3. The specific service parameters, which can be any, tracking the fault-
y/healthy condition of the system in a higher or lower abstraction level (e.g.
this can be a binary variable Faulty /NotFaulty or a more complicated status
comprised of a tuple of multiple variables with timestamps)

For example, a session failure might be represented user-side as the tuple
(Service Provision, Service Delivery, Faulty)

With this conceptually simple fault model available for one single fault of one single
user, one can define more elaborate faulty configurations for each user as a tuple of
these, then a tuple of faulty configurations as an overall fault model for all users.
If the fault model is judged too poor, we can refer to the taxonomy of [27] for a
larger, more comprehensive classification of faults, that can be modeled by similar
means.

24

Therefore, the proposed model is general enough to leave different levels of ex-
pressiveness to the modeler, possibly allowing both functional and non-functional
requirements to be expressed. Nevertheless it is easily understood that the model
is too trivial and does not provide efficient means to deal with the state-explosion,
which is granted under the given conditions. A more suitable approach — both
in terms of modularity, scalability and inclination to undergo verification — would
be given by a contract-based design of the system, injecting faults as controlled
failures of contract assumptions and guarantees. This hints at a possible revisiting
of the CBSA methodology presented in section 1.3 in terms of services and service
faults. This is left uninvestigated in this thesis and deferred to future work (see
section 6.3.3).

Closer to the concept of contract, the work in [93] aims at formalizing the overall
concept of SOA through service behaviours. A service implementation is seen as a
pair (P, N), where P is a set of processes (or rather functions), identified by their
programmatic interface and N is a relational group of edges that link the processes
in P w.r.t. functionality and interdependability. A Service-Oriented Environment
is then defined as a time-variable list of such service implementation pairs.

The formal apparatus of the paper is quite poor, however it puts forward catchy
hints that strengthen a purely functional view of the SOA set-up; one that neglects
the need for implementation details in the modeling and keeps the network struc-
ture away from single service’s functionality. In this regards, they further stress
how important it is for such models of SOA to capture the context-invariability at
its very basis: services must behave independently from the application they are
employed in. As we will see in chapter 3, this view fits well in the paradigm of
contract-based design.

2.2.2 A complete formalization of services

Contemporary to the developments of [40] and [93], another line of investigation
started out in [63][62], to model Service-Oriented Systems, ending up in the com-
plete formalization of [26]. In this work services — Rich Services according to the
authors’ terminology — are viewed as functional relations between input and out-
put streams, where streams are intended as sequences of messages. Streams are the
authors’ way to represent behaviour of services at the interface level, over time.

Streams have clearly a natural correspondence to temporal traces, often encoun-
tered in the formal verification vocabulary. In this sense input/output streams can
be redefined as contracts (see chapter 3). Moreover, they define a notion of com-
position and behavioral refinement that is similar to that of parallel composition
and refinement for contracts, in fact reconcilable to that. Importantly, services
are defined as partial functions and explicitly they are intended to work under a
restricted subset of all possible conditions. Components on the other hand are sup-
posed to attach a behaviour for all possible inputs. We will come back to this point
in chapter 3.

In a follow-up unpublished paper, [61], services are reconsidered from the same
set-up, this time aiming at their architectural interactions in SOAs, with attention

25

to dynamic binding, functional variability and system hierarchy. Rich Services are
composed of several sub-services at the application layer. In turn, sub-services can
themselves be Rich Services and connect with each other using an internal bus,
that is also in charge of communicating with the outside through an input/output
interface. The bus is seen in this work as a message orchestrator. Optionally, the
bus has available a number of utilities at the infrastructural layer, such as encryp-
tion/decryption of message, logging, service policies and others. These are bound
to the regulation of the functional behaviour of the contract towards the outside
world?.

From the logical perspective, Rich Services are modeled by three modules, that
separate roles. The first is the functional module. The functional module, given by
the behavioural composition of the sub-services’ logical descriptions, never directly
communicates with the outside. Before, it has to go under the supervision of the
interface module — given by the behavioural composition of the bus’ and infras-
tructural utilities’ logical descriptions — which regulates the inputs and outputs of
the Rich Service in order to manage compliance with the functional module. Finally
there is an interface factory module that, based on the current output function of
the Rich Service and environmental information, provides new interface modules
for the Rich Service to expose. The construction of this latter module is arbitrary
and depends to how the service functionalities change over time.

The value of the works presented here lays on the separation of the topological
structure of the SOA from the functional aspect of the single sub-components. In
other words, the proposed apparatus shows how functional entities transform to
services and play roles according to how the architecture itself is laid out. In this
picture, the functional module is an abstraction of the service discovery and exe-
cution, whereas the interface module represents the binding of the service to the
architecture. Notice that the binding does not happen with another service as in the
common understanding of SOA, but with the whole rest of the architecture. This is
also consistent with our previously professed context-independence, that demanded
services to be free from constraints imposed by the outside world — such as the
embedding structure. Finally the interface factory module represents modifications
in topology, indicating to the interface module, for each time instants, what the
functionality module should expose to the environment and what inputs it should
expect to be given by it.

2.2.3 A model extension of the service formalism

The service formalism of [26] drove the authors in another direction, presented in
[47]. This article, where failure management is discussed in the SOA domain, is
probably the closest to our research among those from the same authors, presented
in this section. In addition to the previously described features, this work enriches
the picture with service failures, either in the form of self collapse or due to com-
munication issues — such as unavailability — between many. Faults are injected
according to user specifications in textual language format and a verification proce-
dure is set forth. Since we will operate under similar circumstances, it is valuable to

2This architecture has been originally proposed in [6].

26

make a digression on the intended methodology and anticipate the different aspects
with respect to the handling of the matter subject of the second part of the thesis.

The paper models architectures and configurations. Architectures are composed of
roles, channels and messages that define how the services interact, as partial func-
tions defined by Message Sequence Charts (MSC), on the network. Configurations,
on the other hand, contain components, connections and signals, that implement in
a 1:1 correspondence roles, channels and messages of the architecture. This spec-
ification is given in SADL (Service Architecture Definition Language), a language
developed in this very work for the textual specification of services. SADL assimi-
lates faults directly in the model definition, with the possibility of attaching to each
component a can_fail flag. Moreover it has special constructs for failure detection
and mitigation that specify under which conditions the detector acknowledges the
fault and how is the reaction.

For once, the modeling of the faults is not an end in itself but is followed by a
verification support to the methodology. Following the translation procedure out-
lined in [48], the Message Sequence Charts specifying the interactions between roles
are translated into state machines and then in Promela language, so to enable the
verification of temporal properties by means of the SPIN model checker. The state
machines representing the nominal behaviour are linked to the fault detection and
mitigation machines by non-deterministic transitions, triggered by a dedicate failure
injector process that sends failure messages, non-deterministically, on the channels.
Those messages will affect only those machines that can_fail. At this point the
verification process can take place, checking for example, whether under the action
of a given number of faults, desirable behaviours of the nominal system eventually
happen regardless of the presence of those faults.

The approach that we will present is based on model extension and will keep net-
work topology and single components separated. However, unlike [47], we will allow
for a concept of incremental refinement, based on design contracts, that will let us
specify the level of complexity of each component at arbitrary depth. The proposal
in [47], on the contrary, is solely based on the interactions between roles, imple-
mented as MSCs. The internal dynamics of the single components is thus totally
denied.

We will not only study the behaviour of the system under failure hypothesis of
some of the services; instead we will move for the option of describing the con-
figuration under which a service may be brought to failure, using automatically
generated fault trees. And the separation between network and the single compo-
nents will not be only founded on ease in design specification, but exploited in the
contract definition, even for the specification of temporal constraints. Moreover,
having NuSMV as a back-end, we have all the positive prospects to end up in a
complete tool for the system stepwise design and verification, that may eventually
find application even in industry, beyond pure academic domains.

27

2.3 Property Verification of Cyber-Physical Sys-
tems

In this section we consider the modeling techniques that exist in the literature to
model SOAs and generic Cyber-Physical Systems, fostered by property verification
concerns. There are three mainstream approaches available in the literature for this
kind of support: process algebras, petri nets and automata-based. An instructive
survey of these methods is presented in [10], where particular attention is put on
securing services at the stage of composition, when a server needs to combine, or
rather orchestrate, two or more interactions patterns of the slave services to deliver
the required answer to some user’s query.

Such compositional demands are not at the focus of our research, even though
we will present a novel technique, in section 6.3, that is able to handle the close
concept of dynamic system reconfiguration. However, in view of the fact that SOAs
have a broad literature dedicated to web-service interaction patterns, we owe some
words to how those are modeled. This is not worthless to our ends, since other
approaches adapt the same existing formalisms to the CPSs’ scene. Here we limit
ourselves to a representative subset of those, a few noteworthy instances of each of
the three methods, stressing on the elements relevant to our work.

2.3.1 The Time-Space w-calculus

Process algebras are mathematically-founded symbol manipulation systems that
describe processes and their intertwining in concurrent computing ambients. They
abstract the computations using simple interaction primitives whose only aware-
ness is on the exchange of symbolic information between independent sequentially
executing processes, that is usually conceived as happening on channels.

Among process algebras, the most popular is most surely the w-calculus which,
together with its several variants, has been widely used in service applications for
its ability to create channels anew and transmit them to other processes. This
becomes important when interactions such as service discovery, that sees the user
asking the service broker a new channel to bind to, require modeling. Moreover,
process algebras come with a transitive relation, representative of system execution,
whose closure encompasses all the admitted computational behaviours of the de-
scribed process. The only big nuisance is that membership to the transitive closure
is not decidable for most interesting process algebras, so that property-verification
is usually faced with either unsound or incomplete action modalities.

Related to our work, [90] describes Cyber-Physical Systems using the Time-Space
mw-calculus, which extends the expressive power of m-calculus with time, energy
and space operators. For example, when guarded by the time-interval operator
Int(t, At), a process is permitted to start only within the specified time window
[t, At]. Time engages in discrete steps in this work. The architecture of the system
is formalized as a group of interacting sub-systems (i.e. the architectural services),
regarded as processes in the language. After that, their effective parallel execution
is formally checked against deadlocks and live-locks, or otherwise against the reach-

28

ability of a given configuration.

There is no mention in this work about the possibility of injecting faults in the
model. Injection could be attained by composing the system with suitable injec-
tion processes, using the choice semantics to compromise processes upon messages
acceptance, by disabling non-deterministically service operation (e.g. transforming
processes in the form a(x).P.0 into a(z).(P.0 + 0). Yet this procedure would be
shallow, because nothing could be said about the internal system dynamics of the
service implementing components.

In general the risk in using process algebras to realize system dependability is
misuse. Process algebras are used to prove things about highly abstracted systems.
They are preferred to other approaches when the core interest is in communica-
tions and concurrency, whereas we are on a ground where single services and their
failures cry for the spotlight. Moreover, having to deal with the Turing-complete
expressiveness of 7, we cannot hope to solve all semantic requirements by means of
automatic inference. This said, possible developments of 7-calculus in this direction
are not to be excluded, at least for academic interest.

2.3.2 Labeled Hybrid Petri Nets

Petri nets are graphical representation of reaction processes, originally of chem-
ical type, that flow units of interest, so called tokens, through transition blocks
and between places. Formally they are bipartite directed graphs that evolve non-
deterministically by circulating tokens from one place to the other when the sep-
arating transition block is triggered; only one transition of many can fire at each
step of evolution and, when it does, this happens instantaneously. Arcs connecting
the parts of the bipartite graph have weights, that indicate the enabling number of
tokens and their consumption for the transition upon triggering.

Next to being employed for the description of biological systems, Petri nets were
reconsidered for the modeling of computer concurrency systems, where transitions
were rethought as algorithmic transitions between control points (program states)
and tokens as representative for the number of processes reaching a common pro-
gram state.

For a contextualized example, if the interest was on modeling a fault-resilient voting-
based sensor device composed of three voting sub-sensors in a Cyber-Physical Sys-
tem, then one could construct a Petri net having three places, whose coordination
possibly reaches the rest of the system only if all of the three sub-sensors make
their vote available, as per figure 2.1. Notice that the total number of tokens varies
according to arc weights; this view is consistent with the initial modeling pertain-
ing chemical reactions. In the case of the fault-resilient sensor, once the transition
reaches the outer CPS there is no longer the need of keeping three separate mea-
sures.

As figure 2.1 reveals, the plain Petri network as-is is too poor for describing the

complexity of Cyber-Physical Systems. Variants have thereby been proposed in the
literature to extend some of Petri net functionality, seeing the birth of Timed Petri

29

Voting-based sensor device ‘Voting-based sensor device

Cyber-Physical System

Petri net for the rest of the Petri net for the rest of the

Cyber-Physical System

Voting-based sensor device

3 /_\ 3 I ! Petri net for the rest of the
S/ |

Cyber-Physical System

Figure 2.1: Petri net evolution for a fault-resilient voting-based sensor de-
vice. Circles represent places, black marbles tokens, black rectangles transi-
tion blocks.

Nets (TPN — having time-triggered transitions), Stochastic Petri Nets (SPN —
where transitions are regulated by probability distributions) and Hybrid Petri Nets
(HPN — whose tokens are fractional and move according to the laws attached to
the transition arcs). For all the interesting purposes of our work, all variants of
Petri nets can be somehow reestablished using state machine semantics3.

In [86] the Labeled Hybrid Petri Net (LHPN) formalism is proposed, at the edge
between classical Petri Nets and Hybrid Automata, to represent and verify Cyber-
Physical Systems. Driven by the need of localizing the continuous part of the system
dynamics, still maintaining the graphical expressiveness of Petri nets, the formal
specification combines the two formalisms obtaining, as a result, Petri nets that
evolve continuously within places (limited to first-order differential equations with
constant coefficients — i.e. exponential decays/uprisings) and go through transi-
tions according to guards and reassignment of variables. Failure transitions can be
specified as part of the model as transitions leading to dead-ends. Verification will
take care of checking whether the reachability of the system contains such undesired
failure transitions.

3Interestingly, even the formal techniques for the verification of Petri nets are often
inspired or connected to automata techniques, including region and state-space partition
and abstraction.

30

Verification of general LHPN is non-decidable, therefore sound and complete se-
mantic checks are not applicable in this framework®. In the presented approach,
the state explosion problem is mitigated by semantics preserving graph transfor-
mations and forgetful abstraction, partly based on convex inclusion.

Petri nets are deemed more intuitive than automata at modeling, because they
make the transitions between one place and the other explicit on arcs. This is part
of the motivation for the work in [86]. However the non-expert user might find
them anyway hard to master, because they are not standard.

In chapter 5 we will indicate derivatives of the Unified Modeling Language (UML)
for the representation of complex interactions under the SOA paradigm. Speaking
of this, the approach based on Petri nets might not be the most appropriate, because
services have an intrinsic notion of communication, that lacks in Petri nets. Also,
their structure does not efficiently support hierarchical design, that is paramount
for scaling. Our methodology, founded on contracts, will be shown to support that
and more.

Finally, while presenting a study case with a fault-tolerant sensor (similar to that
of figure 2.1 in fact), the paper provides no mention to the dependability analysis
of the systems in terms of standard techniques such as FTA or FMEA. Our interest
will converge there because of our motivation lays on industrial needs.

2.3.3 Networked Event-Data Automata

Automata, born as representational devices for the analysis of formal languages,
have become among the most popular formal ways of modeling independently evolv-
ing system components and their event-based interactions. Noteworthy examples
are Input/Output Automata and Timed/Hybrid Automata.

Automata are mathematical structures characterized by a set of states with in-
ternal actions, a transition relation, an alphabet of visible actions occurring on
transitions and possible markers for the input and final state/states. Variants exist
of different sorts. For example timed automata supplement the structure with time,
modeled as clocks, whereas hybrid automata generalize system evolution account-
ing for both discrete and continuous dynamics, with transition guards enabling
transitions and state invariants forcing state departure in case of unsatisfaction.
We assume familiarity to this concepts by the reader.

Here we decided to put our attention on one specific work, that applies model
extension on networks of special hybrid automata called Event-Data Automata
(EDA) [19]. Each EDA component is an independently evolving hybrid machine
composed of modes (as opposed to the most common reference to locations) and
transitions, each with triggering events, guards and effects on internal and output
variables. State invariants, on modes, are boolean arithmetical expressions defined
on the linear fragment. Flow equations, internal to modes, are limited to linear

4Reachability of LHPN is based on partitioning techniques of the infinite state-space
into convex regions, represented as Difference Bound Matrices (DBM) [69]

31

differential equations with constant coefficients.

EDAs can ensemble into NEDAs, Networks of Event-Data Automata. Formally,
a NEDA is structured by a set of EDAs, with an activation mapping « that takes
each mode configuration to a subset of active EDAs under that mode (in other
words « decides which EDAs evolve in function of a mode configuration). Se-
mantically, all component EDAs evolve independently but synchronize with time.
Internal transitions (i.e. event triggered change of modes) take no time.

In the example provided by the authors, an hybrid system switches between two
batteries upon one coming to low energy. The active battery is either one, de-
pending on the system mode being set to primary or backup. However, when one
battery goes from active to inactive, it leaves the frontline and disappears: it does
not interact with the other EDAs nor it evolves by its own. Upon recovery it is
optional to restore the component state as it was before deactivation, otherwise it
is restarted, memoryless of the prior activation.

Fault injection is accomplished on the nominal system description as model exten-
sion. A separate error model is provided for that aim, written in SLIM language,
as an adversary automaton that interacts with the nominal model through an ex-
ternal interface. The external interface of the fault model is accessed through an
injection of new events in the nominal behaviour, by adding the chance to trigger
according to an exponential probability distribution. The nominal model and the
fault extension run concurrently to encompass all their combined behaviours.

The entire framework is supported by the language SLIM (System-Level Integrated
Modelling), an extension of (a subset of) AADLJ1], supporting hybrid dynamics and
faulty system behaviours. SLIM is eventually translated into SMV language and
NuSMV used as a model-checking back-end. The Markov-Reward Model Checker
(MRMC) is used for the verification of probabilities related to stochastic faults.
Automatic dependability analysis techniques are supported, such as the already
mentioned FTA and FMEA, with the supplement of probabilistic information, that
are visualized by dedicated graphical viewers.

Extended AADL has been intentionally designed for supporting the analysis of
complex distributed Cyber-Physical Systems with faults and the SLIM language
is nothing but the resolution of isolating its relevant features in the direction of
verification purposes constrained to fault injection. Understanding why it is worth
of our mention thus shouldn’t become too puzzling.

Yet, our approach diverges from [19], firstly at a conceptual level. For the reasons
that we have been writing about for all the section through, our CPS conception is
based on services and relative compositional architectures. Our focus is on descrip-
tion of modularity aspects grounded on contract-based design; hybrid modeling
comes as a secondary concern. However we share one important characteristic with
[19], that is the construction of fault trees: the tool used in the second part of the
thesis, XSAP, is creation by some of the authors of the paper and thus uses closely
related analysis techniques.

32

Works like this raise our confidence in the adoption of NuSMV derivatives/ex-
tensions for the analysis of Cyber-Physical Systems and put ourselves in believing
that we will be able to benefit from future versions of the tool integrating features
of shared interest.

2.4 Final considerations

Several techniques have been proposed in the past to assess the dependability of
classical systems, but the research area about the dependability of complex Cyber-
Physical System is still at its infancy and little work about the logical treatment of
SOAs combined with Dependability Analysis can be found in the literature, to the
best of our research activity.

Remarkably, from the literature we were able to identify some interesting common
features that are at the very essence of SOAs or complex Cyber-Physical System
in general. Although not being strictly necessary for their logical treatment, they
are at least desirable®

e Cyber-Physical SOAs are heterogeneous in nature, and this heterogeneity
should be supported by the modeling and verification language either by
means of logical abstraction or specific composition of different modeling/ver-
ification paradigms (see below).

e The philosophy underlying SOA is that services are functional, context-
independent, not unique (i.e. many sources can give the same service-functionality)
and ought to interact at the interface level. For this a clear definition of com-
posability has to be addressed by the modeling language and the verification
tool, interface-wise.

e In many cases, services are black boxes to the verification engine and they
define a network topology that changes through time. Therefore faults —
including the possible disappearance (dually appearance) of services from
the network — are unpredictable, besides on a trust basis. Capturing the
system evolution dynamics and its relations to occurring faults becomes thus
essential for the design of a dependable SOA.

e Cyber-Physical Systems in real life are normally complex and characterized
by many components. More and more the future will prefer hierarchy and
modularity over flat solutions, because existing problems, such as heterogene-
ity, are gradually getting defeated. Modularity and hierarchy are the main
forces to employ in order to get the road paved for system scalability; it is
thus desirable for modeling and verification languages to reflect them in their
constructs and get algorithms tuned accordingly.

5The list that we present here is not a bare synthesis of the properties outlined in
the previous sections, but an additional supplement and integration, the condensation of
features coming from an extensive survey of the literature, with works that couldn’t fit in
the thesis for either scope or space.

33

e Quality-of-Service (Jitter, Latency, ...) is a non-functional but pervasive
requirement for Cyber-Physical Systems. Unexpected latencies can even be
causes for a system failure in real-time safety-critical systems. A modeling
and/or verification language supporting, at least partly, QoS is thus desirable.
Classical dependability analysis practices would have to be enriched with
QoS-oriented basic events in these regards. Top Level Events would also
need to allow QoS constraints in their definition.

As we will be able to acknowledge after the mathematical foundations of chap-
ter 3, the contract-based paradigm fits well most of the points presented above.
Still there are issues, such as the timing aspect, that will need to be tackled with
atypical techniques. The trick will consist in leveraging the service orientation and
stressing on context-independence, separating the functional and the architectural
viewpoints, handling timings supported by the latter.

Our modeling language of choice will be as general as possible, based on derivatives
of UML, to accommodate non-specific engineering practice. Our methodology will
be, anyway, easily adaptable to more specific modeling languages with a richer set
of features and support of service orientation. This will be further explored in sec-
tion 5.1.

Before diving to the heart of our developments, we sketch out the approach that
we use in this thesis to address system heterogeneity. One of the prevalent lines to
that aim consists in using a bottom-up approach, combining domain specific simu-
lation /verification results obtained by different tool in one overall framework. This
view is taken and lead by Ptolemy [67], supporting different hierarchically inte-
grable components based on actor-oriented heterogeneous models of computation.
The formal semantics of Modal Models is presented as the refinement of state ma-
chines down to heterogeneous components; where simulation takes the foreground
for assessing component’s correctness.

Similar ideas are presented in [53] for the treatment of heterogeneous Systems-on-
Chip (SoC) and in [78] for Heterogeneous Rich Components. Although provably
valuable and effectual, they do not cover the two aspects of service orientation
and automatic generation of dependability artifacts in which we are interested and
thoroughly founded on.

As we saw throughout this chapter, models of service orientation abstract from
the component’s implementation and heterogeneity details more often than not,
focusing rather on the service interactions at level of their interface. On the other
hand Cyber-Physical Systems are in most of the cases described in full detail, consis-
tently disregarding the interaction patterns in the name of functional correctness,
as it is done in the heterogeneous modeling frameworks that we just mentioned
above, in the past few lines.

We locate our approach in the middle of this, in a trade-off position that is the
starting point and core of our scientific contribution. Top-down, the plan is to let
designers specify the system’s expected behaviour in the form a contract with its
relative compositional refinements (cf. chapter 3) and, in parallel, define a network

34

architecture to support and cover the SOA-specific requirements. Single implemen-
tations are meant to be provided compliant to services’ contractual descriptions and
analyzed against them in virtue of fault resilience, with assistance of fault tree con-
structions and FMEA tables. Notice, importantly, that our methodology focuses
on the SOA system’s dependability analysis and, in this sense, offers a complemen-
tary and integrative methodology to bottom-up simulation-based approaches, as
opposed to a contrasting one. To enable this kind of dependability analysis we will
need to rely on a single specialized tool, XSAP in our case, that defines its own
input language that all components are required to adhere to.

35

36

Chapter 3

Contracts for System Design

In the past chapters we gave an introduction to fault injection and the way it has
been lately adapted to model-based system modeling. We then went through the
state-of-the-art techniques for the modeling and verification of SOA and interactive
Cyber-Physical Systems, showing strengths, weaknesses and possible links between
them, bringing a view of adaptation through service-oriented systems. In both
cases we acknowledged that reasoning on interfaces is beneficial against complexity
and heterogeneity, plus it aligns smoothly to the latest formalizations of services
present in the literature.

In this chapter we will put through the recent theory of contracts for system design
[13], which provides a thorough albeit not always intuitive mathematical layer for
system design. We already informally introduced contracts in the introduction and
recalled them here and there in the follow-up presentation. The formal presentation
of this chapter will provide the conceptual basis to understand the importance of
the contracts around service orientation. Our aim in this chapter will not be on
specifying all the formalities and details, nor it will be to develop further mathe-
matics on top of that already existing. Instead, we will be interested in providing
an intuitive understanding of the framework and make some considerations on its
applicability in our context.

The presentation will be intertwined by formal definitions and simple examples,
in order to engage in a new viewpoint and sustain the reason that make it so strong
as advocated. We will discuss the generality and wide applicability of the contract-
based approach, as well as its novelty aspect as a tool for system design. After
settling the basis of the framework together with its intended connotation we will
have the means to weigh up our previously expressed confidence in this remarkable
mathematical framework for system design.

3.1 An algebra of contracts
In this section we present the algebra defined over contracts, following an uncon-

ventional way of exposition, i.e. starting with the definition of the contract al-
gebra and explore its applications through examples. This is in contrast with

37

the more common strategy of justifying the algebra by inference from practical
concerns[13][12][14].

Definition 1. Let us consider U € Sets a set universe. A contract is a pair (4, G),
defining an Assumption and a Guarantee, such that A CU, G CU and A C G.

We write C for the class of contracts. Conventional presentations of contracts omit
the last condition and validate its later introduction as a form of saturation or
normalization, distinguished based on whether it is imposed as a requirement or
implied by other axioms. The last condition of definition 3 defines contracts as
saturated already, which entails them being in normal (or canonical) form. We
prefer to take saturation as given because it makes the treatment straighter and off
technicalities. In doing so we put ourselves in condition of losing some expressive-
ness because, classically, complementation is not always computable in Sets. This
will not make a difference for our introductory purposes.

Contracts can be satisfied by running instances, called implementations:

Definition 2. Given a contract C' = (4,G) and M C U, we say M is an imple-
mentation of C' or M satisfies C, written M | C, iff

MNACG

Proposition 1. There exists a unique C-mazimal implementation Mc for every
contract C = (A,G) and Mc = (AUG) =G.
Proof: Mc = (AUGQG) is an implementation of C, clearly, because

McNA=(AUG)INA=GNACG

Moreover it is mazimal, because for any other implementation M

we have M NAC G and thus M CAUG = Mc. |

Obviously there also is a unique minimal implementation, namely @), which is im-
plementation of every contract. So we have an escalation of subsequent implemen-
tations from @ to M¢, governed by set containment. Moreover, if we pick any of
these implementations, say M, then it is maximal with respect to a specific con-
tract, namely the contract C' = (M, M).

To close up the commutative square between inclusions of contract’s maximal im-
plementations and contract satisfiability, we are interested in the relation between
C and C. From the general implementation M C Mz = AUG = G in the esca-
lation, we instantly derive M DO G = AN G = Mc, by contraposition. Now it can
either be the case of M C A or M D A. However, the former case is not feasible
because otherwise, by another contraposition, M = M O A, whereas we know from
M C Mc =AUG that M C A.

For our general implementation M we thus have a contract (M, M) which gen-

erates it maximally and such that both M C G and M O A. This brings us to the
concept of dominance.

38

Definition 3. Let C; = (A1, G1) and Cy = (As, G2) contracts. We say C1 domi-
nates Cy, written C; < Cy, iff

A1 2142 and G1 QGQ

Proposition 2. Dominance is a partial order.

Proof: Trivial from
(1)¥CeC.(C=C)
(2) vCi,C5 €C. ((Cl = 02) VAN (CQ =< 01) — (Cl = 02))
(3) Vcl,CQ,C?)EC.((CljCQ)/\(ngC:;)—)(Cleg)) |

Most of the unfolding of the proof above reduces to the partiality property of set
inclusion. Moreover from Sets being a distributive lattice it could also be shown
that dominance induces a distributive lattice C, < on the class of contracts. Even

more specifically, induced by =< contracts inherit a boolean algebra (C,M,L, [¢],0,1)
from Sets where, given generic C,Cy,Cs € C:

aG)

A~ N~~~

Notice that the assumption of having set complementation available is paramount
to construct contract complementation and thus the derived boolean algebra.

Proposition 3. Let M¢, be the maximal implementation of contract C; = (A1, G1)
and let Cy = (Ag,G2) be just another contract. Then

CleQ — MCI':CQ

Proof :
Ci 20y = A DA NG CGy =
:>M01:A71UG1:G1QA72UG2 —
— MCIQAQQGQ —
—]MC1 ':02

It also follows that M | C1 ACy X Co = M = Cy, which says that everything a
dominating contract implements, the dominated contract implements too. In other
words, the lower-set below an implementation M with respect to set inclusion is
entirely implemented by any contract dominated by C = (M, M)

Let us see an instantiation of the framework on a trivial example in order to fix the
concepts treated so far:

39

Example 1

Let U = N be the universe and C7 = (Even,Odd U {10}), C2 = ({4,6,12},N)
be contracts.

Easily C; = Cy. The maximal implementation of Cy is Mg, = Odd U {10}.
Clearly, any subset of M¢, is also an implementation of C; (e.g. Odd = Ch).
Moreover, by proposition 3, any subset of M¢, is implementation of Cy too.
Notice that the conjunction of the two contracts, being it by definition the
infimum with respect to <, is C; N Cy = (.

Conjunction will turn out to be the interesting operator in the following sections
because it combines different contracts preserving implementations for as much as
possible. This is a consequence of contract conjunction commuting with the inter-
section of maximal implementations, i.e. Mc,nc, = Mc, N Mc, .

However, given two contracts, there is an additional operator designed to combine
them, which lays out of the algebra. This is parallel composition.

Definition 4. Let C; = (A;,G1) and Cy = (Ag, G2) be contracts. We define the
parallel composition operator, denoted with the symbol ||, as

Cy || Ca=((A1NA2)U(G1 NGa), (G NGy))

Parallel composition is the central operation between contracts, it is what distin-
guishes this theory from one that straightforwardly exhibits a composite boolean
algebra; it is also what makes sense out of assumptions and guarantees.

To fully understand parallel composition we will have to wait until next section. For
the moment let us simply see what it does on contract’s maximal implementations
on a couple of simple examples.

Example 2
LetU = {a, b, c,d} be the universe and C1 = ({a, b, c},{c,d}), Ca = ({a,b,d}, {a,c})

be contracts. Contract conjunction and parallel composition are obtained, re-
spectively, as

Ch=CnNCy = ({(l, b, ¢, d}v {C})
CH =C H Cy = ({CL, b7 d}v {C})

Maximal implementations of those are thereby the same:

Mc, = MCH = {C}

Example 3

Let U = {a,b,c,d} be the universe and C1 = ({a,b,c},{a,b,c,d}), Co =
(0, {a,b,c,d}) be contracts. Contract conjunction and parallel composition are
obtained, respectively, as

40

Ch=C11nCy = ({a,b,c},{a,b,c,d})
C” = Cl || CQ = ((Z), {a,b7 C, d})

Maximal implementations of those are thereby the same:

Z\fom = MCH = {a,b, C, d}

There is a trend of parallel composition of generating new contracts with less re-
strictive assumptions than conjunction, while sharing the guarantees and admitting,
as a consequence, the same implementations. The second part is intuitive, because
guarantees generate from the same combining operator, namely intersection. It is
less clear whether having more permissive assumptions would be a logical conse-
quence of the construction or just an accident. The following proposition provides
a clear answer:

Proposition 4. Let C1 = (41,G1),Co = (Aa,Ga) be contracts. Their conjunc-
tion dominates their parallel composition, both having nonetheless the same set of
implementations i.e.

(Clﬂ02j01”02) A\ (M)chﬂ02<:>M’ch||Cg)

Proof: To prove the first part of the proposition we only need to prove that
A1 U Ay D (A1 N A) U (G1 NGa), because containment of the guarantees
is ensured by equality. However, (Ay N Asg) is subset of (A1 U As), which
reduces our problem to checking, only, that A U Ay O G1 NGy = G1 UGs.
Since A1 C Gy and Ay C Gy by definition of contract, A1 U Ay O G1 UGo
follows by contraposition. Moreover since C1 1 Cy and Cy || Co provide
the same guarantees, they have the same maximal implementation and thus
overall the same implementations (by proposition 3). |

It follows from proposition 4 and definition of infimum that the result of parallel
composition neither dominates C7 nor C5 in general, but provides a contract whose
assumptions are generally stronger than at least one of the contract’s. In other
words, if either one of the contracts would have its implementation put individu-
ally in a context where the parallel contract applies, where assumptions possibly
fail to match, it would not be liable for violating the guarantee and therefore it
possibly would. The idea of parallel composition is to provide a contract admit-
ting the shared implementations of the individual component contracts, although
applicable in a relaxed context where guarantees of the one contribute to resolve
the context of the other. From yet another viewpoint, parallel composition embeds
the notion of two components individually unable to win the game of blending in
with a context, although qualified to do that collaboratively.

Here is another example relating conjunction and parallel composition on an in-
stance of the framework:
Example 4

LetU = N be the universe and C, = (0OddJU{2}, EvenU{5}), C2 = ({1,2,3,4},N)

41

be contracts. Contract conjunction and parallel composition are obtained, re-
spectively, as

Crh=0C1NCy=(0ddU{2,4}, Even U {5})

Cp=C1| Cy=(0ddU{2 }, EvenU{5})

Maximal implementations of those are thereby the same:

Mc., = MCH = Fven U {5}

Again, contract conjunction admits all common implementations of the two con-
tracts, whereas parallel composition is more open, admitting contexts that indi-
vidual contracts can resolve only together. Together in the sense of considering,
besides common assumptions, what the other contract is in position to guarantee,
to embed collaboratively in contexts larger than what individually expected.

The substance of the framework is now starting to take shape but it is still le-
gitimately blurry how this would make sense to a dependability analysis for Cyber-
Physical components. This is going to be cleared up in the next section, once we
take on a discussion about interface components.

3.2 Interface Components

The contract framework that we have seen so far is so general that it seems to have
no relevance to the work on verification and dependability assessment that we will
need using with services. To see how instead this is a wrong perception we will need
to concretize the framework on application, introducing interface components.

Definition 5. Let £ be a logical language over a set of variables V and a domain D
and let the interpretation of constants and symbols form a boolean algebra. Then
we call interface component an implementation of a contract whose assumptions and
guarantees are expressed using the language £. We call such contract an interface
contract.

Interface contracts and components are nothing but symbolic ways to define con-
tracts and their implementations. For example, using boolean predicate logic as a
language over the domain of real numbers with standard interpretation of symbols
and constants, we can express the contract for an interface component as a predi-
cate formula over variables in the real domain.

The peculiarity of interface contracts is that they have a concept of language as
part of their definition and the concept of variable as part of their language. In
the specification of the standard theory of contracts is is customary to call vari-
ables ports and discriminate between visible versus hidden (or local) ports, between
controlled and uncontrolled ports. We will only commit to the concept of ports,
making no further distinction, at this level, between them.

Let us see an example of interface components defined using the language of predi-

42

cate logic, showing how the theory that we thus far developed applies in this domain:

Example 5

Let V = {x,y1,y2,2} and D = R. Let C7"* = (z > 0,2 > 0 — y; > 0) be an
interface contract. With standard interpretation this stands for the contract
that works on environments where the port x is set greater than 0 and results in
the environment having port y greater than 0. Ports ys and z are unconstrained.

The definition of C{*Y* is defined over the universe U = R*; it is a contract
because the set corresponding to (x > 0) is included in the set correspond-
ing to x > 0 — y; > 0, by semantics of implication. Another contract,

CyY = (True,y; = 2) is one possible refinement of Cy, that is C{"¥* < C7"V*.
On interface contracts we prefer the word refinement to the word dominance.

Another contract, C7""* = (z > 5,2 > 0 — y2 = T7), expresses constraints
on the variable y». We can put the contracts in conjunction and obtain:
Ciﬁyhlﬁ — Cil?,?h mn le,yz —
=(@>0Vve>5x>0—=>y1>0A(x>0—>y=7)) =
=x>0, 2>0—= (y1 >0Ay2=7))
C?Z—Jl\vyz — C/viﬁ-7\!/1 N Cf’m —
=Truevz>5yy1=2)A(x>0—>y2=T7)) =
= (True,(y1 =2)A (@ >0—=y2=17))

Let Co = (y1 < 10,y1 < 10 — z # 0) be another contract and redefine the two
contracts above as Cy := CTV"¥2 Cy := CTY"%2 We can put the contracts in
parallel composition:

C|=0C1 | Cy =
=@>0,z2>0—(y1 >0Ay2=7)) || (y1 < 10,91 < 10 — 2z #0) =
=((z >0Ay <10) \/ﬁGH, GH)

..where G| = (x>0 = (y1 >0Ay2 =T7)) A(y1 <10 — 2 #0)

Cy=Ci || C. -
=(True,(y1 =2)A(x>0—=>y2=7)) || (y1 <10,y1 <10 = z #0) =
= ((True Ay1 < 10) \/—\éﬂ, é])

where G = ()1 =2) A (@ >0 =y = 7)) A (31 < 10 = z £ 0)

In the example we relied on the reader’s imagination to carry out the operators
logically and understand how the symbolic abstractions map onto Sets. There are
details that need to be made explicit. The first involves unspecified ports when
doing contract conjunction. The interface contract C7"Y* does neither involve yo

nor z, so how does it treat conjunction with another contract like C7¥?? We need

43

a variable inverse elimination operator for this, or variable introduction, defined
based on the semantics of dominance.

Definition 6. Let C = (¢a(p), dc(p)) be an interface contract and p € V a port.
We define port elimination of p, written [C],, as:

[Clp = (Yp € D. pa(p),3p € D. pa(p))

Elimination is a projection operator: it is existential on guarantees by set inclusion
in the straight direction — because dominance only needs one instance for each
variable to describe the other dimensions — whereas it is universal on assumptions
because it is performed by converse inclusion and it triggers thereby duality.

Elimination of p can be seen alternatively as the supremum of dominance with re-
spect to all contracts deriving from C' making the domain D ranging on p. Variable
introduction ought to work consistently, assigning variables to the empty valuation
on assignments and to the whole D on guarantees. This is equivalent to assigning
the algebraic 1 to introduced variables. In the following we will omit explicit vari-
able introductions, that we will assume without mention whenever needed.

An interface component works like a filter when embedded in an environment.
Specifically, assumptions specify when the filter is applicable, guarantees specify
with the resulting side effects what the range of its application is. In system design,
interface contracts are used to specify either viewpoints or component behaviours.
In the first case they are used to specify individual aspects of components, they are
combined using conjunction. Different aspects might concern functionality, tim-
ings, security, etc. In the second case interface contracts are used to specify the
interface behaviour of entire components, they can be the result of the conjunction
of different viewpoints and are expected to be combined using parallel composition,
thus accounting for mutual cooperation.

The different usage of contracts for system design is shown in example 5 where,
implicitly, a procedure of definition for contracts of different viewpoints is pro-
posed, with refinement possibility, conjunction and parallel composition with other
contracts. The following example shows the last passage of parallel composition
on a simpler case, with the possibility of making the result explicit and getting a
stronger intuition for this important operation.

Example 6
Let Cy = (x> 0,2 >0 —y >0)and Co = (y > 0,y >0 — z > 0) be two
interface contracts over V = {x,y,z} and D = R.
Their parallel composition is:
Ci|Co=(x>0,2>0—=y>0)] (y>0,y>0—2>0) =
=(z>0Ay>0)Va((z>0—-y>0)A(y>0—2z>0)),
((z>0—=y>0)A(y>0—2>0)) =
=({(z>0)V(y>0A-z>0)),
(x>0—=y>0A(y>0—2>0)))

44

The idea of parallel composition is on combining interface contracts as if their in-
terface components would be to combine, connecting the outputs of one component
to the inputs of the other. The presupposition for this to be a sensible interpre-
tation is that inputs (and outputs) are those ports that are kept unconstrained
(respectively, constrained) by the contract’s guarantees. Matching input/output is
done through equality over port names; we keep details off exposition for simplicity.

In the previous example, given a contract taking z, returning y and one taking
y, returning z we obtained a contract having = as input and z as output. It is not
clear by the final equation what it does though. To see this we shall need to get
rid of the port y, which can be seen as an internal port and thus removed with its
relative constraints. We do it considering the contracts with less dominance of all,
which goes to variable elimination as per definition 6.

Example 6 (cont.)

The contract that we obtain from eliminating y from Cy || Cy is:

Cl=[C1||Coly=(WyeR ((z>0Vy>0)A(z>0V-z>0))),
JyeR ((2>0—-y>0)A(y>0—2>0))))
=((z>0VvVyeR. (y>0))A(x>0V-z>0)),
((x >0—=True) A (True — z > 0)) V [by Shannon Expansion True]
V ((z > 0 — False) A (False — z > 0))) [by Shannon Expansion Falsel
= ((x >0V False) A (x >0V -z > 0)),
((True) A (z > 0)) V ((mz > 0) A (True)))
=({(z>0)A(x>0V-2>0), (z>0V(-z>0))
=(x>0, 2>0—2>0)

Using variable elimination we obtain a contract that is the best among the less re-
strictives (by definition of supremum) and thereby such that however the interface
components would be of C; and C5 internally to cl = (x>0, >0—2z>0),
the guarantees will not fail to hold. This is a very strong point and also provides
the right means to read the final contract as a whole.

Now that the haze is fading around the framework, we push it on exploring differ-
ent paths of composition. Let us see for instance, how parallel composition can be
performed on contracts mutually constraining one another’s inputs:

Example 7

Let C1 = (> 0,2 >0 —y >0) and Co = (y > 0,y > 0 — x > 0) be two
interface contracts over V = {z,y} and D = R.

Their parallel composition is:

45

Ci|Co=(x>0,2>0—y>0)] (y>0,y>0—z>0)
((x>0Ay>0)V-G, G)
wwhereG=(z>0—=>y>0)A(y>0—>2>0)=(y>0+<z>0)
((z>0Ay>0)Va(y>0+<2>0), (y>0+<2>0))
((x>0Vvy>0), (y>0+2>0))

Seeing the relative interface components as a closed system we can get rid of x and
y by a double elimination on the lines proposed in the previous example and defi-
nition 6, obtaining C,!,y = (False,T'rue), which embeds in every environment and
guarantees everything about variables. This is the algebraic 1 by no accident and it
is a consequence of us deciding elimination based on dominance’s suprema: for an
arbitrary implementation choice of the individual interface contracts it cannot be
ensured that incompatibility will not be there, hence variable elimination cannot
provide anything different than the maximum of the lattice induced by dominance.

Combining contracts using mutual relations is common when the goal is to model
feedback components[82][76]. We will see that this type of construction will turn
out to be useful when the verification or dependability analysis of complex Cyber-
Physical Systems with feedback is probed (cf. section 6.1.2).

We conclude the section by showing what happens when contracts are not com-
patible, namely when their output values and input values do not match on same
ports. We use a revisiting of example 6:

Example 8
_LotC’lz(x>O,x>O—>y>O) and Cy = (y < 0,y <0 — z > 0) be two
interface contracts over V = {x,y,z} and D = R.
Their parallel composition is:
Ci|Co=(x>0,2>0—=y>0)]| (y<0,y<0—2>0) =
=((z>0Ay<0)Va((z>0—-y>0)A(y<0—2z>0)),
((z>0—=y>0)A(y<0—2>0))

Since x < 0 iff =(x > 0) we can use Shannon expansion to push down the
universal and existential quantifier on assumptions and guarantees, obtaining:

[C1 || Co], = ((z > 0 A False) V =((x > 0 — True) A (False — z > 0)) A
A ((x > 0ATrue)V —((x >0 — False) A (True — z > 0)),
((x >0 — True) A (False = z > 0)) V
V ((x >0 — False) A (True — z > 0)) =
((False) V =((True) A (True))) A
A (((x>0)V=((mx>0)A(z>0))),
((True) A (True)) V

V ((mz > 0) A (2 >0))) =

46

((False) A ((x >0)V=(z>0)), True) =
(False, True)

This shows that from two incompatible interface contracts we obtained a new inter-
face contract that ensures everything possible, but embeds in no environment. For
example any interface component satisfying the constraint > 0Az = 5 would cor-
rectly implement the contract, but it could not be embedded in any context. This
is different from what we saw for example 7, because here there is no feedback that
variables can agree upon in order to make guarantees consistently false. Here the
False assumption means that no interface component can be constructed from the
combination of other two satisfying the interface contracts, thus the composition is
defective. We say in this case that the two interface contracts are incompatible.

The last mention is on saturation. For a pair (A,G) to be a contract, we saw
that the complement of the assumption has to be part of the contract’s guarantees.
This was translated symbolically by pushing the assumption to the guarantees by
means of an implication. Although other expositions give the condition as an op-
tion to push on the interface contracts whenever necessary to guarantee closure
properties or such, we placed it in the very definition of a contract (definition 1).
We now propose to streamline notation and instead of writing C = (4, A — G) we
write C' = (A, G). For instance, instead of writing C = (z > 0,z > 0 = y > 0)
we write C' = (z > 0,y > 0), but importantly this would still mean A contract
C=(x>0,2>0—y>0). This will not change our formal definition:

* it is only an abuse of notation to avoid cumber *

We will use this streamlined notation on in section 5.3.3.

3.3 Contracts, issues and interface theories

Contracts provide a very general framework based on what is often called the as-
sume/guarantee style of reasoning. An alternative approach is provided by interface
theories [45], which instead of treating the two aspects of the system using separate
sets of behaviours, a distinction is only made on the separation between input and
output variables — which we recall is not explicit in the contract framework as we
presented it — and a single first-order relational formula used for the specification
of behaviours at the interface level.

Contract modeling is a newer concept than interface theories and offers an al-
ternative formalism that is still very similar to straight interface reasoning. Only
recently their difference was sharply drawn, in [76]. One noteworthy component of
the paper is a transformation from interfaces to contracts, by a function — or a
functor someone would say — that considers the relational formula of the interface
to play the role of the contract guarantee and its projection over the input vari-
ables to play the role of the assumption. It is not in the scope of this section to
discuss formal details already present in the paper; we would like instead to put
the stress of our mention to this transformational correspondence between the two
formalisms, which is found to preserve most of the interesting properties, between

47

compatible components especially.

Although beneficial in many directions, the contract formalism has the important
drawback of not being able to detect incompatibilities before composition is per-
formed: the only way to see whether two contracts cannot find an embedding is
by composing them and check they have the empty assumption. This is an ac-
knowledged problem and research paths have been taken lately to check contract
compatibility more efficiently [16].

Another issue concerns contract saturation. One of the nicest things about inter-
face contracts is that they provide a formal basis independent from the underlying
language £. Almost. One property that we omitted is that £ should be closed
under complement. By definition 1 every contract must include the complement of
the assumptions in its own guarantees; of course this would not be possible with
languages that cannot express complement. The issue might look like a minor con-
cern at first, but unfortunately many applications of the contract framework lay
in the cyber-physical domain and thus necessitate somehow continuous or differ-
ential semantics [82]. It is thus common to use languages, such as that of hybrid
automata, for which complement is not generally feasible. One possible way out
is by omitting the saturation property, but then some properties of the framework
that rely on it no longer hold. This is an important aspect to consider, based on
the application at hand. In the know of the problem we will not concern about it
any more: we will get over it and stick to the saturated contracts of definition 1.

3.4 A novel approach to system design

Contract based design has a chief fundamental advantage to other techniques, which
is also its goal, that is modular system development. Starting from a high level sys-
tem specification, engineers can differentiate on different cooperative components
to be part of the whole system and manage the development of each component
independently from the rest of the system, as long as they ensure the satisfaction
of the component contract by their implementations. Checking implementability
in a modular fashion is typically performed, formally, by checking contracts’ com-
position dominance to the system contract and then contract satisfaction of the
single interface components: given a decomposition of the top-level contract C' in
contracts Cp, Co, C'3 and an implementation of each, say My, My, M3, the following
formulas are applied (not necessarily all at once):

GifCCs=C

M,):Cl N MQ)ZCQ A M3':C3

The decomposition might further be applied to contracts Cy, Cy and C5 separately,
down to interface contracts of low tier of abstraction.

Moreover, the very implementation of a contract can be split among different
teams in charge of different aspects of the system, by developing different view-
points independently, merged to refine the needed contract. In formal terms, given

: . ; : ty ~timi liabilit
a viewpoint separation of, say Cy, in e.g. Cio/e% liming genergy o q greliability

48

with corresponding implementations Mf“fety, METI VLTIV and Mfel“ﬂ”my,

the following are checked in replacement for M; | Ci:
Clsafety M Cizmzng M Clencrgy M Oi‘eliability < Cl

Mviewpoint): Cviewpoint
1 1

...where viewpoint € {safety, timing, energy, reliability}

The nice part of the process is that, again, integration is granted to be correct
by construction, if the single contracts at the low tier are satisfied by the given in-
terface components (see also [12] for more advanced methods for obtaining smaller
contracts wrt dominance).

Continuing our methodological discussion, after the anticipations of chapter 1 it
should no surprise that this process is overall adequate in the untouchable ideal
world of mathematics only. When real world component implementations are de-
ployed on a physical ecosystem, contingencies can bring systems to failure and break
components’ guarantees regardless of assumptions being satisfied. Errors and faults
can propagate to other components too and take the system to its crash. In chap-
ter 1 we argued that fault injection is a powerful weapon to detect system errors,
and there we also saw that by using model-based techniques it is possible to ana-
lyze mathematical models through extensions and possibly construct fault trees, or
other engineering artifacts, in an automatic way. Integration of fault injection with
the contract framework has hardly ever been tackled by the literature — we dis-
cussed [20] as a valid ongoing proposal; part of the contribution of this thesis is to
show how contracts can be used very naturally to achieve scalability within analysis
processes of complex Cyber-Physical Systems, including dependability assessments.

The theory of contracts is not only a mathematical tool, but is a mathematical
basis that suggests a new way of thinking design. Besides modularity that we al-
ready talked about, there is also a fundamental concept of hierarchy that undergoes
the framework and provides a vigorous and prominent confront to issues of scale.
Integration of components in any compatible environment provided the assump-
tions plus separation of concerns deriving from the development of single isolated
components and viewpoints are cherished characteristics of remarkable value for
industry. Also, design by contracts accommodates verification well, because hier-
archical design allows for compositional reasoning and relative techniques to tame
complexity and state-space explosion: properties about the systems as a whole can
be deduced from properties of its isolated parts. This will be our attitude towards
contracts: we will acknowledge their capacities not only within system design in a
classical sense, but even in combination with SOA-based collaborations.

The interface aspects beneath service orientation can be cast to the contract for-
malism and the different parts of the architecture can be too, including submissive
agents such as the network where the agents exchange their interactions. As we
mentioned back in section 2.2.2 in fact, interface contracts can be utilized for the
reappraisal of formalized services [26]. Recall that in the cited paper the behaviour
of components is defined by input/output relations over streams of messages, com-
positionally blended together using concepts of composition and behavioral refine-

49

ment, which are by all means resemblant to ours of parallel composition and domi-
nance. Furthermore the work in [26] defines services as partial behaviours, whereas
components are required to expose an output for each possible input. This is in
line with the different notions of contracts and implementations that are typical of
contracts.

In a strong sense the work in [26] can be seen as an alternative interface theory,
where input and output variables are streaming channels, which are related by a
relation of interface behaviour. It should be clear in the informal sense from our pre-
vious discussion that the difference between formalisms of this kind and contracts
is only one property preserving function far from being none, and it thus shouldn’t
be deemed dissimilar in substance. From this direct matching of contracts from the
service formalism of [26] we build confidence that studying services at the interface
level is a perfectly legitimate and sensible choice. Moreover, using contracts as a for-
malism consents to capture the service behaviour of interacting systems coherently
with the latest responses to embedded systems’ design challenges, an important
aspect for assessing the value and appropriateness of the techniques developed in
this thesis.

20

Chapter 4

The tool XSAP

XSAP is the eXtended Safety Analysis Platform, designed for the assistance of
safety and design engineers in the development of digital embedded systems. It is
extension and reappraisal of FSAP/NuSMV-SA [23], developed by the same au-
thors in fact (cf. section 1.1).

In this chapter we will present the tool from different standpoints and levels of
detail. As a gentle introduction, we will provide an overview of the functional facet
of the system, including features and rationale. We will then give an overview of
the formal techniques that lie beneath the tool implementation. Even though our
usage of the tool will be confined to its user interface, understanding the technol-
ogy is critical, besides scientific motivations, in order to evaluate their applicability.

This will bring us to discuss their dissemination within industry and their addi-
tional spreading potential with XSAP. Finally we will present the practicalities of
the tool at the interface level, in order to get confidence in preparation of chapter
6, where we will render its application on the use cases of chapter 5.

4.1 Functionality

From the functional standpoint, XSAP is a model-based fault injection tool, in the
sense of section 1.2. In the same reference section we also discussed that any cred-
itable platform for the software or hardware fault injection should come with a fault
injector, a library of admissible faults, a workload generator of admissible system
inputs and a monitor to collect and present the results of the analysis. We also
hinted that this could extend to all fault injection methodologies, thereby including
model extension.

From a functional point of view, XSAP is to be provided with a model of the nom-
inal system (i.e. a description of how it should behave, supposedly) and a model of
injections that specify the possible faults that may jeopardize system safety. The
two models are fed to the tool as two separate files. This distinction between sys-
tem model and injections is a clear strength of XSAP, essential for model-based

51

Nominal Model

—

Model Extended Model Fault Tree
(.smv file)

18—

Extension construction

Fault Specification
(fei file)

Figure 4.1: Fault Tree Generation: XSAP takes the nominal model, the
fault description and constructs the Fault Tree checking the Top-Level Event
against the extended model.

approaches to sustain the integration with the design workflow!.

Behind closed doors, XSAP makes use of patterns to let specify the fault modalities
in the injection file. This is done by an optionally extensible set of fault patterns
expressed as state machines in XML format. As an example, a stuck-at-0 fault is
specified in the library as a state machine that transits between two states, nom-
inal and faulty, by setting the target variable to 0 and keeping that value fixed
throughout execution thereafter. About this and how to customize this process we
will spend a bit more of words later.

After that, automatically, XSAP can be instructed to extend the nominal model
and, triggering fault happenings, to construct fault trees and FMEA tables of min-
imal size. Figure 4.1 shows schematically the procedure to construct a fault tree.

Recalling the common characteristics of fault injection processes that we mentioned
above, in the model-based injection performed by XSAP we can identify the fault
injector as XSAP itself, combining the nominal model and the fault specifications
(this is achieved using the python script extend model.py, provided with the tool).
The library of admissible faults is the extensible source of fault patters behind the
closed doors. The workload generator is embedded in the semantics of the model,
i.e. the transition system on a Kripke structure and the monitor can be seen as the
model-checking procedure itself, that results in property violations under faults,
later translated to fault trees and FMEA tables (this is achieved using the python
script compute_ft.py/compute_fmea table.py). More formal details later.

XSAP is a complex tool and is supported by the long-aged algorithms of NuSMV.
All of its history is about embedded systems design and verification and its de-

'The benefits, indeed, are manifold. One is certainly being able to independently
grow the nominal system without caring about faults, another is having, possibly, several
models of injection: the simplest to be applied at the earliest stages of design and the
others, refined, later.

52

velopment has been supported and motivated by industrial concerns, such as the
automatic construction of engineering artifacts. This gave us strong assurances re-
garding its adoption, that met our prospects well.

In addition to the construction of Fault Trees and FMEA tables, XSAP also sup-
ports failure propagation using the concept of Timed Failure Propagation Graphs
(TFPGs) [2]. The application of this part of XSAP to our quest is beyond the
scope of this thesis and will not be developed further. We refer to [54] for an usage
account of XSAP under those terms.

4.2 Formal Nuts and Bolts

To understand XSAP we need to understand model checking first. We assume the
reader has some basic knowledge about the subject and only recall key concepts of
the mathematical machinery. Then we will have a short digression on the specific
functionalities featured by NuSMV /nuXmv, as they will have an impact on our
experimental treatment of chapter 6. Finally we will provide a gist of the algorithms
underlying the Fault Tree construction, as per acquirement from the literature.

4.2.1 Concepts of Model Checking

For this light presentation of concepts we will follow the common practice of defin-
ing the mathematical structure at use, its formal semantics and a logic upon that
structure. We will briefly highlight what is possible to achieve with such a logic
and why is important for the the verification of system design.

We will highlight what in this framework suits our needs and what doesn’t, stress-
ing similarities and differences that we find between traditional reactive systems
and large-scale Cyber-Physical Systems, that are the target of our study.

Kripke semantics and Language

The mathematical structure of interest is the so-called Kripke structure. A Kripke
structure is a quadruplet (S, I, R, L) defined over a set of boolean variables V where:

e S is a finite set of objects, called states
e | C S is a set of initial states
e R C S x S is anon-deterministic transition relation between states

e L :S — P(V) is an injective map, called labeling, that says, for each state,
which among the available boolean variables are true.

The Kripke structure can be easily generalized to atomic propositions of any kind,
by taking their boolean abstractions as boolean variables (e.g. use v; as a boolean
variable, and put v; <> z = 3).

The intuitive interpretation of a Kripke structure is that, starting from the states in

I, the reactive system evolves indefinitively, according to R. For the latter reason
it is typically required not to have dead-ends, i.e. that every state have at least

93

one successor. So formally, the semantics of a Kripke structure is given by sets
of runs, where runs are infinite sequences of states {s;};en such that sg € I and
Vi € N. (84, $i+1) € R. Finite and infinite initial segments of runs are called traces.

Kripke structures are very much suitable to be checked against modal logics. Here
we focus on the popular Linear-time Temporal Logic (LTL) [79], that is an ex-
tension of classical propositional logic — which already had -, A, V, - — with
temporal operators on traces (X and U). Temporality allows to travel along the
Kripke structure’s transition relation and is semantically expressible by tracking the
system evolution on traces. Formulas of LTL are thus defined on traces, whereas
sub-formulas on future sub-traces.

The temporal extension of propositional logic is given by the following two temporal
operators:

e The neXt unary operator (X¢), that expresses the validity of a formula ¢ in
the successor state of a trace. Formally, X¢ is satisfied in state s; of path w
iff ¢ holds in state s;11 of the path .

e The Until binary operator (¢U%): in a future sub-trace where a formula
1 is somewhere true, it expresses the validity of a formula ¢ in the initial
sub-trace preceding the occurrence of ¢. Formally, ¢Uv) is satisfied in state
s; of path = iff there exists j > ¢ such that (1) ¢ holds in state s; of path 7
and (2) for all k£ within, ¢ holds on the path (i.e. ¢ holds in all s of 7 such
that ©« < k < j).

In terms of the neXt and Until operators, the temporal operators of Finally (F),
Globally (G) and Release (R) are definable, with the respective intended mean-
ing of (F) the eventual occurrence of an event, (G) the universal occurrence of an
event and R the unconstraining of the system upon an event (e.g. drink R thirst) 2.

LTL allows to formalize temporal properties of systems in different domains, as
the following propositions show?.

o The variable = is never 0:

o Whenever the client requests a service, the service will be provided within one
and three steps:

G(request — (Xserved V XXserved V XXXserved))

o The aircraft’s doors are kept closed while the engines are on, but they will
not be kept closed forever:

(doorsClosedU=enginesOn) A (F—doorsClosed)

2The definitional equivalence: F¢ := TRUEU¢ G¢ = -F-¢ ¢Rp = ~(-~¢U—).

30bviously, a sensible modeling of atomic propositions in a Kripke structure prior to
the definition of LTL formulas, that we omit relying on the reader’s intuition, would be
mandatory.

o4

The model-checking problem of LTL asks whether a given LTL formula ¢ holds in
all traces of a given Kripke structure K. If this is the case, it is common to write

KEé 4

Interest in Model Checkers and LTL

An LTL model checker is a tool implementing a decision procedure that, given the
specification of a Kripke structure and an LTL formula, it returns YES or NO based
on the satisfaction of the formula in the Kripke structure. If the model-checker finds
a disatisfaction of the formula, it returns a counterexample, namely a trace repre-
senting an evolution of the Kripke structure leading to falsification.

LTL has wide application in the verification of systems subject to temporal evolu-
tion and it has been employed in the past for the verification of software, concur-
rency protocols and reactive systems. Its popularity is due to the simplicity, com-
pactness and expressiveness of its temporal formulae; differences in model checkers
are determined by the language to construct the Kripke structure — which normally
depends on the application domain — and implementation performance. Needless
to say, there exists even other logics and variants that apply to Kripke structures
or rather, just for a reference, to other interpretations of Kripke frames. For as
much as we will be concerned to model checking, knowing about trace semantics,
satisfaction and counterexamples generation will be enough.

As an anticipation, we point out that the full power of LTL will not be neces-
sary to our direct aims, but it will be at support. In chapter 6 we will assess the
dependability of systems using the concept of an invariant, which is easier to roll off
and apply to the construction of engineering artifacts. Besides, we value the presen-
tation of LTL as a means for the understanding of the logical concept of temporality.

Invariants represent safety and and are optionally representable in LTL in the uni-
versal form G¢, having ¢ propositional. They represent something that must hold,
logically, in every state of any trace and are characterized by locality, i.e. they
do not involve the future of the trace, only single states universally in all traces.
This is what makes them amenable to automatic construction of artifacts, because
checking invariant specifications reduces to solving a reachability problem over the
Kripke structure. This can be handled by sophisticated and specialized techniques
founded on general induction in a constructive sense.

The usage of temporal formulae in our given scenarios will be part of the contract
formalism. This is a need, as we saw in other chapters, for a choice of sensible mod-
eling of cyber-physical architectures with services and represents our first difference
with respect to standard model-checking/dependability activities on systems.

4Checking this algorithmically means to provide temporal satisfaction guarantees on
possibly infinite evolution traces. Fortunately, the Until operator comes with a so-called
fizpoint semantics and is recursively definable as pU := ¢ V (¢ A X (¢pU1)). Working in
the class of propositional boolean formulas ordered by logical consequence, thus a lattice,
we have strong guarantees of well-foundedness of its semantics.

95

Pattern-based languages

The second divergence with standard activities is that our final target is industry.
Practitioners are known to lose confidence and reliability as language’s expressive
power grows, therefore it is preferable to let them have only few patterns available
for their specifications, and in human readable form. This solution includes more
controllable specifications and also, optionally, dedicated treatments for the speci-
fication of system requirements. One of those might be, for example, that invariant
property specifications could be supplemented with the possibility of deriving fault
trees relative to their negations.

The Block-based Contract Language (BCL)[52] can be seen as an alternative to the
language of LTL that accounts for pattern-based specification of contracts. In the
specific case of the presentation paper, the authors use patterns to specify assump-
tions and guarantees on Matlab/SimuLink blocks and verify their compatibility
and compositionality using simulation-based techniques. We are not interested in
the whole framework of BCL but on its pattern-based language, an oversimplified
fragment in fact, to get the gist of the usage of patterns.

In BCL events happen in time instants, in time intervals or against timeouts. Con-
ditions, besides events, include boolean expressions of comparison and boolean
compositions of those under conjunction, disjunction, implication and negation.

Now, if E is an event and C a condition, one can specify BCL patters as

[E] happens within [3s], expressing time-bounded firing of an event

- [C] holds, expressing a condition holding
- Everytime [E] then [C], expressing an event dependent condition
- [C] always, expressing persistence (invariance)

There are more, with variants and generalizations, but we limit ourselves to those
for simplicity.

We would like to point out that there certainly exist other pattern-based languages.
We picked BCL among all because we envisioned a possible future work of integra-
tion with the Matlab/SimuLink framework it provides. However our contributions
are independent to the specific logic language at use and we believe that experi-
encing patterns would at least help making our objectives with respect to industry
clearer. In the specification of our use case example of section 5.3 we will use BCL
as our property specification language exactly for the reasons we outlined in this
paragraph and we will propose an informal translation of our BCL specifications
to LTL formulae (comprising invariants) before feeding them to the model checker
engine for artifact construction.

4.2.2 The NuSMV /nuXmv base

We already saw in the previous sections that the tool XSAP is a safety-analysis tool
based and integrated with the nuXmv model checker [30]. Following this view, we
could rethink the functionality of XSAP as split into two parts: the model checker

o6

and the safety analyzer. After the construction of the Kripke structure common to
both, the model checker allows to verify temporal specifications, the safety analyzer
to construct fault artifacts from invariant specifications. We defer the modeling of
the Kripke structure to section 4.3.1 and the artifact construction to section 4.2.3.
In this section, instead, we focus on the model-checking possibilities of nuXmv.
Again, we will not be exhaustive but assume that a basic knowledge is already part
of the reader’s background.

Traditionally, model checkers arrange the internal representation of the state space
of a Kripke structure in either explicit or symbolic form. The model checker nuXmv
goes for the symbolic option. Instead of enumerating all the states in the model
one-by-one, nuXmv represents many, collectively, as boolean formulas. A formula
such as by — x = 3, for example, represents all states where variable b, is false and
variable x is arbitrary, plus that single state which interprets variable b; as true
and variable x identical to 3. The symbolic representation in adoption of nuXmv
has a number of advantages, such as performance boost and more natural encoding
of system variables in the system.

A complete treatment of the subject is way beyond the scope of this thesis, but at
least we need to mention the four chief four strategies used by nuXmv for carrying
out the symbolic model checking. These are BDD-based checking[29], SAT-based
BMC]J17], SMT-based BMCJ[5][8] and IC3[34][35]. The brief discussion in this sec-
tion will make an effort to highlight strengths and weaknesses of each technology
or else, to be more precise and perhaps fair, the different circumstances where each
fits best.

BDD-based model-checking

Binary Decision Diagrams (BDDs) [28] are highly tuned data structures for the effi-
cient manipulation of boolean formulas, both in terms of memory and performance.
Since their acknowledged establishment, they have been used in model checking to
encode Kripke structures, comprising initial states, transitions and their labeling,
as boolean formulae over the structures’ state space. Again, if the involved vari-
ables or propositions are not boolean, some form of abstraction or transformation
can make them so.

Concretely, initial states of the structure are represented as the boolean conjunction
of the initial constraints and the transition relation as the boolean relation between
symbolic states and their future counterparts, traditionally denoted by primed vari-
ables. The labeling function is embedded in the symbolic representation. Put as
simple as it is, collection of states evolve semantically from the initial representation
by means of the transition relation realized in boolean logic using perfect boolean
abstraction.

Take as an example the Kripke structure generated by a single boolean variable
f, initially False, that switches from False to True in a non-deterministic fashion

o7

and remains such from then onward®.

The corresponding formal system would be defined as

K:f = <S = {1’2}’1 = {1}”R = {(17 1)7 (1’2)7 (272)}51’ = {(1’(2))5 (27 {f}’)}>

Symbolically, one would represent the entire Kripke structure Ky as

Igpp(Ky) =~f
Rppp(Ks) = (f A=f)V (=f A=f) V(AT =

=—fV(FAS) =

== (NS =

=f=
If we would like to know all the models of the Kripke structure over the variables
involved in it — only f in our simple example — we can inductively reiterate

application of the symbolic abstraction of the transition relation Rgpp(K) starting
from the symbolic representation of the initial states Igpp(Ky), up to a point of
idempotence, which has strong mathematical guarantees to be reached:

Fy:=Ippp(Ky) =~f
Fy:=FyV (3f € Fo. Repp(Ky))

=-fV prre‘ (jfwe A (fpre - f))
=-f VTrue="True
Fy =KV (Hf c Fi. RBDD(]Cf)) = True

The fixed point symbolic representation F5 indicates that both values of are possi-
ble for f during system evolution. The [oversimplified] procedure that we described
shows how the reachability problem is tackled, symbolically, using boolean function
representational utilities such as BDDs.

Model checking is way off a harder beast, both computationally, theoretically and
in terms of implementation. We are not particularly interested in model-checking
techniques in this thesis. What is important is having a rough idea about the
symbolic representation of Kripke structures, and what BDDs are great at, namely
manipulation of booleans. We will take on the reachability problem in section 4.2.3,
to explain, conceptually, how dependability artifacts are constructed in XSAP.

SAT /SMT-based Bounded Model-Checking

Although BDD-based techniques are efficient, they demand a complete construc-
tion of the state space as an efficient, yet possibly enormous, BDD. To avoid the
complete construction of such BDD, Bounded Model Checking techniques (BMC)
are employed that only partially and incrementally unroll the transition relation.

5Such a Kripke structure might be interpreted as a state machine describing a perma-
nent fault, that once active it never gets fixed.

o8

BMC techniques are distinguished in SAT-based and SMT-based. In short, SAT-
isfiability is the problem of checking whether a boolean formula can be made true
by a suitable valuation of variables, Satisfiablity Modulo Theory is the problem
of checking whether boolean combination of constraints in some decidable theo-
ries admit a variable assignment so to make a quantifier-free theory formula true.
As a matter of implementation, it has been discovered that SMT solvers can be
seen as improvements to SAT solvers with domain-specific reasoning skills, playing
their variable assignment’s satisfiability game of on theories instead than on atomic
propositional valuations. We refer to [9] for a comprehensive discussion of the sub-
ject.

In both SAT and SMT cases the Kripke structure is built incrementally start-
ing from the initial states and on by unrolling of the transition relation, gradually
incrementing the bound of the procedure up to a certain maximum bound k.

To do this, temporal properties are put in conjunction and solved as an incremen-
tal SAT or SMT problem. The technique is bounded and as such is not complete:
this is the price for avoiding the complete construction of the whole model. It is
typically used to find counterexamples of increasing length fast and it owes much of
its popularity to the constant parallel development of latest advances in SAT and
SMT solvers.

Model-checking with IC3

The technique underlying IC3 tries to find system’s inductive invariants, and it does
it incrementally driven by over-approximations of the Kripke semantics of the sys-
tem. To do that, at implementation it separates between reasoning in the boolean
domain and reasoning at the theory level, exploiting theory-specific techniques for
abstraction refinement provided by SMT solvers in order to find the inductive in-
variants for refinement[35].

Importantly, the incremental aspect is not found on monotonic unrolling of the
transition relation, but on the refinement process upon the over-approximation.
This leads to a complete methodology comparable to the BDD-based approach, al-
beit more effective (or even uniquely feasible) in presence of complex theories where
theory reasoning is unavoidable on the model.

On the availability of different techniques

The significance of knowing about the different algorithmic availabilities of the state
space exploration procedures is twofold. First it will make sense out of the different
performance that we will get out of fault tree construction; this is of practical
significance. The second interest relates to how we deal with system heterogeneity.
Because different actors in the SOA will be given different roles and functionalities,
and because the particular designs will be different, it is to be expected that different
algorithms will fit different domains differently. For example, in the boolean realm
we expect BDDs to be the most effective, whereas SMT-based techniques would be
better when logical reasoning on theories is required. Having available an adaptable
[and evolving] state-of-the-art tool such as XSAP is of huge value when diversity

29

partakes the ground. Moreover we will be able to treasure this aspect even more,
because we will advocate its usage in the context of contracts, which are per-
se practical solutions to system’s heterogeneity. The difference is that whereas
contracts work at the interface level, XSAP will work over actual implementations.

On synchronicity of the tool and timings

NuSMV and its successor nuXmv are model checkers explicitly designed for the
symbolic analysis of reactive systems, such as embedded devices. Multiple devices
can be specified as separate system modules, or components, whose connections
to one another are specified by indicating which variables of the one component
should be input of the other. This correspondence between inputs and ports is
implemented by syntactic substitution of terms, which makes the tool synchronous,
in conclusion. In other terms, the system evolves pushing values on ports, with
zero-delay and all together.

When Cyber-Physical Systems rely on Service-Oriented Architectures, or on net-
worked architectures in general, synchronous communications are the farthest ab-
straction to reality. As we saw in chapter 2, timing is a very important aspect
in SOA and can have an impact on both system performance and functionality.
Our dependability study has thereby the very serious obligation to account for that
aspect. In section 6.1 we will outline our answer to this apparent obstruction, not
asking designers to enforce asynchronous semantics on the model, but rather draw-
ing a sharp line between system functionality and network communication, using
separation of viewpoints in the spirit of contract-based design (cf. chapter 3).

4.2.3 Fault Tree construction in XSAP

In this section we will delineate the Fault Tree construction procedure used by
XSAP for the construction of Fault Trees. Our usage of XSAP is off-the-shelf, thus
we have no information about its implementation beyond literature investigation.
That will be enough, however, to appreciate the technology proposed by the tool.
Moreover, since formal techniques for the construction of FMEA tables are alike by
all conceivable intents, we will restrict our attention to Fault Tree constructions,
without loss of generality. To be more definite, following the lines of [21] we will
focus our attention on the BDD-based procedure, confident that the reader can
generalize to how this is translated to SAT/SMT-based techniques or IC3.

A first phase injects faults in the model. This is done in XSAP, as more clearly
expounded in section 4.3.2, by dedicating specialized hook variables to the occur-
rence of faults and starting nominal or faulty models correspondingly. Then, after
model fault extension and provided with a Top-Level Event to reach, the fault tree
construction procedure can commence with the aim of selecting all minimal sets
of hook variables (the so called cut sets) that can lead the Top-Level Event to occur.

Formally, if F is the set of all the hook variables of the extended Kripke struc-
ture Kz, minimal cut sets of the Top-Level Event ¢rpg, whose corresponding

60

reachability invariant would be G —¢r g, are those in

CS(¢rrp) = {FC € 27 | 3so, 51, ..., sy € Traces(K).

sk | ¢rLE A
VieF. (feFC+ Jiel0.ksi=f)}

required minimal by set inclusion. Recall that the expression s; |= ¢ means that
in the i-th state of the trace, the propositional formula ¢ holds. In other words we
look for the minimal sets among all those containing hook variables that can lead,
for some trace of the Kripke structure, to the logical satisfaction of the Top-Level
Event. Notice that the locality of invariant properties turns out here, in the very
definition of cut sets.

The algorithm to find the cut sets relative to a Top-Level Event is conceptually
simple, then variants and optimizations are implemented in practice. The main
two possibilities is on the search procedure, which can run either forward, from
the symbolic representation of the input states, moving the symbolic frontier C-
monotonically towards the Top-Level Event according to forward application of the
Kripke structure’s transition relation, or backwards, from the symbolic represen-
tation of the Top-Level Event, still C-monotonically using this time the backward
application of the transition relation up to intersection with the initial states. We
already approached the forward procedure in section 4.2.2, when we talked about
the invariant checking procedure using BDDs.

The forward and backward applications are defined by quantifying away the cur-
rent and next states from the transition relation. In logical terms, if @ is the set of
states at the frontier (regardless whether for the forward or backward procedure),
this is symbolically possible by using the formulas

3z e Q. (R(z,y)) JyeQ. (R(z,y))

Simultaneously, a set of boolean history variables characterized by a bijection with
the hook variables in F monitors the evolution of the system, each set to true in
case of the corresponding hook variable is set to active throughout the evolution.

After reachability completes we have the symbolic representation of all the end
frontiers, heading or tailing paths from the initial states to the Top-Level Event.
From those states we extract the history variables (the cut sets) and a minimization
procedure is undertaken. If the cut sets extraction is performed by a straightfor-
ward variable elimination (i.e. logically quantifying away all variables which are not
hook variables), minimization is more involved and needs to be treated separately.
We report the BDD-based minimization procedure presented in [80], to provide an
intuition to how this can be made in practice®.

The starting point is a disjunction of BDD representations of the extracted cut
sets. This is a fault tree, but it is not minimal by construction. One way to see how
the BDD encoding works is through if-then-else constructs, binary decisions, not

8Just for a reference, minimization in SAT/SMT-based model checking can be per-
formed by adapting the algorithms for minimal unsatisfiable cores extraction [95][37]

61

accidentally. This follows by a property of propositional logic: given ¢(x) a formula
dependent from a variable x, there are two formulae ¢4 and ¢p independent from
2 such that ¢(x) is logically equivalent to (z A ¢4) V (—x A ¢pp) — a consequence
of the so called Shannon’s decomposition.

In other words the statement says that the formula ¢(z) is equivalent to the ex-
pression
if x = True then ¢4 else ¢p

which is a decomposition able to detach x from the rest of the formula. If one starts
producing sub-formulas in this way, recursively removing variables of sub-formulas
in a fixed order, a binary tree obtains, whose branches all end up in atomic boolean
constants, namely in True or in False. The idea is that following branches in the
choice of taking the subsequent node variables true of false starting from the root,
one ends up in the formula being true or false.

The same is provable by switching to a DAG representation, where sub-formulas are
shared and reorganized to avoid redundancies: if a path reaches the bottom node
representing T'rue, the choice of variables determined by the if-then-else semantics
again causes the formula to evaluate to true. Nicely it can be proven that, given
a BDD with r as a root, the set of C-minimal solutions — that is the C-minimal
subsets of hook variables that need to be assigned true in order to make the cor-
responding path end up in the True node at the bottom level — is computable,
recursively, by taking:

1. the minimal solutions of the else branch of the node, without r (by semantics
of else)

2. the minimal solutions of the 4f branch that are not solutions of the else
branch, augmented with the root r (by semantics of if)

This is presented in figure 4.2. Suitably defining the base cases of the recursion,
minimal solutions are thus readily found. We refer to the original paper for a
more detailed and accurate description of the algorithm and its correctness. For
as much as our interest is concerned, XSAP utilizes techniques similar to this to
construct a fault tree of minimal cut sets, given the fault tree obtained by the
symbolic reachability procedure towards the Top-Level Event, which is a fault tree
not necessarily originating from minimal cut sets.

4.3 Using XSAP

This section is based, entirely, on the user manual of the tool [54], complemented
by [30]. It is a summary of the main features that we will need in the next chapters
to carry out our feasibility assessment and has no pretension of being complete. We
recommend the pointed references for a comprehensive treatment.

4.3.1 Modeling with nuXmyv

Prior to everything, XSAP needs a Kripke structure to work upon. As previously
mentioned, this is handed straight over to the nuXmv model builder, which relies

62

2%

e
|

Xz L X2)
g—ﬁ m
f (%) ﬁ';\l ./ t’%\l xé\.
.
(x1)
7y ’\ }' A
*2) :‘Jr‘/
[.h | ﬁ;;\

NN i
Figure 4.2: An example of BDD tree reduction. Branches labeled with 0
or 1 indicate the else and if branch, respectively. The last DAG shows
cut sets very clearly, namely {z1,z2}, {z1,23} and {z3}. The minimization

algorithm would remove the middle cut set because not minimal.
Image originally found in http://sodans.usata.org/www.epics.jp/mc/modelchecking.html

on the SMV input language. It will be matter of the first segment of this section
to elaborate on this. As a natural continuation, then, in the second part of the
section we will develop a simple yet meaningful example, that will bring to light all
the input language’s interesting features.

Input language

The input language of nuXmv is fully detailed in the user manual[18]. We rather
propose a more informal discussion in which we describe the language by use ex-
amples. This will allow us to keep the presentation simple while uncovering all the
specifics needed later in chapter 6.

The SMV language has variables, that can be of three different types:

- state variables (VAR): these are variables that generate the state space
of the system

- input variables (IVAR): these are variables that come unpredictably from
the surrounding environment of the model, without possibility of control from
the model (they get random values in their domain).

- frozen variables (FROZENVAR): these are model variables that once
assigned, they never change. They are not like constants in ordinary pro-

63

gramming languages, because their initial value can be absolutely random
(and, in general, this is the case).

In short, state variables represent the actual variables of a system, input variables
represent the non-deterministic events that might occur on the system and frozen
variables represent undefined variables that are stable once their value is decided.

The domains of variables are defined by their types. In nuXmv we have booleans,
enumeratives, bounded integers (aka interval ranges, such as 10..15), word types
(aka bitvectors, that have the semantics of the hardware integer representation sys-
tems), Integers and Reals”. All together with their domains and wit a concern to
IVARs, variables constitute the state space of the Kripke structure.

In order to specify the initial states and the transition relation, nuXmv provides
two options: one functional and one relational. Functional relations are expressed
using variable assignment, in the scope of an ASSIGN keyword, as:

- ASSIGN init(({var)) := (expr), which specifies the initial value of (var)

- ASSIGN next({(var)) := (expr), which specifies the value of (var) in the
next step of evolution, i.e. the value upon transition

- ASSIGN (var) := (expr), that accounts for both the initial and transition
value of variable (var)

On the other hand, the relational option expresses initial states and evolution using
boolean propositions, using the keywords INIT, TRANS and INVAR, where:

- INIT (expr) specifies an initial constraint
- TRANS (expr) specifies a transition constraint

- INVAR (expr) specifies an invariant constraint that holds throughout evo-
lution.

Choosing one way of encoding the Kripke structure or the other can have an im-
pact on performance — the functional option, for instance, would be more natural
for induction. Importantly, if the specified transitions are not strict enough, the
variable may get any value allowed by its domain, randomly.

Expression ({(expr)) can be arbitrary complex in general and they may involve:

- classical arithmetical operations such as +, —, X, /, mod, for numerical values

- boolean relations such as <, >, =, etc, connected by boolean connectives,
whenever booleans are involved

- operations of left and right shift (<<, >>), bit selection ([n : I]) and concate-
nation (wj :: wa), in case of bitvectors.

Strict typing rules are forced by nuXmv. Finally expressions admit conditionals,
either expressed as switches or in if-the-else form:

"Optionally, it is also possible to specify arrays of types, albeit this is equivalent to
having several separate variables not being dynamic indexing allowed by nuXmv.

64

— case
<cond_1> : <expr_1>;
<cond_2> : <expr_2>;

<cond_n> : <expr._n>;
TRUE : default_expr;

esac;

- (<condition>) ? (<truebranch_expression>)
(<falsebranch_expression >)

If one conditional branch is taken all the following will not be considered, but overall
they are required altogether to cover the domain exhaustively.

The archery example

In order to illustrate the language, we will go through a simple intuitive example
where we imagine an archery player at the Olympics games.

The archer has to confront herself against the environment conditions, such as
the air temperature during the performance and the elasticity of the bow string.
Moreover, she has to handle the pressure of the game, which increases as the turns
go by. These mentioned characteristics will be modeled as the state variables of our
system, indicating, for each configuration, a different condition that the system is
in. During the game session external events may happen. These could be a both-
ering ray of light hitting on the player’s eyes or a sudden wind gust of unknown
intensity, both representable in the model by using IVARs. Finally, the number of
arrows to be shot in each turn and the distance to the target are frozen variables,
decided in fact before the beginning of the session.

This will be all we will need for our illustration purposes. The SMV model of
the system is shown in figure 4.3, which shows all the variables involved together
with their initial specifications and transitions. The choice of typing the variables
with discrete types is arbitrary.

All the code is contained in a MODULE main scope. Each SMV file needs
to have one main module in it, in order to hook up with the SMV engine. Each
file may optionally be provided with several modules, each accepting inputs for the
connection with other modules. In that case modules are to be instantiated in the
variable section of another existing module, such as the main module®.

The initial states of the system are specified by the init assignments and also
partially by the INVAR condition on the available arrows for the game. The way
the pressure load is specified indicates non deterministic assignment, meaning that

8The idea here is that different modules represent different system components. Al-
though separation of modules is not present in our simple example of figure 4.3, we will
extensively use this concept when describing our use cases of chapter 5. We believe that
this will be intuitive enough for the reader to follow.

65

1 MODUIE main

2 VAR pressure_load : 0..100;

3 heat : —50..50;

4 bow_elasticity : {low, normal, high };
5) turn : 1..10;

6 IVAR wind_intensity : integer;
ray_of_light : boolean;

8 FROZENVAR target_distance : 5..60;

9 arrows_to_shoot : {UNDEFINED, 5, 10, 15,
10 20, 25, MORE};

11

12 ASSIGN

13 init (pressure_load) = {0, 5, 10};

14 init (arrows_to_shoot) := UNDEFINED;

15 init (turn) := 1;

16 init (bow_elasticity) := normal;

17

18 next(turn) := (turn < 10) ? turn + 1 : 10;
19 next (bow_elasticity) :=

20 case

21 heat < —10 : low;

22 heat > 10 : high;

23 TRUE : normal;

24 esac;

25

26 TRANS next(pressure_load) = next(turn) = 9

27 | next(pressure_load) next(turn) x 10 ;

TRANS ray_of_light —> next(pressure_load) > pressure_load;
29 INVAR arrows_to_shoot !'= MORE;

O

Figure 4.3: The archery contestant: conditioned feelings in an open envi-
ronment

at the initial state the system is allowed to be either in a state where the variable
arrows_to_shoot is either 0, 5 or 10. Fictionally, this would mirror the initial feel-
ing of the contestant in respect to the game.

The transition relation of the system is specified by the next assignments and
by the TRANS and INVAR constraints. The turn increases at every time step
up to 10, which is the maximum. This denotes that session turns are evolution
step. The elasticity of the string is made dependent to the air temperature, which
is given by the heat. The heat itself is unconstraind, therefore it may get any value
from its domain, arbitrarily in time. Finally, the pressure load is constrained in two

66

points, in the TRANS constraints. The first constraint tells that the pressure load
for the player increases as the end of the session approaches, linearly by a factor
of 9 or 10, non-deterministically. The other constraint says that if the player gets
distracted by the ray of light, its pressure for the game will certainly rise. To con-
clude, notice that wind intensity would have no impact in this model and neither
would the distance from the target.

4.3.2 Model Extension

This section completes the description on the usage of XSAP for the part which
concerns the actual construction of the safety artifacts. Very high-level, XSAP
works on a nominal model, that we call the .smv file and a injection instruction
file, called . fes file (Fault Injection Instruction). The instruction file begins with
the following line:

FAULT EXTENSION <name>

After that, module extensions can be specified in the following lines, as short
sections. The extension of a generic module is specified as follows:

EXTENSION OF MODULE <module_name>
<injection_specification_with_slices >

Every module extension is defined by a number of slices. Slices are concurrent
entities that modify the module’s state variables. Every slice can be seen as a sin-
gle act of possible injections, that together determine the overall extension of the
module they refer to (hence the name).

Defined by means of mutually exclusive modes, that we will discuss in a moment,
each slice must specify which state variables it is bound to act on. Only state
variables can be subject of injections:
SLICE <name> AFFECTS <
affected_state_variable >
‘WITH
<...modes... >

Modes define the options for a slice to follow. They are mutually exclusive and
are to be intended as statements over a fault slice to behave in one way or another
based on the mode the system is in. For example, in a first degraded mode (arbi-
trary name) the system might malfunction and the slice would perform a certain
unwanted action on the variable affected by the slice. We might think of a car
slowing down (action on the state variable velocity) and consuming more energy
(action on the state variable energy) due to a tyre deflation in this case. In the
same slice we might additionally conceive a breakdown mode (another arbitrary
name), where a more severe contingency affects the system. We might think of a
car halting due to a sudden tyre burst, which makes the tyre flat and a consequent
immediate decrease of the supplied energy to 0.

Modes are specified referring to behaviours based on externally specified state ma-

chines. The platform allows for specifying this kind of machines arbitrarily. This
is a major strength of the tool that makes it extremely versatile. We do not need

67

this type of control for what concerns our explanation purposes, so we will stick,
only, to the machine derived from a stuck-at fault semantic, which is the only type
we will need in the second part to explain the concepts of this thesis.

We distinguish two variants: permanent and transient. We call those local dy-
namics®, we call the name of the fault relative to the specific machine an effect
mode. These names are taken from the user manual of the tool, to which we refer
for a more comprehensive view of the platform.

The state machine for any effect mode is composed of two states, named nom-
inal and faulty. There are two transitions: one going from nominal to faulty,
specifying the effect mode’s entering condition and one self-reentrant in the faulty
state, specifying the effect of staying in fault mode. For the stuck-at effect mode
this amounts to entering with a predetermined value and keeping that value while
the system is faulty.

The local dynamics is expressed by another state machine, that moves between
the two states of nominal and fault driven by events. Events are governed by in-
put variables from the nominal model. This means that the nominal model decides
through input variables when one mode should fail, or get fixed, or do whatever
the local dynamics asks it for. These are the only point of intersection between
the nominal model and the .fei file. We will refer to those input variable as
hook variables in the following, because they specify how fault machines can hook
to the nominal mode. In the example of a transient fault, the nominal model should
have two input variables, one for the occurrence of failure and one for the fix of the
fault that recovers the system in nominal conditions. For a permanent fault, the
fix event would be clearly aimless'®.

The specification of the transient stuck-at fault is expressed as follows:

MODE <name>: Transient
StuckAtByValue_I (

data term << <
value_to_ba_stuck —at >,

data input << <needed_var >,

data varout >> <affected_var >,

template self_fix = fixed,

event failure >> <hook_failure
>,

event fixed >> <hook_fix>

)
For the stuck-at fault that we present, the <needed_var> variable and the

<affected_var> variables are to be assigned to the same state variable of the
nominal model.

9This is opposed to the global dynamics between fault modes, that we do not see here.

0T here is a difference between the concept of an event and that of template, subtle
enough to be omitted. A note was worth the mention because both words will appear in
the .fei files of chapter 6 and below in the examples of this section.

68

The final skeleton for a .fei instruction file, given go_faulty and back nominal as
hook variables to affect variable var_value with a transient stuck-at fault, would
look like the following:

1 FAULT EXTENSION FE_SIMPLE

2

19
20
21

EXTENSION OF MODULE Simple
SLICE slicel AFFECIS var_value WITH

MODE stuckmode0

Transient StuckAtByValue I (

data term << 0,

data input << var_value ,
data varout >> var_value,
template self_fix = fixed,
event failure >> go_faulty ,
event fixed >> back_nominal

i
MODE stuckmode—1

Transient StuckAtByValue I (

data term << —1,

data input << var_value ,
data varout >> var_value ,
template self_fix = fixed,
event failure >> go_faulty ,
event fixed >> back_nominal

) ;

The platform comes with useful python scripts to run the analysis at no cost. If
TLE negated is an invariant property of the nominal file, the sequence of calls is
performed as follows (variants are not considered here):

python extend model.py -v <nominal>.smv <injection>.fei
python compute_ft.py -v --prop-name TLE negated Their meaning should be

clear at this point. Options are available for both scripts. For compute_ft.py the
interesting ones are the following;:

o —-engine: allows to pick one among bdd, bmc, ic3 and msat. The relative
algorithms described in section 4.2.2 are used correspondingly.

o -k: specifies the bound for the bme procedures (bmc and msat)

© --gen-traces: generates traces relative to the found cut sets of the tree.
This allows to determine the ordered sequence of faults that have to trigger
in order to reach the Top-Level Events corresponding to a minimal cut set.

The limited number of commands needed to run a safety analysis using XSAP is re-
markable. At this point should be palpable the extreme ease and non-intrusiveness
that is permitted by using the utilities of the platform. One shortcoming of the tool
is that is cannot work over infinite-state systems yet, although an extension is pro-
grammed by the authors for the future [54]. The significant datum is that XSAP has

69

over a decade development history, starting from its “ancestor” FSAP/NuSMV-SA
[22]. Moreover its integration with a cutting-edge tool such as the nuXmv model-
checker makes it a valuable choice for both academics and industry.

In the next chapters of the second part of the thesis we will see it in action over sim-

ple use case models of SOA-based Cyber-Physical System taken from the literature
and have the actual evidences that corroborate this impression.

70

Part 11

Novel Contributions

71

The state of the art: where are we?

In the first part of the thesis we discussed background knowledge and state-of-the-
art on the problem we are touching on. Here and there we gave hints about the
suitability of modeling and algorithmic techniques in relation to our study case.
This section is introductory to the second part of the thesis and gathers the notions
that we developed so far to give a collective view. In order to make the presenta-
tion of our novel contributions smoother, we briefly reconsider the tool availabilities
presented in the first part of the thesis (both theoretical, such as contracts, and
effective, namely XSAP) to direct how the various pieces can be fit together seam-
lessly in the next chapters.

Our work can be positioned at the intersection of many areas that we presented
in the first part. The domain is that of Cyber-Physical Systems deployed over
Service-Oriented Architectures. The literature, especially the part involving verifi-
cation and formal techniques, either keeps them in separate tracks or overlooks one
of the aspects. In the following part of the thesis we elucidate on our perception
of the problem, hopefully clearing up on the topic that considering both aspects
simultaneously can be beneficial for generality. The reason is the simplest: SOA
is finding application to the Cyber-Physical System domain because it is the most
natural choice for addressing easy distribution of components in a non-localized
area, modeling and verification techniques of both should meet to bolster on this
rationale.

Our considerations are the outcome of a thorough literature survey, that in more
than one case turned out to present similar conceptions for one domain or the
other. The most prominent example is on the modeling of services in SOA, that
we saw is outstandingly close to the concept of contracts developed for Cyber-
Physical Systems (cf. chapter 3). Moreover, the fact of treating our systems in
the context of SOA traces an explicit relation with the concepts of loose-coupled
distribution of work, temporality, network structure and controlled system interac-
tions, all of which are representative aspects of SOA that are or will soon be part
of the cyber-physical infrastructures. Having industry as a target of our study we
are particularly perceptive to this operational aspect.

In the next chapters we will demonstrate that keeping an inclusive view of the
two aspects can be gainful for research. As an example we will show in section
6.1.1 that the analysis of dependability in cyber-physical systems can benefit from
a separation between functionality and network topology, which is a concept ad-
vocated, for example, in [61]. From that we also took inspiration to consider two
levels of architecture, namely the functional level comprised of system dynamics
and the architectural level, concerned with changes in topology.

For the study of system dependability we will use model extension with automatic

construction of fault trees, exploiting the attributes featured by XSAP. For us to
make this possible we will have to rethink system modeling before XSAP and un-

73

derstand how standard engineering practice for system modeling can be braided to
it. We will have to deal with the fact that XSAP, based on nuXmv, is synchronous
and therefore it models evolution by definite simultaneous steps for all components.
Our adaptation will need to account for dynamics beyond the synchronous case,
for errors in communication and possibly for time delays. Similar issues arise for
contracts, which do not normally account for stateful evolution of systems with
time, especially in case of asynchronous feedback.

From here it starts our proactive involvement, starting from our recommendation of
the industrial language to prefer and going right to the modeling and dependabil-
ity assessment of systems, that takes into account all the previous background to
develop innovative techniques, pivoting on the functionalities provided by XSAP.

74

Chapter 5

Use Cases

In order to carry out our methodology under context we will make use of two sim-
ple study cases and their variants. They are respectively taken from another work
on SOA [73][71][72] and from an European-sponsored project named DANSE [43].
We will not merely transcribe those two models into our setting, but adapt them
and render with as few unnecessary details as possible and trying to keep pivotal
points that highlight our methodology, make up some if they are not present in the
original work.

We will start out the chapter by surveying, shortly, the existing system-design
methodologies for the modeling of SOA, among which we will pick one and later
use it to model and present our use cases. The modeling language is important in
order to help selecting the right level of abstraction for the models under consid-
eration. At the end of the thesis we report a proposed methodology to transform
models from the selected language to SMV files with fault extension in place. This
work has not yet been automatized but it is planned for future work.

5.1 Modeling Languages

SOAs traditionally distinguish service orchestration to service choreography. Or-
chestration features a director telling its ensemble how and when they should per-
form activities; choreography is more about a prepared collaborative strategy with
no central point of direction. The difference is a matter of control perspective.
For example orchestration is the activity that online shops provide on the internet:
upon demand for an item they orchestrate their own service, the payment service
and the shipping service for accomplishment of the delivery. Modeling a system in a
choreographic fashion would mean to have all components interchanging messages
independently, for the accomplishment of a common goal.

There are quite some ways to describe how an SOA is structured, from an im-
plementation viewpoint. Among the most popular languages we report WS-BPEL
[58], WS-CDL [91] OWL-S [77] and WSMO [92]. The focus while designing those
languages has been put on compositionality and interaction patterns. Here we refer
to [10], which discusses the applicability of those languages in the context of SOA.

75

The first two languages (WS-BPEL and WS-CDL) are based on process execu-
tion, meaning that, as modeling languages, they can be run. Both are based on
XML and are static, i.e. their behaviour, especially the composition patterns, can
be known in advance and is independent from execution time events. Their dif-
ference is on the modeling criterion: while WS-BPEL is used to describe service
orchestration, WS-CDL describes choreographies. We mentioned the distinction
between orchestration and choreography in the introduction, as the property of
having a centralized or a distributed control of the evolution.

OWL-S and WSMO are ontology-based dynamic languages, whose behaviour gets
defined during execution, based on information provided at runtime. The key dif-
ference between the two languages is in what they put in the spotlight: services
for the former and its own ontology the latter. OWL-S distinguishes four types
of ontology, that separate their behaviour in what we would call, inspired by our
contract basis of chapter 3, viewpoints. These comprise the functional and the non-
functional view and can be expressed by a choice among three ontology expression
languages, namely SWRL, DRS and KIF. Neither of them has a clearly understood
companion semantics. Because of the variability of languages for expressing logical
formulas, OWL-S can be adapted both to describe systems based on orchestration
and choreography. We refer to [65] for a neat and deeper comparison between the
two languages.

We are not interested in process execution modeling languages, because our work
has more abstract applicability than implementation. However, understanding the
features of those languages lets us understand the principles of SOAs, as a reflec-
tion of their constructs: the distinction between orchestration and choreography,
the need for complex interaction patterns and the separation between timing and
functional viewpoint are some of these significant features. Importantly, their co-
existence is not accidental and neither it is competitive: they are different solution
languages for the implementation of SOA under different, maybe intersecting, sce-
narios.

Ultimately, we will need means for the modeling of SOAs, free of all domain-
dependent details. We will need a design language for only capturing the most
effective traits of the architecture, inclined toward verification. BPMN can be cast
as such a choice [25]. It provides a graphical language to specify service interac-
tions as workflow activity diagrams, similar to UML’s, but with a clearer semantics.
Although appropriate for the description of web services, BPMN finds hindrances
when it comes to face cyber-physical dynamics.

More common, especially in industry, is the adoption of UML with its extensions,
one notable being SysML [85]. We assume here a basic knowledge about the UML
language by the reader and hint at the features introduced by SysML. The central
feature is the introduction of system views for the modeling of physical components’
interactions. The design is subdivided into design of structure, design of behaviour
and requirements specification. These are supported, respectively, by the following:

1. Structure, comprising Package Diagram, the Block Definition Diagram, the

76

SysML Diagram

P e |
Behavior ! Requirement | Struecture
Diagram I Diagram ' Diagram
Acthvity Seguence State Machine Use Case Block Definition Internal Block Package
Diagram Diagram Diagram Diagram Diagram Diagram
-
I Pamametric |
1 Diagram
SameasuML2 | ememm=- |
Modified from UML 2

Figure 5.1: Diagram types for SysML image taken from http://www.omgsysml.org/

Internal Block Diagram and the Parametric Diagram;

2. Behaviour, comprising the Activity Diagram, the Sequence Diagram, the State
Machine Diagram and the Use Case Diagram

3. Requirements, comprising the Requirements Diagram.

Figure 5.1 gives the graphical representation of this diagram type hierarchy.

Most of the diagrams are taken straight from UML, others are lightly modified
to system engineering. For example, block diagrams are the equivalent of UML
class diagrams tweaked to describe system components, or internal block diagrams
are another facet of UML’s composite structure diagrams where the component
is described at its functional level, introducing flow ports. The parametric and
requirements diagrams are novel and are used, respectively, to indicate paramet-
ric constraints between structural elements and functional /non-functional require-
ments on system components. Please refer to [85] for a more complete description
of SysML features.

In SOA design, it is not enough to rely on the features described above, because
there are parts, such as the system architecture, that need to be treated with spe-
cialized care. Aware of these matters, the research community have proposed some
adaptations or extensions of UML [81][81], neither of which standardized and thus
growing no appeal to general industry.

Exception to this rule is given by SoaML, OMG standard [83]. SoaML makes
the following diagrams available!

e Service Interface diagram: it defines the programmatic interfaces used by
participants.

e Participants Diagram: it describes the behaviour of a single service, or partic-
ipant, using ports at the interface level. They can be receptive ports (request

'The complete description of them is beyond the scope of the thesis. Refer to [83][84]
for a wider view on the topic.

7

ports), service provision ports (service ports) and declare the use of specific
service interfaces.

o Service Contract Diagram: it defines the SoaML service contracts, or s-
contracts®. S-contracts are single interactions patterns connecting partic-
ipants’ interface ports. Any number of participants can partake any s-
contract.

e Service Architecture Diagram: it defines the architectural interactions be-
tween participants through the modeling of roles participating in s-contracts.

e Capability diagram: it defines the relations between services using the <uses stereo-
type.

o Message Diagram: it defines the type of exchanged messages

The core of SoaML is on the definition of the Service Architecture Diagram. Let
us suppose that an s-contract defines a costumer-retailer single interaction. The
s-contract will be defined on the two linked roles of server producer and requesting
consumer. We would have two participant diagrams, costumer and retailer, that
expose a request port and a service port, respectively. Finally the two types of
diagrams would be combined into the service architecture diagram, that links the
costumer participant to the s-contract in the role of consumer, while the retailer
participant to the role of producer. The link between participants and roles is given
by the service interface diagram. More complex architectures can be defined, pos-
sibly involving more than one s-contract and more than two participants.

SoaML has been designed for the definition of web services, but it has retained
not much domain specificity from there. The view is on constructing the service
architecture, using interface relations between participants. Using SysML for the
functional and requirement part of the specification we can combine the two mod-
eling languages and obtain the separation between functionality and architecture
that we previously advocated in section 2.2. This is good for other reasons, mainly
related to industry needs and corresponding engineering’s familiarity with UML
and their derivations. But also notice that the languages are both standard and
not domain-specific. They have disjoint non-conflicting types of diagrams that thus
do not lead to conflicts. Finally they can optionally be used each one alone, when-
ever use case descriptions do not need the other.

Let us try to explicate what is the gist underlying our just-made assertions: let
us ask ourselves why could we not use alternative languages such as AADL, for
example [1]. After a short analysis one can easily find out that AADL is rather
complicated for the average engineer, whereas she would have more confidence with
UML and derivative languages. Moreover, as mentioned in section 2.3.3, AADL
does not have support for services and the complex fault model it provides would
only be of little use for us, because faults are trivial in most of the cases that we

2Alas, contracts. Please notice that this kind of contracts have nothing to do with the
contracts of chapter 3. It is for convenience that we distinguish the two concepts calling
SoaML contracts s-contracts.

78

are willing to consider>.

The combination of SysML and SoaML, that we will hereafter refer to as SYsML+4SoAML,
seems to be the perfect fit to our needs. We would like to remark, however, that

most of the novelty presented in this thesis is independent from the particular lan-

guage employed: under similar conditions and with a little bit of massaging, the

same techniques could be recovered for other kinds of modeling languages.

5.2 The simplified CAE example

The first use case that we present is a simplified version of the CAE (Concept
Alignment Example) emergency response system, taken from the DANSE european
project deliverable D3.3 [44] and representative of a number of study cases aimed
at the organization of safety plans for the associative recovery from alarming sit-
uations. Dependability on those structures is in most cases critical for people safety.

The reason why we chose this example was to specifically model the evolution-
ary development of SOA-based systems in terms of participants arbitrarily leaving
the playboard. This is not new to the literature as already present, e.g., in [57] and
[56]. The CAE system that we will present is a simplified version that highlights
the key features of our approach. The scenario is that of a urban area, a District,
that relies on a Fire Station to prevent unexpected fire explosions to burn over.
The Fire Station has a number of Fire Fighting Cars available, 5 in our specific
case, that it can send to mitigate the fire. We assume that one car is always enough
to the district in order to mitigate one fire explosion.

The SOA structure is that of the 7 participants (the District, the Station and the
5 Cars) communicating with each other according to agreed modes (see figure 5.2).
Upon fire, the District sends a help request to the Fire Station. The Fire Station
immediately gathers its available resources and sends a signal to one of its Cars to
reach the place. At that point the Car readily moves on the district, extinguishes
fire and sends an acknowledgement to the district. Then it goes back to the Fire
Station sending a message of mission accomplished. This makes the Fire Station
acknowledge that the car is back operative once it gets to the station. We assume
that a car needs to go back to the station whenever it quenches one fireburst (to
refuel, alternate firemen, ...). This emergency response process reiterates whenever
needed against any new fire explosions upon service unavailability (i.e. when no
more cars are available to send).

The activity diagram of the CAE for one car is presented in figure 5.3.

Virtually we could back the process by an actual SOA interaction pattern whose
shallow communications are only the eventual service bindings. For example, upon
fire, the District, personified by a district inhabitant, might call an emergency num-
ber and ask for a service that could extinguish the fire. The emergency number will

3Potentially, if this was not the case, we could construct the model design with our
UML derivatives and ask interactively to the user which faults to insert, to be chosen from
a limited fixed library of a few. Notice that this approach would resemble the work in [23]

79

Bl District

=] FireStation

T

= | FireFightingCar

Figure 5.2: The CAE interaction block diagram.

oD Onfire On Fire XH EE“EEE‘ENEG {O Nominal] ®

Wait

On Fire [Emergency Go! Go back) Waiting
OH Response X — car @

Wait

District

Activity
FireStation

Fire
Estinguished

Gaol (I Car Going Car Working Going
O O
{on place) Back @
Go back 4

Figure 5.3: The CAE activity diagram for one car.

FireFightingCar

ensure that the citizen can tell the correct address and problem, then it redirects
the call to the district’s Fire Station, which after understanding the problem and
location sends signals to the Cars. Signals to the cars could as well be treated in
a service-oriented fashion, by backing on a service that arranges cars according to
availability and as a matter of fact this kind of reasoning can be carried out for all
communications and is left to the imagination of the reader.

We decided not to model all those details for ease of exposition and to keep our use
case as simple as possible.

5.3 The SOA based Thermostat

In this section we will present a simple use case that we took from [71] and adapted
to our needs. It is about a SOA representation of a thermostat control system, ca-
pable of regulating itself by globally choreographing services provided by a sensor,
a controller and an control actuator device.

80

Real interaction

Model interaction

Actuator
[Heater)

<< Send the Heat ==

<< Send theW emperature => << Send thelontrol Signal ==

Control Device

Figure 5.4: The SOA thermostat interaction model. The real heat supply
and sensing of the temperature is abstracted in the model by communicating
the heat supply and computation of the temperature.

We first give an overview of the system and its components, plus an intuition about
the differences with respect to [71] and new goals. After that we give a textual
specification of the system with an interface contractual model and define the fault
modalities that the system is subject to.

At the end of the section we provide the SYSML+S0OAML system design of the use
case.

5.3.1 System Description

The thermostat system is composed of three participants: a Thermocouple that
senses the heat and translates it to temperature, a Controller that sends a control
signal to the actuator given the temperature sensed by the Thermocouple and the
Heater that actuates the heat supply according to the control signal. As in the
source paper, we fictionally assume that the temperature is not directly sensed by
the thermocouple from the environment, but instead computed by the thermocou-
ple, internally, after it gets the heat supply from the actuator. In other words the
real phase of providing heat to the environment and sensing it back to the system
through the thermocouple is abstracted by a SOA communication between the ac-
tuator and the thermocouple and internal computation of the latter. The system
is depicted in figure 5.4.

The work in [71] presents a technique for the injection of faults in the system

at the network level, that modifyes the XML formatted messages of SOAP using
a unwrap-modify-rewrap procedure at the endpoints of the communication. For

81

their use case, the authors are interested in studying the latencies that the network
is subject to, under these injected faults. Their work is interested in software fault
injection (network fault injection to be fair) rather than model extension.

Although applying at different points in the design process, both our approach
and that in [71] aim at the system dependability assessment; as a consequence,
their needs are similar to ours. We will try to be more comprehensive though,
presenting an extensive treatment of system requirements. Not all of them we plan
to verify, however an extensive list shall be guidance of our work and exposition of
our needs.

5.3.2 System Specification

The thermostat example is valuable because of its simplicity, allowing us to pursue
our methodological approach bare of all intricacies. Still it is close enough to the
Cyber-Physical world and not subject to the high dynamicity typical of SOAs. The
example is also available for extensions, by either refining the single system com-
ponents (introducing redundancies for example) or enlarging the whole system by
introduction of new components (such as a new thermocouple placed somewhere,
distant from the other). Possibly we could even add a human supervisor, as sug-
gested in [71], that regulates a new reference level of temperature by communicating
it to the thermostat system using a finite timed machine, or maybe add sudden un-
expected events specific to the application, such as the opening of a window in a
room making the temperature instantly drop. We shall extend our methodology
further towards the dynamicity aspects of SOAs only later, when the static features
will be all covered.

For the sake of fiction, we assume that the environment embedding/needing the
devices is a space surrounded by walls, where the colder external ambient is big
enough to neglect any temperature variation due to heat transfer. We will call
this space a room — which has a tangible intuition of a specific structure — and
will parameterize it as if it were a room in a building, but it could equally well be
a biological cell in a liquid (with some fanciful way of transfering heat to it) or a
sphere full of gas whose interest in keeping a hot temperature comes from a physical
experiment. It is beyond the scope of our work to present a sound and accurate
model of the system, so we will just present one that can be taken as input for our
analysis and features the relevant aspects of the SOA interactions.

We thus outline in the next short sections a number of desirable functional and
non functional properties on the thermostat architecture, that altogether provide
the system specification. For the sake of completeness we also report, in figure 5.5
and following, the SYSML+SOAML description of the Thermostat use case. The
parameterization of the systems will be explicitly specified in section 5.3.4.

Remark 1 (A note on participant’s interactions). Every communication is charac-
terized by two participants, having the receiver put a service request on the channel
and the sender accordingly reply to it with the value information, thus fulfilling the
service. This point reveals, undeniable, the lack of dynamicity that the system
presents, mentioned at the beginning of the section. Our simple use case features

82

2]

Thermocouple

£]

Controller

—] D/Q

Heater

Figure 5.5: The SysML+SoAML description of the Thermostat use case - Block

Diagram
= =<Participant=> ==Participant==
<<Participant=> Heater
ThermoCouple Controller
Heat T l< T 1 T< u Heat
Figure 5.6: Sensor Figure 5.7: Con- Figure 5.8: Heater
Participant troller Participant Participant
e o ==JerviceContract=> T
= Sensing Contract T
;'/ N
i T T by
."I Sensing =none= I,/’ Collaboration : Sensing - <none= | Temperature ‘\.I
provider: |ooeeeooo. i Contract “— Consumer : !
L o i i
3 - w ;
R //.
- e

Figure 5.9: The SYsML-+SoAML description of the Thermostat use case - Sensing
Contract Diagram

in fact, over and over, the exact same message exchanges, between the same par-
ticipants, requesting the same services and under a persistent kind of binding. All
those are rigid conditions considering the more typical SOA scenario where a ded-
icated third party is engaged every time a service is needed, where there is no
guarantee of participants (or services more generally) to endure and where not as

83

o <=<ServiceContract>

s .
o Control Contract T
- =
/:' -
4 Control = T Contral) *,
4 e =NON&= " Cpllaboration : Contrgl .. <NONE= o b,
S |—— i Y— = |
{ [Contract | i
4 \\ . b
3 . - J
N e /
\\\ >

Figure 5.10: The SysML+SoAML description of the Thermostat use case - Con-
trol Contract Diagram

'/"-/ ==ServiceContract== -
-~ Heating Contract e

Heat provider: e] e
- =NONE= " -~ Collaboration : Heating ~~-_<nane=>

| Contract E—

Heat calculator :

Figure 5.11: The SysML+SoAML description of the Thermostat use case - Heat-
ing Contract Diagram

much procedural and well-defined behaviour is to be expected. For this phase of our
study, however, we will stick to this option and engage in more dynamicity later.
This will allow us to unfold the analysis on the (simpler and static) SOA based
Cyber-Physical setting with an involvement of control, which is a seldom studied
case in the literature.

The Thermostat

As an overall system, the thermostat is given the reference temperature as input
and returns the sensing of the temperature at a regular rate. After restricting
the reference temperature to lay, sensibly, between 15°C and 25°C, we require the
system to always stabilize within 10 minutes.

rl The reference temperature will be given in °C and range in [15, 25]

84

Thermostat Architecture

E thermocouple :
ThermoCouple

=none=

;/- heat

Heating

<none> }

S

" sensing: .

Sensing
. Contract

<
o

.. Contract

" =none=

w

controller :

=] heater: Heater

;

=none=;
I
e

/7 control:

Control
. Contract

<ngpes

Y

;
s

k. 1= Controller r

Figure 5.12: The SysML+SoaML description of the Thermostat use case - Ser-
vice Architecture Diagram

r2 The system reaches the reference temperature within 10 minutes and never
deviates of more than 1°C thereafter (unless the reference temperature itself
is changed).

The Thermocouple

The Thermocouple senses the environment at the rate of one second. In our model
convention this simply translates to saying that the Sensing Device sends the tem-
perature no earlier than every second to the Control Device (assuming, of course,
that a single measurement is never sent twice to the Controller).

For the thermocouple we require that the heat supply doesn’t get too intense, case
in which the thermocouple in not functional (too much heat on the sensors might
lead to high internal temperatures and breakdowns). Under favorable conditions,
although, the thermocouple ensures a time-proportional rise in the temperature of
the room, according to how much the heat supply outdoes the maximum dissipation
allowed for the room.

The maximum dissipation depends on the size of the room and its level of in-
sulation. Based on the calculations presented in the next section (and the power
of our actuator), we assume that the maximum dissipation amounts to 7500KW.
Requirements r4 and rb are particular demands on temperature increase per second.

r4 The thermocouple is able to work against power levels no higher than 70KW.

r5 If the heater supplies energy at 2100W more than the maximum dissipation|
(7.5KW), the temperature sensed by the thermocouple increases by a rate of]
0.06°C per second. the reference temperature itself is changed).

85

r6 If the heater supplies energy at exactly the maximum dissipation (7.5KW)
or up to 10W more, the temperature sensed by the thermocouple increases
by a rate of no more than 0.0003°C per second.

The Controller

The Control Device has a constant reference temperature threshold as input, sen-
sibly to be set between 14°C and 28°C, plus the temperature feedback from the
Thermocouple that is assumed never to be lower than 0°C nor higher than 30°C.
The output is given by a control signal, meant for the actuator, for the calculation
of the energy value of the heat. The control signal takes values in the continuous
interval [—1,1], where -1 means that the temperature should be lowered, 0 kept
constant and 1 that it should be increased.

r7 The heat controller is able to bring the temperature of the room up to steady|
14°C-28°C.

r8 The temperature sent to the controller is assumed never to be below zero,
neither higher than 30°C

r9 The output of the heat controller ranges continuously between -1 and 1:
negative values will signal the need of lowering the temperature level, positive
values increasing it and 0 to keep it steady.

The Heater

The Heater energy supply would exercise continuously in the real world, but in
our model representation it couldn’t, due to the latencies introduced by the SOAP
transmission. For the sake of our modeling purposes, we assume that the Actuator
sends a heat signal to the Sensing Device in the form of an energy derivative. This
value gets summed up to the current energy value of the environment system, which
should take into account energy dissipations.

The Heater can supply energy from 0 to 10 KW. The actual value is internally
calculated by the Heater, accounting for the input signal, and then actuated. The
input signal takes values in the continuous interval [—1, 1], where -1 means that the
temperature should be lowered, 0 kept constant and 1 that it should be increased.
The heater ensures it will always respond with a positive heat supply to a positive
input signal.

r10 The heater can supply energy from 0 to 10 KW.

rll For the heater to work properly, input signals must always range withinl
[-1,1].

r12 Positive values on the input signal always imply positive heat supplies by the|
heater.

86

Id Requirement A/G Component

rl The reference temperature will be given in °C and range in [15.25] A System

r2 The system reaches the reference temperature within 10 minutes and never G System
deviates of more than 1°C thereafter.

r3 The thermocouple is able to work against power levels no higher than 70KW. A Sensor

r4 If the heater supplies energy at 2100W more than the maximum dissipation G Sensor
(7.5KW). the temperature sensed by the thermocouple increases by a rate of
0.06°C per second.

r5 If the heater supplies energy at exactly the maximum dissipation (7.5KW) or up G Sensor
to 10W more. the temperature sensed by the thermocouple increases by a rate of
1o more than 0.0003°C per second.

r6 The heat controller is able to bring the temperature of the room up to steady A Controller
14°C-28°C.

r7 The temperature sent to the controller is assumed never to be below zero. neither A Controller
higher than 30°C

r8 The output of the heat controller ranges continuously between -1 and 1: negative G Controller
values will signal the need of lowering the temperature level. positive values
increasing it and 0 to keep it steady.

19 The heater can supply energy from 0 to 10 KW. G Heater

rl0 For the heater to work properly. input signals must always range within [-1. 1]. A Heater

rll Positive values on the input signal always imply positive heat supplies by the G Heater
heater.

Table 1. Requirements for the Thermostat system, tagged with the assuption/guarantee label and component

In the following the symbol & denotes input variables, (-) denctes output variables.

* System Contract: Variables: ®ref. OT"
Contract: ([15 < ref < 25], [T =ref within [600 s]] and
[T°=ref] implies [[ref-1 < T* < reft+1] always] always

* Refinement:
o Thermocouple: Variables: ®heat, @T. OT"
Contract: ([0 < heat < 70000] and [T[0]=0],
[heat=7500+2100] implies [T" > T+0.06] within [1 s]
)

A

([0 < heat = 70000] and [T[0]=0],
[7500 = heat = 7500+10] implies [T < T’ < T+3e-4] within [1 s]
)

A

([0 < heat = 70000] and [T[0]=0], [True])

o Control Device: Variables: ®ref, ®T". Ou
Contract: ([14 =ref < 28] and [0 = T" = 30], [T’ < ref] implies [0 <u < 1])
A

([14 <ref< 28] and [0 =T < 30],[T" = ref] implies [-1 <u < 0])

o Heater: Variables: @u. (Dheat
Contract: ([-1 <u < 1], [u> 0] implies [heat = 0]])
A

([-1 £u=1], [0 < heat < 10000])

Figure 5.13: The compact specification of the Thermostat use case

87

5.3.3 Contracts

All participants are independent from each other, which amounts to acknowledg-
ing every interaction as asynchrounous, overlooking at the rest of the system, even
ignoring its very existence. Service-based communication and independence of the
participants (sometimes called loose-coupling) is an important aspect of SOA based
systems, that is retained by our use case (cf. section 2.2). The contract interfaces
of the system at the functional level are presented in figure 5.13 using the BCL
language [52]. They formalize the requirements r1-r11 provided in the system spec-
ification that we report, compactly, in the same figure, Table 1.

Clearly the system at hand is feedback-based, thus the composition could be given
as a parallel composition of each component. Here there is an hindrance preventing
us to do that, namely the notion of elapsing time. As a matter of fact the Top-Level
contract is expressed using a range of 600 seconds, whereas the single components
are defined by timings smaller than 1 second. In order to reach the bound of 600
seconds we need a contract reiteration, persistent up to 600 steps at least. Moreover
we have the notion of temperature changing over time, that increases according to
the contract specification. Given these very sketched reasons, we acknowledge of
not being able to rely on the contract framework of chapter 3 barely, because the
operator of parallel composition cannot be used at support in front of such subtle
trickinesses. However we can reduce to contract’s parallel composition, unfolding
the contract specification across scores of different contracts.

The idea is to devise one contract for each time step, knowing that the dura-
tion of one timestep is 1 second. The starting point, the base case, is the contract
composition of the three components at time ¢t = 0. Here we have a temperature of
0°C, known from requirements. We rename the output port heat of the Heater as
heaty and put the three contracts in parallel composition. This gives us component
Thermostaty. Using a similar trick we can rename the input port of the Thermo-
couple as heaty and the output port of the Heater as heat,. Parallel composition
of those would produce the component Thermostat;. Reiterating the process 600
times would finally produce the whole set {Thermostat; }o<i<¢oo of interface com-
ponents.

At the end, the parallel composition of these new components gives the final
component that takes the reference temperature ref as an input and returns
Thermostatggg as an output, where inputs and outputs are intended as per sec-
tion 3.2. An easy algebraic analysis shows that the resulting composite contract
refines the Top-Level interface contract of the Thermostat, implying that all imple-
mentations of the one are implementations of the other (cf. chapter 3). This fact
will turn out to be key for scalability in section 6.1.2.

The interesting part here is that there is a notion of computation underlying the
unfolding, which makes the resulting contract composite. In our case it would be
an unbounded unfolding that we can end by the domain knowledge of 600 steps
be enough. If we were to automate the satisfaction checking, a great opportunity
would be given to us for free by exploiting the SMT-based BMC features of the
nuXmv solver. Once again we stress how the reliance upon such a multi-purpose

88

tool can come in handy in many circumstances.

Although we did not thoroughly follow a systematic computer-based refinement
checking procedure for the contract of the thermostat, it is easy to speculate that
automation would both be feasible and necessary, especially on models of growing
complexity. We postpone the in-depth study of this aspects to future work and
instead focus on the analysis and integration of existing and new techniques to
understand their predisposition for the assessment of system dependability.

5.3.4 Implementation Model

We conclude the chapter by a description of the interface components that we de-
vised in view of simulation and dependability assessment needed in next chapter.
Here we describe separately the Thermocouple component, the Controller and the
Heater, explaining the actual system modeling and choice of parameters.

For our use case example, the Thermocouple participant would have to calculate
internally the actual dynamics of the physical system. For explanatory purposes
we will calculate the energy of the system by supplying the heat provided by the
Actuator to the internal energy of the system, which we will assume be decaying
according to a basic heat conduction system. We take [89] as a reference for the
involved equation, that we report here:

onut
dt
Here Q¢ is a time-dependent variable that measures the heat natural dissipation
in homogeneous conditions, aona = [5,20] W/(m? - K) is the heat-transfer coeffi-
cient of the wall, A = [50,500] m? is the surface of the room exposed to the outside,
T is the temperature of the room and T, is the ambient temperature facing the
wall on the outside.

= Qoond - A+ (T —Ty) (5.1)

For simplicity we assume that once the heat is supplied, the whole system en-
tirely gains it, homogeneously, in the delta fraction of time that the adopted step
calculation is on. In this way we can add the heat to the internal energy of the
room algebraically and, consequently, assume that the final temperature is homo-
geneous in the room. We also assume that there are no other heat dissipations than
conduction through the walls and that the heat supplied by the Actuator is passed
sharply and net to the Sensing Device. Moreover we require T, constant at 0°C,
so that it can be removed from the equation above. A more complex and accurate
system of equations could be devised, but that is beyond our goals for the simple
use case at hand.

The heat supply from the Actuator will thus contribute positively to the inter-
nal energy of the room, whereas the dissipation will be wasted energy. The new
temperature of the room, 7", can be found from the well known heat equation
AQ =Cs;-m-(T"—T) and combined with 5.1 in AQ ¢, as:

T/ _ AC?room +T = fAtheat dt — AQout +T = At - heat — AQout

Cs-m Cs-m Cs-m

+T (5.2)

89

...where C's = [1000,1015] J/(Kg - K) is the [isobaric] specific heat of air and

m = [35,400] kg is the mass of air in the room?.

The Control Device can be implemented by a PID controller [7], whose parameters
can be optimized manually, whereas the heater can be simulated by a function that
transforms the input in a heat value according to its contract. We decided that the
named function would have to behave according to the following formula:

heat = min(heat + 200 - u, 10000)

...starting from heat = 0 and provided 10000 the maximum bound of 1I0KW avail-
able to the heater and u the control signal. It will be the controller’s duty to input
sensible values of u for the temperature regulation. If Err = (Tref —T') represents
the deviation from the reference temperature, we obtain the value of the control
input signal as:

dE
w=K, Err+K;- | Errdt+Kq “—

5.3
N % (5.3)

In order to understand what sensible parameters the PID controller should be tuned
with, we made simulation experiments using the Matlab/SimuLink framework. The
same parameters were then used for the nuXmv model of the thermostat. The top
level view of the Matlab/SimuLink model is presented in figure 5.14, where the
dynamics of the model are encoded into the single blocks.

We set up the following simulation parameters (that we will retain in the nuXmv
model):

Qcond = 5W/(m2 . K) m = 35/€g At = 1s
C, = 1000J/(Kg-K) A = 50m? Trey = 293K

Under those conditions, the best PID controller was found, manually, by setting
the proportional and derivative gain respectively to K, = 0.02 and K4 = 1.5 and
excluding the integral component (i.e. K; = 0). The resulting fault-free functional
system, whose performance are reported in figure 5.15, would thus be able to sat-
isfy the top-level contract of the thermostat specification, which asked the system
to reach the reference temperature within 600s and stabilize. Notice that, as a
result of the simulation, we did not prove that the system contract is satisfied: to
do that we would have to show that a similar stabilization property is available
against all reference temperatures within 15°C and 25°C. We became confident of
that property being true, however, after observing that for the boundary cases (i.e.
Trey = 15°C and T;..; = 25°C) the system would similarly stabilize before 350s
as in figure 5.15, never exceeding the 1°C error as the contract demands. For the
sake of completeness, in figure 5.16 and 5.17 we also report the time evolution of
respectively the input signal v and the heat.

“Values for C; are taken from http://en.wikipedia.org/wiki/Heat_capacity and
approximated. The mass of air in the room is found by an application of the ideal gas
law at latm pressure at a temperature level between 0°C and 30°C, assuming the size
of the room between 30m® and 300m® and approximating the molar mass of [dry] air as
0.029kg/mol (plus rounding).

90

Temperature
(output)

Eﬂ* Heat Supplied

Thermocouple Heater

T unit_heat [+ unit_heat u

» T
u R[]
Tref Tref
Caontrol Signal

Reference Cortroller
(input)

Figure 5.14: Top-level view of the Matlab/SimuLink thermostat model

Notice that the proposed Matlab/SimuLink model intentionally focuses on the nom-
inal dynamics of a system without latencies. It was not the modeling of the system
as a SOA the purpose of our analysis; it was just resolving on the needed condi-
tions that our thermostat architecture should be bound to operate in, in order to
set sensible parameters to the nuXmv model that we will will have develop in the
next chapter, section 6.1. There we will see the SOA essentials going on stage.

91

B Temperature (output) e o ke

EEICERIEFERIEERS B

B control Signal o] (e
EEIE R IFERIET R -

1000

Figure 5.16: Functional performance of the thermostat model: Input signal
U

92

Bl Heat Supplied = S|
EEIEERIFERIEEES 2

1000

Figure 5.17: Functional performance of the thermostat model: Heat

93

94

Chapter 6

XSAP injection

In chapter 5 we presented our two use case examples, the simplified CAE and the
room thermostat. Our line of exposition was to present the easier model first and
then increase complexity. In this chapter we will swap the order around, presenting
the injections of the thermostat example before the injections on the CAE. The
reasons for that are manifold. First we will see that the injections on the thermo-
stat are standard, once the structure is up. We can follow a procedural approach
for that, it will highlight the importance of treating participants as stand-alone,
livening our previous discussions up to a concrete instance. The injections on the
CAE example are equally precious, but they will stimulate more questions and thus
open our outlook to new research opportunities. The CAE has no physics going
on, it is all about the topological transformations of the system and the temporal
schedule of the participants, where interruption of services (like car unavailability)
is the only thing that really counts. Once their description are identified, going
from the thermostat style of dependability assessment to the CAE’s is only a mat-
ter of elevating the description tier one step up.

For both examples we will present the fault modalities, the nominal nuXmv model,
the fault injection and the results. All the experimental evaluations are performed
on a Intel I5-2520M machine at 2.5GHz 3GB RAM, running the commands below.

python extend model.py -v <model4injection>.smv <injection>.fei
python compute_ft.py -v --prop-name TLE negated

--engine=[bdd, bmc, ic3, msat]

python view_ft.py -v

These will make more sense in a while. After that we will propose a novel approach
for contract-based system design, that exploits duality of fault tree construction to
construct what we will call suggestion trees or planning tableauz, based on whether
they will be aimed at design or at planning. We will conclude by briefly expressing
how we could combine the given approaches in the last segment of the chapter.

95

6.1 Thermostat injection

Given the static interconnections of our use case, we will be only interested in faults
at the service level, abstracting away all other typical subtleties regarding service
request[27], discovery and binding which are left as part for future work.

Generally, SOA service faults can either originate from internal malfunctions of the
single participants or from connections dropping between communicating processes.
In both cases we may assume that, once the binding between two participants is
broken, it is re-established, somehow, some time later. This models the fact that
an intermediate dynamic service broker interaction might come into the picture to
provide another binding with either the same server or another providing the same
functionalities, this bypassing our model’s perspective unnoticed. From the single
participant’s perspective, this details regarding the drop of service are not relevant.
This fits the SOA principle of loose-coupling and suggests that the error model can
be approached using contract-based independence.

6.1.1 Fault Modalities

Faults in the Thermostat example or alike can happen in relation to the functional
aspects of the system or to the delivered Quality-of-Service. Functionality issues
can happen if one of the services that the participant is making use of is affected by
behavioral issues. This case can be analyzed pretty much with standard techniques
and requires no more than a conventional handling where participants are repre-
sented as embedded system components and communications as relations on ports.
In this sense, system malfunction can be studied using standard model extension
[23] or, faithful to the contractual view of the system, it can be treated as contract
violation, using techniques similar to [20].

The story is different if we are willing to embrace Quality-of-Service requirements,
i.e. non-functional properties, on our system. Those mainly relate to time prop-
erties of communication (such as latencies, jitter, round-trip time, ...) and are
paramount for the correct serving of [distributed] Cyber-Physical Systems. In the
case under analysis, delays in communications can stream out-of-date messages in
the network, making the internal partial representation of the system of each par-
ticipant inconsistent with reality, possibly leading the system itself to a crash, and
with poor diagnostic information.

An effective way to inject model faults as latencies is thus essential for the system
dependability assessment. We thought of two ways how this could be achieved,
both important, in principle, for differentiating on how system design should be
approached. The first option defines, for each participant, contracts including the
latency view, using time in a global sense. For example the contract for the Ther-
mocouple can be restated replacing the assumptions [0 < heat < 70000] with the
timed [0 < heat < 70000] and [t < 2.5], saying that the Thermocouple guarantees
to provide a good functioning only if the time value is less than 2.5 (seconds), with
the intended semantics of realizing the increase in temperature according to guar-
antees only if the heat signal reaches the Thermocouple early enough in the cyclic
sequence of interaction.

96

This first option forces the participants’ contract model to take on time-related
variables, such as ¢, defined at the global scope. This is a hack, because it goes
against the principle of loose-coupling and independence of contracts. Nonetheless
it can be a valid option if the language used to specify the analysis constraints
offers native support for time semantics on transitions and thus does not need the
coerced introduction of a special variable intentionally for that purpose. Languages
for the specification of timed dynamics of systems might be suitable for this kind
of contract specification and the fault injection would operate changing transition
times between system states at the global level. We are interested in a more local-
ized understanding of the timing view.

Possibly, as our second option, we could create, for each input and output vari-
able of a single participant, an associated time port, serving for the communication
of latencies. In our example, the Thermocouple would have the additional input
port theqr (that would also appear as an output port for the Heater) and the output
port t7 (input port for the Controller), bound to communicate the time that the
message needs to reach the receiver from the moment it is created. We will refer
to those additional ports as latency ports, even though the term latency is used in
a broad sense to comprehend the more general notion of time.

Now, to be fair to our previous discussion, we would have to answer the question:
Aren’t latency ports themselves an hack to the model?. As a matter of fact there
never is an explicit intentional communication of latency coming from the sender,
being the sender unable to determine it in the first place. However, even from the
perspective of a real-life implementation, once the receiver gets the message, it is
in position to recover this information by using timing information contained in
the message (timestamps) or by simply recording after how much time from the
request, it gets the response from the addressed service!. Therefore we do not re-
gard the action of giving value to a port as the action of the sender to stream a
message on the channel (sender-side), but rather as the action of the receiver to
acquire that information, regardless of where the information entered the channel
from (receiver-side).

So latency ports are not an hack, they are a useful fancy way to look at the problem
of modeling time information. They have the advantage of building a new part of
the message grid, topologically isomorphic to the previous, with the nice property
of leaving non-functional aspects in their own scope (i.e. without necessarily —
although possibly — mixing with the functional specification of the model). We
will make a step further from there though: we will introduce the network as a
separate living entity, interposed to every communication, bound to scramble mes-
sages around.

To be more precise, the network deals with two sorts of messages, functional and

'Notice that this procedure relies on a global notion of time living in the implemen-
tation layer inside the architecture and does not affect how the model is to be regarded.
So we assume that the globality of time is a notion embedded in the knowledge owned by
each participant.

97

timing, that it treats differently. Functional messages are those flowing through
the original ports of the model, while timing messages flow through latency ports.
Every component controls as many latency ports as the number of its functional
output channels. The value assigned to those ports — also called internal latency
ports to indicate their values are not decided by network communications — is
relative to the computation time needed for the component to produce the output,
once the required inputs are available. In our running example, the Thermocouple
needs 1 second between one sensing and the next, therefore it will put on its tem-
perature internal latency port intr the time needed to reach the 1 second bound
from the time that already elapsed since the previous sensing. In other words the
value on intp will be given by intr = 1s — theat-

The network is receptive of internal latency ports and decides by its own, fol-
lowing a schema independent from anything attached to the network, how to feed
the single participant’s latency ports. In our specific example, let S stand for Sen-
sor, C' for Controller and H for Heater. Supposing a communication latency of
0.01s between ant two participants and no internal latency for the controller and
the heater (i.e. the computation time of the output is negligible), the network will
pass on the controller’s t7 port the value:

tr =tc—g +tg—s +inty + ts—c = 0.01s + 0.01s + 0.97s + 0.01s = 1.00s

Given that information, the controller only knows that, from its last sent message,
the new input arrived 1.00 seconds after, and on that it will ground its computa-
tion. This machinery gives the network the prerogative to decide the communication
times and leaves to components to decide of their own running times. So here, fi-
nally realized, is the separation between the functional system and the architecture.

The nominal version of the thermostat model is correct and it satisfies the top-level
thermostat contract, as we have shown with our Matlab/SimuLink simulations of
section 5.3.4. The latency ports only end up in being short negligible delays for the
system, in nominal mode. Now, injections can happen on those ports as system
delays. After injection, the thermocouple will use a new value for At in its compu-
tations, this time acquired from the network through the tainted latency ports. For
example, if the heat message was so delayed to hit the thermocouple after 1 second,
then the thermocouple would return a value sensed exactly after that time, and the
whole system safety would be at stake, because the contract satisfactions of the
single sub-components would no longer be guaranteed. We would like, eventually,

to study the system under these sorts of degraded conditions?.

In this new setting, the system specification can be completely made explicit at
the interface level, hence presenting loose-coupling also for the non-functional part:
by expressing assumptions and guarantees conditioned on properties over latency
ports. Additionally, the ability of expressing non-functional properties with the
same language as we specify functional properties, can lead to a cleaner handling
of model extension by reusing, with a bit of care, the same faults present in the

2Notice that, virtually, we could put implementation controls on latency ports, to
prevent system misbehaviour. We do not do that in order to keep the use case simple.

98

standard techniques, and therefore the same tools. This will allow us to model asyn-
chronous communications in a synchronous communication tool, such as nuXmv.

The idea of introducing specialized additional ports for the specification of system
components is not new. Already in [15] a similar idea is advised for the separation
of concerns in multi-viewpoint contracts, where values of extra-ports — possibly
related to communication timings — are randomly sampled from a probability dis-
tribution and injected by activation through a boolean variable. In contrast to
our work they assume ports to be attached to components in a receptive way, left
to an environment which itself cannot be controlled. Instead, our approach is to
treat those ports like any other port and let them be either receptive or controlled,
with no restrictions. In this sense, the network can really behave as the environ-
mental mirror contract of the system, dispatching times for the communication
latencies and realizing internal computational-time latencies of the single system
participants. Notice that modeling the network as a individual system entity has
particular relevance in the context of SOA, where service communications are as
important as its participants.

6.1.2 Implementation

Now that we defined the fault modalities for our system we are ready to present the
fault injection procedure. First we need to create the nominal model in nuXmv,
then provide latency ports for each components and finally inject the faults related
to timings. We will go through those points methodically, one by one. We will not
present any result of the fault injection to the functional view, because it is beyond
the scope of our treatment. We already presented in chapter 1 some of the existing
works using model extension for the dependability analysis, [54] contains one using
XSAP and more are to come. In [20] Bozzano and al. present an approach to func-
tional dependability based on contracts, we discussed in section 1.3 that extensions
of their approach with more complex fault description is part of future research.

In this chapter we will limit ourselves to properties more distinctive of service
distribution. This will not cause loss in generality on our approach because the
injection procedure that we shall soon present over latency ports are equally appli-
cable to functional ports, as already mentioned at the end of the previous section,
being their distinction only conventional.

Nominal SMV model

In this section we present the nominal model of the thermostat, inspired by our
functional Matlab/SimuLink prototype that we mentioned in section 5.3.4.

The specification has three modules, corresponding to the thermocouple, the heat
controller and the heat actuator, linked together by the relations in the main mod-
ule. DEFINEs represent definitional pieces of code to substitute to others, similar to
macros in most common programming languages. They are used to express system
parameters and compact parts of formulae.

99

1
2
3

MODULE ThermoCouple (heat)

DEFINE
alphacond := 5.0; — W/(m"2xK)
surface := 50.0; — m~2

Ta := 0; — C(Celsius degrees

DEFINE
Cs := 1000.0; — J/(Kg+K)
m := 35.0; — Kg
deltaT = 1.0; — s

VAR
Tr : Real; — Temperature of th
time : Real;

5 DEFINE
der_dissipation := alphacondxsurfacex(Tr — Ta);

init (Tr) := 0.0;
next (Tr) := (

init (time) := 0.0;
next (time) := time + deltaT;

MODULE Controller (Tr)
VAR
u : Real; — [—1, 1]

DEFINE

— K parameters of PID are define
Kp := 0.02;
Ki := 0.0;
Kd := 1.5;

DEFINE
Tref := 20;
err := (Tref — Tr);
diff_err := (err — last_err);

VAR
sum_err : Real;
last _err : Real;

ASSIGN
init (u) := 0;

next(u) := Kpserr + Kixsum_err + Kd«diff_err;

init (sum_err) := 0;
next(sum_err) := sum_err + err;

e room (Celsius degrees)

(deltaTxheat — der_dissipationx*deltaT)/(Cs+m)) + Tr;

d based on SimulLink tuning —

100

26
27 init (last_err) := Tref;
28 next(last_err) := err;

MODUIE Heater (u)

1
2 VAR
3 heat : Real; — [0, 10000]
4
5 DEFINE
6 max_heat := 10000; — mazimum heat supply
7 der_heat := heat+200xu; — how the heater xactuatesx the signal
8
9 ASSIGN
10 init (heat) := 0; — start from no heat supply
11 next (heat) := (der_heat < max_heat) ? der_heat : max_heat; — bounded
1 MODULE main
2 VAR
3 t : ThermoCouple (h. heat) ;
4 ¢ : Controller (t.Tr);
5 h : Heater(c.u);

This model is compliant to the Matlab/SimuLink system that we sketched in section
5.3.4, that will be our baseline?. We will have to make two main modifications,
first to introduce our fault modalities (through latency ports) and second to make
it usable by XSAP, which is not able to deal with infinite precision models. We
will need some way to discretize the model and realize it in finiteness.

Attaching latency ports

The functional model shall be enriched with latency ports and internal latency
ports for interfacing with the network. To do this the thermostat model has to be
enriched with the following features:

1) Latency ports as described above, one for each input and output port of
the system components, including internal latency ports and component’s
internal computation times (e.g. 1.0 second for the Thermocouple)

2) A network module, a new entity to which every component is attached. It
forwards values on functional ports directly to components and decides values
for the input latency ports, based on the values of internal latency ports.
Ideally, the network would be in charge to simulate the real dynamics of the
network with respect to the timings view. In our example the network puts
on latency ports the time for a message to round-trip to the component once
it leaves, but other dynamics are not to be excluded.

3This correspondence between the two systems can be made explicit by simulating
our latest model in nuXmv and comparing the two results for, e.g., the temperature. We
do not report this comparison here to keep the presentation lighter.

101

12

3) Introduction of sensitiveness to time latencies on variable deltaT in the Ther-
moCouple module. The idea is to continue heating with the previous heat
until the next heat message arrives (for deltaT_before_arrival secs), then
start with the new heat supply (for deltaT after_arrival secs).

We assume that the module interaction starts from the ThermoCouple sending
immediately the sensed temperature on the network. It follows that the system,
making a message round-trip for each time step, synchronizes on the ThermoCouple
module. As a result the perceived time is delayed from one component to the other.
This will not affect our intended model because the only use of time that we make
is confined in the Thermocouple. This is a featured aspect of the methodology that
has to be taken into account if more complex dynamics are supplied to systems:
perceived time is intentionally different from one component to the other.

Latency ports should never get negative values, but neither 0 is acceptable, be-
cause a minimal communication delay should always be put into modeling. For the
interactions of our use case, as in the previous section, we can set a fictitious trans-
mission time of 0.01 seconds, which comprises the round-trip time of the SOAP
service invocation and retrieval. This will be the default value to assign to latency
ports and it is arbitrary to our network model.

One latency port is exceptional. As we mentioned in the use case specification,
the Thermocouple senses the environment at the rate of one second. This infor-
mation needs to be modeled as the Controller receiving the temperature message
not earlier than every second. Accounting for the round-trip time of request and
assuming that the sensing delay time of one second is already started by when the
request reaches the Thermocouple, it takes exactly one second for the service mes-
sage to reach the Control Device. This can be modeled by setting the value of the
Thermocouple’s internal latency port to inty = 1.0 (we already saw this briefly in
the previous section).

The enriched model specification follows, with the new parts highlighted in red:
MODUE ThermoCouple (heat , LP _heat) —— LP = "Latency Port”

DEFINE
alphacond := 5.0; — W/(m"2xK)
surface := 50.0; — m’2
Ta := 0.0; — K
DEFINE
Cs := 1000.0; — J/(KgxK)
m := 35.0; — Kg
deltaT := deltaT _before_arrival + deltaT _after_arrival;
deltaT _before_arrival := LP_heat;
deltaT _after_arrival := ILP;

VAR
Tr : Real;

DEFINE

102

18
19
20
21
22
23
24
25
26

12
13
14
15
16
17
18
19
20
21
22
23
24
25

0.0) ;

der_dissipation := alphacondssurfacex(Tr — Ta);
DEFINE

computation_time := 0.0;

[LP := ((computation_time >= LP_u) ? computation_time — LP_u
ASSIGN

init (Tr) := 0.0;

next (Tr) := ((deltaTxheat — der_dissipationxdeltaT)/(Csxm)) + Tr;

MODULE Controller (Tr, LP Tr) — LP : "Latency Port”

VAR

u : Real; — [—1, 1]

DEFINE
Kp :=

Kd :=
DEFINE

Tref :=
err :=

VAR

sum._err

0
Ki := 0.
1

20;

(Tref — Tr);
— sum_err defined as a variable
diff_err := (err — last_err);

Real;

last_err : Real;

DEFINE

computation_time

ILP :=

ASSIGN
init (u)
next (u)

init (su
next (su

init (la
next(la

= 0;

= 0.
((computation_time >= LP_u)

0;

?

= Kp*xerr + Kixsum_err + Kdxdiff_err;

m_err) :=
m_err) :=

st_err)
st_err)

0;

sum-_err + err;

err;

MODULE Heater (u, LP u)

VAR
heat

Real;

= Tref;

— LP = 7Latency Port”

103

computation_time

— LP_u

0.0);

0 J O Ot

10
11
12
13
14
15
16

CO J O UL W N

Ne)

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

EENEUCRE NI

N O Ot

DEFINE

max_heat := 10000;

der_heat := heat+200x%u;
DEFINE

computation_time := 0.0;

ILP := ((computation_time >= LP_u) ? computation_time — LP_u : 0.0);
ASSIGN

init (heat) := 0; — start from no heat supply

next (heat) := (der_heat < max_heat) ? der_heat : max_heat;

MODUIE Network (ILP _Heater , heat, ILP_Thermocouple, Tr, ILP_Control, u)
DEFINE — nominal latencies

latency_heat := 0.01;

latency_Tr = 0.01;

latency_u = 0.01;
VAR — Latency Ports

LP_heat : Real;

LP_Tr : Real;

LP_u : Real;
DEFINE _Tr_ := Tr; _u_. := u; _heat_ := heat; — technicality
ASSIGN

init (LP_heat) := 0.0;

init (LP_Tr) := latency_Tr;

init (LP_u) := latency_Tr + ILP_Control + latency_u;

next (LP_heat) := latency_-Tr + ILP_Control + latency_-u

+ ILP_Heater + latency_heat ;
next (LP_Tr) := latency_u + ILP_Heater + latency_heat
+ ILP _Thermocouple + latency_Tr;
next (LP_u) := latency_heat + ILP_Thermocouple + latency_Tr
+ ILP _Control + latency_u;

MODULE main
VAR

t : ThermoCouple(net. _heat_, net.LP_heat);

¢ : Controller(net._Tr_, net.LP.Tr);

h : Heater(net._-u-, net.LP_u);

net : Network(h.ILP, h.heat, t.ILP, t.Tr, c.ILP, c.u);

104

23
24

Discretization

As formerly mentioned, before feeding our model to XSAP we need to finitize its
structure. This is possible for two reasons: boundedness (the model is supposed to
be run for a finite number of steps — 600 time units in our case) and coarseness
(our model does not require high precision arithmetics, this because it is based on
strong simplifications in its very definition already).

We can proceed as follows:

1) transform Real variables in finite precision variables bounded by fixed point
rational numbers

2) multiply fixed point numbers by a common number (power of 10) to make
them all valued in some bounded integer range.

In order to streamline the state space of model we also removed the integral gain
because it was pointless from an implementation point of view to have a dedicated
state variable for a gain with coefficient K; = 0: its contribution to the control
signal was in fact all the time null:

next(u) := Kpxerr + Kdxdiff_err;

The following snippet shows our attempt where we kept two significant digits for the
temperature value and times while applying the two points above. The @ symbol
indicates 10~ 2, therefore 1s = 100@s, 1K = 100Q°C. For sake of convenience we
only show the changes in the module for the Thermocouple; for the other modules,
changes are alike.

MODULE ThermoCouple (heat , LP_heat) — heat in W; LP_heat in @s

DEFINE
alphacond := 5; — W/(m"2xK)
surface := 50; — m”2
Ta := 0; — Celsius degrees
DEFINE
Cs := 1000; — J/(Kg*K)
m := 35; — Ky
deltaT := deltaT _before_arrival + deltaT _after_arrival; — @s
deltaT _before_arrival := LP_heat; — @s
deltaT _after_arrival := ILP; — @s
VAR
Tr : 0..2500; — Temperature of the room
DEFINE
computation_time := 100; — @s
der _dissipation := (alphacondxsurfacex(Tr — Ta))/100: — W (@J/@s)
DEFINE ILP := 100;
ASSIGN
init (Tr) := 0; — @Celsius
next (Tr) := (((deltaTxheat — deltaTxder_dissipation))/(Csxm)) + Tr;

105

This procedure rises more than one problem when brought to reality: first and
foremost, the state space explosion. Representing the whole system with Reals let
nuXmv exploit its SMT reasoning features; this reduced the problem to a SMT ver-
sion of a simulation problem, which nuXmv could handle easily. Bounding model
values with integer numbers calls for the state space to abandon space connect-
edness, thus obliging the system to work in a grid of separated values. Symbolic
reasoning can still help but it might not be enough.

Other problems relate performance and circuitry, because when working with bounded
integers, those become huge. Despite our model is inherently bound to simulation,
the model checker is not aware of it and starts constructing a state space for the
system as it were time-unbounded. This problem comes along with state explosion.
Moreover integer division and multiplication have huge counterparts in the logic of
bits, hence the problem with circuitry.

The solution to the problems sketched in the last paragraphs lays in the adop-
tion of the word nuXmv type, that we present in the next section.

From bounded integers to words

The model that we presented with bounded integers explains rather intuitively how
the conversion to the discrete domain can be achieved. However, the presented
model cannot even be simulated using bounded resources, because the variable do-
mains and operators circuitry are too complex to model check. The following part
shows how we faced the problem, namely by translating the model further to the
word domain.

Words, or bitvectors as they are sometimes called, are similar to bounded inte-
gers, but they are not strictly bound. To be more precise, they are formal binary
representations of integer numbers that are allowed to overflow and underflow, as
in digital systems. They come provided with standard operators (addition, sub-
traction, multiplication, ...) but their semantics is different than that of bounded
integers®. They also come with additional specific operators, such as left-shift (<<)
and right-shift (>>). These are respectively semantically equivalent to multiplying
and dividing by powers of 2, but are notoriously faster and more natural for the
binary world.

The facility of using word types does not come with no pain and struggle, be-
cause everything must be hand-crafted very accurately to avoid bit overflows. To
implement the final version of our model, that is presented in the following, we
changed integer domains to word domains and multiplications/divisions by con-
stants to fixed bit-shifting operations. To show our methodology we also set delay
times on latency ports as powers of two and expressed them as numbers in [0..10].
This made us lose some precision, although not enough to invalidate our model.

For sake of completeness we report here the module for the Thermocouple, which

1A typical example on the theory of bitvectors is the property —Vw:, wa . w1 +wa > wy
that can be proved by showing 1+ 1 = 0 on words of length one.

106

presents all interesting features hard-coded. It will not be familiar to an inexperi-
enced eye but we tried to keep it as much understandable as possible.

MODULE ThermoCouple (heat , LP_heat) — LP in logarithmic mode
DEFINE
SHIFT_DISS := 8; — xalphacond*surface = %250 "= %278 = <<8;
SHIFT_TR := 15; — /(Csxm) = / 35000 "= / 2°15 = >>15;

DEFINE Twsize := 13;
VAR Tr : unsigned word[Twsize |;

DEFINE
der_dissipation := (extend (Tr,SHIFT_DISS)<<SHIFT_DISS);
—— Timings!
DEFINE
computation_time := 7;
SHIFT _deltaT := SHIFT_deltaT _before_arrival
+ SHIFT _deltaT _after_arrival;
SHIFT _deltaT _before_arrival := LP_heat;
SHIFT _deltaT _after_arrival := ILP;
ILP := ((computation_time >= LP_heat)
? computation_time — LP_heat
: 0
)5
VAR time : unsigned word[16]; — assume simulation time <= 2°16—1
ASSIGN
init (time) := uwconst (0, 16);
next (time) := (time>=uwconst (60000, 16))
? time
time + (uwconst (1, 16)<<SHIFT_deltaT);
DEFINE Tr_prime :=

unsigned (resize (
((extend (signed (
extend (heat ,
SHIFT_DISS — (14 — Twsize)))
) 1)
— extend (signed (der_dissipation >>7), 1)
)<<SHIFT deltaT)>>SHIFT_ TR, Twsize)
+ signed (Tr)
ASSIGN
init (Tr) := uwconst (0, Twsize);
next (Tr) := Tr_prime;

107

After the transformation we were able to run and simulate the model using standard
bmc; it took it only a few instants to finish the run using a bound of 600.

Model extension and Fault Tree construction

In section 6.1 we proposed for the fault modalities modifications of the values on
latency ports. In this section we will perform this operation using XSAP extension
and fault tree construction. In the case at study we will assume that the faults are
transient and consist in a gradual increase in the network times of communication
between participants.

It is our deliberate choice to treat each communication separately. In a conven-
tional setting the network would experience problems, such as congestion, in a
shared manner and it is often responsibility of the network protocol designers to
balance the resulting load with fairness. In our abstraction, however, the network is
intended in a broader sense, spread across different networks that experience their
own issues way before and more intensively than they experience issues as a group.
Virtually, each communication is given by a sequence of action that require the
service to a broker and need to bind before execution. Even when the connection is
made permanent, at any moment the connection might be lost and the research of
a new service provider might hinder response times on that individual connection.
Although we could have provided the network agent with synchronous delays, we
thereby preferred not to, for the sake of generality of our approach.

The first step is to enrich the nominal model with the hook variables. There will
be two for each latency port: one for tracking the fault in degraded mode and one
for the recovery when full power of the connection is re-established. Importantly,
hooks for the timing view are all put on the network component and the functional
view remains intact as it were.

1 MODULE Network (ILP_Heater , heat, ILP_Thermocouple, Tr, ILP_Control, u)
2 DEFINE — nominal latencies (logarithmic mode)

3 latency_heat := 1;

1 latency_Tr e= g

5 latency_u = 1;

7 VAR — Latency Ports in log mode
8 LP _heat : 0..10;

9 LP_Tr 0 1..10;
10 LP_u 0 1..10;

12 —— Injection wariables
13 IVAR degraded_heat : boolean;
14 IVAR degraded_Tr : boolean;
15 IVAR degraded_u : boolean;

17 IVAR nominal_heat : boolean;

18 IVAR nominal_Tr : boolean;
19 IVAR nominal_u : boolean;

108

DD DN NN
Tl W N

DN DN DN
o J O Ot

W N

Ul W DN~

ASSIGN
init (LP_heat) := 0;
init (LP_Tr) := latency_Tr;
init (LP_u) := latency_-Tr + ILP_Control + latency_-u;
next (LP_heat) := latency_Tr + ILP_Control + latency_u
+ ILP_Heater + latency_heat ;
next (LP_Tr) := latency_u + ILP_Heater + latency_heat
+ ILP_Thermocouple + latency_Tr;
next (LP_u) := latency_heat + ILP_Thermocouple + latency_Tr
+ ILP _Control + latency_u;
DEFINE _Tr_ := Tr; _u. := u; _heat_ := heat;

In order to specify the Top-Level property around which the dependability analysis
will be established, we devised a simple monitor whose task is to supervise the
system and, int this particular case, trigger a timeout event if 600 seconds have
elapsed without the reference temperature of the room being reached.

MODUIE Monitor (Tr, time)
DEFINE MAX TIME := uwconst (60000, 16);
DEFINE timeout := (time>=MAXTIME) & (Tr<uwconst (2000, 13));

MODULE main

VAR
t : ThermoCouple(net. _heat_, net.LP_heat);
¢ : Controller (net._Tr_, net.LP_Tr);
h : Heater(net._u_, net.LP_u);

net : Network(h.ILP, h.heat, t.ILP, t.Tr, c.ILP, c.u);

monitor : Monitor(t.Tr, t.time):;

At this point we can ask XSAP to inject the model with faults and construct the
fault tree for the property timeout:

INVARSPEC NAME TLE_negated := !monitor.timeout;

The extension file is specified with three fault modes per latency port: stuck-at-
value 2, 5, 10. Notice that they are in logarithmic mode and after that bit shifting
they correspond respectively to 22, 2° and 20 seconds.

We only report the injection for one port, for the other two it goes the same:

FAULT EXTENSION FE THERMOSTAT

— Latency port can temporary work in degraded conditions (delay in

[2..10]) —
EXTENSION OF MODULE Network

SLICE __heat__ AFFECTS LP_heat WITH

109

16

18
19

MODE delay2 : Transient StuckAtByValue.I (

data term << 2,

data input << LP_heat ,

data varout >> LP _heat,
template self_fix = fixed,

event failure >> degraded_heat ,
event fixed >> nominal_heat

)
MODE delay5 : Transient StuckAtByValue I (

data term << 5,

data input << LP_heat,

data varout >> LP_heat,
template self_fix = fixed,

event failure >> degraded_heat ,
event fixed >> nominal_heat

)
MODE delayl0 : Transient StuckAtByValue.I (

data term << 10,

data input << LP_heat,

data varout >> LP_heat,
template self_fix = fixed,

event failure >> degraded_heat ,
event fixed >> nominal_heat

)

We run the analysis, it never terminates, no matter the engine. To give an intuition
on how much time the simulation needs on our machine, using bmc it took 9 min-
utes to simulate on the first 100 seconds against reference temperature 1°C, while
time increased to 16 minutes to simulate the first 110 seconds. Unfortunately, by
introducing faults in the model, XSAP literally blows up the state space every time
a step is advanced, because every communication is allowed to undergo a latency
delay.

We acknowledged some improvements if the reference temperature was increased
with the bound because short minimal traces forming the cut sets could be found
earlier by the optimized versions of the tool, but certainly never it stood out as
much as needed. We could easily estimate and persuade ourselves that we would
never be able to reach the bound of 600 seconds any time soon.

So we ask, is that it?

Contracts and scale

The fault tree that we obtained running 100 timesteps against T'r = 1°C is shown
in figure 6.1. What the fault tree tells us is that in order to fail the given property
(not being able to reach 1°C in 100 seconds) one has to put very high delays on the
heat latency port, at least in the order of 2'° centiseconds according to our available
fault modes. Interestingly enough, every fault tree that we obtained by running the
analysis with different parameters in the monitor, including simulation time and

110

!(!monitor.timeout)

|

net._heat__mode_is_delayl0

3

GHD

P=0.0

Figure 6.1: The Fault Tree constructed by XSAP for the Thermostat model.

reference temperature, returned the same fault tree. The reason for this lays in of
the network structure: every communication to the sensor has to go through the
heat latency port, therefore there the faults concentrate. This fact could be noticed
even more easily by looking at the interface specification of the component: at its
contract. Here our next idea.

The complexity of the dependability analysis can be amazingly lowered by focusing
at the single components’ facet. By our definition of contracts, in saturated form, if
each module implements its own, then the whole system satisfies their composition.
Although, if one does not satisfy the contract, then the system is not compelled to
follow the overall contract’s guarantees. Therefore, studying the fault modalities of
the single contracts allows to study the fault modalities of the system as a whole.

We developed a model for the Thermocouple, the only component specifying tim-
ing restrictions on its contract, with the precise intention of studying its timing
view with respect to its contract. We do not need the specification of the heater or
the controller, because here only the Thermocouple has the focus. The point now
will not be to simulate the entire system evolution, but rather that every possible
implementation deriving from the Thermocouple satisfies the contract of the Ther-
mocouple. Refinement checking of section 5.3.3 did the rest for us.

In order to check contract satisfaction for every derived component we have to
check that all allowed values on the input ports and state variables — the heat
port and T'r variable in our case — lead to contract in any case to contract satis-
faction. We need the network because it has the hooks for the fault injection.

1 MODULE ThermoCouple (heat , LP _heat)
2 DEFINE

111

Y U = W

10
11

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

CUks W N =

SHIFT_DISS := 8;
SHIFT_TR := 15;
DEFINE
der_dissipation := (extend(Tr,SHIFT_DISS)<<SHIFT_DISS);
—— Timings!
DEFINE
computation_time := 7;
SHIFT _deltaT := SHIFT_deltaT_before_arrival
+ SHIFT _deltaT _after_arrival;
SHIFT _deltaT _before_arrival := LP_heat;
SHIFT _deltaT _after_arrival := ILP;
ILP := ((computation_time >= LP_heat)
? computation_time
— LP_heat : 0
};
VAR time : unsigned word[16];
ASSIGN
init (time) := uwconst (0, 16);
next (time) := (time>=uwconst(60000,16))
? time

time 4+ (uwconst (1, 16)<<SHIFT _deltaT);

— With random heat and random (+bounded) init(Tr) this tracks all
— all possible evolutions of Tr; notice we are interested in one
— step of evolution — only (input—>computation—>output)
DEFINE Twsize := 13;
VAR Tr : unsigned word[Twsize |;
ASSIGN next(Tr) := Tr_prime;
DEFINE Tr_prime :=
unsigned (resize (
((extend (signed (
extend (heat ,
SHIFT _DISS — (14 — Twsize)))
1)
— extend (signed (der_dissipation >>7), 1)
)<<SHIFT_deltaT)>>SHIFT_TR, Twsize)
+ signed (Tr)
) ;
INIT Tr <= uwconst (3000, Twsize);
FROZENVAR Tr_initial : unsigned word|[Twsize|; INIT Tr_initial = Tr;

MODULE Network ()

—— Injection wariables
IVAR degraded_heat : boolean;
IVAR nominal_heat : boolean;

112

~N

VAR LP_heat : 0..10;
ASSIGN LP _heat := 0;

DEFINE heatwsize := 14;
VAR _heat_ : unsigned word[heatwsize |;
INVAR _heat_ <= uwconst (10000, heatwsize);

MODULE Monitor (heat)
VAR bigheat : boolean;

ASSIGN

init (bigheat) := heat>uwconst(7500+2100, 14);

next (bigheat) := bigheat & heat>uwconst(75004+2100, 14);
MODULE main
VAR

t : ThermoCouple(net._heat_, net.LP_heat);
net : Network();
monitor : Monitor(net. _heat_);

INVARSPEC NAME TLE_negated :=
((t.time>=uwconst (1000,16)) & (monitor.bigheat))
—> (t.Tr>t. Tr_initial+uwconst (60, 13));
— We did not specify the other TLE _negated of the contract
— because we had double precision only for Tr.

Now the analysis takes no time to perform and still it returns the same fault tree
of figure 6.1, improving the system dependability assessment astoundingly®.

As a final step we enriched the .fei file with all timing injections from 2 to 10, that
now could be tackled by the systems in really a few instants. This way we were
able to obtain the Fault Tree of figure 6.2, that allows to determine that the system
is safe as long as the heat message reaches the heat port of the Thermocouple in
less than or equal to 27 centiseconds since the last departure of 7,. This is per-
fectly in line with the model: up to a delay of 27 log-centiseconds — which is our
approximation of 100 in logarithmic scale — the system behaves as if no delay was
there, i.e. it is resilient. However, as delays go from 27 to 28, so that the system
experiences a delay of 27 beyond the Thermocouple computation time, the system
starts to malfunction. Our interpretation suggests that the system can be read very
easily and its resiliency to faults determined. This is yet another evidence that the
approach that we used is valuable to our aims.

Notice that this time we did not assess dependability on the overall system, di-
rectly. Rather we focused on the possible inputs and controlled outputs of the single

5From an accurate reading of the invariant property specification, the careful reader
might notice that we did not really verify the contract of the Thermocouple, but a nec-
essary condition deriving from it (or a satisfaction on average if the reader prefers). This
stacks on top of all other approximations and simplifications that we did. Once again, our
study is about the methodology rather than on perfect accuracy of the models.

113

1((t.time >= 0ud16_1000 & monitor.
bigheat) > LTr > LTr initial +
0ud13 60)

Figure 6.2: The Fault Tree constructed by XSAP for the Thermostat model:
enriched version exploiting contracts.

component, possibly including behaviours that will never happen in the combined
system (e.g. arbitrary heat supplies). We stress that this is not a shortcoming
but an empowerment, because the resulting fault tree can now enjoy all the good
qualities resulting from dealing with contracts, including reusability, possible hi-
erarchical constructions and separation of responsibilities. It is the very point of
contracts to not track exact behaviours of a compound system but being able to
interact with any, now this same power is exploitable by our analysis of system
dependability.

6.2 CAE injection

The CAE example is very different from the thermostat example and thereby it
will need other fault modalities to get its dependability assessed. As we stated in
section 5.2, the focus of the CAE with respect to our concerns is on the service
interactions and their evolutionary dynamics.

As opposed to the thermostat, which assumed everything was fixed in the topol-
ogy, here there will be parts of the system, either connections or components, whose
presence is not to be taken for granted. However, when existing participants will be
given a task on existing connections, like going to the district place on fire or extin-
guishing the fire once there, that task will be accomplished no matter what happens
to them internally. It is unthinkable, in fact, to model the internal structure of a
car going to the target place, with all the roads of the physical infrastructure, with
the human control and all that.

114

6.2.1 Fault Modalities

The fault modalities that this system will be subject to will be sudden, not neces-
sarily permanent, disappearances of services (boolean unavailability).

6.2.2 Implementation

As for the thermostat example we will first create our nominal model, inject faults
and see the results. The CAE system is composed of the three agent modules for
the District, the Fire Station and 5 Fire Fighting Cars, linked together in the main
according to the specifications of section 5.2. Unlike the case of the thermostat, here
we will not need a specific network agent for the interactions because we will not
need to attach non-functional behaviours such as timing. The introduction of the
network or a similar conception is anyhow possible and would have the advantage
of having all fault modalities gathered together in one entity.

Nominal SMV model

The nominal SMV model of the CAE represents the system and its interconnec-
tions, assuming no faults and that everything goes smoothly according to plans.

There are two definition at the beginning of the District specification namely
MAX_FIRES and MAX_COMING_NEWFIRES. These represent respectively the maximum
number of fires of the system and the maximum number of fires that can materialize
in the district. The number of fires at each time step is computed as the sum of
the fires at the previous step excluding those that have been extinguished and the
new detected fires.

The policy implemented by the Fire Station is to send one car for each acknowl-
edged fire. In particular the car car; is sent on district if the number of fires of
the district is greater than the number of cars already sent on district and car;
is the first available car in the interval [1,i]. Once cars are sent they leave the
Fire Station; once they reach the fire they extinguish it in the next step. After
that they acknowledge the Fire Station and the District as described in section
5.2. Acknowledgments from the single Fire Fighting Cars to the District are sent
cumulatively using the count function, which decides how many signals are set to
the value TRUE.

1 MODULE District (extinguished _fires)
2 DEFINE

3 MAX_FIRES := 5;

I MAX COMINGNEWFIRES := 2;

)

6 VAR new_fires : 0..MAX.COMINGNEWFIRES:

7 VAR

8 fires : —1..MAXFIRES; — walue —1 is unreachable (technicality)
9 newfire_counter : 0..(MAXFIRES+1); — (MAXFIRES+1) = no more fires
10

11 DEFINE

12 new_coming_fires :=

115

13 case

14 next (newfire_counter <<MAXFIRES) : new_fires;

15 —— previous guard is passed —

16 newfire_counter <=MAX FIRES : MAXFIRES — newfire_counter;
17 TRUE : 0;

18 esac;

19

20 DEFINE fires_prime := fires — extinguished_fires + new_coming_fires;
21 ASSIGN

22 init (fires) := 0;

23 next (fires) :=

24 case

25 (0 <= fires_prime) & (fires_prime <= MAXFIRES) : fires_prime;
26 TRUE: —1; — wunreachable!

27 esac;

28 init (newfire_counter) := 0;

29 next(newfire_counter) := ((newfire_counter+new_fires <= MAXFIRES) ?
30 newfire_counter+new_fires

31 MAX FIRES+1

32)

33

34 LTLSPEC G (fires != —1); — check unreachability

| MODUIE FireStation (fires , carl_coming_back, car2_coming_back,

2 card_coming_back , car4d_coming_back ,carb_coming_back)
3

4 VAR

5 carl_isHere : boolean; carl_go : boolean; carl_gone : boolean;
6 car2_isHere : boolean; car2_go : boolean; car2_gone : boolean;
7 car3d_isHere : boolean; car3_go : boolean; car3_gone : boolean;
8 car4d_isHere : boolean; car4d_go : boolean; car4_gone : boolean;
9 carb_isHere : boolean; carb5_go : boolean; car5_gone : boolean;
10

Il DEFINE __going_cars__ := count(

12 carl_go | carl_gone,

13 car2_go | car2_gone,

14 car3_go | car3_gone,

15 card_go | card_gone,

16 carb_go | carb_gone

17);

18

19 ASSIGN

20 init (carl_isHere) := TRUE; init (carl_go) := FALSE;

21 init (car2_isHere) := TRUE; init (car2_go) := FALSE;

22 init (car3_isHere) := TRUE; init (car3_go) := FALSE;

23 init (car4_isHere) := TRUE; init (card_go) := FALSE;

24 init (carb5_isHere) := TRUE; init (car5_go) := FALSE;

25

26 next (carl_isHere) := carl_coming_back | (carl_isHere & !carl_go);

116

27 next(car2_isHere
28 mnext(car3_isHere
29 next (car4_isHere
30 next (carb_isHere
31
32 next(carl_go) :=
33 mnext(car2_go) :=
34
35
36 next(car3_go) :=
37

40 next (car4_go)

46 next (car5_go)

B
)
R
)

= car2_coming_back | (car2_isHere & !car2_go);
= car3_coming_back | (car3_isHere & !car3_go);
= car4_coming_back | (car4_isHere & !car4d_go);
= carb_coming_back | (car5_isHere & !car5_go);
(fires — __going_cars__ > 0) & next(carl_isHere);
(fires — __going_cars__

— count (next(carl_isHere)) > 0
) & next(car2_isHere);
(fires — __going_cars__

— count (next(carl_isHere)

next (car2_isHere)) > 0

) & next(car3_isHere);
(fires — __going_cars__
— count (next(carl_isHere),

next(car2_isHere),
next (car3_isHere)) > 0

) & next(car4_isHere);
(fires — __going_cars__

— count (next(carl_isHere

)

next (car2_isHere) ,

next (car3_isHere)
)

next (car4_isHere)) > 0

) & mnext(carb_isHere);

&

&
&
&
&

next (! carl_coming_back
next (! car2_coming_back

next (! car4d_coming_back

()
()
next (! car3_coming_back);
()
next (! car5_coming_back)

18

19
50
51
H2
53 next(carl_gone) := carl_go
o4 next(car2_gone) := car2_go
55 next(car3_gone) := car3_go
56 next (car4_gone) := card_go
57 next (carb_gone) := carb5_go
1 MODULE FireFightingCar (sent_now)
2 VAR

3 just_arrived boolean;

1 fire_extinguished_ack

5 going_back_ack boolean;

7 ASSIGN

8 init (just_arrived) := FALSE;
9 next(just_arrived) := (sent-now=ITRUE);

1 init (fire_extinguished_ack)
2 next (fire_extinguished_ack)
3

14 init (going_back_ack) := FALSE;
15 next(going_back_ack) := fire_extinguished_ack & !going_back_ack;

1 MODULE main

b

b

)

)

boolean;

FALSE;
just_arrived & !fire_extinguished_ack;

117

car2.going_back_ack , car3.going_back_ack
! card . going_back_ack , car5.going back_ack);
6 carl : FireFightingCar(fireStation.carl_go);

7 car2 : FireFightingCar (fireStation.car2_go)
8 car3 : FireFightingCar (fireStation.car3_go);

()

)

2
3 fireStation : FireStation (district.fires , carl.going_back_ack,
4
3)

9 card : FireFightingCar (fireStation.car4d_go
10 car5 : FireFightingCar (fireStation.car5_go
11 district : District (count(

12 next (carl.fire_extinguished_ack),
13 next (car2.fire_extinguished_ack),
14 next (car3d.fire_extinguished_ack),
15 next (car4.fire_extinguished_ack),
16 next (car5.fire_extinguished_ack)

18)5

To check that the system works correctly we ask whether it is always able to even-
tually quench all fires:

1 LTLSPEC NAME eventually_extinguished :=
2 G (district.fires > 0 —> F district.fires = 0);

The property is satisfied. However we cannot use it as the negation of our Top-
Level Event because it is expressed in LTL and not as an invariant. Next section
discusses how a watching monitor can be employed in cases like this to entail a
weaker although still valuable result.

Model Extension and Fault Tree construction

In our specific use case, as one possible instance of system faults, cars will possibly
disappear, simulating their unavailability. Cars might be unavailable because bro-
ken or because firemen themselves are not available. Details are not meaningful.
Car unavailability will be modeled in the Fire Station failing to connect with the
car to tell it to go.

Another fault that we will model will be the case of a car moving but never reaching
to destination. An accident happening to the firefighting car might be cause of this.
Finally we will model the case of a car losing connection with the Fire Station once
the fire is quenched. This might be due to physical issues in the connection, like
interference or such, and causes the car not to come back to the station (for a car
to go back it should be given permission by the Fire Station).

Since Top-Level Events can only be expressed by invariant formulae in XSAP,
we will need some workaround to guarantee that fires will always be extinguished,
eventually. To do that we implement a monitor, which operates as a supervisor on
the district. The purpose of the monitor is to let the system know when a fire is
not extinguished in a fixed amount of time, by triggering a timeout variable after
then, if fires still have not been quenched.

118

1
2
3

MODULE Monitor (fires , new_fires)
DEFINE MAX TIME := 10; — time before timeout from fire burst
— Start counting from 0, trigger once you see fires and go
— back to 0 once MAXTIME is reached. If fires have not
— been extinguished this will be detected.
VAR
time_counter : 0..MAXTIME;
ASSIGN
init (time_counter) := 0;
next (time_counter) := case
(time_counter=0) & (fires=0) : 0;
(time_counter=0) & (fires >0) : — triggered
(time_counter + 1) mod (MAXTIME+1);
TRUE : (time_counter + 1) mod (MAXTIME+1);
esac;
— this models the final fire—free time window to extinguish the fire

DEFINE TIME WINDOW := 4;

DEFINE
fires_are_coming_late := (
(time_counter > MAXTIME — TIME WINDOW)
&
(new_fires >0)
¥
they_came_late_already_anyway := ((newFiresCameTooLate) & (fires >0)

);

VAR newFiresCameToolLate : boolean;

ASSIGN
init (newFiresCameTooLate) := FALSE;
next (newFiresCameTooLate) := fires_are_coming_late |

they_came_late_already_anyway ;

— this defines the timeout for fires to be all quenched
DEFINE timeout := (time_counter=MAXTIME) & (fires >0);

This will provide a bounded guarantee. For a reasonable analysis, we will demand
new fires not to appear in the final time window before the timeout, otherwise the
game would already be lost at the beginning. This, together with the timeout event
not happening, is expressed in our Top-Level Event specification.

— Definition of the good behavior: its mnegation is the TLE
INVARSPEC NAME TLE _negated :=
monitor.timeout —> monitor.newFiresCameTooLate;

The code follows, modified with an account for the hook variables. We cut the
duplication of code with respect to the previous presentation of modules. The dis-
trict is not subject to faults in our model, therefore we omit its model specification
completely.

119

1 MODULE FireStation (fires , carl_coming_back, car2_coming_back,

2 car3_coming_back, card_coming_back ,car5_coming_back)
3 IVAR

4 fault_carl_unavailable_connection : boolean;

5 fault _car2_unavailable_connection : boolean;

6 fault_car3_unavailable_connection : boolean;

7 fault_car4 _unavailable_connection : boolean;

8 fault_car5_unavailable_connection : boolean:;

9

10 carl_connection_back : boolean;

11 car2_connection_back : boolean;

12 car3_connection_back : boolean;

13 car4d_connection_back : boolean;

14 carb_connection_back : boolean;

15

6 ——mMm—— little technicality —

17 VAR

18 carl_coming_back__var : boolean;

19 car2_coming_back__var : boolean;

20 car3d_coming_back__var : boolean;

21 card_coming_back__var : boolean;

22 carb_coming_back__var : boolean;

23 ASSIGN

24 carl_coming_back__var := carl_coming_back;

25 car2_coming_back__var := car2_coming_back;

26 car3d_coming_back__var := car3_coming_back;

27 card_coming_back__var := car4d_coming_back;

28 carb_coming_back__var := carb_coming_back;

29

30

31 VAR

32 carl_isHere : boolean; carl_go : boolean; carl_gone : boolean;
33 car2_isHere : boolean; car2_go : boolean; car2_gone : boolean;
34 car3_isHere : boolean; car3_go : boolean; car3_gone : boolean;
35 car4d_isHere : boolean; car4d_go : boolean; car4_gone : boolean;
36 carb_isHere : boolean; carb_go : boolean; car5_gone : boolean;
37

38

39

40

41

42 next (carl_gone) := carl_go & next(!carl_coming_back__var);

43 next(car2_gone) := car2_go & next (!car2_coming_back__var);

44 next(car3_gone) := car3_go & next(!car3_coming_back__var);

45 next(card_gone) := card_go & next(!car4d_coming_back__var);

46 next(carb_gone) := carb_go & next(!carb5_coming_back__var);

1 MODULE FireFightingCar (sent_now)
2 IVAR

120

16
18

19
20

11

fault_unavailable_car : boolean:

fix_back_available : boolean;
VAR

just_arrived : boolean;

fire_extinguished_ack : boolean;

going_back_ack : boolean;

ASSIGN
init (just_arrived) := FALSE;
next (just_arrived) := (sent_now=IRUE) ;

init (going_back_ack) := FALSE;

next (going_back_ack) := fire_extinguished_ack & !going_back_ack;
MODULE main
VAR

fireStation : FireStation (district.fires, carl.going_back_ack,

car2.going_back_ack , car3.going_back_ack
card . going_back_ack , carb5.going_back_ack);

monitor : Monitor(district.fires , district.new_fires);

The extensions are on the FireFightingCar module and on the FireStation module:
unavailabilities are modeled as connections stuck at inactive. The resulting file for
the Fault Extension is rather long because it has to account for faults for all cars
in the Fire Station module. We only report those relative to one car:

1 FAULT EXTENSION FE_ CAE ATG

6

12

— Any car can may unavailable at any moment on the way to the fire
place
— (thus never arrive) —
EXTENSION OF MODUIE FireFightingCar
SLICE Car_makeUnavailable AFFECTS just_arrived WITH
MODE is_unavailable : Transient StuckAtByValue.I (

data term << FALSE,

data input << just_arrived ,

data varout >> just_arrived ,

template self_fix = fixed,

event failure >> fault_unavailable_car ,

121

13 event fixed >> fix_back_available

14);

15

16 — For simplicity we assume that it mnever happens that communications
17 — are unavailable in either directions (base2car at the start of

18 — actions and car2base when the fire is extinguished). That could

19 — be obtained duplicating slices instead of duplicating modes.

20 EXTENSION OF MODUIE FireStation

21 SLICE cannot_communicate_carl AFFECIS carl_go ,

carl_coming_back__var WITH

22 MODE unreachable_car : Transient StuckAtByValue.I (

23 data term << FALSE,

24 data input << carl_go,

25 data varout >> carl_go,

26 template self_fix = fixed,

27 event failure >>
fault_carl_unavailable_connection ,

28 event fixed >> carl_connection_back

29 IE

30 MODE unreachable_base : Transient StuckAtByValue I (

31 data term << FALSE,

32 data input << carl_coming_back__var ,

33 data varout >> carl_coming_back__var

3 template self_fix = fixed,

35 event failure >>
fault_carl_unavailable_connection ,

36 event fixed >> carl_connection_back

37);

38

39 SLICE cannot_communicate_car2 AFFECIS car2_go ,

car2_coming_back__var WITH
40

The results are shown in figure 6.3. As we can see the tree finds 10 minimal cut
sets. The 8 singletons on the right indicate that the failure of either one of the cars
in {1,2,3,4} can lead to a failure of the desirable property. For the fifth car this
is not enough (left view): the first car has to be non operative also, otherwise it
could supply for carb once back to the Fire Station. Notice that only one of two
faults of carl is expressed in the left view, namely the fault on the connection with
the Fire Station from the car. Here all other ways to make carl unavailable are
already covered by minimality of the singleton cut sets on the right: this would
be duplicated information that the fault tree construction procedure automatically
excludes.

A note on performance

We have seen in section 4.2.2 that the base of XSAP is founded on algorithms of
nuXmv. As indicated in section 4.3.2, there are four engines available for the Fault

122

\ | [JC] || | || || \
{/J\\ [:][[] [:] [‘] [:][‘][:] [‘]
.) [{ [{ \ [\ [

v [e ([m J[s [& J[&5 [e J[& [& J[m][=]

P00 P=00 P00 P=00 P00 P=00 P00 P=00 P00 P=00 P=00 P00

[] []

car5.Car_makeUnavailable.mode is_i fireStats t car fireStat t car fireStat b _car carl.Car_makeUnavailable
s_unavailable s_unavailable

fireSta
3.

Figure 6.3: The Fault Tree constructed by XSAP for the CAE model (with
left view and central view).

Tree construction, namely bdd, bmc, msat and ic3. The CAE example is simple
enough to let us highlight some aspects regarding performance without incurring
into intricacies and model complexities as we had for the thermostat use case ex-
ample. Moreover, the CAE example allows us to easily control performances by
setting different values on parameters, such as MAX_TIME.

We show in figure 6.4 the different performance of XSAP using different engines,

based on the bmc bound k. The bdd and ic3 methods do not depend on the bound
thus their performance are constant. Since we set MAX_TIME=10 in the monitor,

123

Performance of XSAP on CAE

212 . T
211 [4
/' —4
Sl0] 4
/
9 oy
22+ V. _
— ¥ -)
o Pl P &]
o o
E o
=] 27 L ./..__/ 4
o
2°F 1
P = bdd |4
+—+ bmc
2'r = ic3 |
e—e msat
3 | 1 1 1 I 1
g 12 14 16 18 20 22 24
k

Figure 6.4: Performance (logarithmic scale) of XSAP on the CAE model
using different engines.

the bmc procedure is inconclusive for bounds smaller than 11 (the first of 11 is
initialization). The fastest algorithm up to k = 24 seems to be SAT-based bmc.
ic3 is the slowest on this model®.

After the bound £ = 11 we expect fault trees to be all equivalent, because the
monitor is defined using the same MAX_TIME, which entails executions that all mono-
tonically subsume to the first. This is the case indeed, therefore the consideration
that we make in this little part have all a quantitative flavour. Notice that if we
did not have domain knowledge about the system we couldn’t claim satisfaction for
any k at all. This delineates a trade-off between the use of bounded model checking
and complete methods. For the CAE example, if less than k = 23 steps were not
enough to hold confidence in the model, then it would be better to use the plain
bdd procedure, because it would take less.

Unfortunately the cut-off value where choosing one method if preferable to the
other cannot be known in advance thus the trade-off can exploit little or no black-
box guidance. Consider for example that increasing MAX_TIME from 10 to 12 rises
the computation time from 8 to 53 minutes, whereas the bmc computation time

5Please notice that the performance that we found for the different engines on the
CAE are not absolute. For example we expect that on models demanding for theory
reasoning, msat be best (or even the only available option on infinite systems).

124

setting MAX_TIME=23 goes from 8 to 14 minutes at k£ = 24. Similar to what is usual
in model checking, a bmc procedure can be used in the earlier phases of develop-
ment to find Fault Trees in a very fast way and think about completeness later for
self-assurance. In the next section we will show that there are cases in which bdd
reasoning can give a more compact resolution of faults, even needing less time than
bmc procedures for the same results.

6.3 Positive-XSAP

The tool XSAP has been designed for the automatic construction of artifacts for the
analysis of hazardous situations and, how we saw, the features it provides can be
lifted with some thoughtful reconsiderations to large-scale systems based on service
orientation. As an experimental assessment, in this section we will show how to
exploit the features of the tool beyond that level of understanding, not directly for
the dependability analysis but for design and planning.

6.3.1 Exploiting duality

From a functional perspective, the fault tree construction procedure of XSAP re-
solves a model checking problem over fault-extended models with invariants, finding
counterexamples that end up being part, either explicitly or implicitly, of the fault
tree. When constructing the fault tree it is instinctive to set the Top-Level Event as
an unwanted hazard, nonetheless nothing prevents us to change on this convention
and reuse the same construction utilities for other ends.

This reasoning brought us to an understanding of the tool in its dualized ver-
sion, that we will call Positive-XSAP7. In Positive-XSAP the Top-Level Event is
no longer a bad state, but a desirable one. The extension of the model will no
longer be performed by introducing unintentional happenings, but welcoming pos-
itive events and letting them construct nice system configurations.

We will see the positive procedure applied to the CAE example. The question
that we would like to answer is whether we can find a non-faulty configuration of
cars that can manage over a maximum of 5 fires in less than 10 time units. To
answer this question we need to lay out an empty system of one District, one Fire
Station and no cars. This will be our nominal model. After that we will define the
injections. What we inject in this case are not faults, but cars. We let cars appear
to the scene and call this event a positive fault.

After launching the fault tree construction using as a Top-Level Event our de-
sired formula, we will obtain all possible minimal cut sets possibly leading the
system to the satisfaction of the desired formula. We will call the dual fault tree of
Positive-XSAP a suggestion tree.

"To avoid any misunderstanding we underscore that Positive-XSAP is only a conve-
nient way that we use to call the XSAP procedures applied in a dualized fashion: it is by
no means a new tool.

125

Remark 2. It is important to notice that, since we only changed perspective on the
functional attributes of XSAP, the same properties as before hold. In particular
we can only feed invariants to Positive-XSAP for checking, and we will be returned
with minimal cut sets bound to special counterexamples that are, at the end of the
story, existential paths. As a consequence, in presence of non-determinism (such as
the ignition of new fires), constructions belonging to the suggestion trees will not
necessarily satisfy the desired property in a universal sense. This is the very reason
why we called them suggestion trees. We will come back to this point in section
6.3.3.

6.3.2 Implementation

The nominal SMV model for Positive-XSAP is a plain CAE with no active cars. We
model their appearance by means of boolean activation of cars. Activations corre-
spond to boolean flag variables, always FALSE in nominal mode. Cars can possibly
perform actions only if their corresponding activation variables are set to TRUE by
the injection mechanism. Faults, namely activations, are permanent stuck-at TRUE.

The monitor specification is kept unchanged from the CAE system of the last
section, as well as the District’s, the FireFightingCar’s and the main’s. For this
reason we only report the specification for the FireStation in the following:

| MODUIE FireStation (fires , carl_coming_back, car2_coming_back,

2 car3_coming_back , card_coming_back ,car5_coming_back)
3 IVAR

4 fault_carl_available_connection : boolean;

5 fault_car2_available_connection : boolean:

6 fault_car3_available_connection : boolean;

7 fault_car4_available_connection : boolean;

8 fault _carb_available_connection : boolean;

9

10 S the activation section ————

11 VAR

12 carl_go_active : boolean; carl_coming_back_active : boolean;
13 car2_go_active : boolean; car2_coming_back_active : boolean;
14 car3_go_active : boolean; car3d_coming_back_active : boolean;
15 car4d_go_active : boolean; car4d_coming_back_active : boolean;
16 carb_go_active : boolean; carb_coming_back_active : boolean;
17

18 ASSIGN

19 carl_go_active := FALSE; carl_coming_back_active := FALSE;
20 car2_go_active := FALSE; car2_coming_back_active := FALSE;
21 car3d_go_active := FALSE; car3_coming_back_active := FALSE;
22 card_go_active := FALSE; car4d_coming_back_active := FALSE;
23 carb_go_active := FALSE; carb_coming_back_active := FALSE;
24

25

26 VAR

27 VAR

126

28 carl_isHere : boolean; carl_go : boolean; carl_gone : boolean;

29 car2_isHere : boolean; car2_go : boolean; car2_gone : boolean;
30 car3_isHere : boolean; car3_go : boolean; car3_gone : boolean;
31 car4d_isHere : boolean; car4_go : boolean; car4_gone : boolean;
32 carb_isHere : boolean; carb_go : boolean; car5_gone : boolean;
33

34 DEFINE __going_cars__ := count (

35 carl_go | carl_gone,

36 car2_go | car2_gone,

37 car3_go | car3_gone,

38 card_go | card_gone,

39 carb_go | carb_gone

40)5

41

42 ASSIGN

13 init (carl_isHere) := TRUE; init (carl_go) := FALSE;

14 init (car2_isHere) := TRUE; init (car2_go) := FALSE;

45 init (car3_isHere) := TRUE; init (car3_go) := FALSE;

46 init (car4_isHere) := TRUE; init (card_go) := FALSE;

47 init (car5_isHere) := TRUE; init (car5_go) := FALSE;

48

19 next(carl_isHere) := (carl_coming_back & carl _coming back active)
50 | (carl_isHere & !carl_go);

51 next (car2_isHere) := (car2_coming_back & car2 coming back active)
52 | (car2_isHere & !car2_go);

53 next (car3_isHere) := (car3_coming_back & car3_coming back_active)
54 | (car3_isHere & !car3_go);

55 next (car4_isHere) := (card_coming_back & card coming back active)
56 | (card_isHere & !card_go);

57 next (carb_isHere) := (carb5_coming_back & car5 coming back active)
58 | (carb_isHere & !car5_go);

59

60 next(carl_go) := carl _go active & (fires — __going_cars__ > 0)

61 & next(carl_isHere);

62 next(car2_go) := car2 go active & (fires — __going_cars__

63 — count (next(carl_isHere)) > 0)
64 & next(car2_isHere);

65 next(car3_go) := car3 go_active & (fires — __going_cars__

66 — count (next(carl_isHere) ,

67 next (car2_isHere)) > 0)
68 & next(car3_isHere);

69 next(card_go) := card go active & (fires — __going_cars__

70 — count (next(carl_isHere),

71 next (car2_isHere),

72 next (car3_isHere)) > 0)
73 & next(car4_isHere);

74 next(car5_go) := carb go active & (fires — __going_cars__

75 — count (next(carl_isHere),

127

76
77
78
79
80
81
82
83
84
85

N —

next (carl_gone)
next (car2_gone)
next (car3_gone)
next(car4_gone)
next (carb_gone)

next (car2_isHere),

next (car3_isHere) ,

next (car4_isHere)) > 0)
& next(carb_isHere);

;= carl_go & next(!carl_coming_back);
= car2_go & next(!car2_coming_back);
= car3_go & next (!car3_coming_back);
= card_go & next (!car4d_coming_back);
:= carb5_go & next (!car5_coming_back);

The actual injection is really simple: permanently decide some of the activation
variables to TRUE. We report the injection on the first car only: it is no different
for all the other 5. Notice that, unlike the injection for the CAE that we saw in the
last section, here activations might happen concurrently. Consequently we separate
each mode in different slices.

FAULT EXTENSION FE CAE_ATG
EXTENSION OF MODUILE FireStation

SLICE carl_

MODE

)

SLICE carl_

s1 AFFECITS carl_go_active WITH

reachable_car: Permanent StuckAtByValue.I (

data term << TRUE,

data input << carl_go_active ,

data varout >> carl_go_active ,

event failure >> fault_carl_available_connection

)

s2 AFFECIS carl_coming_back_active WITH

MODE reachable_base: Permanent StuckAtByValue I (

)

SLICE car2_

data term << TRUE

data input << carl_coming_back_active ,

data varout >> carl_coming_back_active ,

event failure >> fault_carl_available_connection

s1 AFFECITS car2_coming_back_active WITH

A special care has to be given to the Top-Level Event specification, in this case.

As we discussed above,

the result of Positive-XSAP is not a construction granting

the Top-Level desirable property to hold universally, only existentially. This means
that to every variable whose value is not deterministically determined, it will be

choice for the tool. In

other words, the tool builds suggestion trees by respond-

ing to the call of picking arbitrary variable values so to reach the desirable property.

Our plain Top-Level event would be (notice the upfront negation, due to Positive-

XSAP dualization):

1 INVARSPEC NAME TLE _negated :=

128

2 '(!monitor.timeout & !monitor.newFiresCameTooLate);

This specification is not fine to our aims because Positive-XSAP is allowed to pick
any arbitrary value for its variables, and to be minimal it will centrainly prefer
those configurations with no fires ever bursting out in the scene. For that case,
with that Top-Level specification, suggestion trees of Positive-XSAP will be of no
use.

Therefore we will need to enforce some sort of fairness to the construction of the
suggestion tree, by acting on the property specification. The way to do it is by ask-
ing that in the final state — corresponding to the property violation — the district
experience all the possible fire explosions and that the monitor reach a time count
of MAX_TIME (i.e. our maximum before timeout):

I INVARSPEC NAME TLE_negated :=
¢ !(

[\

district .newfire_counter=district . MAX FIRES
& monitor. time_counter=MAX TIME
& !monitor. timeout & !monitor.newFiresCameTooLate

6)i

U= W

Figure 6.5: The Fault Tree constructed by Positive-XSAP for the CAE
model (with zoom on the middle part).

Now the construction is fine and ends up in 4 minimal cut sets, that we show in
figure 6.5. All the cut sets are equivalent and all resemble the middle one, on which
we zoomed in the figure.

From the picture we acknowledge that there is a particular configuration that leads
all the fires to be extinguished as required. In particular, we need any two cars

129

among those in {2, 3, 4,5}, arbitrarily, based on when fires burst plus car carl. For
example the displayed configuration in the middle, despite not much visible, has
the configuration {1,2,5}. Car carl is special and needs to be there in all minimal
configurations: since failures are not admitted, all cars in {2,3,4,5} are instructed
to go only if carl is not there at the Fire Station (the reader might want to check
this with the code).

Considerations about scheduling of cars can be made by looking at the traces pro-
duced by the tool, which contain event ordering information: Positive-XSAP, for
our example, produced 5, that we decided not to present them here to avoid visual
cluttering. The time for the explosion of new fires was set arbitrarily by XSAP,
not always with the same pattern. We would like to stress that one could possi-
bly push even stricter requirements to the system, feasibly controlling the entire
non-determinism from the desirable Top-Level Event formula and achieve more
specialized trees. We decided not to do that because our study is limited to com-
prehension.

The suggestion tree of figure 6.5 could be found using bmc methods with bound
k = 11. It took 3.173s using the SAT-based bmc procedure and 25.812s using msat.
Then we tried to feed the problem to the bdd and ic3 engines. Not without sur-
prise XSAP was able to find smaller cut sets using those procedures, respectively in
4.668s and 38.069s. Results are shown in figure 6.6. The reason for this new, dif-
ferent suggestion tree lays in the completeness of the bdd and ic3 methods: XSAP
can look at the whole state space and explore more options to make the existential
paths minimal.

After an exploration of the produced trace we were able to grasp that a path could
be generated such that the single car carl could make its way back and forth from
the FireStation to extinguish all fires independently, in 24 steps. The same fault
tree could then be find using bmc-based techniques using, this time, the bound
k = 24. This time, however, it took much more time: around 16s for the bmc
procedure and more than 300s for msat.

6.3.3 Suggestion trees, SOA and planning tableaux

We mentioned at the end of section 6.3.1 that suggestion trees cannot be taken as
globally universal design utilities, mainly because their construction is inherently
existential on traces. However, although lacking universality, they might come to
suggest interesting paths of exploration for design and might come in handy when
system reconfigurations are required.

The first short part hereafter is dedicated to the discussion of this aspect with
respect to the paradigm of service-orientation. After that we show here how the
procedure is not limited to design but can be employed to other ends, such as
planning. This, with relative comments, will conclude the section.

130

fireStation.carl_sl.mode_is_reacha fireStation.carl_s2.mode_is_reacha
ble_car le_b

Figure 6.6: The Fault Tree constructed by Positive-XSAP (BDD and IC3).

Positive-XSAP for SOA design

Service-orientation is particularly sensible to the problem of prompt system recon-
figuration. In [61] is proposed a structuring of SOA that is based on an interface
filter bound to feed and get fed by an underlying component. We discussed about
this formal architecture in section 2.2.2 where we identified three different mod-
ules for that, namely the functional, interface and interface factory module. In a
contract-based vision of the system, we can identify the functional module with
implementations, the interface module with contracts and the factory module with
the dynamic system adaptations that can happen offline, in redesigning the system.

This re-adaptation, which we referred to as dynamic system reconfiguration in
section 2.3, might be based on suggestion trees of XSAP to decide which of the
interface components to lay out and which parameters to use. The significant thing
to be aware of is the existential aspect of XSAP, which prevents the provision of
guarantees in general and the employment of FMEA tables might help on this. The
whole thing would need a great deal of exploration, that we consciously leave to
future work.

Positive-XSAP for planning

On a similar line we can notice that the same method can be used to resolve a plan-
ning problem under the assumption of non-determinism. If the previous problem
asked how the given resources could be arranged in the system in order to reach the
specified property, the planning question asks how a certain goal can be reached
given fixed conditions. Coincidentally or by accident the Positive-XSAP problem
over CAE can be restated as an instance of both, depending on the objective given

131

to the analysis.

Under the design perspective, CAE wants to find a design that allows every fire to
be quenched before the timeout is triggered. To feel this more concretely, imag-
ine a new district is assigned to the Fire Station. Given a suitable redefinition of
the model, it is asked at design to provide the minimum number of cars to cover
fires of both districts and avoid timeout. This view follows what has been said so
far and suffers from the issues of existentiality vs. universality that we previously
mentioned, especially if too much freedom is given to non-determinism.

In the eyes of a planner, instead, what one looks for is really a way, any way,
to reach a given goal. Given 5 available cars and fires bursting at predefined times,
the planner asks for the minimal configurations of cars that can allow them to be
all extinguished before timeout. Possibly the result of the analysis with Positive-
XSAP will return a fault tree of possible options. We call the fault tree generated
by Positive-XSAP for planning a planning tableau, because it shows more than one
way, all minimal, for the planner to choose its strategy and reach its goal. The
nicest thing about planning tableaux comes from the fact that enabling option
--gen-trace in the Positive-XSAP process, a trace description is attached to each
set, which specifies precisely the way to reach the goal in the minimal sense.

On the employment of Positive-XSAP

The approaches that we put forward in this section are both novel and experi-
mental, since they have no direct correspondence in the literature to the extent
that service-orientation is concerned. However, similar approaches have been de-
vised accounting for planning using model checking techniques. For example in
[31] the problem of conformant planning in non-deterministic domains is tackled.
This problem aims at finding paths in a given domain of actions that can lead an
actor to achieve a goal regardless of non-determinism. In the paper this is done,
symbolically, evolving the system by means of a transition relation between indis-
tinguishable sets of states, called belief states with a not-so-cryptic reference to
epistemic logic and epistemic reasoning.

The work in [31] is only one examples of planning strategies that the model checking
community has developed throughout the years. Our approach is algorithmically
similar but methodically different. Here we proposed suggestion trees and planning
tableauz for different aims in the SOA domain, as an integration, a tool exploita-
tion, to classical and non classical dependability analysis techniques. From this
new standpoint we believe that industry might widely benefit from the adoption of
automatic tools like XSAP, which can find application in more than one context,
to assess properties beyond the yet always central system dependability.

132

Final Considerations and
Future Work

The problem of assessing dependability of SOAs in terms of Fault Tree Analy-
sis (FTA), Failure Mode and Effects Analysis (FMEA) or related techniques has
never received much attention by the research community, because of their orig-
inal statement in the context of Web services. Only recently the literature has
started to appreciate the employment of SOA as an infrastructure for developing
Cyber-Physical Systems; works relating the understanding of faults occurring in
this context are becoming of greater and greater value and actually starting to get
investigated [4].

It his thesis we presented novel ways to assess the dependability of such complex
Cyber-Physical Systems constructed over Service Oriented Architectures. Depend-
ability assessment was proposed through Model-Based Fault Injection put in place
with the features brought by the XSAP safety analysis tool, which is based on
state-of-the-art symbolic model checking techniques.

We saw how service orientation readily fits into the contract framework, which
is a mathematical basis purposely created to track component interactions at the
interface level, accounting for feasibility of embedding in the assumptions and en-
forcing property to the environment in the guarantees. We provided an overview
of the languages employed in the description of SOA and Cyber-Physical Systems
in general, ending up preferring SYSML+SoAML, as a standard UML derivation,
for their amenability to industry needs.

Interestingly, in the literature context our work is to be placed at a point of in-
tersection between the SOA literature, the Cyber-Physical Systems literature, the
formal-verification literature and industrial based software engineering practice.
This lead us to a cross-cutting treatment, taking useful features from one domain
or the other, disposing of the irrelevant ones. This was done thoughtfully after a
deep analysis of each aspect.

In the process of doing that we proposed how to use the XSAP tool with a good
deal of novelty and adaptation to the SOA realm. We proposed the introduc-
tion of latency ports for timings, inspired by [15] and similarly adaptable to other
non-functional aspects. Here we wanted to show how the timing viewpoint could
be made explicit and how faults could be injected on them by means of XSAP,

133

in spite of it not having been conceived to work out latencies as injections. We
showed how the topological evolution could be tracked by means of fault injection
using boolean availability techniques and even how we could rethink the fault tree
construction of XSAP in its dualized fashion, promoting the concepts of suggestion
trees and planning tableaux.

Several works are envisioned for the future. In the second part of the thesis we
analyzed the use case instances of two different kind of SOA. For the first is rep-
resentative the Thermostat example, for the other the CAE. Even though we pre-
sented the two examples distinctly, they do not need to be. The separation of
treatments has been deemed convenient for presentation purposes but their inte-
gration, we believe, would be more than welcome upon expansion of our techniques
to broader-spectrum industrial-size use cases that concomitantly treat service avail-
ability and system dynamics. Nicely, we claim, functional dynamic aspects can be
confined to components’ description while boolean availability and timing (as well
as possibly other non-functional considerations) can be delegated to the network
agent. This would have the prime advantage of having component’s functional as-
pects treated on a different layer than non-functional and network-related aspects,
thereby independently. This would be answer to the concern of adaptable embed-
dability for this kind of systems — or rather for their modeling aspect with respect
to verification and dependability assessment — retaining the functional description
of single components unvaried for all analysis where they are employed, only chang-
ing parameters of the environment where they are embedded, virtually including
other factors besides the service-oriented network that we talked about.

Related to this we also saw how a contract-based description of systems can help
against scalability issues, especially when feedback is involved. We saw for the
Thermostat example that the relative contract-based dependability analysis was
way faster than the direct analysis over the whole state space of the system, pro-
vided a prior resolution of the unfolded parallel composition of the system descrip-
tion. The state space for the single contract of the component, the Thermocouple
in our case, included possibilities that never could have happened in practice but
we argued that this feature, an abstraction of the possible states encompassing an
over-approximation, was an expected activity in the view of proving contracts co-
herent, organically, with any environment they could embed into. Notice that in
systems with control such as those employed in industry, this aspect takes solid
concrete meaning.

The natural continuation of our work is a tool at the service of industry for the au-
tomatic translation between modeling standards and the input language for XSAP.
We envision two realization possibilities. The first is the translation starting from
our recommended modeling standard SYSML+S0AML (see section 5.1), the other
founds on dependability analyses based on different translation tools towards the
safety platform. Both cases would imply a methodological study about the seman-
tic transformations applicable on the language entities, provided that a semantics
is available, and a special accounting for the SOA aspect.

The workflow that we propose for the first case is depicted in figure 6.7. If this op-

134

) _
Contract Fault
Patterns Library

. .)
[|)
‘ L 5 j ‘ e @
SysML+SoalML Specification of Specification of

==
ysis

specification
contracts faults XSAP anal \
Translation to XSAP input language Standard verification -

Figure 6.7: Future work: Final translation and utilization workflow

tion is preferred then it would be necessary to fix a contract-based language for the
specification of system properties, such as BCL [52], and define how that could be
supplied on the language entities. Moreover, it would be necessary to understand
how the specification of faults could be attained in this context, because their spec-
ification in the form of injection files (such as the .fei file of XSAP) is as unfeasible
as a direct modeling in nuXmv for the system description. As suggested in chapter
1 after considerations from the literature, we we could give the user a fixed library
of injectable faults and supply it with the possibility of constructing slices for each
entity of the language, choosing modes from a default shortlist®. Positive-XSAP is
not meant to enjoy the same level of ease, even though attempts could be made
towards that direction.

Note the red star in the workflow of figure 6.7: this is meant to represent the
availability of nuXmv as a basis for verification in XSAP, once the nominal sys-
tem model is available. Having a tool like XSAP, that comprises verification and
dependability aspects under the same umbrella, is both convenient and important.
In fact, the point becomes tangibly interesting at this point, where the proposed
translation from SYSML+SOAML produces the intermediate files to feed XSAP
with, distinguishing the nominal model from the .fei file (the two envelopes in the
figure). After that, at the end of the procedure, if not all requirements are met or
the system is considered not ready for the following engineering phase, design can
be reiterated knowledgeable of feedback from both the verification and the safety
analysis underpinning.

The second option would be to approach the problem in a bottom-up Ptolemy-
like fashion[67], where single components and viewpoints are independently de-
veloped using different modeling languages and then combined for the verifica-
tion/dependability analysis phase. This approach, although certainly attainable,
would need translation support towards injection by each modeling tool, which is
a demanding request. Moreover the description of the service architecture would
demand specialized construct which, for standard modeling language, are not built

8These might include boolean availability, time degradation or be based on functional
properties. Throughout the implementations of chapter 6 we only made use of stuck-at
faults for our injections, despite XSAP provides a handful of more default options and the
possibility of defining new[54].

135

in. SYSML+4+SoAML, on the contrary, separates architecture and functionality by
design.

Feasibility of translation from UML-like languages to verification engines is wit-
nessed by works such as [53] and [11]. Quite interestingly, there even exists an
independent research work that translates SOA processes into SMV language[59).
In this work the translation starts from a WS-BPEL specification that, as we saw
in section 5.1, is procedural and lacks some of the functionalities that we would
need in our Cyber-Physical scenario. It is nevertheless remarkable to see that our
projections to future work are aligned to other precedently developed methodolo-
gies in the literature, and that the means we are dealing with are too.

In conclusion, our methodology let us investigate interesting aspects of complex
Cyber-Physical Systems based on SOA, from which we induced modeling practices
whose adoption criteria we motivated in detail. The study put the basis on methods
for a far-reaching treatment of those systems in terms of safety analysis and design,
that we ended in an industrial level workflow proposal in this last chapter.

Performance derived from the safety analysis platform might still hinder the ef-
fectiveness of our approach. To date we yet do not have measures based on real
industrial scenarios — which we expect way bigger and more complex — however
we are confident that the contract-based approach that we proposed for the Ther-
mostat use case could evenly be able to tackle the scalability challenge over more
complex system models and that the boolean availability of components could be
handled nicely on large scales by exploiting symbolic model checking and reachabil-
ity procedures such as BDD, BMC or IC3 (cf. section 4.2.2). Eventually we expect
that XSAP take complete advantage of the integrated SMT-solving possibilities of
nuXmv, so that it can handle infinite state systems without need of discretization
and let our analysis — ultimately our translation — be smoother and possibly faster.

136

Bibliography

[1]
2]

[7]

8]

Aadl — http://www.aadl.info/.

S. Abdelwahed, G. Karsai, N. Mahadevan, and S.C. Ofsthun. Practical imple-
mentation of diagnosis systems using timed failure propagation graph models.
Instrumentation and Measurement, IEEE Transactions on, 58(2):240-247, Feb
2009.

A. Albinet, J. Arlat, and J.-C. Fabre. Characterization of the impact of faulty
drivers on the robustness of the linux kernel. In Dependable Systems and
Networks, 2004 International Conference on, pages 867876, June 2004.

Cristiana Areias, Nuno Antunes, and JoaoCarlos Cunha. On applying fmea
to soas: A proposal and open challenges. In Istvan Majzik and Marco Vieira,
editors, Software Engineering for Resilient Systems, volume 8785 of Lecture
Notes in Computer Science, pages 86—100. Springer International Publishing,
2014.

Alessandro Armando, Jacopo Mantovani, and Lorenzo Platania. Bounded
model checking of software using smt solvers instead of sat solvers. In SPIN’06:
Proceedings of the 13th international conference on Model Checking Software,
pages 146-162, Berlin, Heidelberg, 2006. Springer-Verlag.

M. Arrott, B. Demchak, V. Ermagan, C. Farcas, E. Farcas, .H. Kruger, and
M. Menarini. Rich services: The integration piece of the soa puzzle. In Web
Services, 2007. ICWS 2007. IEEE International Conference on, pages 176—
183, July 2007.

Karl Johan Astrom and Richard M Murray. Feedback systems: an introduction
for scientists and engineers. Princeton university press, 2010.

Gilles Audemard, Alessandro Cimatti, Artur Kornilowicz, and Roberto Se-
bastiani. Bounded model checking for timed systems. In Proceedings of the
22Nd IFIP WG 6.1 International Conference Houston on Formal Techniques
for Networked and Distributed Systems, FORTE ’02, pages 243-259, London,
UK, UK, 2002. Springer-Verlag.

Clark W Barrett, Roberto Sebastiani, Sanjit A Seshia, and Cesare Tinelli.
Satisfiability modulo theories. Handbook of satisfiability, 185:825-885, 2009.

137

[10]

[11]

[12]

[19]

[20]

[21]

Maurice Beek, Antonio Bucchiarone, and Stefania Gnesi. A survey on service
composition approaches: From industrial standards to formal methods. In In
Technical Report 2006 TR-15, Istituto, pages 15-20. IEEE CS Press, 2006.

Adrian Beer, Uwe Kiihne, Florian Leitner-Fischer, Stefan Leue, and Riidiger
Prem. Quantitative safety analysis of non-deterministic system architectures.
Technical report, 2013.

Albert Benveniste, Benoit Caillaud, Alberto Ferrari, Leonardo Mangeruca,
Roberto Passerone, and Christos Sofronis. Formal methods for components
and objects. chapter Multiple Viewpoint Contract-Based Specification and
Design, pages 200-225. Springer-Verlag, Berlin, Heidelberg, 2008.

Albert Benveniste, Benoit Caillaud, Dejan Nickovic, Roberto Passerone,
Jean-Baptiste Raclet, Philipp Reinkemeier, Alberto Sangiovanni-Vincentelli,
Werner Damm, Thomas Henzinger, and Kim G. Larsen. Contracts for System
Design. Research Report RR-8147, November 2012.

Albert Benveniste, Benoit Caillaud, and Roberto Passerone. A Generic Model
of Contracts for Embedded Systems. Research Report RR-6214, 2007.

Albert Benveniste, Benoit Caillaud, and Roberto Passerone. Multi-viewpoint
state machines for rich component models. 2009.

Albert Benveniste, Dejan Nickovic, and Thomas Henzinger. Compositional
Contract Abstraction for System Design. Research Report RR-8460, January
2014.

Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu. Sym-
bolic model checking without bdds. In W.Rance Cleaveland, editor, Tools and
Algorithms for the Construction and Analysis of Systems, volume 1579 of Lec-
ture Notes in Computer Science, pages 193-207. Springer Berlin Heidelberg,
1999.

Marco Bozzano, Roberto Cavada, Alessandro Cimatti, Michele Dorigatti, Al-
berto Griggio, Alessandro Mariotti, Andrea Micheli, Sergio Mover, Marco
Roveri, and Stefano Tonetta. nuxmv 1.0 user manual. 2014.

Marco Bozzano, Alessandro Cimatti, Joost-Pieter Katoen, Viet Yen Nguyen,
Thomas Noll, and Marco Roveri. Safety, dependability and performance anal-
ysis of extended aadl models. Comput. J., 54(5):754-775, May 2011.

Marco Bozzano, Alessandro Cimatti, Cristian Mattarei, and Stefano Tonetta.
Formal safety assessment via contract-based design. In Franck Cassez and
Jean-Frangois Raskin, editors, Automated Technology for Verification and
Analysis, volume 8837 of Lecture Notes in Computer Science, pages 81-97.
Springer International Publishing, 2014.

Marco Bozzano, Alessandro Cimatti, and Francesco Tapparo. Symbolic fault
tree analysis for reactive systems. In KedarS. Namjoshi, Tomohiro Yoneda,
Teruo Higashino, and Yoshio Okamura, editors, Automated Technology for
Verification and Analysis, volume 4762 of Lecture Notes in Computer Science,
pages 162-176. Springer Berlin Heidelberg, 2007.

138

[22]

[25]

[26]

[27]

Marco Bozzano and Adolfo Villafiorita. Improving system reliability via model
checking: The fsap/nusmv-sa safety analysis platform. In Stuart Anderson,
Massimo Felici, and Bev Littlewood, editors, Computer Safety, Reliability, and
Security, volume 2788 of Lecture Notes in Computer Science, pages 49-62.
Springer Berlin Heidelberg, 2003.

Marco Bozzano and Adolfo Villafiorita. The fsap/nusmv-sa safety analysis
platform. International Journal on Software Tools for Technology Transfer,

9(1):5-24, 2007.

Marco Bozzano and Adolfo Villafiorita. Design and safety assessment of crit-
ical systems. CRC Press, 2010.

Bpmn — http://www.omg.org/spec/bpmn/.

Manfred Broy, Ingolf H. Kriiger, and Michael Meisinger. A formal model of
services. ACM Trans. Softw. Eng. Methodol., 16(1), February 2007.

S. Bruning, S. Weissleder, and M. Malek. A fault taxonomy for service-oriented
architecture. In High Assurance Systems Engineering Symposium, 2007. HASE
'07. 10th IEEE, pages 367-368, Nov 2007.

R.E. Bryant. Graph-based algorithms for boolean function manipulation.
Computers, IEEE Transactions on, C-35(8):677-691, Aug 1986.

J.R. Burch, E.M. Clarke, K.L.. McMillan, D.L. Dill, and L.J. Hwang. Symbolic
model checking: 1020 states and beyond. In Logic in Computer Science, 1990.
LICS 90, Proceedings., Fifth Annual IEEE Symposium on e, pages 428439,
Jun 1990.

Roberto Cavada, Alessandro Cimatti, Michele Dorigatti, Alberto Griggio,
Alessandro Mariotti, Andrea Micheli, Sergio Mover, Marco Roveri, and Stefano
Tonetta. The nuxmv symbolic model checker. In Computer Aided Verification,
pages 334-342. Springer International Publishing, 2014.

A. Cimatti, M. Roveri, and P. Bertoli. Conformant planning via symbolic
model checking and heuristic search. Artificial Intelligence, 159(1-2):127 —
206, 2004.

Alessandro Cimatti. Industrial applications of model checking. In Franck
Cassez, Claude Jard, Brigitte Rozoy, and MarkDermot Ryan, editors, Mod-
eling and Verification of Parallel Processes, volume 2067 of Lecture Notes in
Computer Science, pages 153-168. Springer Berlin Heidelberg, 2001.

Alessandro Cimatti, Edmund Clarke, Enrico Giunchiglia, Fausto Giunchiglia,
Marco Pistore, Marco Roveri, Roberto Sebastiani, and Armando Tacchella.
Nusmv 2: An opensource tool for symbolic model checking. In Ed Brinksma
and KimGuldstrand Larsen, editors, Computer Aided Verification, volume
2404 of Lecture Notes in Computer Science, pages 359-364. Springer Berlin
Heidelberg, 2002.

139

[34]

[35]

[36]

[37]

[39]

[41]

[42]

[43]

[44]

[45]

Alessandro Cimatti and Alberto Griggio. Software model checking via ic3. In
Proceedings of the 24th International Conference on Computer Aided Verifica-
tion, CAV’12, pages 277-293, Berlin, Heidelberg, 2012. Springer-Verlag.

Alessandro Cimatti, Alberto Griggio, Sergio Mover, and Stefano Tonetta. Ic3
modulo theories via implicit predicate abstraction. In Tools and Algorithms
for the Construction and Analysis of Systems, pages 46-61. Springer, 2014.

Alessandro Cimatti, Alberto Griggio, Bastiaan Schaafsma, and Roberto Se-
bastiani. The MathSAT5 SMT Solver. In Nir Piterman and Scott Smolka,
editors, Proceedings of TACAS, volume 7795 of LNCS. Springer, 2013.

Alessandro Cimatti, Alberto Griggio, and Roberto Sebastiani. A simple
and flexible way of computing small unsatisfiable cores in sat modulo theo-
ries. In IN: PROCEEDINGS OF THE 10TH INTERNATIONAL CONFER-
ENCE ON THEORY AND APPLICATIONS OF SATISFIABILITY TEST-
ING (SAT-2007, pages 334-339, 2007.

Alessandro Cimatti, Marco Roveri, and Stefano Tonetta. Requirements val-
idation for hybrid systems. In Ahmed Bouajjani and Oded Maler, editors,
Computer Aided Verification, volume 5643 of Lecture Notes in Computer Sci-
ence, pages 188-203. Springer Berlin Heidelberg, 2009.

Alessandro Cimatti and Stefano Tonetta. Contracts-refinement proof system
for component-based embedded systems. Science of Computer Programming,
97, Part 3(0):333 — 348, 2015. Object-Oriented Programming and Systems
(OOPS 2010) Modeling and Analysis of Compositional Software (papers from
{EUROMICRO} SEAA’12).

D. Controneo, C. di Flora, and S. Russo. Improving dependability of service
oriented architectures for pervasive computing. In Object-Oriented Real-Time
Dependable Systems, 2003. (WORDS 2003). Proceedings of the Eighth Inter-
national Workshop on, pages 74-81, Jan 2003.

D. Cotroneo and R. Natella. Fault injection for software certification. Security
Privacy, IEEE, 11(4):38-45, July 2013.

0. Coudert and J.C. Madre. Fault tree analysis: 1020 prime implicants and
beyond. In Reliability and Maintainability Symposium, 1993. Proceedings.,
Annual, pages 240-245, Jan 1993.

Danse project — http://www.danse-ip.eu/home/.

Danse deliverable d3.3 - concept alignment example description (publicly avail-
able).

Luca de Alfaro and ThomasA. Henzinger. Interface theories for component-
based design. In ThomasA. Henzinger and ChristophM. Kirsch, editors, Em-
bedded Software, volume 2211 of Lecture Notes in Computer Science, pages
148-165. Springer Berlin Heidelberg, 2001.

140

[46]

[47]

[48]

[51]

[52]

Nicolas Dulac and Nancy Leveson. An approach to design for safety in complex
systems. In INT. SYMPOSIUM ON SYSTEMS ENGINEERING (INCOSE,
pages 33-407, 2004.

Vina Ermagan, Claudiu Farcas, Emilia Farcas, Ingolf H. Kriiger, and Massim-
iliano Menarini. A service-oriented approach to failure management. In Giese
et al. [55], pages 102-116.

Vina Ermagan, To-Ju Huang, Ingolf H Kriiger, Michael Meisinger, Massimil-
iano Menarini, and Praveen Moorthy. Towards tool support for service-oriented
development of embedded automotive systems. In MBEES, pages 1-24, 2007.

Jonathan Ezekiel and Alessio Lomuscio. Combining fault injection and model
checking to verify fault tolerance in multi-agent systems. In Proceedings of The
8th International Conference on Autonomous Agents and Multiagent Systems
- Volume 1, AAMAS ’09, pages 113-120, Richland, SC, 2009. International
Foundation for Autonomous Agents and Multiagent Systems.

Jonathan Ezekiel and Alessio Lomuscio. A methodology for automatic diagnos-
ability analysis. In Proceedings of the 12th International Conference on Formal
Engineering Methods and Software Engineering, ICFEM’10, pages 549-564,
Berlin, Heidelberg, 2010. Springer-Verlag.

Jonathan Ezekiel, Alessio Lomuscio, Levente Molnar, Sandor Veres, and Miles
Pebody. Verifying fault tolerance and self-diagnosability of an autonomous
underwater vehicle, 2011.

O. Ferrante, R. Passerone, A. Ferrari, L. Mangeruca, and C. Sofronis. Bel: A
compositional contract language for embedded systems. In Emerging Technol-
ogy and Factory Automation (ETFA), 2014 IEEFE, pages 1-6, Sept 2014.

Alberto Ferrari, L Mangeruca, O Ferrante, and A Mignogna. Desyreml: a
sysml profile for heterogeneous embedded systems. Embedded Real Time Soft-
ware and Systems, ERTS, 2012.

Embedded Systems Unit Fondazione Bruno Kessler. Xsap user manual, 2012.

Holger Giese, Michaela Huhn, Ulrich Nickel, and Bernhard Schatz, editors.
Dagstuhl-Workshop MBEES: Modellbasierte Entwicklung eingebetteter Sys-
teme IV, Schloss Dagstuhl, Germany, 7.-9. April 2008, Tagungsband Mod-
ellbasierte Entwicklung eingebetteter Systeme, volume 2008-2 of Informatik-
Bericht. TU Braunschweig, Institut fiir Software Systems Engineering, 2008.

Ibrahim Habli, Abdulaziz Al-Humam, Tim Kelly, and Leila Fahel. Integrat-
ing Safety Assessment into the Design of Healthcare Service-Oriented Ar-
chitectures. In Volker Turau, Marta Kwiatkowska, Rahul Mangharam, and
Christoph Weyer, editors, 5th Workshop on Medical Cyber-Physical Systems,
volume 36 of OpenAccess Series in Informatics (OASIcs), pages 113-123,
Dagstuhl, Germany, 2014. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

Luke Thomas Herbert and Robin Sharp. Workflow Fault Tree Generation
Through Model Checking, pages 2229-2236. C R C Press LLC, 2014.

141

[58]

[59]

[60]

[61]

[62]

[63]

[64]

Matjaz B. Juric. Business Process Execution Language for Web Services BPEL
and BPEL4WS 2Nd Edition. Packt Publishing, 2006.

R. Kazhamiakin, P. Pandya, and M. Pistore. Timed modelling and analysis
in web service compositions. In Awailability, Reliability and Security, 2006.
ARES 2006. The First International Conference on, pages 7 pp.—, April 2006.

M. Kooli and G. Di Natale. A survey on simulation-based fault injection tools
for complex systems. In Design Technology of Integrated Systems In Nanoscale
Era (DTIS), 2014 9th IEEE International Conference On, pages 1-6, May
2014.

Ingolf H. Kriiger. From requirements to hierarchical soa models of cyberphys-
ical systems. unpublished.

Ingolf H. Kriiger. Specifying services with {UML} and uml-rt: Foundations,
challenges and limitations. Flectronic Notes in Theoretical Computer Science,
65(7):34 — 50, 2002. {VISS} 2002, Validation and Implementation of Scenario-
based Specifications (Satellite Event of {ETAPS} 2002).

IL.H. Kruger and R. Mathew. Systematic development and exploration
of service-oriented software architectures. In Software Architecture, 2004.
WICSA 2004. Proceedings. Fourth Working IEEE/IFIP Conference on, pages
177-187, June 2004.

Anna Lanzaro, Roberto Natella, Stefan Winter, Domenico Cotroneo, and
Neeraj Suri. An empirical study of injected versus actual interface errors.
In Proceedings of the 2014 International Symposium on Software Testing and
Analysis, ISSTA 2014, pages 397-408, New York, NY, USA, 2014. ACM.

Rubén Lara, Dumitru Roman, Axel Polleres, and Dieter Fensel. A conceptual
comparison of wsmo and owl-s. In Liang-Jie(LJ) Zhang and Mario Jeckle,
editors, Web Services, volume 3250 of Lecture Notes in Computer Science,
pages 254-269. Springer Berlin Heidelberg, 2004.

Daniel Larsson and Reiner Hahnle. Symbolic fault injection, 2006.

Edward A Lee and Stavros Tripakis. Modal models in ptolemy. In FOOLT,
pages 11-21. Citeseer, 2010.

Nancy G. Leveson. Engineering a Safer World: Systems Thinking Applied to
Safety (Engineering Systems). The MIT Press, January 2012.

Scott R. Little. Efficient Modeling and Verification of Analog/Mized-signal
Circuits Using Labeled Hybrid Petri Nets. PhD thesis, University of Utah,
Salt Lake City, UT, USA, 2008. AAI3333598.

Alessio Lomuscio, Hongyang Qu, and Franco Raimondi. Mcmas: A model
checker for the verification of multi-agent systems. In Ahmed Bouajjani and
Oded Maler, editors, Computer Aided Verification, volume 5643 of Lecture
Notes in Computer Science, pages 682-688. Springer Berlin Heidelberg, 2009.

142

[71]

[72]

N. Looker, M. Munro, and Jie Xu. A comparison of network level fault injection
with code insertion. In Computer Software and Applications Conference, 2005.
COMPSAC 2005. 29th Annual International, volume 1, pages 479-484 Vol. 2,
July 2005.

N. Looker and Jie Xu. Assessing the dependability of soap rpc-based web
services by fault injection. In Object-Oriented Real-Time Dependable Systems,
2003. WORDS 2003 Fuall. The Ninth IEEFE International Workshop on, pages
163-163, Oct 2003.

Nik Looker, Malcolm Munro, and Jie Xu. Assessing web service quality of
service with fault injection. Quality of Service for Application Servers, SRDS,
Brazil, 2004.

Marcos Lépez-Sanz, César J. Acuna, Carlos E. Cuesta, and Esperanza Marcos.
Modelling of service-oriented architectures with {UML}. Electronic Notes in
Theoretical Computer Science, 194(4):23 — 37, 2008. Proceedings of the 6th
International Workshop on the Foundations of Coordination Languages and
Software Architectures (FOCLASA 2007).

P.D. Marinescu and G. Candea. Lfi: A practical and general library-level
fault injector. In Dependable Systems Networks, 2009. DSN ’09. IEEE/IFIP
International Conference on, pages 379-388, June 2009.

P. Nuzzo, A. Iannopollo, S. Tripakis, and A. Sangiovanni-Vincentelli. Are
interface theories equivalent to contract theories? In Formal Methods and
Models for Codesign (MEMOCODE), 2014 Twelfth ACM/IEEFE International
Conference on, pages 104-113, Oct 2014.

Owl-s — http://www.w3.org/submission/owl-s/.

R. Passerone, W. Damm, I. Ben Hafaiedh, S. Graf, A. Ferrari, L.. Mangeruca,
A. Benveniste, B. Josko, T. Peikenkamp, D. Cancila, A. Cuccuru, S. Gerard,
F. Terrier, and A. Sangiovanni-Vincentelli. Metamodels in europe: Languages,
tools, and applications. Design Test of Computers, IEEE, 26(3):38-53, May
20009.

Amir Pnueli. The temporal logic of programs. In Foundations of Computer
Science, 1977., 18th Annual Symposium on, pages 46-57, Oct 1977.

Antoine Rauzy. New algorithms for fault trees analysis. Reliability Engineering
& System Safety, 40(3):203-211, 1993.

M.Q. Saleem, J. Jaafar, and M.F. Hassan. Security modelling along business
process model of soa systems using modified uml-soa-sec. In Computer Infor-
mation Science (ICCIS), 2012 International Conference on, volume 2, pages
880-884, June 2012.

Alberto Sangiovanni-Vincentelli, Werner Damm, and Roberto Passerone. Tam-

ing dr. frankenstein: Contract-based design for cyber-physical systems*. Fu-
ropean Journal of Control, 18(3):217 — 238, 2012.

143

[83]

[84]

[85]
[86]

[87]

[94]

[95]

[96]

Soaml — http://www.omg.org/spec/soaml/.

Soaml wiki — http://forge.modelio.org/projects/soaml-modelio3-user-
manual-english /wiki.

Sysml — http://www.omgsysml.org/.

Robert A. Thacker, Kevin R. Jones, Chris J. Myers, and Hao Zheng. Au-
tomatic abstraction for verification of cyber-physical systems. In Proceedings
of the 1st ACM/IEEE International Conference on Cyber-Physical Systems,
ICCPS ’10, pages 12-21, New York, NY, USA, 2010. ACM.

S.G. Vadlamudi and P.P. Chakrabarti. Robustness analysis of embedded con-
trol systems with respect to signal perturbations: Finding minimal counterex-
amples using fault injection. Dependable and Secure Computing, IEEE Trans-
actions on, 11(1):45-58, Jan 2014.

J. Voas. A tutorial on software fault injection.

M Vollmer. Newton’s law of cooling revisited. Furopean Journal of Physics,
30(5):1063, 2009.

Peng Wang, Yang Xiang, and Shao Hua Zhang. Cyber-physical system com-
ponents composition analysis and formal verification based on service-oriented
architecture. In e-Business Engineering (ICEBE), 2012 IEEE Ninth Interna-
tional Conference on, pages 327-332, Sept 2012.

Ws-cdl — http://www.w3.org/tr/ws-cdl-10/.
Wsmo — http://www.w3.org/submission/wsmo/ .

Aliaksei Yanchuk, Alexander Ivanyukovich, and Maurizio Marchese. A
lightweight formal framework for service-oriented applications design. In
Boualem Benatallah, Fabio Casati, and Paolo Traverso, editors, Service-
Oriented Computing - ICSOC 2005, volume 3826 of Lecture Notes in Computer
Science, pages 545-551. Springer Berlin Heidelberg, 2005.

William Young and Nancy G. Leveson. An integrated approach to safety and
security based on systems theory. Commun. ACM, 57(2):31-35, February 2014.

Lintao Zhang and Sharad Malik. Extracting small unsatisfiable cores from
unsatisfiable boolean formula. SAT, 3, 2003.

Haissam Ziade, Rafic Ayoubi, and Raoul Velazco. A survey on fault injection
techniques, 2003.

144

