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Kaiser D, Azzalini DC, Peelen MV. Shape-independent object
category responses revealed by MEG and fMRI decoding. J Neuro-
physiol 115: 2246-2250, 2016. First published January 6, 2016;
doi:10.1152/jn.01074.2015.—Neuroimaging research has identified
category-specific neural response patterns to a limited set of object
categories. For example, faces, bodies, and scenes evoke activity
patterns in visual cortex that are uniquely traceable in space and time.
It is currently debated whether these apparently categorical responses
truly reflect selectivity for categories or instead reflect selectivity for
category-associated shape properties. In the present study, we used a
cross-classification approach on functional MRI (fMRI) and magne-
toencephalographic (MEG) data to reveal both category-independent
shape responses and shape-independent category responses. Partici-
pants viewed human body parts (hands and torsos) and pieces of
clothing that were closely shape-matched to the body parts (gloves
and shirts). Category-independent shape responses were revealed by
training multivariate classifiers on discriminating shape within one
category (e.g., hands versus torsos) and testing these classifiers on
discriminating shape within the other category (e.g., gloves versus
shirts). This analysis revealed significant decoding in large clusters in
visual cortex (fMRI) starting from 90 ms after stimulus onset (MEG).
Shape-independent category responses were revealed by training
classifiers on discriminating object category (bodies and clothes)
within one shape (e.g., hands versus gloves) and testing these classi-
fiers on discriminating category within the other shape (e.g., torsos
versus shirts). This analysis revealed significant decoding in bilateral
occipitotemporal cortex (fMRI) and from 130 to 200 ms after stimulus
onset (MEG). Together, these findings provide evidence for concur-
rent shape and category selectivity in high-level visual cortex, includ-
ing category-level responses that are not fully explicable by two-
dimensional shape properties.

category selectivity; visual cortex organization; body representations

FUNCTIONAL MAGNETIC RESONANCE imaging (fMRI) studies have
shown that multivoxel response patterns in high-level visual
cortex reliably discriminate different object categories (Haxby et
al. 2001) and that these show a meaningful categorical organiza-
tion (e.g., an animate-inanimate distinction; Kriegeskorte et al.
2008). Similarly, signatures of category-specific processing in the
time domain have been identified using magneto- and electroen-
cephalography (MEG/EEG), with MEG sensor patterns across the
scalp allowing for reliable classification of object categories (Carl-
son et al. 2013; Cichy et al. 2014).

However, it is unclear whether such categorical responses are
truly reflecting category membership, detached from specific
visual features, or whether they are instead driven by visual
properties of objects that systematically covary with category
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membership. For example, the face-selective fusiform face area
(Kanwisher et al. 1997) is preferentially activated for round,
nonface stimuli that have a higher spatial concentration of ele-
ments in the upper half even when these stimuli are not recog-
nized as faces (Caldara et al. 2006), and the occipital face area
(Gauthier et al. 2000) has been shown to be causally involved in
the perception of stimulus symmetry (Bona et al. 2015). Further-
more, large-scale response patterns in monkey inferior temporal
cortex can be well-explained by the shape similarity of the objects
without the need to refer to category membership (Baldassi et al.
2013). Such findings prompt the hypothesis that closely matching
shape properties of objects from different categories would largely
abolish category-specific response patterns.

We tested this prediction by investigating how matching for
two-dimensional (2D) shape properties impacts neural re-
sponses to a specific category, the human body. Previous
studies have characterized distinct spatiotemporal signatures of
body perception, recruiting specific regions in occipitotempo-
ral and fusiform cortices and evoking specific electrophysio-
logical waveform components (for review, see Peelen and
Downing 2007). Furthermore, bodies can be reliably separated
from other categories based on MEG and fMRI response
patterns (Cichy et al. 2014; Kriegeskorte et al. 2008). It is
unknown whether these body-specific fMRI and MEG re-
sponses reflect selectivity for particular shape properties of
bodies (e.g., symmetry) or whether they reflect, at least partly,
a truly categorical response.

Participants were tested in separate fMRI and MEG exper-
iments with largely identical experimental procedures. Multi-
variate classification techniques were used to characterize cat-
egory representations in space (fMRI) and time (MEG). The
stimulus set consisted of human body parts (hands and torsos)
and pieces of clothing (gloves and shirts) that were closely
shape-matched to the body part stimuli. To reveal category-
independent shape responses, classifiers were trained to dis-
criminate between different shapes within one category (e.g.,
hands versus torsos) and tested to discriminate these shapes
within the other category (e.g., gloves versus shirts). To reveal
shape-independent category responses, classifiers were trained
to discriminate between the categories (bodies and clothes)
within one shape (e.g., hands versus gloves) and tested to
discriminate these categories within the other shape (e.g.,
torsos versus shirts).

MATERIALS AND METHODS

Participants. Twenty-four healthy adults (eleven men; mean age 24.2
yr, SD = 3.4) took part in the fMRI experiment, and twenty-one healthy
adults (fourteen men; mean 25.0 yr, SD = 3.2) took part in the MEG
experiment. One participant completed both experiments. All participants
had normal or corrected-to-normal visual acuity. All procedures were
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carried out in accordance with the Declaration of Helsinki and were
approved by the ethical committee of the University of Trento.

Stimuli and procedure. Unless otherwise noted, all aspects of the
design were identical between the fMRI and MEG experiments. The
full stimulus set consisted of nine different categories (hands, gloves,
torsos, shirts, brushes, pens, trees, vegetables, and chairs) with
twenty-one different exemplars per category. Four of these categories
(brushes, pens, trees, and vegetables) were related to a different
research question and are not analyzed here. Chairs served as target
stimuli (Fig. 1B) and were also excluded from all analyses. Our
analyses were focused on the comparison between stimuli depicting
human body parts (human hands and torsos, i.e., shirts with a human
upper body inside) and stimuli depicting solely pieces of clothing
despite being very similar to the human body parts in their shape
properties (gloves and shirts; Fig. 1A).

Both experiments consisted of multiple runs, where participants
viewed grayscale images of the different categories for 500 ms in a
randomized order (Fig. 1B), with stimuli being separated by a fixation
interval varying randomly between 1,500 and 2,000 ms (in discrete
steps of 50 ms). Participants were instructed to maintain central
fixation and press the response button whenever they saw a chair
(these trials appeared equally often as all other categories, e.g., 21
times per run). For the MEG experiment, participants were addition-
ally instructed to use the chair trials specifically for eye blinks. Each
run contained each individual exemplar of every category exactly
once, leading to a total of 189 trials per run and an average run
duration of 7.1 min. In the fMRI experiment, every run additionally
contained a 10-s fixation period at the beginning and end. During the
fMRI experiment, participants completed 6 of these runs (for 1
participant, only data from 5 runs were collected due to a technical
problem), and during the MEG experiment, participants completed 10
runs (1 participant performed 11 runs). Stimulus presentation was
controlled using the Psychtoolbox (Brainard 1997); in the MRI,
stimuli were back-projected onto a screen at the end of the scanner
bore and participants saw the stimulation through a tilted mirror
mounted on the head coil, whereas in the MEG, stimuli were back-
projected onto a translucent screen located in front of the participant.

fMRI data acquisition and preprocessing. MR imaging was con-
ducted using a Bruker BioSpin MedSpec 4T head scanner (Bruker
BioSpin, Rheinstetten, Germany) equipped with an eight-channel
head coil. During the experimental runs, T2*-weighted gradient-echo
echo-planar images were collected [repetition time (TR) = 2.0 s, echo
time (TE) = 33 ms, 73° flip angle, 3 X 3 X 3-mm voxel size, 1-mm
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1500 - 2000 ms

gap, 34 slices, 192-mm field of view, 64 X 64 matrix size]. Addi-
tionally, a T1-weighted image (MP-RAGE; 1 X 1 X 1-mm voxel size)
was obtained as a high-resolution anatomic reference. All resulting
data were preprocessed using MATLAB and SPMS. The functional
volumes were realigned and coregistered to the structural image.
Additionally, structural images were spatially normalized to the Mon-
treal Neurological Institute MNI305 template (as included in SPMS)
to obtain normalizing parameters for each participant. These param-
eters were later used to normalize individual participants’ searchlight
result maps before entering them into statistical analysis.

fMRI decoding analysis. Multivariate pattern analysis (MVPA) was
carried out on a TR-based level using the CoOSMoMVPA toolbox (http://
www.cosmomvpa.org/). To reveal areas yielding above-chance decoding
throughout the brain, a searchlight analysis was conducted where a
spherical neighborhood of 40 voxels (6.4-mm average radius) was moved
across the whole brain. For each voxel belonging to a specific neighbor-
hood, TRs corresponding to the conditions of interest were selected by
shifting the voxelwise time course of activation by 3 TRs (to account for
the hemodynamic delay). Subsequently, for each run separately, activa-
tion values were extracted from the unsmoothed echo-planar image
volumes for each TR coinciding with the onset of a specific condition.
For the cross-decoding analysis, linear discriminant analysis (LDA)
classifiers were trained on discriminating two conditions (e.g., hands
versus gloves) and tested on two different conditions (e.g., torsos versus
shirts); all available trials were used in the training and test set. Classi-
fication accuracy for every searchlight sphere was assessed by comparing
the labels predicted by the classifier to the actual labels, with chance
performance always being 50%. Individual-subject searchlight maps
were normalized to MNI space before they were entered into statistical
analyses. Above-chance classification was identified using a threshold-
free cluster enhancement (TFCE) procedure (Smith and Nichols 2009),
where the observed decoding accuracy was tested against a simulated null
distribution (generated from 10,000 bootstrapping iterations). The result-
ing statistical maps were thresholded at P < 0.05 (1-tailed).

MEG acquisition and preprocessing. Electromagnetic brain activ-
ity was recorded using an Elekta Neuromag 306 MEG system (Elekta,
Helsinki, Finland), composed of 204 planar gradiometers and 102
magnetometers. Signals were sampled continuously at 1,000 Hz and
band-pass filtered online between 0.1 and 330 Hz. Offline preprocess-
ing was done using MATLAB and the FieldTrip analysis package
(Oostenveld et al. 2011). Data were concatenated for all runs, high-
pass filtered at 1 Hz, and epoched into trials ranging from —100 to 500
ms with respect to stimulus onset. Based on visual inspection, trials

Fig. 1. Stimuli and paradigm. A: the stimulus set contained 2 human body parts (hands and torsos; see Ist and 3rd rows for examples) and 2 pieces of clothing
that are highly similar in their shape (gloves and shirts; 2nd and 4th rows). B: stimuli were presented for 500 ms separated by a variable 1,500- to 2,000-ms
fixation interval. Participants were instructed to maintain central fixation and to respond manually to chairs.
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containing eye blinks and other movement-related artifacts were
completely discarded from all analyses. Data were then baseline-
corrected with respect to the prestimulus window and downsampled to
100 Hz to increase the signal-to-noise ratio of the multivariate clas-
sification analysis (see Carlson et al. 2013).

MEG decoding analysis. MVPA was carried out on single-trial data
using the CoOSMoMVPA toolbox. Only magnetometers were used, as
these sensors allowed for the most reliable classification in previous
work in our laboratory (Kaiser et al. 2015). Classification was per-
formed using LDA classifiers. For the shape cross-decoding analysis,
classifiers were trained on one category-matched shape comparison
(i.e., hands versus torsos or gloves versus shirts) and tested on the
other comparison (i.e., gloves versus shirts or hands versus torsos).
For the category cross-decoding analysis, classifiers were trained on one
shape-matched category comparison (i.e., hands versus gloves or torsos
versus shirts) and tested on the other comparison (i.e., torsos versus shirts
or hands versus gloves). To increase the reliability of the data supplied to
the classifiers, new, “synthetic” trial data were created by averaging
single-trial data separately for every condition and chunk by randomly
picking 25% of trials and averaging these data across trials. This proce-
dure was repeated 100 times (with the constraint that no trial was used
more than 1 time more often than any other trial), so that for every
condition and chunk, 100 of these synthetic trials were available for
classification. Classification accuracy was then assessed by computing
the percentage of correctly classified trials in the test chunk, with chance
performance being 50%. Classification was repeated for every possible
combination of training and testing time points, leading to a 60 X 60 time
points (600 X 600 ms, with 100-Hz temporal resolution) matrix of
classification accuracies. Individual subject accuracy maps were
smoothed using a 3 X 3 time points (i.e., 30 ms in train and test time)
averaging filter. To identify time periods of significant above-chance
classification, similar to the fMRI analysis, a TECE procedure was used,
where the observed decoding accuracy was tested against a simulated null
distribution (generated from 10,000 bootstrapping iterations). The base-
line (prestimulus) interval was not taken into account for statistical
testing. The resulting statistical maps were thresholded at P < 0.05
(1-tailed).

RESULTS

Shape cross-decoding. Brain regions representing object
shape across categories were identified by training classifiers
on discriminating shape within one category (e.g., hands versus
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torsos) and testing these classifiers on discriminating shape
within the other category (e.g., gloves versus shirts). Results
from both possible train/test directions were averaged. An
fMRI searchlight using this approach revealed regions in right
(33,128 mm?>: peak MNI coordinate: x = 48,y = —68,z = —4;
t,; = 8.5) and left (30,368 mm?>; peak MNI coordinate: x =
—6,y = —94, z = —12; t,;3 = 9.6) visual cortex, spanning
early visual areas and regions of lateral occipitotemporal cortex
(Fig. 2, A and B). The MEG data showed above-chance decoding
of shape, starting at 90 ms after stimulus onset and peaking along
the diagonal at 170 and 240 ms (467 time points in total, maxi-
mum decoding accuracy: 70.2%; t,, = 11.4; Fig. 2C).

Category cross-decoding. A second cross-decoding analysis
was conducted to test for responses that reflect object category
(body parts versus clothes) independently of shape properties.
To detect such shape-independent responses, classifiers were
trained to discriminate bodies and clothes for one shape-
matched comparison (e.g., hand versus glove) and subse-
quently tested on the other comparison (e.g., torso versus shirt).
Results from both possible train/test directions were averaged.

In the fMRI searchlight analysis, clusters in right (3,664
mm?>; peak MNI coordinate: x = 52,y = —70,z = 6; t,; = 6.5)
and left (5,752 mm?>; peak MNI coordinate: x = —44, y =
—78, z = 10; t,; = 5.8) lateral occipitotemporal cortex were
identified (Fig. 3A). These clusters overlapped with the extra-
striate body area (EBA; Fig. 3B; coordinates of Downing et al.
2001: x = %51, y = =72, z = 5). Performing the same
cross-classification analysis on the MEG data revealed a spe-
cific temporal signature associated with shape-independent
category responses: classifiers could reliably discriminate be-
tween bodies and clothes between 130 and 160 ms with respect
to the hand-glove comparison and 160 and 200 ms with respect
to the torso-shirt comparison (12 time points in total, maximum
decoding accuracy: 53.6%; t,, = 6.9; Fig. 3C).

DISCUSSION

Here, we asked whether categorical representations in visual
cortex are fully driven by category-associated visual features or
whether they (at least partly) reflect category membership.
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Fig. 2. Shape cross-decoding analysis. To reveal shape-selective mechanisms, classifiers were trained to discriminate shape within 1 category (e.g., hands versus
torsos) and tested on the other category (e.g., gloves versus shirts). Results from both train/test directions were averaged. A and B: fMRI decoding was
significantly above chance in large areas of visual cortex, spanning primary visual areas and regions of occipitotemporal cortex. C: MEG decoding was
significantly above chance along the diagonal, starting from 90 ms after stimulus onset and peaking after 170 and 240 ms. Note that the axes here reflect time
with respect to the 2 possible train and test comparisons, independently of the actual train/test direction. The connected area indicates above-chance decoding.
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Fig. 3. Category cross-decoding analysis. To reveal generalization across the 2 body-clothes pairs, classifiers were trained on 1 comparison (e.g., hands versus
gloves) and tested on the other (e.g., torsos versus shirts). Results from both train/test directions were averaged. A: fMRI decoding was significantly above chance
in bilateral regions of lateral occipitotemporal cortex. B: the clusters obtained in this searchlight analysis fell within regions previously reported as body-selective:
the black outline represents the boundaries of a group map of body selectivity in occipitotemporal cortex (taken from http://web.mit.edu/bcs/nklab/GSS.shtml;
Julian et al. 2012). C: MEG decoding revealed a temporally specific window of successful cross-classification ranging from 130 to 160 ms with respect to the
hand-glove comparison (“Hand Time”) and from 160 to 200 ms with respect to the torso-shirt comparison (“Torso Time”). Note that the axes here reflect time
with respect to the 2 possible train and test comparisons, independently of the actual train/test direction. The connected area indicates above-chance decoding.

Unlike previous studies investigating category selectivity, the
stimuli presented in the current study were matched for shape
properties, including object-part structure (e.g., hands and
gloves both have 5 “fingers”), outline similarity, and symme-
try. We found that large clusters in visual cortex are sensitive
to shape differences (i.e., “hand/glove” shape versus “upper
body” shape): classifiers trained on discriminating hands and
torsos successfully discriminated gloves and shirts (and vice
versa) in both early visual areas and occipitotemporal cortex.
These shape differences were reliably decodable from MEG
response patterns as early as 90 ms after stimulus onset.

Crucially, we also found evidence for shape-independent
category responses: classifiers trained on discriminating hands
and gloves successfully discriminated torsos and shirts (and
vice versa) in bilateral clusters in the occipitotemporal cortex.
These large clusters likely encompass body-, motion-, and
object-selective regions of visual cortex, which closely overlap
both at the group level and within individual subjects (Down-
ing et al. 2007). Interestingly, the MEG data showed a specific
temporal profile associated with such shape-independent body
representations. Response patterns between 130 and 200 ms
after stimulus onset allowed for successful cross-classification,
in line with previous electrophysiological findings showing
that bodies can be differentiated from other categories based on
scalp distributions from 130 to 230 ms (Thierry et al. 2006).
These fMRI and MEG results thus confirm previous studies on
body-selective responses but additionally show that this selec-
tivity is not fully explicable by 2D shape properties.

A particular strength of the cross-decoding approach used
here is that it provides a rigorous control of possible visual
differences between the two categories (bodies and clothes)
beyond the shape matching of the two body-clothing pairs:
uncontrolled visual differences in one comparison (e.g., the
presence of a neck in torsos, not shirts) would also need to be
present in the other comparison (e.g., hand versus glove) for
these differences to lead to successful decoding. Thus success-
ful decoding in this analysis likely reflects genuine category

membership rather than visual or shape properties. Similarly, it
is unlikely that differences in the deployment of spatial atten-
tion could account for the results: classifiers picking up on such
differences between the two training stimuli (e.g., a preferen-
tial allocation of attention to the upper part of torsos, but not
shirts) are unlikely to benefit from this when tested on the other
comparison. It is still possible, in principle, that there are
remaining visual differences, such as skin texture or 3D vol-
ume, that are shared by the body conditions but not the clothes
conditions. However, we think it is unlikely that such features
would drive body-selective responses, considering previous
work showing body-selective responses to highly schematic
depictions of the body lacking these cues (e.g., point-light
motion, stick figures, and silhouettes; Peelen and Downing
2007). Nevertheless, further studies are needed to identify and
rule out any such remaining differences.

We interpret the present findings as showing that the pres-
ence of particular visual or shape features is not necessary for
evoking a body-selective response. Rather, these responses appear
to reflect (or follow from) the categorization of an object as being
a body part, a category that is associated with specific perceptual
and conceptual properties, such as bodily actions/movements,
social relevance, and agency (Sha et al. 2015). Different cues can
support the inference that a perceived object is a body. These cues
are often part of the object itself (e.g., characteristic body shapes
or movements) but may also come from the surrounding context
(Cox et al. 2004), from other modalities, or from expectations and
knowledge (e.g., knowing that a mannequin in a shopping win-
dow is not a human). Our results show that body-selective re-
sponses in lateral occipitotemporal cortex, emerging at around
130-200 ms, follow from this categorical inference rather than
reflecting a purely stimulus-driven response to the visual features
of the object.

Interestingly, clusters exhibiting category-independent shape re-
sponses overlapped with clusters exhibiting shape-independent
category responses. This observation is congruent with previ-
ous studies highlighting both visual (Andrews et al. 2015;
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Baldassi et al. 2013) and semantic (Huth et al. 2012; Sha et al.
2015) dimensions as organizational principles of high-level
visual cortex. Response patterns in inferotemporal cortex seem
to be best explicable by models using a combination of visual
feature attributes and category membership (Khaligh-Razavi
and Kriegeskorte 2014), suggesting that in high-level visual
cortex these representations coexist.

Whereas the fMRI data demonstrated that shape and cate-
gory responses are spatially entwined, the MEG results re-
vealed differing temporal dynamics of these responses: al-
though shape-specific responses could be decoded early and
across a relatively long time interval, shape-independent cate-
gory responses showed a specific temporal signature between
130 and 200 ms. We interpret this as a temporally restricted
period where cortical responses reflect processing of category
membership: successful decoding in the category cross-decod-
ing analysis requires not only shape independence of body-
specific responses, but also generalization across different
body parts. This generalization might be restricted to the
specific time window revealed here, with earlier computations
reflecting stimulus-specific attributes (related to individual
body parts) and later processing reflecting more sophisticated
stimulus analysis that diverges for different body parts (e.g.,
hands carry social and action-related information different
from torsos). Hence, the temporally specific generalization
across body parts observed here might reflect a unique
timestamp of category-level recognition. Interestingly, this
category-level recognition occurred at different time points
for the two body parts included in the study, with slightly
faster categorization of the hands (130-160 ms) than the
torso (160-200 ms). This later discriminability of torsos and
shirts may reflect the greater similarity of these two stimuli on
a perceptual level (Fig. 1A), leading to relatively delayed
recognition of the torsos as being a body part.

To conclude, the present study characterizes the spatial and
temporal profiles of shape-independent categorical neural re-
sponses by showing that MEG and fMRI response patterns
distinguish between body parts and closely matched control
stimuli. The patterns that distinguished each of the two body
parts from their respective shape-matched controls showed
sufficient commonality to allow for cross-pair decoding of
object category. These generalizable category-selective re-
sponse patterns were localized in space (lateral occipitotempo-
ral cortex) and time (130-200 ms after stimulus onset).
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