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Abstract 

Present paper investigates the potential application of planar nano structures with attached nano 

particles as nano resonant sensors by introducing a nonlocal plate model which considers size 

effects. To take into account an elastic connection between the nano plate and the attached 

nanoparticle, the nano particle is considered as a mass-spring system. Then, a mixed approach 

based on pseudo-spectral and integral quadrature rule is implemented to numerically determine the 

frequency shift caused by the attached mass-spring system. Obtained results are in a good 

agreement with those available in the literature which reveals that the proposed combined method 

provides accurate results for structural problems with concentrated objects. Results show that for 

soft connections with small values of spring constant the predicted frequency shift is greater than 

rigid connections. It means that considering a rigid connection instead of elastic one will 

underestimate the frequency shift of nano resonant sensors. Also, it is shown that neglecting size 

effects results in overestimating the frequency shift of nano resonant sensors. Furthermore, nano 

plates with greater aspect ratios offer smaller dimensionless frequency shifts and the maximum 

belongs to a square one. The presented results could be useful as a guideline for designing nano 

resonant sensors of plane shapes like graphene based mass sensors. 

 

1. Introduction 

In recent years, nano structures as new members in structural mechanics have received a notable 

attraction due to their wide application in nano technology and therefore prediction of response of 

these elements against various mechanical loading situations like vibration, buckling, bending, and 

etc. is prominent in designing of future nano scale devices and structures. Reviewing the literature, 

modeling of nano sized structures is mainly conducted based on four main approaches: (I) molecular 

dynamics (MD) (Ansari et al. 2012; Xiang and Shen 2014), (II) molecular structural mechanics 

(Sakhaee-Pour 2009; Wang et al. 2013), (III) local (classical) continuum elasticity (Liew et al. 2006; 

Behfar and Naghdabadi 2005), (IV) nonlocal elasticity (Zenkour and Abouelregal 2014; Jomehzadeh 

et al. 2012). The computational expense for the first two approaches is directly related to the size of 

the studied system, as they consider all constitutive particles of the nano structure. Hence, their 

application is limited to a restricted size of nano structures. Instead, both local and nonlocal 

approaches are able to model nano structures without any restriction in the number of consisting 

particles, thanks to their continuum method of modeling. In the continuum view, based on the 

geometry and the mechanical properties, nano structures are usually considered as known structural 



elements like beams, plates and shells and their mechanical behavior is analyzed using related well-

known theories. 

Although the local (classical) continuum elasticity may make a desirable insight about the behavior 

of nano structures, however, due to neglecting the structural discreteness the obtained results are 

not realistic enough. This limitation overcomes in nonlocal version of continuum elasticity (Eringen 

1983) with introducing small scale effects. Reports reveal that the results obtained by nonlocal model 

with a proper small scale parameter are in good agreement with those obtained by atomistic 

approaches. A review on the application of nonlocal elasticity in modeling of carbon based nano 

structures could be found in the work by Arash and Wang (2012).  

Nano structures are main candidates for nano sensing applications because of their proper sizes 

and superior mechanical and electrical properties (Angione et al. 2014). Resonant sensors are a 

group of nano sensors which detect nano particles in a dynamic mode from a vibration analysis. The 

main idea for detecting attached particles is to measure the resonant frequency shift of the sensor 

caused by changes in total mass of the system. Potential application of carbon based nano 

structures like Fullerene and Carbon nanotubes as resonant mass sensors are widely investigated 

(Giannopoulos 2014; Joshi et al. 2010; Mehdipour et al. 2011). Recently, graphene, the thinnest two-

dimensional flat structure consisting of carbon atoms settled in a hexagonal lattice, is taken into 

consideration in resonant sensing application due to its remarkable sensing privilege like large 

surface area and high bending flexibility. Therefore, vibration analysis of graphene sheets with 

attached masses is a significant issue in the field and has been studied in both continuum and 

atomistic approaches.  

In continuum approaches, a graphene based nano resonant sensor is usually considered as a nano 

plate with attached masses. Murmu and Adhikari (2013) proposed a nonlocal mass sensor model 

using vibrating monolayer cantilever graphene sheets and analytical solution were derived for the 

frequency shift due to the added mass. Adhikari and Chowdhury (2012) also investigated the 

possibility of implementing graphene sheets as nano resonant sensors based on local elasticity. The 

potential application of single-layered graphene sheets as nano mass sensors based on nonlocal 

Kirchhoff plate theory and Galerkin method was studied by Shen et al. (2012) studied and influence 

of the mass value and position on the frequency shift were discussed. As a similar work, Zhou et al. 

(2014) analyzed a circular graphene sheet carrying a nano particle as a nano resonant mass sensor. 

Lee et al. (2013a) applying nonlocal elasticity considered the graphene sheet as a rectangular nano 

plate with an attached mass and equations of motion are analytically solved for simply supported 

boundary conditions and effects of the small scale effect and aspect ratio on sensitivity of sensor 

were studied in detail.  

In Atomistic view, both MD and molecular structural mechanics have also been implemented by 

researchers for modeling of nano resonant sensors. Arash et al. (2011) investigated the potential 

application of single-layered graphene sheets in detection of noble gases was by applying MD 

simulations. Sakhaee-Pour et al. (2008) applied finite element molecular structural mechanics to 

model the vibrational behavior of single-layered graphene sheets and investigated the effect of point 

mass on the fundamental frequencies for mass sensing applications. Lee et al. (2013b) studied 

single layered graphene mass resonant sensors with various boundary conditions by using finite 

element molecular structural mechanics and influence of value and position of attached mass and 

boundary conditions on the sensitivity of sensor was explored. Jalali et al. (2014) studied the 

application of graphene sheets as resonant sensors in detection of ultra-fine nanoparticles via both 

MD and nonlocal elasticity approaches. To take into consideration the effect of geometric 

nonlinearity, nonlocality, and atomic interactions between graphene and nanoparticles, a nonlinear 

nonlocal plate model carrying an attached mass-spring system is introduced. Nonlocal small scale 

parameter is calibrated by matching frequency shifts obtained by nonlocal and MD simulation 

approaches with same vibration amplitude.  



Reviewing the literature reveals that analysis of frequency characteristics of nano structures and 

especially nano plates is a consequential issue for designing future ultra-sensitive nano sensors. 

This paper aims to propose a nano plate model with an attached mass for vibration analysis of 

resonant mass sensors, in the framework of nonlocal continuum elasticity. However, with regard to 

the previous researches, it can be concluded that the influence of interaction between the attached 

mass and the sensor has not been reported. Therefore, in present work this interaction has taken 

into account by considering a mass-spring system as the attached nano particle. Also a pseudo-

spectral procedure in conjunction with integration quadrature (IQ) method is introduced to 

numerically solve the problem. Influence of small scale parameter, value and position of the attached 

mass, spring constant, aspect ratio, thickness to side ratio and boundary conditions on frequency 

characteristics of these sensors will be discussed in detail. 

 

2. Nonlocal shear deformation nano plate model  

Consider a rectangular nano plate of length a, width b, the effective thickness h and mass density ρ 

with a mass-spring system (M0, K0) mounted on an arbitrary position (x0,y0) of the plate as shown 

in Fig. 1. The origin of the Cartesian coordinates system (x,y,z) lies on the corner of the mid-plane. 

Displacement components U, V, W, ϕx and ϕy define displacements in x, y and z directions and the 

rotation about the y and x axis, respectively. To take into consideration shear deformation effects 

especially for nano plates with large thickness to length size ratios, the first order shear deformation 

plate theory (FSDT) is applied to the model as follows.  

 

where w0 is the mid-plane displacement components along z directions and t defines time. The linear 

strain–displacement relations are (Reddy 2003): 

 

where (),x and (),y indicate the differentiation with respect to x and y, respectively.  

The small scale effect of nonlocal continuum elasticity appears in constitutive stress–strain relations. 

Based on the known local (classical) elasticity, stress at a point depends only on the strain at that 

point and the local stress tensor t at a point is related to the strain tensor ε at that point by the 

generalized Hooke’s law as follows: 

 

where C is the fourth-order elasticity tensor (Reddy 2008). However, according to nonlocal elasticity 

of Eringen (2002), the stress at a point is related on the strain at the every point of the continuum 

domain through an integration on the whole elastic body. Eringen (1983) showed that the integral 

form of constitutive relations can be written in an equivalent simpler differential form as follows. 



 

In which μ is the nonlocal parameter, e0 is a material constant, a0 is the internal characteristic length, 

∇2 is the two-dimensional Laplace operator, and σ is the nonlocal stress tensor. The nonlocal version 

of elasticity is able to consider discontinuities in the elastic medium by considering small scale 

parameter opposed to zero. The nonlocal form of stress–strain relationship for the plane stress state 

of nano plates can be explained as: 

 

E, v and G are Young’s modulus, Shear modulus and Poison’s ratio of the nano plates, respectively. 

The nonlocal force and moment resultants can be calculated by integrating stress components 

across the plate thickness. 

 

where Ks is the shear correction coefficient set to 5/6 (Reddy 2003). Considering Eqs. (5) and (6a, 

6b) one can obtain: 

 

where A and D are the longitudinal and flexural rigidity of the nano plate, respectively. 

The governing equations of motion for free vibration of a shear deformable plate carrying a mass-

spring system can be obtained by using stationary potential energy method as follows (Reddy 2003): 

 

where dot operator indicate differentiation with respect to t and I0 and I2 are mass moments of inertia 

which are defined as follows: 



 

Also, the Dirac Delta function, given in Eq. (8a), is defined as: 

 

Substituting Eqs. (7a, b) in Eq. (8a, b, c) gives the nonlocal equations of motion in terms of the 

displacement components: 

 

Equation (9a) is singular at the point (x0, y0) where the mass-spring system is located. However, 

considering Eq. (8f) one can integrate Eq. (9a) as follows: 

 

This integration form will be used in the next section for solution procedure. For a nanoplate problem 

it is theoretically possible to consider either clamped or simply supported boundary conditions as 

follows: 

 



In the result section we will consider both these boundaries for the purpose of generality. However, 

it should be noted that for graphene sheets as the main candidate for planar nano resonant sensors, 

carbon atoms next to the boundaries can easily move in transverse direction and the slope of 

deformed SLGSs next to the boundaries is considerable during vibration. Accordingly, for graphene 

based sensors it is recommended to address the results obtained by considering simply supported 

boundary conditions.  

In the next section, this set of partial differential equations will be numerically solved as an eigenvalue 

problem in order to determine the frequency response of the nano plate with attached mass. 

 

3. Pseudo-spectral solution procedure  

The spectral method as a powerful numerical technique has been widely applied to scientific 

problems (Boyd 2000). Usually, for the non-periodic finite domains like plates, the collocation version 

of spectral method called the pseudo-spectral method with use of Chebyshev polynomials as the 

basis function could be the best choice (Jalali et al. 2010; Jalali et al. 2011). The basic idea in this 

method is to approximate the derivative of an unknown function, F, at a collocation point by an 

equivalent weighted linear sum of the function values at all collocation points. In one-dimensional 

domains it is explained as follows: 

 

where (N + 1) is the number of collocation points, F(n) ,x (xi) indicates nth differentiation of function 

F in ith collocation point and  D(n) - is called the nth differentiation matrix whose components for the 

first derivative,  D(1) - , based on Chebyshev basic functions are (Trefethen 2000): 

 

The second differentiation matrix,  D(2) - , can be easily computed as the square of  D(1) - . 

Trefethen(2000) provides some explicit formulas for higher order differentiation matrices. The 

method could be extended to two-dimensional domains by explaining the nth partial derivative by 

use of Kronecker products as follows: 



 

If A and B are two matrices of dimensions p × q and r × s, respectively, then the Kronecker product, 

A ⊗ B, is the matrix of dimension pr × qs with p × q block form, where the i,j block is aijB. Also, I 

denotes the (N + 1) × (N + 1) identity matrix (Trefethen 2000).  

Chebyshev polynomials are orthogonal in the range of [−1, 1]. Therefore, the rectangular real domain 

of nano plate needs to be mapped to a 2 × 2 square computational domain by the following 

transformations (see Fig. 2). 

 

The grid points in both x¯ and y¯ directions are selected based on the Gauss–Lobatto interpolation 

points as follows to optimize the distribution (Boyd 2000): 

 

Also, the following dimensionless parameters are introduced to make the problem dimensionless. 

 

where Ω and ω¯ are the factual and dimensionless natural frequency of the system, respectively. 

For the purpose of frequency analysis, the dimensionless displacement components are considered 

as: 

 

 

Substituting Eqs. (14), (16) and (17a, 17b, c, d) into Eqs. (9a, b, c, d, e and 10a, b), the dimensionless 

eigenvalue problem for free vibration of nano plates with attached mass can be rewritten in the 

following form: 



 

The dimensionless boundary conditions are 

 

One can obtain the discrete form of equations based on the pseudo-spectral method by applying 

Eqs. (13a, b, c) to Eqs. (18a, b, c, d) and (19a, b) 

 



 

where {w¯}, {ϕ¯x} and  ϕ¯y - are the vectors of the dimension (N + 1) 2 × 1 which indicate 

dimensionless displacement components in the grid points. The spectral analogs of boundary 

conditions for simply supported boundaries can be expressed as: 

 

The standard matrix form of the eigenvalue problem of Eqs. (20a, b, c, d) and (21) could be presented 

as follows: 

 

Equation (22), which represents the discrete governing equations of motion, is valid in all the grid 

points except than kth grid point where the mass-spring system is located, due to the singularity of 

the lateral governing equation in this point. Therefore, the lateral governing equation in kth grid point 

needs to be replaced with the integral Eq. (18e) as it will be explained in the next section. 

 

4. Integral quadrature procedure  

In integral quadrature (IQ) method, the main idea is to evaluate the integration of an arbitrary 

function, H, on a domain by an equivalent weighted linear sum of the function values at all collocation 

points of the domain (Eftekhari and Jafari 2012). The IQ method for the present two-dimensional 

computational domain (Fig. 2) can be written as: 

 



For applying the method, it is necessary to determine the associated weighting coefficients, li. It can 

be simply performed by introducing a set of (N + 1) 2 polynomial test functions as follows (Eftekhari 

and Jafari 2012): 

 

As the values of these polynomials are known in the grid points and the values of their integrals on 

the domain can be easily computed, the weighting coefficients matrix, [L], will be simply evaluated 

through an inverse problem.  

Here, the IQ method will be implemented to discrete the integral form of the lateral governing 

equation of motion, Eq. (18e), as follows: 

 

Now, the singular lateral governing equation in kth grid point in Eq. (22) could be replaced with Eq. 

(25) as the following matrix form: 

 

Components of  Kˆ - are equal to zero except than two components in kth row which contains terms 

from the right hand of Eq. (25). Due to the simple form of matrices  ˆI -  and Kˆ - , Eq. (26a) can be 

rewritten in the following form: 

 

To establish the standard eigenvalue form of the problem, the displacement vectors can be divided 

to the boundary and the domain parts as follows. 

 

where the subscripts b and d indicate boundary and domain, respectively. Then, the resulting 

eigenvalue of equations can be written in the matrix form as: 



 

Eliminating the boundary displacement vector, {b}, from Eq. (29a, 29b, 29c) one obtains 

 

where  K¯ - and  M¯ - are the total stiffness and mass matrices, respectively. 

 

5. Results and discussion  

At first, the validation and convergence study is done to be sure about the reliability and accuracy of 

the solution procedure. Table 1 lists the fundamental frequency of a bare nano plate without any 

attached mass-spring system for various values of small scale parameter, length size, and aspect 

ratio. An excellent agreement with the exact results of nonlocal FSDT plate model by Pradhan and 

Phadikar (2009) is observed that confirms the competence of the present method. Also, an 

admissible convergence is obtained with N = 8 grid points which is used for all the next results. 

Influence of attached mass-spring system on frequency response of the plate is presented in Table 

2 and results are compared with exact results by Avalos et al. (1993). For possibility of comparison, 

small scale parameter, µ, is considered equal to zero and thickness to length size ratio is set to α = 

0.001, as the result by Avalos et al. (1993) are presented for a thin macro plate. The desirable match 

between present and exact results proves the accuracy and efficiency of combined pseudo-spectral 

and IQ approach in prediction of vibrational characteristic of systems with concentrated objects.  

In following, the frequency response of a nano plate carrying a mass-spring system is presented and 

influence of spring constant, small scale parameter, boundary conditions, thickness to side ratio, 

aspect ratio, and mass location on the frequency response as a resonant mass sensor is discussed 

in detail. Since graphene is most famous nano structure with a plane shape and its potential 

application as a resonant mass sensor is addressed in many recent researches, the material 

properties of nano plate in coming results are considered equal to a graphene sheet with Young’s 

modulus E = 1.06 TPa, Poisson’s ratio ν = 0.16, density ρ = 2250 kg/m3 , and effective thickness h 

= 0.34 nm (Kitipornchai et al. 2005).  

The potential application of a nano plate as a resonant sensor for detecting attached masses is 

related to its frequency shift, Δf, due to changes in the value of attached mass. Frequency shift is 

defined as the difference between fundamental frequency of a nano plate with attached mass and 

fundamental frequency of a bare nano plate, f0, and dimensionless frequency shift is indicated as 

Δf/f0. In order to investigate the influence of elastic connection between the nano plate and the 

attached mass, Fig. 3 shows variation of Δf/f0 versus variation of dimensionless spring constant, ¯ 

k for different values of thickness to side ratio, α. An attached mass of m¯ = 0.5 at the center of a 

simply supported square nano plate with µ¯ = 0.01 is considered. It is shown that for soft connections 



with small values of spring constant the frequency shift has its maximum value while increasing the 

rigidity of connection decreases the frequency shift to an ultimate frequency shift of a fully rigid 

connection. It means that considering a rigid connection instead of an elastic one will underestimate 

the frequency shift of nano resonant sensors. It should be noted that for very small spring constants, 

the connection between the nano plate and the attached mass is not strong enough to allow them 

to vibrate together having a mode shape corresponds to the first mode shape of a bare plate, but 

with a smaller frequency. Hence, the minimum value of ¯ k = 0.05 is considered in presented results. 

Although increasing thickness to side ratio decreases dimensionless frequency of nano plate due to 

shear deformation effects (Reddy 2003), however from Fig. 3 one can see that increasing thickness 

to side ratio increases dimensionless frequency shift for especially for soft connections. For a nano 

plate with a specified thickness, like graphene sheets with h = 0.34 nm, it means smaller sheets 

present higher value of Δf/f0 for a certain spring constant.  

Figure 4 depicts the variation of dimensionless frequency shift, Δf/f0 with respect to dimensionless 

nonlocal small scale parameter, µ¯, for various values of dimensionless mass. Results are presented 

for a simply supported square nano plate with an attached mass-spring system in its center. It is 

observed that for every value of attached mass and spring constant, increasing nonlocal parameter 

causes a decrease in Δf/f0. It can be concluded that neglecting the nonlocal small scale effect results 

in overestimating the capability of nano plates in resonant sensing applications. Two values of spring 

constant is considered in the presented results. From the plots in Fig. 3, for a nano plate with α = 

0.03 the spring constant of ¯ k = 0.05 is considered for a soft connection while ¯ k = 0.30 is selected 

to represent an almost rigid connection. As it is expected soft connections propose greater frequency 

shifts for every value of the dimensionless nonlocal parameter and the attached mass.  

Figure 5a demonstrates variation of dimensionless frequency shift versus dimensionless attached 

mass for different values of dimensionless nonlocal parameter. Results are plotted for a simply 

supported square nano plate with α = 0.03 and a mass-spring attached in its center. It is obvious 

that when the value of attached mass increases the frequency shift of nano plate increases. Indeed, 

it is the way to determine the value of mass by measuring the value of frequency shift. However, as 

it was observed in Fig. 4 for a constant value of attached mass, increasing the nonlocal parameter 

causes a decrease in frequency shift. It means nano plates with higher degree of discontinuity have 

less capability to detect attached particles. Dimensionless sensitivity, S, is defined as the partial 

derivative of dimensionless frequency shift with respect to dimensionless mass, ∂(�f /f0)/∂(m¯ ). 

Figure 5b depicts dimensionless sensitivity of nano plates as the slope of Fig. 5a. In general, 

sensitivity increases when the dimensionless mass decreases and the maximum sensitivity is 

achieved when the mass tends to zero. Sensitivity decreases dramatically when the attached mass 

tends to the value as great as the nano plate mass (m¯ = 1), which means nano plates are not much 

sensitive to the changes of the value of attached mass for such heavy masses.  

Boundary conditions can significantly affect the frequency shift. As it is expected, clamped 

boundaries present higher dimensionless frequency shift than simply supported ones due to 

increasing total stiffness of the system. Table 3 lists the percent of enhancing of dimensionless 

frequency shift due to changing boundary conditions from simply supported to clamped boundaries. 

It is seen that when the dimensionless nonlocal parameter increases the enhancing effect of clamped 

boundaries increases. Also, nano plates with clamped boundaries present greater enhancing effect 

when the dimensionless attached mass is smaller. In order to explore the influence of aspect ratio, 

γ, variation of dimensionless frequency shift versus aspect ratio for various values of spring constant 

is shown in Fig. 6. An attached mass of m¯ = 0.5 at the center of a simply supported nano plate with 

µ¯ = 0.01 and α = 0.03 is considered. Results reveal that increasing aspect ratio decreases the 

frequency shift which means for a specified thickness to side ratio, nano plates with longer 

rectangular shapes have less dimensionless frequency shift and the maximum belongs to square 

nano plates. Also, it is shown that soft connections between nano plates and the attached mass 

propose greater frequency shifts especially for rectangular plates with great aspect ratios.  



The position of attached mass is also a significant issue. Figure 7 gives the influence of the attached 

mass-spring position on dimensionless frequency shift of a square nano plate with µ¯ = 0.01 carrying 

an attached mass of m¯ = 0.5 . Although the absolute maximum frequency shift occurs when the 

mass is exactly located at the center of plate, for a central area equals to 25 % of the total sensing 

surface, the frequency shifts are at least 70 % of the absolute maximum value. The frequency shifts 

decrease dramatically by approaching the boundaries. Hence, in particular it is recommended to 

locate the measured object as near as the center of resonant sensor.  

This work aims to parametrically investigate the influence of geometric parameters and material 

properties of a planar nanostructure on its potential application as a resonant mass sensor. The 

aforementioned results may be used as a general guideline for designing future such nano resonant 

sensors. Hence, all provided results are dimensionless to keep the generality and possibility of 

application for various planar nano sensors. However, it should be noted that based on selected 

nanostructure as resonant sensor and specifying the object nano particle, all the geometric and 

material properties can be obtained and the presented dimensionless results can be utilized. For 

instance, an SLGS with a proper surface area may be selected to detect metallic nanoparticles. In 

this case, all the geometric parameters and material properties of graphene are specified and the 

spring constant is considered to represent atomic forces between carbon atoms of SLGSs and the 

attached metallic particle. 

 

6. Conclusion  

In the present study, the potential application of nano plates as nano resonant mass sensors is 

investigated by introducing a nonlocal shear deformation plate model with an elastically mounted 

attached mass. A combination of pseudospectral and integral quadrature methods is implemented 

to numerically determine the frequency shift caused by attached mass-spring system. Influence of 

several dimensionless parameters like small scale parameter, spring constant, thickness to side 

ratio, aspect ratio, mass location and boundary conditions on the frequency shift is discussed in 

detail and the conclusions are listed as follows.  

• The validation study approves that the proposed combined numerical method can be implemented 

to solve structural problems with concentrated objects.  

• Increasing the spring constant results in lower values of frequency shift. Therefore, it can be 

conclude that considering rigid connection instead of elastic one will underestimate the frequency 

shift of nano resonant sensor.  

• Nano plates with greater aspect ratios offer lower dimensionless frequency shifts and the maximum 

is related to a square one. Also, increasing thickness to side ratio increases dimensionless frequency 

shifts.  

• Nano plates with clamped boundary conditions present greater dimensionless frequency shift in 

comparison to simply supported ones, especially when the dimensionless attached mass is smaller.  

• Increasing the small scale parameter causes a decrease in frequency shift. It means neglecting 

nonlocal small scale parameter results in overestimating the frequency shift of nano resonant 

sensors.  

• Increasing the value of attached mass as well as closing it to the center of plate increase the 

frequency shift. 
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