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Abstract

Question answering forums are rapidly grow-
ing in size with no effective automated abil-
ity to refer to and reuse answers already avail-
able for previous posted questions. In this
paper, we develop a methodology for find-
ing semantically related questions. The task
is difficult since 1) key pieces of informa-
tion are often buried in extraneous details in
the question body and 2) available annota-
tions on similar questions are scarce and frag-
mented. We design a recurrent and convo-
lutional model (gated convolution) to effec-
tively map questions to their semantic repre-
sentations. The models are pre-trained within
an encoder-decoder framework (from body to
title) on the basis of the entire raw corpus,
and fine-tuned discriminatively from limited
annotations. Our evaluation demonstrates that
our model yields substantial gains over a stan-
dard IR baseline and various neural network
architectures (including CNNs, LSTMs and
GRUs).1

1 Introduction

Question answering (QA) forums such as Stack Ex-
change2 are rapidly expanding and already contain
millions of questions. The expanding scope and cov-
erage of these forums often leads to many dupli-
cate and interrelated questions, resulting in the same
questions being answered multiple times. By iden-
tifying similar questions, we can potentially reuse

1Our code and data are available at https://github.
com/taolei87/rcnn
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Title: How can I boot Ubuntu from a USB?
Body: I bought a Compaq pc with Windows 8 a few
months ago and now I want to install Ubuntu but still
keep Windows 8. I tried Webi but when my pc restarts it
read ERROR 0x000007b. I know that Windows 8 has a
thing about not letting you have Ubuntu but I still want
to have both OS without actually losing all my data ...

Title: When I want to install Ubuntu on my laptop I’ll
have to erase all my data. “Alonge side windows” doesnt
appear
Body: I want to install Ubuntu from a Usb drive. It
says I have to erase all my data but I want to install it
along side Windows 8. The “Install alongside windows”
option doesn’t appear. What appear is, ...

Figure 1: A pair of similar questions.

existing answers, reducing response times and un-
necessary repeated work. Unfortunately in most fo-
rums, the process of identifying and referring to ex-
isting similar questions is done manually by forum
participants with limited, scattered success.
The task of automatically retrieving similar ques-

tions to a given user’s question has recently attracted
significant attention and has become a testbed for
various representation learning approaches (Zhou et
al., 2015; dos Santos et al., 2015). However, the task
has proven to be quite challenging – for instance, dos
Santos et al. (2015) report a 22.3% classification ac-
curacy, yielding a 4 percent gain over a simple word
matching baseline.
Several factors make the problem difficult. First,

submitted questions are often long and contain ex-
traneous information irrelevant to the main question
being asked. For instance, the first question in Fig-
ure 1 pertains to booting Ubuntu using a USB stick.
A large portion of the body contains tangential de-



tails that are idiosyncratic to this user, such as ref-
erences to Compaq pc, Webi and the error message.
Not surprisingly, these features are not repeated in
the second question in Figure 1 about a closely re-
lated topic. The extraneous detail can easily confuse
simple word-matching algorithms. Indeed, for this
reason, some existing methods for question retrieval
restrict attention to the question title only. While ti-
tles (when available) can succinctly summarize the
intent, they also sometimes lack crucial detail avail-
able in the question body. For example, the title
of the second question does not refer to installation
from a USB drive. The second challenge arises from
the noisy annotations. Indeed, the pairs of questions
marked as similar by forum participants are largely
incomplete. Our manual inspection of a sample set
of questions from AskUbuntu3 shows that only 5%
of similar pairs have been annotated by the users,
with a precision of around 79%.
In this paper, we design a neural network model

and an associated training paradigm to address these
challenges. On a high level, our model is used as
an encoder to map the title, body, or the combina-
tion to a vector representation. The resulting “ques-
tion vector” representation is then compared to other
questions via cosine similarity. We introduce sev-
eral departures from typical architectures on a finer
level. In particular, we incorporate adaptive gating
in non-consecutive CNNs (Lei et al., 2015) in or-
der to focus temporal averaging in these models on
key pieces of the questions. Gating plays a similar
role in LSTMs (Hochreiter and Schmidhuber, 1997),
though LSTMs do not reach the same level of per-
formance in our setting. Moreover, we counter the
scattered annotations available from user-driven as-
sociations by training the model largely based on
the entire unannotated corpus. The encoder is cou-
pled with a decoder and trained to reproduce the ti-
tle from the noisy question body. The methodology
is reminiscent of recent encoder-decoder networks
in machine translation and document summariza-
tion (Kalchbrenner and Blunsom, 2013; Sutskever
et al., 2014; Cho et al., 2014b; Rush et al., 2015).
The resulting encoder is subsequently fine-tuned
discriminatively on the basis of limited annotations
yielding an additional performance boost.
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We evaluate our model on the AskUbuntu corpus
from Stack Exchange used in prior work (dos San-
tos et al., 2015). During training, we directly uti-
lize noisy pairs readily available in the forum, but
to have a realistic evaluation of the system perfor-
mance, we manually annotate 8K pairs of questions.
This clean data is used in two splits, one for de-
velopment and hyper parameter tuning and another
for testing. We evaluate our model and the base-
lines using standard information retrieval (IR) mea-
sures such as Mean Average Precision (MAP), Mean
Reciprocal Rank (MRR) and Precision at n (P@n).
Our full model achieves a MRR of 75.6% and P@1
of 62.0%, yielding 8% absolute improvement over
a standard IR baseline, and 4% over standard neural
network architectures (including CNNs, LSTMs and
GRUs).

2 Related Work

Given the growing popularity of community QA fo-
rums, question retrieval has emerged as an important
area of research (Nakov et al., 2015; Nakov et al.,
2016). Previous work on question retrieval has mod-
eled this task using machine translation, topic mod-
eling and knowledge graph-based approaches (Jeon
et al., 2005; Li and Manandhar, 2011; Duan et al.,
2008; Zhou et al., 2013). More recent work relies
on representation learning to go beyond word-based
methods. For instance, Zhou et al. (2015) learn
word embeddings using category-based metadata in-
formation for questions. They define each question
as a distribution which generates each word (embed-
ding) independently, and subsequently use a Fisher
kernel to assess question similarities. Dos Santos
et al. (2015) propose an approach which combines
a convolutional neural network (CNN) and a bag-
of-words representation for comparing questions. In
contrast to (Zhou et al., 2015), our model treats each
question as a word sequence as opposed to a bag
of words, and we apply a recurrent convolutional
model as opposed to the traditional CNN model
used by dos Santos et al. (2015) to map questions
into meaning representations. Further, we propose
a training paradigm that utilizes the entire corpus of
unannotated questions in a semi-supervised manner.
Recent work on answer selection on community

QA forums, similar to our task of question retrieval,



has also involved the use of neural network archi-
tectures (Severyn and Moschitti, 2015; Wang and
Nyberg, 2015; Shen et al., 2015; Feng et al., 2015;
Tan et al., 2015). Compared to our work, these ap-
proaches focus on improving various other aspects
of the model. For instance, Feng et al. (2015) ex-
plore different similarity measures beyond cosine
similarity, and Tan et al. (2015) adopt the neural at-
tention mechanism over RNNs to generate better an-
swer representations given the questions as context.

3 Question Retrieval Setup

We begin by introducing the basic discriminative
setting for retrieving similar questions. Let q be
a query question which generally consists of both
a title sentence and a body section. For efficiency
reasons, we do not compare q against all the other
queries in the data base. Instead, we retrieve first a
smaller candidate set of related questionsQ(q) using
a standard IR engine, and then we apply the more
sophisticated models only to this reduced set. Our
goal is to rank the candidate questions in Q(q) so
that all the similar questions to q are ranked above
the dissimilar ones. To do so, we define a similarity
score s(q, p; θ) with parameters θ, where the simi-
larity measures how closely candidate p ∈ Q(q) is
related to question q. The method of comparison can
make use of the title and body of each question.

The scoring function s(·, ·; θ) can be optimized on
the basis of annotated data D = (qi , p

+
i , Q

−
i ) ,

where p+
i is a question similar to question qi and

Q−
i is a negative set of questions deemed not simi-

lar to qi . During training, the correct pairs of similar
questions are obtained from available user-marked
pairs, while the negative set Q−

i is drawn randomly
from the entire corpus with the idea that the likeli-
hood of a positive match is small given the size of
the corpus. The candidate set during training is just
Q(qi ) = {p+

i } � Q−
i . During testing, the candidate

sets are retrieved by an IR engine and we evaluate
against explicit manual annotations.

In the purely discriminative setting, we use a max-
margin framework for learning (or fine-tuning) pa-
rameters θ. Specifically, in a context of a particu-
lar training example where qi is paired with p+

i , we

encoder encoder

question 1 question 2

pooling

cosine similarity

pooling
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…
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…
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Figure 2: Illustration of our model.

minimize the max-margin loss L(θ) defined as

max
p∈Q(qi )

s(qi , p; θ) − s(qi , p
+
i ; θ) + δ(p, p+

i ) ,

where δ(·, ·) denotes a non-negative margin. We set
δ(p, p+

i ) to be a small constant when p 6= p+
i and

0 otherwise. The parameters θ can be optimized
through sub-gradients �L/�θ aggregated over small
batches of the training instances.
There are two key problems that remain. First,

we have to define and parameterize the scoring func-
tion s(q, p; θ). We design a recurrent neural network
model for this purpose and use it as an encoder to
map each question into its meaning representation.
The resulting similarity function s(q, p; θ) is just the
cosine similarity between the corresponding repre-
sentations, as shown in Figure 2 (a). The parame-
ters θ pertain to the neural network only. Second,
in order to offset the scarcity and limited coverage
of the training annotations, we pre-train the param-
eters θ on the basis of the much larger unannotated
corpus. The resulting parameters are subsequently
fine-tuned using the discriminative setup described
above.

4 Model

4.1 Non-consecutive Convolution
We describe here our encoder model, i.e., the
method for mapping the question title and body to



a vector representation. Our approach is inspired
by temporal convolutional neural networks (LeCun
et al., 1998) and, in particular, its recent refine-
ment (Lei et al., 2015), tailored to capture longer-
range, non-consecutive patterns in a weighted man-
ner. Such models can be used to effectively sum-
marize occurrences of patterns in text and aggre-
gate them into a vector representation. However,
the summary produced is not selective since all pat-
tern occurrences are counted, weighted by how co-
hesive (non-consecutive) they are. In our problem,
the question body tends to be very long and full of
irrelevant words and fragments. Thus, we believe
that interpreting the question body requires a more
selective approach to pattern extraction.
Our model successively reads tokens in the ques-

tion title or body, denoted as {x i}l
i = 1, and trans-

forms this sequence into a sequence of states
{hi}l

i = 1. The resulting state sequence is subse-
quently aggregated into a single final vector repre-
sentation for each text as discussed below. Our ap-
proach builds on (Lei et al., 2015), thus we begin by
briefly outlining it. LetW1 andW2 denote filter ma-
trices (as parameters) for pattern size n = 2. Lei et
al. (2015) generate a sequence of states in response
to tokens according to

ct 0,t = W 1x t 0 + W 2xt

ct =
X

t 0< t
λt− t 0− 1ct 0,t

ht = tanh(ct + b)

where ct0,t represents a bigram pattern, ct accumu-
lates a range of patterns and λ ∈ [0, 1) is a con-
stant decay factor used to down-weight patterns with
longer spans. The operations can be cast in a “re-
current” manner and evaluated with dynamic pro-
gramming. The problem with the approach for our
purposes is, however, that the weighting factor λ is
the same (constant) for all, not triggered by the state
ht− 1 or the observed token x t .

Adaptive Gated Decay We refine this model by
learning context dependent weights. For example,
if the current input token provides no relevant infor-
mation (e.g., symbols, functional words), the model
should ignore it by incorporating the token with a
vanishing weight. In contrast, strong semantic con-
tent words such as “ubuntu” or “windows” should be

included with much larger weights. To achieve this
effect we introduce neural gates similar to LSTMs
to specify when and how to average the observed
signals. The resulting architecture integrates recur-
rent networks with non-consecutive convolutional
models:

λt = σ(W λx t + U λht− 1 + bλ )

c(1)
t = λt $ c(1)

t− 1 + (1− λt ) $ (W 1x t )

c(2)
t = λt $ c(2)

t− 1 + (1− λt ) $ (c(1)
t− 1 + W 2xt )

· · ·

c(n )
t = λt $ c(n )

t− 1 + (1− λt ) $ (c(n− 1)
t− 1 + W n xt )

ht = tanh(c(n )
t + b)

where σ(·) is the sigmoid function and$ represents
the element-wise product. Here c(1)

t , · · · , c(n)
t are

accumulator vectors that store weighted averages of
1-gram to n-gram features. When the gate λt = 0
(vector) for all t, the model represents a traditional
CNN with filter width n. As λt > 0, however, c(n)

t
becomes the sum of an exponential number of terms,
enumerating all possible n-grams within x1, · · · , x t
(seen by expanding the formulas). Note that the gate
λt (·) is parametrized and responds directly to the
previous state and the token in question. We refer
to this model as RCNN from here on.

Pooling In order to use the model as part of the
discriminative question retrieval framework outlined
earlier, we must condense the state sequence to a sin-
gle vector. There are two simple alternative pooling
strategies that we have explored – either averaging
over the states4 or simply taking the last one as the
meaning representation. In addition, we apply the
encoder to both the question title and body, and the
final representation is computed as the average of the
two resulting vectors.
Once the aggregation is specified, the parameters

of the gate and the filter matrices can be learned in a
purely discriminative fashion. Given that the avail-
able annotations are limited and user-guided, we in-
stead use the discriminative training only for fine
tuning an already trained model. The method of pre-
training the model on the basis of the entire corpus
of questions is discussed next.

4We also normalize state vectors before averaging, which
empirically gets better performance.



4.2 Pre-training Using the Entire Corpus

The number of questions in the AskUbuntu corpus
far exceeds user annotations of pairs of similar ques-
tions. We can make use of this larger raw corpus in
two different ways. First, since models take word
embeddings as input we can tailor the embeddings
to the specific vocabulary and expressions in this
corpus. To this end, we run word2vec (Mikolov
et al., 2013) on the raw corpus in addition to the
Wikipedia dump. Second, and more importantly,
we use individual questions as training examples
for an auto-encoder constructed by pairing the en-
coder model (RCNN) with an corresponding de-
coder (of the same type). As illustrated in Fig-
ure 2 (b), the resulting encoder-decoder architecture
is akin to those used in machine translation (Kalch-
brenner and Blunsom, 2013; Sutskever et al., 2014;
Cho et al., 2014b) and summarization (Rush et al.,
2015).
Our encoder-decoder pair represents a conditional

language model P (title|context), where the context
can be any of (a) the original title itself, (b) the ques-
tion body and (c) the title/body of a similar ques-
tion. All possible (title, context) pairs are used dur-
ing training to optimize the likelihood of the words
(and their order) in the titles. We use the question
title as the target for two reasons. The question body
contains more information than the title but also has
many irrelevant details. As a result, we can view the
title as a distilled summary of the noisy body, and
the encoder-decoder model is trained to act as a de-
noising auto-encoder. Moreover, training a decoder
for the title (rather than the body) is also much faster
since titles tend to be short (around 10 words).
The encoders pre-trained in this manner are sub-

sequently fine-tuned according to the discriminative
criterion described already in Section 3.

5 Alternative models

For comparison, we also train three alternative
benchmark encoders (LSTMs, GRUs and CNNs) for
mapping questions to vector representations. LSTM
and GRU-based encoders can be pre-trained analo-
gously to RCNNs, and fine-tuned discriminatively.
CNN encoders, on the other hand, are only trained
discriminatively. While plausible, neither alternative
reaches quite the same level of performance as our

pre-trained RCNN.

LSTMs LSTM cells (Hochreiter and Schmidhu-
ber, 1997) have been used to capture semantic in-
formation across a wide range of applications, in-
cluding machine translation and entailment recogni-
tion (Bahdanau et al., 2015; Bowman et al., 2015;
Rocktäschel et al., 2016). Their success can be at-
tributed to neural gates that adaptively read or dis-
card information to/from internal memory states.
Specifically, a LSTM network successively reads

the input token x t , internal state ct− 1, as well as
the visible state ht− 1, and generates the new states
ct , ht :

i t = σ(W i x t + U i ht− 1 + bi )
ft = σ(W f x t + U f ht− 1 + bf )
ot = σ(W ox t + U oht− 1 + bo)
zt = tanh(W zx t + U zht− 1 + bz)
ct = i t $ zt + ft $ ct− 1

ht = ot $ tanh(ct )

where i , f and o are input, forget and output
gates, respectively. Given the visible state sequence
{hi}l

i = 1, we can aggregate it to a single vector ex-
actly as with RCNNs. The LSTM encoder can be
pre-trained (and fine-tuned) in the similar way as
our RCNN model. For instance, Dai and Le (2015)
recently adopted pre-training for text classification
task.

GRUs A GRU is another comparable unit for se-
quence modeling (Cho et al., 2014a; Chung et al.,
2014). Similar to the LSTM unit, the GRU has two
neural gates that control the flow of information:

i t = σ(W i x t + U i ht− 1 + bi )
r t = σ(W r x t + U r ht− 1 + br )
ct = tanh(W xt + U (r t $ ht− 1) + b)
ht = i t $ ct + (1− i t ) $ ht− 1

where i and r are input and reset gate respectively.
Again, the GRUs can be trained in the same way.

CNNs Convolutional neural networks (LeCun et
al., 1998) have also been successfully applied to var-
ious NLP tasks (Kalchbrenner et al., 2014; Kim,
2014; Kim et al., 2015; Zhang et al., 2015; Gao
et al., 2014). As models, they are different from
LSTMs since the temporal convolution operation



Corpus # of unique questions 167,765
Avg length of title 6.7
Avg length of body 59.7

Training # of unique questions 12,584
# of user-marked pairs 16,391

Dev
# of query questions 200
# of annotated pairs 200× 20
Avg # of positive pairs per query 5.8

Test
# of query questions 200
# of annotated pairs 200× 20
Avg # of positive pairs per query 5.5

Table 1: Various statistics from our Training, Dev, and Test
sets derived from the Sept. 2014 Stack Exchange AskUbuntu
dataset.

and associated filters map local chunks (windows) of
the input into a feature representation. Concretely, if
we let n denote the filter width, and W 1, · · · ,W n
the corresponding filter matrices, then the convolu-
tion operation is applied to each window of n con-
secutive words as follows:

ct = W 1xt− n + 1 + W 2xt− n + 2 + · · · + W n xt

ht = tanh(ct + b)

The sets of output state vectors {ht} produced in
this case are typically referred to as feature maps.
Since each vector in the feature map only pertains
to local information, the last vector is not sufficient
to capture the meaning of the entire sequence. In-
stead, we consider max-pooling or average-pooling
to obtain the aggregate representation for the entire
sequence.

6 Experimental Setup

Dataset We use the Stack Exchange AskUbuntu
dataset used in prior work (dos Santos et al., 2015).
This dataset contains 167,765 unique questions,
each consisting of a title and a body5, and a set of
user-marked similar question pairs. We provide var-
ious statistics from this dataset in Table 1.

Gold Standard for Evaluation User-marked sim-
ilar question pairs on QA sites are often known
to be incomplete. In order to evaluate this in our
dataset, we took a sample set of questions paired
with 20 candidate questions retrieved by a search en-
gine trained on the AskUbuntu data. The search en-
gine used is the well-known BM25 model (Robert-

5We truncate the body section at a maximum of 100 words.

son and Zaragoza, 2009). Our manual evaluation of
the candidates showed that only 5% of the similar
questions were marked by users, with a precision of
79%. Clearly, this low recall would not lead to a re-
alistic evaluation if we used user marks as our gold
standard. Instead, we make use of expert annota-
tions carried out on a subset of questions.

Training Set We use user-marked similar pairs as
positive pairs in training since the annotations have
high precision and do not require additional man-
ual annotations. This allows us to use a much larger
training set. We use random questions from the cor-
pus paired with each query question pi as negative
pairs in training. We randomly sample 20 questions
as negative examples for each pi during each epoch.

Development and Test Sets We re-constructed
the new dev and test sets consisting of the first 200
questions from the dev and test sets provided by dos
Santos et al. (2015). For each of the above ques-
tions, we retrieved the top 20 similar candidates us-
ing BM25 and manually annotated the resulting 8K
pairs as similar or non-similar.6

Baselines and Evaluation Metrics We evaluated
neural network models—including CNNs, LSTMs,
GRUs and RCNNs—by comparing them with the
following baselines:

• BM25, we used the BM25 similarity measure
provided by Apache Lucene.

• TF-IDF, we ranked questions using cosine
similarity based on a vector-based word repre-
sentation for each question.

• SVM, we trained a re-ranker using SVM-Light
(Joachims, 2002) with a linear kernel incor-
porating several similarity measures from the
DKPro similarity package (Bär et al., 2013).

We evaluated the models based on the following IR
metrics: Mean Average Precision (MAP), Mean Re-
ciprocal Rank (MRR), Precision at 1 (P@1), and
Precision at 5 (P@5).

6The annotation task was initially carried out by two expert
annotators, independently. The initial set was refined by com-
paring the annotations and asking a third judge to make a final
decision on disagreements. After a consensus on the annotation
guidelines was reached (producing a Cohen’s kappa of 0.73),
the overall annotation was carried out by only one expert.



Method Pooling Dev Test
MAP MRR P@1 P@5 MAP MRR P@1 P@5

BM25 - 52.0 66.0 51.9 42.1 56.0 68.0 53.8 42.5
TF-IDF - 54.1 68.2 55.6 45.1 53.2 67.1 53.8 39.7
SVM - 53.5 66.1 50.8 43.8 57.7 71.3 57.0 43.3
CNNs mean 58.5 71.1 58.4 46.4 57.6 71.4 57.6 43.2
LSTMs mean 58.4 72.3 60.0 46.4 56.8 70.1 55.8 43.2
GRUs mean 59.1 74.0 62.6 47.3 57.1 71.4 57.3 43.6
RCNNs last 59.9 74.2 63.2 48.0 60.7 72.9 59.1 45.0
LSTMs + pre-train mean 58.3 71.5 59.3 47.4 55.5 67.0 51.1 43.4
GRUs + pre-train last 59.3 72.2 59.8 48.3 59.3 71.3 57.2 44.3
RCNNs + pre-train last 61.3∗ 75.2 64.2 50.3∗ 62.3∗ 75.6∗ 62.0 47.1∗

Table 2: Comparative results of all methods on the question similarity task. Higher numbers are better. For neural network models,
we show the best average performance across 5 independent runs and the corresponding pooling strategy. Statistical significance
with p < 0.05 against other types of model is marked with ∗.

d |θ| n
LSTMs 240 423K -
GRUs 280 404K -
CNNs 667 401K 3
RCNNs 400 401K 2

Table 3: Configuration of neural models. d is the hidden dimen-
sion, |θ| is the number of parameters and n is the filter width.

Hyper-parameters We performed an extensive
hyper-parameter search to identify the best model
for the baselines and neural network models. For
the TF-IDF baseline, we tried n-gram feature order
n ∈ {1, 2, 3} with and without stop words pruning.
For the SVM baseline, we used the default SVM-
Light parameters whereas the dev data is only used
to increase the training set size when testing on the
test set. We also tried to give higher weight to dev
instances but this did not result in any improvement.

For all the neural network models, we used
Adam (Kingma and Ba, 2015) as the optimiza-
tion method with the default setting suggested by
the authors. We optimized other hyper-parameters
with the following range of values: learning rate
∈ {1e − 3, 3e − 4}, dropout (Hinton et al., 2012)
probability ∈ {0.1, 0.2, 0.3}, CNN feature width
∈ {2, 3, 4}. We also tuned the pooling strategies
and ensured each model has a comparable number of
parameters. The default configurations of LSTMs,
GRUs, CNNs and RCNNs are shown in Table 3. We
used MRR to identify the best training epoch and
the model configuration. For the same model con-
figuration, we report average performance across 5

independent runs.7

Word Vectors We ran word2vec (Mikolov et al.,
2013) to obtain 200-dimensional word embeddings
using all Stack Exchange data (excluding Stack-
Overflow) and a large Wikipedia corpus. The word
vectors are fixed to avoid over-fitting across all ex-
periments.

7 Results

Overall Performance Table 2 shows the perfor-
mance of the baselines and the neural encoder mod-
els on the question retrieval task. The results
show that our full model, RCNNs with pre-training,
achieves the best performance across all metrics on
both the dev and test sets. For instance, the full
model gets a P@1 of 62.0% on the test set, outper-
forming the word matching-based method BM25 by
over 8 percent points. Further, our RCNN model
also outperforms the other neural encoder mod-
els and the baselines across all metrics. This su-
perior performance indicates that the use of non-
consecutive filters and a varying decay is effective
in improving traditional neural network models.
Table 2 also demonstrates the performance gain

from pre-training the RCNN encoder. The RCNN
model when pre-trained on the entire corpus consis-
tently gets better results across all the metrics.

7For a fair comparison, we also pre-train 5 independent
models for each configuration and then fine tune these mod-
els. We use the same learning rate and dropout rate during pre-
training and fine-tuning.



Method Dev Test
MAP MRR P@1 P@5 MAP MRR P@1 P@5

CNNs, max-pooling 57.8 69.9 56.6 47.7 59.6 73.1 59.6 45.4
CNNs, mean-pooling 58.5 71.1 58.4 46.4 57.6 71.4 57.6 43.2
LSTMs + pre-train, mean-pooling 58.3 71.5 59.3 47.4 55.5 67.0 51.1 43.4
LSTMs + pre-train, last state 57.6 71.0 58.1 47.3 57.6 69.8 55.2 43.7
GRUs + pre-train, mean-pooling 57.5 69.9 57.1 46.2 55.5 67.3 52.4 42.8
GRUs + pre-train, last state 59.3 72.2 59.8 48.3 59.3 71.3 57.2 44.3
RCNNs + pre-train, mean-pooling 59.3 73.6 61.7 48.6 58.9 72.3 57.3 45.3
RCNNs + pre-train, last state 61.3 75.2 64.2 50.3 62.3 75.6 62.0 47.1

Table 4: Choice of pooling strategies.

TF-IDF MAP MRR P@1
title only 54.3 66.8 52.7
title + body 53.2 67.1 53.8

RCNNs, mean-pooling MAP MRR P@1
title only 56.0 68.9 55.7
title + body 58.5 71.7 56.7

RCNNs, last state MAP MRR P@1
title only 58.2 70.7 56.6
title + body 60.7 72.9 59.1

Table 5: Comparision between model variants on the test set
when question bodies are used or not used.

Pooling Strategy We analyze the effect of various
pooling strategies for the neural network encoders.
As shown in Table 4, our RCNN model outperforms
other neural models regardless of the two pooling
strategies explored. We also observe that simply us-
ing the last hidden state as the final representation
achieves better results for the RCNN model.

Using Question Body Table 5 compares the per-
formance of the TF-IDF baseline and the RCNN
model when using question titles only or when using
question titles along with question bodies. TF-IDF’s
performance changes very little when the question
bodies are included (MRR and P@1 are slightly bet-
ter but MAP is slightly worse). However, we find
that the inclusion of the question bodies improves
the performance of the RCNN model, achieving a
1% to 3% improvement with both model variations.
The RCNN model’s greater improvement illustrates
the ability of the model to pick out components that
pertain most directly to the question being asked
from the long, descriptive question bodies.

Pre-training Note that, during pre-training, the
last hidden states generated by the neural encoder
are used by the decoder to reproduce the question ti-
tles. It would be interesting to see how such states

Figure 3: Perplexity (dotted lines) on a heldout portion of the
corpus versus MRR on the dev set (solid lines) during pre-
training. Variances across 5 runs are shown as vertical bars.

capture the meaning of questions. To this end, we
evaluate MRR on the dev set using the last hidden
states of the question titles. We also test how the en-
coder captures information from the question bodies
to produce the distilled summary, i.e. titles. To do
so, we evaluate the perplexity of the trained encoder-
decoder model on a heldout set of the corpus, which
contains about 2000 questions.
As shown in Figure 3, the representations gener-

ated by the RCNN encoder perform quite well, re-
sulting in a perplexity of 25 and over 68% MRR
without the subsequent fine-tuning. Interestingly,
the LSTM and GRU networks obtain similar per-
plexity on the heldout set, but achieve much worse
MRR for similar question retrieval. For instance, the
GRU encoder obtains only 63% MRR, 5% worse
than the RCNN model’s MRR performance. As a
result, the LSTM and GRU encoder do not benefit
clearly from pre-training, as suggested in Table 2.
The inconsistent performance difference may be

explained by two hypotheses. One is that the per-
plexity is not suitable for measuring the similarity
of the encoded text, thus the power of the encoder
is not illustrated in terms of perplexity. Another hy-



Figure 4: Visualizations of 1− λt of our model on several question pieces from the data set. λt is set to a scalar value (instead of
400-dimension vector) to make the visualization simple. The corresponding model is a simplified variant, which is about 4% worse
than our full model.

pothesis is that the LSTM and GRU encoder may
learn non-linear representations therefore their se-
mantic relatedness can not be directly accessed by
cosine similarity.

Adaptive Decay Finally, we analyze the gated
convolution of our model. Figure 5 demonstrates at
each word position t how much input information is
taken into the model by the adaptive weights 1−λt .
The average of weights in the vector decreases as t
increments, suggesting that the information encoded
into the state vector saturates when more input are
processed. On the other hand, the largest value in
the weight vector remains high throughout the input,
indicating that at least some information has been
stored in ht and ct .
We also conduct a case study on analyzing the

neural gate. Since directly inspecting the 400-
dimensional decay vector is difficult, we train a
model that uses a scalar decay instead. As shown in
Figure 4, the model learns to assign higher weights
to application names and quoted error messages,
which intuitively are important pieces of a question
in the AskUbuntu domain.

8 Conclusion

In this paper, we employ gated (non-consecutive)
convolutions to map questions to their semantic
representations, and demonstrate their effectiveness

Figure 5: The maximum and mean value of the 400-
dimentional weight vector 1− λt at each step (word position) t .
Values are averaged across all questions in the dev and test set.

on the task of question retrieval in community
QA forums. This architecture enables the model
to glean key pieces of information from lengthy,
detail-riddled user questions. Pre-training within an
encoder-decoder framework (from body to title) on
the basis of the entire raw corpus is integral to the
model’s success.
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mann, Tomáš Kočiskỳ, and Phil Blunsom. 2016. Rea-
soning about entailment with neural attention. In In-
ternational Conference on Learning Representations.

Alexander M Rush, Sumit Chopra, and Jason Weston.
2015. A neural attention model for abstractive sen-
tence summarization. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing.

Aliaksei Severyn and Alessandro Moschitti. 2015.
Learning to rank short text pairs with convolutional
deep neural networks. In SIGIR.

Yikang Shen, Wenge Rong, Nan Jiang, Baolin Peng, Jie
Tang, and Zhang Xiong. 2015. Word embedding
based correlation model for question/answer match-
ing. arXiv preprint arXiv:1511.04646.

Ilya Sutskever, Oriol Vinyals, and Quoc VV Le. 2014.
Sequence to sequence learning with neural networks.
In Advances in neural information processing systems,
pages 3104–3112.

Ming Tan, Bing Xiang, and Bowen Zhou. 2015. Lstm-
based deep learning models for non-factoid answer se-
lection. arXiv preprint arXiv:1511.04108.

Di Wang and Eric Nyberg. 2015. A long short-term
memory model for answer sentence selection in ques-
tion answering. In ACL, July.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text classi-
fication. In Advances in Neural Information Process-
ing Systems, pages 649–657.

Guangyou Zhou, Yang Liu, Fang Liu, Daojian Zeng,
and Jun Zhao. 2013. Improving question retrieval
in community question answering using world knowl-
edge. In Proceedings of the Twenty-Third interna-
tional joint conference on Artificial Intelligence, pages
2239–2245. AAAI Press.

Guangyou Zhou, Tingting He, Jun Zhao, and Po Hu.
2015. Learning continuous word embedding with
metadata for question retrieval in community question
answering. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), pages
250–259, Beijing, China, July. Association for Com-
putational Linguistics.


