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Abstract
The processing of continuous and complex auditory signals such as speech relies on the

ability to use statistical cues (e.g. transitional probabilities). In this study, participants heard

short auditory sequences composed either of Italian syllables or bird songs and completed

a regularity-rating task. Behaviorally, participants were better at differentiating between lev-

els of regularity in the syllable sequences than in the bird song sequences. Inter-individual

differences in sensitivity to regularity for speech stimuli were correlated with variations in

surface-based cortical thickness (CT). These correlations were found in several cortical

areas including regions previously associated with statistical structure processing (e.g.

bilateral superior temporal sulcus, left precentral sulcus and inferior frontal gyrus), as well

other regions (e.g. left insula, bilateral superior frontal gyrus/sulcus and supramarginal

gyrus). In all regions, this correlation was positive suggesting that thicker cortex is related to

higher sensitivity to variations in the statistical structure of auditory sequences. Overall,

these results suggest that inter-individual differences in CT within a distributed network of

cortical regions involved in statistical structure processing, attention and memory is predic-

tive of the ability to detect structural structure in auditory speech sequences.

Introduction
Auditory perception is a difficult task that involves the ability to process regularities (i.e. statis-
tical structure) to make predictions about upcoming sounds. This ability relies, at least in part,
on detecting the probabilities in which events co-occur [1, 2]. Transitional probabilities (TP)
provide information regarding the regularity of auditory signals; this information can be used
to predict upcoming sounds. The ability to detect TP is therefore a very important mechanism
in the processing of auditory signals, both for language learning and language processing. In
fact, the paradigmatic case is that of language acquisition during which children learn to use
TP and other cues to segment speech into words, words into syllables, and syllables into pho-
nemes. Indeed, from an early age, children are sensitive to TP in speech [3–6] and non-speech
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auditory signal [4]. Adults are also sensitive to TP in speech [7, 8] and non-speech auditory sig-
nals [4, 9–11], which suggests a general auditory competence, not specific to speech [4, 9–14].
Different underlying mechanisms have been proposed to account for these results. While some
have proposed that TP and other statistics are computed/extracted online [4, 15] others have
proposed that “chunking”mechanisms, dependent upon attention, memory and associative
learning [16], underlie the apparent sensitivity to statistical structure. However, both
approaches suggest that there is sensitivity to statistical regularities [17]. That is, the statistical
structure of incoming auditory inputs must be detected.

Prior work using functional neuroimaging has identified the inferior frontal cortex (IFC),
the superior temporal plane (STP), as well as subcortical regions (basal ganglia; BG) as sensitive
to auditory statistical structure such as TP [18–27]. For example, regions within the frontal cor-
tex, including the middle frontal gyrus (MFG) and the ventral premotor cortex (PMv), are sen-
sitive to changes in perceived order in sequences of pure tones [18, 28], whereas the inferior
frontal gyrus (IFG) is sensitive to TP in sequences of pure tones [22] and in syllable sequences
in an artificial language [26]. Regions within the supratemporal plane are sensitive to TP in
auditory tone sequences [22, 25], in bird songs [23] and in syllable sequences [21, 23, 29], as
well as the sample entropy of pitch sequences [20]. Subcortical regions such as the BG are
recruited during sequential structure learning using different modalities (e.g. visual, auditory
and tactile) in which probabilistic relationships are manipulated [27, 30, 31].

While the relation between the processing of statistical structure and brain function has
been studied extensively using fMRI, the relationship (if any) between brain anatomy and the
processing of statistical structure remains poorly understood. Investigating this relationship
might provide valuable insights into the underlying mechanisms involved in the processing of
statistical structure, as gray matter is composed of neurons (including dendritic trees and
spines), which are the building blocks in the transmission of information and brain functions.
In fact, a recent review by Kanai and Rees [32] clearly demonstrates that brain morphometry
has been repeatedly linked to inter-individual differences in numerous capacities (ranging
from basic to higher cognitive functions). Specifically for language, two studies have demon-
strated, using diffusion tensor imaging (DTI), that microstructural brain differences (i.e. integ-
rity of white matter fiber tracts) predicted competencies often related to statistical learning;
specifically, word-learning skills such as segmentation and rule learning [33, 34]. In these stud-
ies, increased fractional anisotropy or radial diffusivity was associated with better performance
(i.e. less errors). Such results document a relationship between neurostructural differences and
behavioral differences in performance on statistical learning abilities in healthy adults.

Other studies focusing on the more general relationship between brain structure and lan-
guage or speech functions have also predominantly reported positive correlation between brain
structure and performance. For example, with regards to auditory processing, it has been
shown that musicians have greater CT in superior temporal surfaces than non-musicians [35].
In addition, relative pitch performance is predicted by higher CT in the bilateral intraparietal
sulcus [36]. Other morphometric measures, such as white matter volume (WMV) and gray
matter volume (GMV), also correlate with specific abilities. Successful learning of artificial
grammars correlates with white matter integrity in left IFG (BA 44/45) [37]. In addition, suc-
cessful learning of foreign speech sounds is correlated with higher WMV volume in the left
Heschl’s gyrus (HG) [38] and bilaterally in a region anterior to the parietal-occipital sulcus
[39], while successful learning of pitch patterns in word contexts is correlated with GMV in the
left HG [40]. The structural differences observed in HG are in agreement with functional (i.e.
increased activity) and structural differences (i.e. increase gray matter volume) that have been
observed in individuals with good auditory perception, such as musicians [35, 41, 42]. Taken
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together, these studies demonstrate that structural brain imaging is a powerful tool for investi-
gating the neural organization of auditory and language performance.

Expanding on our prior work [23], here we examined whether cortical thickness (CT) corre-
lates with sensitivity to statistical structure in auditory sequences. In our previous fMRI study,
we reported that during passive listening, several brain regions, mainly within the superior
temporal plane, were sensitive to the statistical structure of auditory sequences. In contrast,
here we focused on the relationship between CT, a measure of the depth of the cortical mantle
[43, 44] and an explicit measure of sensitivity to statistical structure. Since a few prior studies
have documented converging results between structural and functional neuroimaging ([33, 45,
46], but see also [47, 48]), here we expected that inter-subject variability in the ability to differ-
entiate different levels of statistical structure would positively correlate with CT in regions
including IFG, MFG, PMv, STP, and BG. We also expected to find positive correlations in
regions not typically identified in fMRI studies of statistical structure processing, as the ability
to detect/perceive different levels of statistical structure may also draw on cognitive processes
such as working memory and attention [2, 16, 49] not necessarily involved in more implicit
tasks.

Materials and Methods

Participants
Twenty healthy right-handed [50] native speakers of Italian (9 females; 24±4.5 years (range:
18–40), education: 17.1±3.64 years), with normal self-reported hearing, and no history of lan-
guage or neurological/neuropsychological disorders participated in this study. We report data
from 18 participants as two participants were removed because the FreeSurfer analyses were
lost in a hardware crash and could not be replicated with the same computers and software ver-
sions. The study was approved by the Human research ethics committee of the University of
Trento in Italy. Written consent was obtained from all participants.

Stimuli and Procedures
The stimuli were sequences of speech and non-speech sounds. The individual sounds that were
concatenated into sequences were recorded with a sampling rate of 44 kHz, and edited to have
an envelope of 225 ms, ±15 ms fade in and fade out, and equal root mean square (RMS) inten-
sity. A complete description of the stimuli can be found in Tremblay et al., [23]. The speech
sounds were 70 Italian frequent consonant-vowel (CV) syllables. These syllables were com-
posed of combinations of five vowels (/a, e, i, o, u/) and twenty-four consonants. A native male
Italian speaker pronounced these syllables in a sound-attenuated booth; they were recorded
directly to disk. The non-speech stimuli were 70 unique bird sounds created from a high qual-
ity digital collection of bird sounds recorded at 44 KHz, and commercially available on iTunes
(The Ultimate Sound Effects Collection: Birds; 2010 by HDsoundFX). Bird sounds were used
because, like speech, they form a natural class of spectrally complex sounds.

For each category of stimuli (speech, non-speech), sequences of 8.8 seconds were created
with 3 different levels of statistical structure (low, mid, high). For each category, a set of 63
unique sequences was generated. Each sequence contained four different sounds that were
repeated 8 times within individual sequence, resulting in sequences of 32 sounds. Within indi-
vidual sequences, sounds were separated by 50 ms of silence and presented at a rate of 3.6 Hz.
To optimize discriminability, each speech sequence included 4 maximally different (acousti-
cally) consonants and vowels, and each bird sound sequence contained 4 sounds from different
bird species.
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Formally, the statistical structure of the sequences was determined by transition probability
(TP) matrices, which were manipulated experimentally. The sequences ranged from random
(i.e. lack of statistical structure) to highly structured in three levels (low, mid, high). Each level
was associated with a different degree of Markov Entropy (ME). ME is a measure of unpredict-
ability: the more predictable a sequence is, the lower its ME value. In the low structure condi-
tion, each item was equally likely to appear at any point independently of the previously
presented item (mean±SDME = 1.84±.03; range: 1.8–1.9). It was thus impossible for partici-
pants to form correct expectations. In the mid structure (mean±SDME = 1.51±.018; range
1.48–1.53) and high structure sequences (mean±SDME = .79±.012; range: 0.78–0.81), the TP
matrices were more constrained, which allowed participants to form expectations about
upcoming sounds (audio excerpts can be found in S1 Text). The overall proportion of self-rep-
etitions was set at 25% within all three types of sequences. This was done to control for repeti-
tion suppression effects [51–53]. In addition, in all conditions the marginal frequencies of the
four stimuli were identically set to 25%; thus the only differentiating factor were transition
probability constraints (i.e., Shannon’s entropy was identical in all conditions, refer to Table 1).
This experimental manipulation resulted in two within-subject factors: statistical structure (3
levels) and auditory category (2 levels).

Behavioral task and responses
Participants were first introduced to the syllables and bird sounds, to avoid any surprise effect
during the main experiment and then they heard the 126 unique sequences during a passive lis-
tening task performed during a fMRI session (reported in [23]). Following the MRI session,
participants were presented again with the same sequences while seated comfortably in front of
a computer monitor, wearing a high quality headset through which the sound sequences were
presented in random order using Presentation Software (Neurobehavioral Systems). On each
trial, participants were asked to rate the degree of statistical structure (Regularity Sensitivity;
RS) perceived in the sequences (scale of 1 [not structured] to 7 [highly structured]), and in 40%
of all trials, they were also asked how many distinct sounds they perceived in the sequence,

Table 1. Transition probability matrix for the 3 levels of regularity.

TP matrix used to construct the highly structured sequences(Markov Entropy = 0.81)

From/To Sound A Sound B Sound C Sound D

Sound A 25% 75% 0% 0%

Sound B 0% 25% 75% 0%

Sound C 0% 0% 25% 75%

Sound D 75% 0% 0% 25%

TP matrix used to construct the highly semi-structure sequences (Markov Entropy = 1.49)

From/To Sound A Sound B Sound C Sound D

Sound A 25% 37.50% 37.50% 0%

Sound B 0% 25% 37.50% 37.50%

Sound C 37.50% 0% 25% 37.50%

Sound D 37.50% 37.50% 0% 25%

TP matrix used to construct the highly semi-random sequences (Markov Entropy = 1.90)

From/To Sound A Sound B Sound C Sound D

Sound A 25% 25% 25% 25%

Sound B 25% 25% 25% 25%

Sound C 25% 25% 25% 25%

Sound D 25% 25% 25% 25%

doi:10.1371/journal.pone.0149375.t001
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similarly rated using a 1–7 scale (See Fig 1). Participants were told that sequences containing
repeating, predictable patterns (the following example PA-TA-KA-PA-TA-KA-PA-TA-KA
was given) should be rated as highly structured (close to seven), while random, unpredictable
sequences should be rated low (close to one). Here, we focus on the analysis of statistical struc-
ture ratings (RS) because it offers insights into participants’ ability to detect changes in statisti-
cal structure in speech and non-speech sound sequences—i.e., to successfully differentiate
between series solely on the basis of the transition constraints between sounds. Given that, to
our knowledge, the RS scale has not been used in prior work, we assessed its internal consis-
tency for each level of statistical structure (high, mid, low) for speech and non-speech sounds
separately using a split-half reliability procedure [54]. That is, within each auditory category,
for each level of statistical structure, we separated the odd trials from the even trials. We then
calculated the split half coefficient for each level of statistical structure. The rating scale has
good internal consistency for each level of statistical structure for speech and non-speech
sounds (speech: high α = .95, mid α = .95, low α = .93; non-speech: high α = .73, mid α = .93,
low = .89).

For each auditory category (i.e. speech and non-speech) we used a repeated measures ordi-
nal logistic regression (rmOLR) at the group level to determine whether participants’ RS rat-
ings could be predicted from the three levels of statistical structure (i.e. high, mid, low). First,
for each participant, we calculated their average rating for each of the three levels of statistical
structure (high, mid, low). Then, the average rating obtained for each statistical structure level
was rounded to the nearest integer. Before running the rmOLR, we tested the assumption of
collinearity using a linear regression with the ratings of statistical structure as the dependent
variable and the actual level of statistical structure (high, mid, and low) as the independent var-
iable. We found no violation of this assumption (Speech High: Tolerance = 0.789, VIF = 1.267;
Speech Mid: Tolerance = 0.789, VIF = 1.267; Non-speech High: Tolerance = 0.789, VIF =
1.267; Non-speech Mid: Tolerance = 0.789, VIF = 1.267). Next we verified whether the assump-
tion of proportional odds was met using a full likelihood ratio test comparing the residual of
the fitted location model to a model with varying location parameters, (speech: χ2(4) = 9.033,
p = 0.340; non-speech: χ2(4) = 1.710, p = 0.789).

A rmOLR was then performed to evaluate sensitivity to statistical structure separately for
the speech and bird-song, with participants’ RS ratings as the dependent variable and statistical
structure levels (3) as the within-subject independent variable. For the speech sequences, the
results from the rmOLR indicated a strong relation between participants’ ratings and statistical
structure, Wald χ2(2) = 19.688, p = 0.00005. This was shown statistically in that the odds ratio
for being in a higher category of the dependent variable (i.e. higher rating on the 7 point scale)
for the high versus low level of statistical structure was 34.34 (95% CI [7.2, 163.82]), which was
statistically significant, Wald χ2(1) = 19.68, p = 0.000009. Similarly, the odds ratio of being in a
higher category of the dependent variable for the mid versus low level of statistical structure

Fig 1. Experimental design. The trial number was displayed for 1000 ms and was followed by the an auditory sequence which lasted for 8800 ms. A
question mark then appeared triggering participants to determine sequence regularity on a scale of 1 to 7.

doi:10.1371/journal.pone.0149375.g001
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and for the high versus mid level of statistical structure were also statistically significant (mid-
low odds ratio = 1.839, 95% CI [1.02, 3.29], Wald χ2(1) = 4.17, p = 0.041; high-mid odds
ratio = 18.68, 95% CI [4.59 76.07], Wald χ2(1) = 16.7, p = 0.00004). To summarize, for the
speech sequences, participants’ ratings tracked the level of regularity, and differentiated the
high from mid-regularity levels as well as the mid from low-regularity levels.

For the non-speech sequences, the results from the rmOLR indicated that the level of actual
statistical structure influenced the ratings, Wald χ2(2) = 13.93, p = 0.001. However, we found
that participants appeared to discriminate the high regularity from the other two conditions,
but did not discriminate the mid-regularity and low-regularity conditions. Statistically, this
was seen in that the odds ratio of being in a higher category of the dependent variable was only
statistically significant for the high versus low level of statistical structure (odds ratio = 3.73,
95% CI [1.78, 7.79], Wald χ2(1) = 12.22, p = 0.0005) and high versus mid level of statistical
structure (odds ratio = 3.07, 95% CI [1.43, 6.56], Wald χ2(1) = 8.31, p = 0.004). For the mid ver-
sus low level of statistical structure the odds ratio of being in a higher category of the dependent
variable was not significant (odds ratio = 1.216, 95% CI [0.58 to 2.57], Wald χ2(1) = 0.261,
p = 0.61). Thus, unlike for the speech sequences, for the non-speech sequences participant did
not appear to detect the difference in statistical structure between the mid versus low level.
Because of this weaker sensitivity to statistical structure in bird-song sequences, we excluded
the bird songs from the morphometry analyses. The remaining analyses therefore focus on the
relationship between CT and the sensitivity to statistical structure in speech sequences.

After establishing that, at the group level, participants could perceive differences in statisti-
cal structure among the 3 levels for the speech sequences, we derived one index per participant
quantifying the degree to which changes in statistical structure were associated with changes in
ratings. For each participant we calculated, the degree to which ratings predicted the actual
level of statistical structure of a sequence. An ordinal logistic regression (OLR) with ratings as
the dependent variable and statistical structure levels (3) as the independent variable was com-
puted for each participant. This procedure returned a Wald Chi-Square statistics per partici-
pant (the higher the Chi-Square, the more participant’s ratings predicted the level of statistical
structure of the speech sequences). After verifying that the distribution of the Wald Chi-Square
statistics across all subjects was normal, these statistics were used as predictors in the brain-
behavior analysis that forms the core of this study (See Fig 2).

Image acquisition
Two T1-weighted 3DMPRAGE structural images were acquired [1x1x1 mm3, GRAPPA
iPAT = 2, 5:36min each]. One was optimized for optimal contrast [MPRAGE_CNR] between
gray and white matter tissue [TE/TR/TI/flip angle = 4.18ms/2700ms/1020ms/7°] and the other
was optimized for signal to noise ratio [MPRAGE_SNR] in gray and white matter tissue [TE/
TR/TI/flip angle = 3.37 ms / 2500 ms /1200 ms / 12°]. The two were co-registered and averaged
to obtain a single high quality structural image per participant.

MRI Image analysis
Pre-processing of the T1-images. CT measures and subcortical volumetric brain mea-

sures were obtained using Freesurfer v5.3.0 [55–57]. First, a surface representation of each par-
ticipant’s anatomy was created by inflating each hemisphere of the averaged anatomical
volume to a surface representation. The resulting surface representation was aligned to a tem-
plate of average curvature. These surface representations were obtained by submitting each
participant’s structural image to a series of steps that included: (1) motion correction (across
the two volumes) and affine transformation to Talairach space, (2) intensity normalization, (3)
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removal of non-brain voxels using skull stripping algorithms, (4) segmentation of gray and
white matter as well as cerebrospinal fluid and (5) surface tessellation. At each step, intermedi-
ate results were inspected and manual interventions were performed when required to correct
topological assignment errors. These included mainly manual annotations to establish white-
matter/gray-matter boundaries (control-point intervention) and manual removal of residual
dura mater or skull. The surface representations were then parcellated using an automated par-
cellation scheme [57, 58]. This scheme relies on a probabilistic algorithm that incorporates the
anatomical convention of Duvernoy [59]. The anatomical accuracy of this method is high and
approaches the accuracy of manual parcellations [57, 60, 61].

Investigation of the relationship between brain morphometry and behavior. Our main
objective was to examine the relationship between CT and sensitivity to statistical structure.
This was accomplished in two ways: (1) by conducting a whole-brain vertex-wise analysis cor-
relating CT with sensitivity to statistical structure, (2) by examining the relationship between
subcortical volumes in relation to sensitivity to statistical structure (these were not included in
the cortical-surface analysis in #1) and (3) by investigating whether mean CT measures within
functionally-defined regions of interest (ROIs) correlated with sensitivity to statistical struc-
ture. We report the analyses in that order.

Whole-brain analyses. Whole-brain CT measures were obtained from FreeSurfer routines
calculating the closest distance from the gray/white boundary to the gray/CSF boundary at
each vertex on the tessellated surface [43]. The CT maps were created using spatial intensity
gradients across tissue classes and are therefore not simply reliant on absolute signal intensity.
We exported the individual maps to SUMA (AFNI’s 3D cortical surface mapping module;
[62]) where we conducted group-level analyses on the surface. Prior to the group-level

Fig 2. Distribution of sensitivity coefficients for speech sounds. A. Scatterplot illustrating the distribution
of theWald chi-square statistics for speech.

doi:10.1371/journal.pone.0149375.g002
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analyses, we smoothed the individual CT data using a 10-mm full-width-at-half-maximum
Heat kernel.

For the whole-brain CT measures, we tested, using a vertex-wise linear regression model
(AFNI covariate analysis option in the 3dttest++ program), whether CT correlated with the
statistical sensitivity index that we derived for each participant. Age was included in the analy-
sis as a covariate to control for the well-established relation between age and CT [63, 64]. We
also conducted an additional vertex-wise linear regression model in which sex was included as
an additional covariate. This analysis is detailed in S2 Text. The resulting group maps were cor-
rected for multiple comparisons using the Monte Carlo simulation procedure implemented in
FreeSurfer. Only areas in which CT significantly correlated with the statistical sensitivity index
were included in the final corrected maps (individual vertex threshold of p< 0.05, corrected
for multiple comparisons to achieve a whole-brain family-wise error (FWE) rate of p< 0.05
(clusters� 437 vertices)).

Subcortical volumes. To examine subcortical structures, we used the automated proce-
dure for volumetric segmentation implemented in FreeSurfer. This procedure relies on the seg-
mentation of subcortical structure, which is based on voxel intensity, spatial comparisons with
a probabilistic training atlas as well as comparisons to neighboring voxel labels [61]. For each
bilateral subcortical structure (thalamus, caudate, putamen, pallidum, hippocampus, amygdala,
nucleus acumbens and cerebellum), a volume measurement was obtained from the native ana-
tomical data. FreeSurfer morphometric procedures have been demonstrated to show good test-
retest reliability across scanner manufacturers and across field strengths [65]. For each subcor-
tical volume, we then examined whether sensitivity to statistical structure predicted volume
using a multiple regression model in which the sensitivity index, age and intracranial volume
were included as predictors. We also conducted additional multiple regressions in which sex
was also included as a predictor. This analysis is detailed in S2 Text. The resulting p-values
were corrected for multiple comparisons using a False Discovery Rate (FDR) procedure (q� =
0.05, i = 16, 2 hemispheres x 8 ROIs).

Functional ROIs. To further explore the relationship between CT and sensitivity to statis-
tical structure, we created a set of seven masks based on the functional data reported [23].
Masks were based on the regions that showed a significant effect of statistical structure (Fig 3A;
[23]). For each participant, the average thickness of each of the 7 clusters was extracted. For
each ROI, we then examined whether sensitivity to statistical structure predicted CT using a
multiple regression model in which the sensitivity index, and age were included as predictors.

Fig 3. Regions showing a significant relationship between CT and sensitivity to statistical structure. Results are shown on the group-average inflated
white matter inflated surface. All analyses are controlled for multiple comparisons.

doi:10.1371/journal.pone.0149375.g003
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We also conducted additional multiple regressions in which the sensitivity index, age and sex
were included as predictors. This analysis is detailed in S2 Text. The resulting p-values were
corrected for multiple comparisons using a False Discovery Rate (FDR) procedure (q� = 0.05,
i = 7).

Results

Whole-brain results
The whole-brain analysis targeted cortical regions in which CT correlated with participant’s
sensitivity to statistical structure. We identified several regions showing such a correlation, and
importantly, all correlations were positive: thicker cortex was associated with a higher sensitiv-
ity to statistical regularities in auditory syllable sequences. We found such correlations in the
bilateral SMG, the bilateral angular gyrus/superior temporal sulcus (AG/STS), the bilateral
superior frontal gyrus and sulcus (SFG/S), the superior portion of the left precentral sulcus
(PrCS), the left postcentral gyrus and central sulcus (PoCG/CS), the ventral portion of the ante-
rior insula (vAI), the left precentral sulcus and MFG (PrCS/MFG), the IFG pars triangularis
and anterior insula (IFGpt/AI), the right temporal pole and anterior portion of the superior
temporal gyrus (STGa), and the right paracentral gyrus and sulcus (Refer to Figs 3 and 4 and
Table 2, for a complete list).

Analyses of subcortical volume and functional ROIs
No relationship was found between GMV and sensitivity to statistical structure in any of the
subcortical structures even at an uncorrected threshold. In addition, no relationship was found
between CT and sensitivity to statistical structure in any of the functional ROIs even at an
uncorrected threshold.

Fig 4. Scatter plot illustrating the relationship between CT and sensitivity to regularity with age regressed out (the values plotted are the resulting
z-transformed residuals). SMG = supramarginal gyrus; STS = superior temporal sulcus.

doi:10.1371/journal.pone.0149375.g004
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Discussion
This is the first study to investigate the potential relationship between cortical thickness in
healthy adults and the ability to detect statistical structure in non-deterministic sequences of
speech sounds. Our main finding is that the thickness of several cortical areas correlates posi-
tively with sensitivity to statistical structure in auditory syllable sequences.

Given that the cellular and molecular mechanisms that determine CT are complex, and that
structural MRI cannot identify the source of CT variations (e.g. increased neuronal or synaptic
density, increased density in glial cells), the link between brain anatomy and performance can
be interpreted in several ways. Neuronal changes that could affect CT include neurogenesis,
synaptogenesis, increased dendritic formation, neuronal morphology, and neuronal arrange-
ment, as well as the natural processes of synaptic pruning [66, 67]. In the present study, the
relation between CT and sensitivity to statistical structure was positive indicating that thicker
cortex was associated with better performance (i.e. better ability to perceived differences
between statistical structures). More specifically, the whole-brain analyses revealed that
increased sensitivity to statistical structure was associated with thicker cortex in regions that
have been previously associated with the processing of statistical structure using fMRI (i.e.
bilateral AG/pSTS, left PrCG, left MFG), as well as regions typically associated with cognitive
functions such as memory and attentional processes (bilateral SMG, bilateral SFG\S, left vAI).
These findings are discussed in the following paragraphs.

Behavior/CT correlations in areas implicated in statistical processing
Among the regions in which CT co-varied with participant’s sensitivity to statistical structure
for speech, the left ventral IFGpt, the left MTG, the left PrCS, and the bilateral STS are regions
that have previously been linked to the processing of statistical information in auditory and
language stimuli [22, 28, 29, 68]. In particular, prior work suggests that the involvement of the
left ventral IFG might be related to the processing of auditory sequential information. For
example, Nastase [22] reported that the left ventral IFG, a region similar to the one reported in
the current study, differentiated between levels of disorders in auditory sequences of pure

Table 2. Clusters where the correlation between CT and sensitivity to statistical structure was statistically significant.

Anatomical location Hemi x y z T-value P-value Number of nodes Area(mm2)

Angular gyrus, superior temporal sulcus and middle temporal gyrus Left -47 -69 19 5.427 0.00007 1501 394.52

Superior portion of the precentral sulcus Left -20 -20 60 4.277 0.0007 1001 319.17

Superior frontal gyrus and sulcus Left -18 8 59 5.162 0.0001 607 201.29

Postcentral gyrus and central sulcus Left -22 -33 65 4.175 0.0008 713 170.01

Anterior ventral insula Left -36 -1 -19 4.185 0.0008 775 147.9

Precentral sulcus and middle frontal gyrus Left -29 -4 44 4.499 0.0004 462 134.44

Inferior frontal gyrus pars triangularis and anterior insula Left -50 25 3 4.987 0.0002 599 121.6

Supramarginal gyrus and postcentral sulcus Left -59 -25 26 4.009 0.0011 450 82.7

Supramarginal gyrus and postcentral gyrus Right 57 -24 32 8.51 0.0000004 1362 285.56

Temporal pole and lateral superior temporal gyrus Right 42 24 -28 4.161 0.0001 689 229.81

Paracentral gyrus and sulcus and postcentral sulcus Right 10 -40 74 3.821 0.0016 914 197.45

Superior frontal gyrus and sulcus Right 12 25 54 3.481 0.0034 528 170.33

Angular gyrus and superior temporal sulcus Right 49 -53 34 5.231 0.0001 1064 148.19

All coordinates are in Talairach space and represent the maximum surface node value for each of the cluster (minimum cluster size: 437 contiguous

surface nodes, each significant at p < .05).

doi:10.1371/journal.pone.0149375.t002
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tones. Clusters of activation within this region have also been reported during musical
sequence processing [69, 70] and rule learning in an artificial language [33, 71]. Taken together,
these findings are consistent with the notion that the left ventral IFG might provide a neural
basis for processing statistical information based on statistical cues (i.e. TP) present in auditory
signals. One possibility is that in the current study, the left ventral IFG relied on TP for the con-
struction of predictions regarding upcoming information in speech sequences.

In addition, we also found a positive correlation between CT and sensitivity to statistical
structure in the left MFG, a region similar to the one reported in Tobia et al., [18] during the
active monitoring of order change in tone sequences. Interestingly, this region was not
recruited during the passive detection of order changes in tone sequences [18] or during the
passive detection of statistical structure in speech and non-speech sounds [23]. This suggests
that attentional demands modulate the network of brain regions involved in the detection of
statistical structure. The correlation between CT and sensitivity to statistical structure within
the left MFG supports the involvement of this region in the explicit evaluation of statistical
structure, but not during passive processing. We also observed a positive correlation in the
bilateral STS, a region that has been associated with the ongoing computation of transitional
probabilities [21, 29]. McNealy et al., [21, 29] have linked the superior temporal plane (includ-
ing STS) to the processing of statistics. In sum, in the current work, which focused on the struc-
tural correlates associated with the explicit assessment of statistical structure, our results
identified a subset of regions that are typically associated with the processing of statistical infor-
mation using fMRI.

Behavior/CT correlations in areas implicated in attentional and memory
processes
Interestingly, our results reveal correlations between CT and brain areas traditionally impli-
cated in working memory (e.g., bilateral ventral SMG, SFS) [72, 73] and attentional processes
(vAI) [74–76]. For instance, prior work has documented the involvement of the SMG during
the manipulation of sequences of phonemes/syllables in working memory [77, 78] and during
the learning of an artificial language [21, 29]. In experiments investigating the automatic pro-
cessing of auditory syllable sequences with different levels of statistical structure, and in experi-
ments investigating non-verbal auditory sequences, SMG activation is not typically
documented [18, 22, 23], suggesting that the anterior SMG is involved in maintaining phono-
logical information in memory [79]. This hypothesis is supported by the present finding of a
relationship between CT and the processing of sequences of syllables, as the processing of sylla-
ble sequences requires the updating of phonological information in working memory as the
sequence unfolds over time. Similarly, we also found a significant correlation in the bilateral
SFS. This might suggest a close relationship between working memory and the ability to detect
changes in statistical structure, given that the bilateral SFS/G is engaged in working memory
[80, 81].

In addition, within the left vAI, thicker CT was associated with greater sensitivity to statisti-
cal structure. While left vAI is not usually associated with the processing of statistical informa-
tion, it is a region that is active across a variety of tasks encompassing a broad range of
processing domains [82, 83], including speech [84], interoceptive awareness [85], and emotions
[86], and it has been associated with the ventral attention network in studies examining
responses to oddball stimuli [87]. It has been suggested that the anterior insula plays a role in
domain-general attention control [76, 88]. Thus, one possibility is that our finding for this
region reflects inter-individual attentional differences whereby individuals with thicker CT
would be better at focusing their attention and, as a result, would be better at detecting
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differences in statistical structure among the three levels of statistical structure. This view is
congruent with the notion that the ability to detect changes in statistical structure relies, at least
partly, on other cognitive functions such as attention and memory [2, 16, 49]. Future studies
are needed to clarify the relationship between attention, memory and statistical information
processing.

Absence of Behavior/CT correlations in areas sensitive to statistics
during passive listening
We note that we did not find correlations between CT and sensitivity to statistical structure
within the functional ROIs based on our previous work, which identified regions in which
brain activation tracked statistical structure during passive listening. Some of these regions (the
right medial transverse temporal gyrus and the bilateral medial transverse temporal sulci) only
tracked statistics only tracked statistical structure in non-speech sounds, while our dependent
measure here was derived from sensitivity to speech sounds (see section Behavioral tasks and
responses for the rationale). However, in our previous work, other regions of the primary audi-
tory cortex, the bilateral lateral transverse temporal gyrus and sulcus and the medial transverse
temporal gyrus, tracked statistical structure regardless of auditory category. Yet, in the present
study, we found no correlation between cortical thickness and sensitivity to statistical structure
within these regions. This lack of correspondence between functional and morphometric data
may reflect the fact that the crux of computations of TP takes place on higher cortical areas of
the processing hierarchy. For instance, one possibility is that A1 receives afferent inputs after
regularity has been coded by higher-level regions (e.g. SMG, STS). The predictions generated
in these higher-level regions would then be evaluated against inputs in A1. Hence, while A1
would not necessarily code for statistical structure, the predictions generated by these higher-
level regions would still have an impact on the activity in A1 (top-down effect). This is congru-
ent with a recent study by Tobia et al., [28] in which the authors found afferent connectivity
from the superior temporal sulcus to the left A1 during the perception of sequences of tones.

Another possible explanation is that regions involved in the processing of statistical infor-
mation as identified using fMRI do not necessarily correlate with structural differences within
these regions. This is consistent with several studies in the literature investigating brain struc-
ture-function relationships. For instance, Hoeft et al., [48], used fMRI to compare brain activa-
tion associated with visual rhyme judgments in dyslexic adolescents, age-matched and reading-
matched controls. In the dyslexic adolescents, hypoactivations were found within the left infe-
rior parietal lobule (IPL) and the bilateral fusiform/lingual gyri as compared to controls. Inter-
estingly, the hypoactivation in left IPL was the only one that was accompanied by significant
differences in grey matter volume between dyslexic adolescents and age-matched controls (i.e.
smaller grey matter volume in dyslexic adolescents). All other regions of hypoactivations (i.e.
bilateral fusiform) had no relation to brain structure. Similarly, Nyberg et al., [89] reported that
while many cortical regions exhibited less activation as a function of age during a semantic cat-
egorization task, this pattern observed could only be explained in terms of grey matter volume
differences in one of these regions (i.e. right mid-frontal cortex). For the other regions, no rela-
tionship between brain structure and function was found. Relatedly, Kadosh et al., [90] found
variations in brain activation as a function of age during a facial expression detection task in
the left fusiform gyrus and the right inferior temporal gyrus. These variations in brain activa-
tion correlated with white matter volume (WMV) differences in the left fusiform gyrus and the
right inferior temporal gyrus as well as grey matter volume (GMV) volume differences in the
left fusiform gyrus. A positive correlation between brain activation and age was also found dur-
ing a gaze detection task within the left supramarginal gyrus. This correlation was not related
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to differences in grey or white matter volume in that region. In addition, Tremblay et al., [47]
demonstrated that most age differences in task-related BOLD signal magnitude during speech
tasks are not related to neurostructural changes. Taken together, these results suggest that func-
tional activation is not systematically related to brain structure, or to specific morphometric
measures (e.g. CT, GMV, WMV).

Alternatively, it is also possible that the neural mechanisms associated with passive listening
to statistical regularities (as assessed in our previous fMRI study) are distinct, at least in part,
from the mechanisms underlying active assessment of statistical regularity (as assessed in the
present study). Therefore, while in both studies the same auditory sequences were used, the
nature of the tasks differed (active vs. passive). One possibility is that the brain regions identi-
fied here are ones that utilize attention and memory to process speech sounds; these regions
might not show differential responses to different levels of regularity (as more attentive individ-
uals may do so independent of regularity), but their structure could co-vary with one’s ability
to discriminate levels of regularity. Another possibility is that the regions identified in the func-
tional study are involved in performing low-level ‘chunking’ operations that are linked to the
transition probability structure during online listening, but do not strongly contribute to the
explicit evaluation of overall input disorder.

Overall, our results support the idea that the ability to detect differences in statistical struc-
ture in auditory sequences relies on several different perceptual, cognitive and executive mech-
anisms including attention and memory, in addition to mechanisms more directly related to
statistical structure processing. This idea is supported by the observation that most of the
regions in which CT correlated with sensitivity to statistical structure have been described by
Chen et al. [91] as being part of three different modular CT correlations networks (among the
six modules that were proposed) (see [91, 92], for a recent review). These studies demonstrate
that CT organization follows a modular network structure matching specific functions such as
auditory and language processing. In the current study, we observed significant correlations
within regions involved in higher-level cognitive functions (executive/strategic; Module 1), sen-
sorimotor/spatial functions (Module 2) and auditory processing/language functions (Module
5) [91]. While sensitivity to statistical structure appears to rely, to a large extent, on domain-
general neural resources, the results of the current study cannot distinguish between models
that seek to differentiate the numerous mechanisms underlying sensitivity to statistical struc-
ture. As such, our results are congruent both with models that posit that sensitivity to structure
is the end result of computing transition probabilities [15] as well as with models that propose
that sensitivity to statistical structure is a by-product of “chunking”mechanisms that rely on
memory, attention and associative learning [16].

Conclusion
We detected inter-individual differences in sensitivity to statistical structure in sub-lexical
speech sequences using a behavioral procedure, and at the whole-brain level using vertex mor-
phometry. In addition to showing, for the first time, that sensitivity to statistical structure can
be investigated using surface-based brain morphometry, we also show that the neural system
identified are dominantly cortical and include both specialized and domain-general areas. This
suggests that domain-general regions not specific to auditory or statistical processing support
the ability to detect statistical structure, a mechanism that may play an important part in our
day-to-day life, allowing us to form expectations about future events and using this information
to interact more efficiently with our complex environments. More studies are needed to repli-
cate our findings using larger sample size, and to gain further insights into the complex relation-
ship between brain structure, brain functions, and the processing of statistical information.
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