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Abstract 

The introduction of hierarchy into structures has been credited with changing mechanical properties. 

In this study, periodically hierarchical honeycomb with irregular sub-structure cells has been 

designed based on the Voronoi tessellation algorithm. Numerical investigation has been performed 

to determine the influence of structural hierarchy and irregularity on the in-plane elastic properties. 

Irregular hierarchical honeycombs can be up to 3 times stiffer than regular hexagonal honeycombs 

on an equal density basis. Both the stiffness and Poisson’s ratio of the hierarchical honeycomb are 

insensitive to the degree of regularity, and depend on the cell-wall thickness-to-length ratio of the 

super-structure. Increasing the relative lengths of the super- and sub-structures results in the 

increment of Young’s modulus, whereas Poisson’s ratio almost remains constant varying from 1.0 

to 0.7. 

 

Introduction 

Due to their low weight and specific mechanical properties in the aspects of stiffness, strength and 

toughness, etc., the regular hexagonal honeycombs have many potential multifunctional applications 

in the fields of mechanical engineering, aerospace engineering, civil engineering and so on. They 

are used as the core of the sandwich panels and generally there are two kinds of topologies: one is 

the in-plane sandwich panels with the honeycomb columns parallel to the top and bottom surface 

panels and the other one is the out-of-plane sandwich panels with the honeycomb columns 

perpendicular to the top and bottom surface panels.  

With respect to applications in the form of in-plane sandwich panels, the paper honeycombs were 

used to fabricate the structural and cushioning components [1]; the metal honeycombs were also 

good candidates both for the heat sink for electronic devices [2,3] and for the protective layer to 

protect structures from the high intensity dynamic loads by mitigating blast waves [4]; moreover, the 

pressure adaptive honeycomb can achieve a novel concept for smart morphing aircraft structures 

[5,6]. Regarding to the application of the out-of-plane sandwich panels, the superalloy honeycomb 

sandwich thermal protection systems attained good heat shielding characteristics and 

thermostructural performances for hypersonic flight vehicles [7]; the metal honeycombs had the 

abilities to tailor impact resistance for racing cars [8], low floor bus [9], train application [10], etc.  

To explore the multifunctional properties of the regular hexagonal honeycombs more efficiently, 

mimicking the hierarchical structures widely existing in Nature and man-made materials, many 

different kinds of hierarchical honeycombs are proposed [11–29]. Taylor et al. [30] proposed the 



functionally graded hierarchical honeycombs and showed that the increase of the elastic modulus 

could reach up to 75%. The research group of Vaziri proposed the self-similar isotropic [31] and 

anisotropic [32] hierarchical honeycombs by replacing each three-edge vertex of a base hexagonal 

network with a similar but smaller hexagon of the same orientation. The isotropic hierarchical 

honeycombs of first and second order can be up to 2.0 and 3.5 times stiffer [31] and the anisotropic 

hierarchical honeycombs of first to fourth order can be 2.0–8.0 times stiffer and at the same time up 

to 2.0 times stronger than their corresponding regular honeycombs at the same mass [32]. To greatly 

(more than 10 times) increase the in-plane stiffness of the hexagonal honeycombs at a wide density 

range, the isotropic [27,33] and anisotropic [34] multifunctional hierarchical honeycombs (MHH) are 

constructed by replacing the cell wall of the original regular hexagonal honeycombs (ORHH) with 

the equal-mass isotropic sub-structures, including triangular, Kagome or chiral honeycombs. By 

replacing the cell wall of the ORHH with sandwiched rectangle struts core and with sandwiched 

triangular struts core, Xu et al. [35] proposed the second-order hierarchical hexagonal lattice 

structures and showed that the structure hierarchy is favorable for the periodic lattice structure to 

filtering or guiding wave at some circumstances to meet the demands of engineering.  

Sub-structures of the above-mentioned hierarchical honeycombs are mainly regular honeycomb 

lattice, and relatively little attention has been paid for the stochastic Voronoi honeycombs. Therefore, 

in this letter, the hierarchical honeycombs with stochastic Voronoi honeycomb sub-structures are 

proposed by replacing the solid cell wall of the ORHH with the equal mass. Effective elastic modulus 

and Poisson’s ratio of this new kind of hierarchical honeycombs are numerically studied. Except the 

improvement on the in-plane stiffness, the stochastic Voronoi honeycomb sub-structures could also 

have better structural-acoustic properties than the regular honeycomb ones [36]. 

 

Geometric description 

As already mentioned above, hierarchical honeycombs with stochastic Voronoi honeycomb sub-

structures were constructed by replacing the solid cell walls of the ORHH with stochastic Voronoi 

honeycomb sub-structures. The representative unit cells are shown in fig. 1. Moreover, the 

hierarchical honeycomb is fully periodic. Several parameters that describe the nature of hierarchy in 

honeycombs are introduced in the following sections.  

The irregular Voronoi honeycomb mimics the nucleation and growth of bubbles under these two 

assumptions: a) the bubbles all nucleate simultaneously in a determinate region of space; b) they 

grow at the same linear rate in all directions [37]. Various methods have been reported for the 

generation of nucleation points in the literature. In this work, a method proposed by Zhu et al. [38] 

was utilized to construct random irregular Voronoi honeycombs. The nucleation points were 

randomly generated one by one, and ensured the distance between any two points to be larger than 

a minimum δ. The degree of the cell regularity Λ is thus defined as 

 

where d0 = 2A0 N√3 is the distance between two neighbouring cells in a perfect regular hexagonal 

honeycomb with the same number of complete cells; A0 is the control area; N is the total number of 

complete cells. Λ → 1 implies a perfect regular hexagonal honeycomb, whereas Λ → 0 represents 

a completely random Voronoi honeycomb as shown in fig. 1. The relative density, ¯ρ, is defined as 

the ratio of the macroscopic density of cellular structure to the density of cell wall material. With the 

assumption that all cell walls have the same thickness t, the relative density is determined in a 

normalized form as 



 

where li are the cell wall lengths, N is the total number of cell wall. The cell-wall thickness-to-length 

ratio of the super-structure, α, is defined as its thickness tsup divided by its length lsup (subscripts 

“sup” and “sub” represent super- and sub-structure, respectively) as shown in fig. 1: 

 

The ratio of the lengths in the super- and sub-structure is the hierarchical length ratio λ and is defined 

as 

 

where  lsub is the average wall length of the sub-structure. It can effectively increase the number 

of sub-cells spanning the length of the super-structure via changing the parameter λ. 

 

Numerical model 

The effect of irregularity on in-plane elastic properties of the periodic hierarchical honeycomb was 

determined using the software ABAQUS/standard. Two-dimensional finite-element models were 

generated for each representative unit cell using 2D Timoshenko beam elements (B21). The beam 

thickness can be determined by eq. (2) for the designated values. The material model was linear 

elastic and small strains with a Poisson’s ratio 0.3. Periodic boundary conditions were imposed along 

the opposite boundary of the representative unit cell [39]. Thus, the translation displacements u and 

rotation ω of counterpart nodes of the boundaries are constrained to each other as follows: 

 

where i, j = 1, 2 denote degrees of freedom in the twodimension problem and p, q refer to the nodes 

on opposite sides of the unit cell; εij is the average macroscopic strain; x is the coordinate of the 

node. 

 

Results and discussion 

The effect of regularity.  

In this section the influence of regularity on the elastic properties of periodic hierarchical honeycombs 

is presented. Analyses were performed on unit cells over a wide range of regularities as shown in 

fig. 2, where the Young moduli of the hierarchical honeycombs were normalized by that of a regular 

hexagonal honeycomb at the same mass. It is shown in fig. 2 that cell irregularity does not appear 

to have a signifi- cant effect on the Young moduli, leading only to a slightly increment as Λ → 0, 

whereas the Young moduli of the random Voronoi honeycomb without hierarchy increase 

significantly as Λ → 0 [38]. However, compared with their regular counterpart, the introduction of the 

irregular substructure resulted in an increase in stiffness at least by 150%. In contrast, the Poisson 

ratios almost remain constant regardless of the cell regularity. 

The effect of relative density.  

Figure 3 presents the non-dimensional Young moduli and the Poisson ratios as functions of relative 

density with the fixed parameters Λ=0.1, α = 0.35 and λ = 22. Both the normalized Young moduli 



and Poisson’s ratios decrease gradually with increasing relative density ¯ρ. The present FE results 

for hierarchical structures are similar to the estimate by Zhu et al. [38] for the random Voronoi 

honeycomb without hierarchy. Compared to the cell regularity, the relative density effect is more 

pronounced regardless of hierarchy. 

The effect of thickness-to-length ratio.  

The effects of the cell-wall thickness-to-length ratio α of the hierarchical honeycombs on the non-

dimensional effective Young moduli and Poisson’s ratio are examined in this section. The 

hierarchical honeycombs with stochastic Voronoi substructures degenerate to be a random Voronoi 

honeycomb gradually when α approaches the upper bound √3 [33]. Therefore, we maintained Λ = 

0.1 ̄ ρ = 0.35 and λ = 22 with α changing from 0.05 to 1.2. It is shown in fig. 4 that the Young modulus 

is very sensitive to α. The normalized Young moduli increase first, and then decrease with the 

increase of α. There exists a maximum Young modulus which could be 300% larger than that of a 

first-order regular hexagonal honeycomb. Therefore, the optimal effective Young modulus may exist 

for each unique Voronoi tessellation. The Poisson ratio decreases with increasing α until the lowest 

value 0.7 (α = 0.6), and then this trend is reversed as α > 1. 

The effect of Hierarchical length ratio.  

To investigate the effects of hierarchical length ratio λ on the elastic properties, we considered the 

fixed constant parameters Λ=0.5, ρ¯ = 0.01 and α = 0.4 as a case study. The non-dimensional Young 

moduli and the Poisson ratio are plotted in fig. 5. A significant increment in the average effective 

Young moduli can be found when λ increases from 12.2 to 34.6, whereas no obvious variation in the 

Poisson’s ratio can be identified. It is found that the smaller the sub-cell size is, the larger the stiffness 

can be.  

 

Summary 

In the letter, we proposed a new hierarchical honeycomb with irregular sub-structure and discussed 

the possibility of designing a new class of hierarchical honeycomb with the tailorable properties. The 

results showed that the effective Young modulus of the hierarchical honeycomb could be 300 percent 

larger than these of first-order regular hexagonal honeycomb at the same mass. In contrast, there 

was no obvious indication that the effective Young modulus and the Poisson ratio were affected 

significantly by the irregularities. Both the Young modulus and the Poisson ratio decreased gradually 

with increasing the relative density. In addition, the cellwall thickness-to-length ratio of the super-

structure had noticeable effect on the Young modulus and the Poisson ratio. Although the effective 

Young modulus increased as the hierarchical length ratio increased, the Poisson ratio was relatively 

insensitive to the hierarchical length ratio. Based on this work, it is suggested to further optimize the 

hierarchical structure in terms of both the cell wall misalignment and the sub-structures (substituting 

the hexagon with the triangular or Kagome as proposed in ref. [33]). 
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Fig. 1: The cell geometry and parameters for a conventional hexagonal honeycomb unit cell (a); 

the periodic unit cell of hierarchical honeycomb with different degree of regularity: (b) Λ → 0; (c) Λ 

= 0.4; (d) Λ = 0.7 



 

Fig. 2: (Colour on-line) Effect of cell regularity on the elastic properties. 

 

Fig. 3: (Colour on-line) Effect of relative density on the elastic properties. 

 

Fig. 4: (Colour on-line) Effect of thickness-to-length ratio on the elastic properties. 



 

Fig. 5: (Colour on-line) Effect of hierarchical length ratio on the elastic properties. 

 


