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Abstract— The level of participation in social interactions has 

been shown to have an impact on various health outcomes, while 

it also reflects the overall wellbeing status. In health sciences the 

standard practice for measuring the amount of social activity 

relies on periodical self-reports that suffer from memory 

dependence, recall bias and the current mood. In this regard, the 

use of sensor-based detection of social interactions has the 

potential to overcome the limitations of self-reporting methods 

that have been used for decades in health related sciences. 

However, the current systems have mainly relied on external 

infrastructures, which are confined within specific location or on 

specialized devices typically not-available off the shelf. On the 

other hand, mobile phone based solutions are often limited in 

accuracy or in capturing social interactions that occur on small 

time and spatial scales. The work presented in this paper relies 

on widely available mobile sensing technologies, namely smart 

phones utilized for recognizing spatial settings between subjects 

and the accelerometer used for speech activity identification. We 

evaluate the two sensing modalities both separately and in fusion, 

demonstrating high accuracy in detecting social interactions on 

small spatio-temporal scale. 

Keywords-social interaction detection; nonverbal cues; mobile 

phone sensing; accelerometers; speech activity detection; wearable 

computing. 

I.  INTRODUCTION 

The association between social interactions and health of 
individuals has been established both on theoretical basis and 
through empirical evidences [1]. Subjects with a low quantity 
of social relationships are typically less healthy, 
psychologically and physically, while manifesting higher risks 
for a wide range of potential implications – from tuberculosis 
and psychiatric disorders to accidents and even mortality [1]. In 
contrast, individuals who maintain a certain level of social 
engagements are shown to be more successful in coping with 
stress, and in case of the elderly, they are highly functional and 
independent [2]. Several studies have demonstrated that the 
amount of social activity is negatively correlated with 
depressive behavior while socialization can improve depressive 
symptoms [3] [4]. In addition to depression, participation in 
social interactions was analyzed in bipolar disorder patients, for 
identifying the occurrence of both manic and depressive 
episodes. Therefore, monitoring social interaction constitutes 
an important instrument for coaching and diagnosis of various 
disorders, while for healthy subjects the level of social activity 
represents a wellbeing index that can be used to encourage a 
healthier life style [5] [2].   

The standard methods for monitoring social interactions in 
the health sciences rely on self-reports and recall surveys that 
suffer from several limitations: 1) difficulties in recalling 
activities that occurred in the past, 2) self-reports are subjective 
and may be affected by the current mood, and 3) a high effort 

for continuous long-term monitoring [5]. In addition, it was 
demonstrated that self-reports correspond poorly to the 
communication behavior recorded by independent observers 
[6], while engaging human observers to record 
communications in groups is inefficient particularly if the size 
of the group is large [7]. In this work, we refer to social 
interaction as co-located, face-to-face interaction, excluding 
electronically mediated interactions such as chat, social 
network activity and other kinds of electronic communication.  

The use of automated sensing techniques for recognizing 
face-to-face social interactions has been explored in the past 
decade, aiming to overcome the limitations of self-reporting 
methods. Recognizing the occurrence of social interaction in an 
automatic and mobile way is typically based on sensing 
proximity of subjects and/or on detecting speech activity. One 
of a few solutions which detects social encounters by sensing 
both spatial settings and the speech activity status is the 
Sociometric Badge [7], a pendant-like hardware worn at chest-
level. In the healthcare setting, Sociometric Badge was applied 
to monitor nurses in the Boston hospital and to measure their 
group performance in order to improve the management of 
healthcare staff. However, mobile solutions for gathering 
interaction data typically rely either on proximity or on audio 
analysis. Sociopatterns sensing platform [8], for instance, 
detects social interactions by examining spatial settings among 
subjects using a wearable active Radio Frequency 
Identification (RFID) tags. The device was applied in the 
healthcare setting to provide a picture of the contact patterns 
between patients, healthcare staff, visitors and tutors [9]. A 
frequently applied approach for inferring social activity 
through the detection of proximity relies on the use of 
Bluetooth embedded in a widely adopted device – the mobile 
phone [10], [11]. Bluetooth scans indicate the presence of 
nearby devices in a radius of 10m, which does not provide 
sufficient information to detect an ongoing social interaction. 
Such approaches rely on statistical modeling of human 
behavior at large scale in order to quantify social dynamics, but 
failing to detect the social encounters that happen on a small 
spatio-temporal scale. The use of Wi-Fi is another approach to 
detect interpersonal distances and to infer social interactions 
between subjects using a mobile phone. In this regard, 
Microsoft’s Virtual Compass [12] is the mobile-phone based 
system which, to the best of our knowledge, achieves the 
highest accuracy in sensing interpersonal distances by using 
transmitting/receiving mechanisms of radio waves. Through 
the analysis of both Wi-Fi and Bluetooth signal strengths, 
Virtual Compass estimates the position of subjects in 2D plane 
with the median accuracy of 0.9m for two nodes and of 1.9m 
for positioning of nine nodes. However, the lack of subjects' 
orientation information and the lack of the knowledge of 
speech activity might not be sufficient for modeling social 
interaction occurrence (for example, the case of two subjects 



sitting across from each other in the office 
not engaging in an interaction). On the other hand, 
Electronically Activated Recorder (EAR) detects 
situations through identifying talk, laugher and arguments 
among individuals in sampled ambient sound
healthcare applications, EAR was used to 
symptoms in rheumatoid arthritis patients
depressive behavior in women coping with
recent approaches utilized a microphone embedded in mobile 
phones to detect the amount of social activity 
modeling and promoting the wellbeing of individuals
al. proposed the BeWell platform [2], which 
level of detected ambient noise with social interactions 
which was used in the study as a wellbeing index in addition to 
physical activity and sleep quality. Also aiming to improve 
wellbeing, Rabbi et al. [5] proposed a more
for identifying conversations among subjects 
analysis of voice segments acquired from
phone microphones. The limitations of these approaches 
include sensitivity to false positives since nearby conversations 
can be unintentionally picked up. M
microphone typically raises privacy concerns, even with 
methods that do not require continuous voice recording
affecting natural behavior of subjects. 
number of situations (for example, in the case of
or often when monitoring patients) audio data cannot be 
obtained due to legal or ethical issues [15]. 

In this work, we aim to detect face
interactions on small spatio-temporal scale 
shelf and widely available sensing technologies
recognizes both speech activity and spatial settings among 
subjects, while it does not capture privacy
main contributions of this paper are the following:

1. Detection of spatial setting, 
parameters of interpersonal distances and relative body 
orientations,, using mobile phones 

2. Recognition of speech activity using off
accelerometers; 

3. Evaluation of the two modalities’ contribution to 
inference of social interactions.  

These two modalities provide complementary information 
about social interactions constituting a multi
sensing system. Evaluation of each modality is described in 
Section II and III respectively, while the performance of the 
fusion of both modalities is presented in Section 
discuss the applicability of the proposed 
related domain and we draw the main conclusions. 

II. MEASURING INTERPERSONAL SPATIAL 

A. Estimating Interpersonal distances 

Similarly to indoor positioning systems that use signal 
fingerprinting, our method for distance estimation is based on 
analyzing RSSI values between a phone that 
access point (a feature called “Portable Hot Spot” in Android 
phones and “Personal Hot Spot” in iPhone)
phone. However, unlike time-consuming measurements 
typically required for fingerprinting methods, we decrease the 
user effort by fast-calibrating the model based on measurement 

each other in the office or in the bus, and 
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These two modalities provide complementary information 
about social interactions constituting a multi-modal mobile 
sensing system. Evaluation of each modality is described in 

respectively, while the performance of the 
fusion of both modalities is presented in Section IV. Lastly, we 

 approach in health-
related domain and we draw the main conclusions.  

PATIAL PARAMETERS 

to indoor positioning systems that use signal 
fingerprinting, our method for distance estimation is based on 

that acts as a Wi-Fi 
called “Portable Hot Spot” in Android 

phones and “Personal Hot Spot” in iPhone) and a client Wi-Fi 
consuming measurements 

typically required for fingerprinting methods, we decrease the 
ased on measurement 

of a few RSSI values on a number of distances, coupled with a 
propagation model. Before delving into the fast calibration 
approach we analyze the potential of Wi
estimation between two smart phones.

As a first step in evaluating the feasibility of using mobile 
phone sensing to estimate distances between two units, 
analyzed the RSSI dependence on distance for various different 
transmitting power levels, from the minimal of 
to 32dBm (1.6 W) which is the
measurements were carried out in the same environment using 
HTC Desire smart phone, while recording 300 samples with 
the sampling rate of 1Hz for each of the distances following 
grid of 0.5m. The transmitting power of 0dBm provi
smoothest and the most monotone characteristics thus proving 
to be the best fit for short distance estimation. 
power level we analyzed RSSI patterns
environments (indoor areas ranging from 30m
recorded 300 samples every 0.5m up to the distance of 8m. The 
cumulative RSSI patterns are presented in 
small circles represent outliers, thick horizontal l
correspond to median values, bottom and top of each box 
corresponds to the first and the third quartiles of distribution 
and the whiskers extend up to 1.5 times the interquartile range 
(IQR). It can be seen that the RSSI shows relatively monotone 
characteristics across different environments, demonstrating 
instability and fluctuations of the Wi
environmental factors [16] requiring the use of pre
and classification algorithms for distance estimation.

Figure 1.  RSSI dependence on the distance

To acquire the training set we used two phones, one in 
transmitting mode (HotSpot) the other in receiving (client) 
mode, to carry out Wi-Fi signal measurements. We used 
different distances following the same grid of 0.5m thus 
collecting RSSI training values. 
by grouping every 10 consecutive samples (
10 seconds) and calculated signal characteristics for each 
segment. This mitigated the effects
in a short time frame [17]
according to its mean, we selected the mean 
candidate parameter to represent the RSSI pattern. It turned out 
that, among other tested signal characteristics (such as standard 
deviation, minimum and median)
and maximal value was proven to provide the highest ac
in distance estimation. 

of a few RSSI values on a number of distances, coupled with a 
propagation model. Before delving into the fast calibration 
approach we analyze the potential of Wi-Fi RSSI for distance 
estimation between two smart phones. 

in evaluating the feasibility of using mobile 
phone sensing to estimate distances between two units, we 
analyzed the RSSI dependence on distance for various different 

, from the minimal of  0dBm (1mW)  
which is the maximal power level. The 

measurements were carried out in the same environment using 
HTC Desire smart phone, while recording 300 samples with 
the sampling rate of 1Hz for each of the distances following a 
grid of 0.5m. The transmitting power of 0dBm provided the 
smoothest and the most monotone characteristics thus proving 
to be the best fit for short distance estimation. With the 0dBm 

we analyzed RSSI patterns in seven different 
environments (indoor areas ranging from 30m² to 90m²) and 

300 samples every 0.5m up to the distance of 8m. The 
SI patterns are presented in Figure 1. where 

small circles represent outliers, thick horizontal lines 
correspond to median values, bottom and top of each box 
corresponds to the first and the third quartiles of distribution 
and the whiskers extend up to 1.5 times the interquartile range 
(IQR). It can be seen that the RSSI shows relatively monotone 

acteristics across different environments, demonstrating the 
instability and fluctuations of the Wi-Fi signal, typically due to 

requiring the use of pre-processing 
algorithms for distance estimation. 

 

RSSI dependence on the distance 

To acquire the training set we used two phones, one in 
transmitting mode (HotSpot) the other in receiving (client) 

Fi signal measurements. We used 
ances following the same grid of 0.5m thus 

collecting RSSI training values. RSSI values were segmented 
0 consecutive samples (corresponding to 

0 seconds) and calculated signal characteristics for each 
the effects of Wi-Fi signal instability 
[17]. Since RSSI distribution varies 

according to its mean, we selected the mean value as a 
candidate parameter to represent the RSSI pattern. It turned out 

among other tested signal characteristics (such as standard 
deviation, minimum and median), the combination of the mean 
and maximal value was proven to provide the highest accuracy 



Overall, six smart phones (with Android operating system) 
were used including three different models, namely HTC 
Desire, Samsung Nexus S and HTC Nexus One

1
 that used a 

modified firmware to allow adjustment of transmitting power. 
Different phone units were distinguished by their MAC 
addresses. Measurements were taken in three offices with 
dimensions of 12x8 m, 6x5 m and 6x3 m, a balcony of 12x2.5 m 
and a meeting room of 10x8 m. Figure 2. shows the system’s 
accuracy when using the same phone model acting as a 
receiver in both training and test phase. We tested Naïve Bayes 
classifier with Kernel Density Estimation (KDE) and Gaussian 
Process (GP) regression. The median estimation error (50

th
 

percentile) of approximately 0.5m was achieved using both 
machine learning techniques. Naive Bayes with KDE showed a 
slightly better overall performance, providing distance 
estimation with a 50% percentile error of 0.5m and 95

th
 

percentile error of around 2m. 

 

Figure 2.  Distance estimation accuracy (same phone mode) 

However, when different phone models were used for 
training and test phase, the system’s accuracy significantly 
degraded to 1.8m (50

th
 percentile). This is due to the fact that 

RSSI patterns, among other factors, highly depend on the 
receiver characteristics [17] which are likely to be different 
across different phone models. In order to tackle this problem, 
while avoiding the repetition of RSSI measurements, we 
calibrated only one point by measuring RSSI for a couple of 
minutes on a fixed distance of 1 m. Once the RSSI is captured, 
the rest of the training set is estimated by applying the 
following propagation model [18]: 

][])[log(10])[(])[(
0

dBmXdBm
d

d
ndBmdPdBmdP o −−=  (1) 

where n is the path loss exponent, P(d0) is the signal power at 
the reference distance d0 from the transmitter phone (in our 
case 1m) and d is the distance in which RSSI is estimated by 
applying the model. X is a component that reflects the sum of 
losses induced by each wall between the transmitter and 
receiver. We have found that the best suited value for the 

                                                           
1
  In the experiments that will be presented in Section V we tested also three 

additional models, Samsung Galaxy S, HTC Desire S and HTC ChaCha that 

provided similar accuracy. 

coefficient n is 1.5, while for X is zero (there are no walls or 
other obstacles between points).  

 
Figure 3.  Distance estimation accuracy using training set 

generated by applying propagation model 

Figure 3. presents a cumulative distribution function of 
distance estimation errors, showing again 50

th
 percentile error 

of 0.5m and 95
th
 percentile error between 2m and 2.5m (for 

each of the phone model that we tested applying cross-
validation method across different environments). Gaussian 
processes regression achieved also median error of 0.5m while 
95

th
 percentile of 2.5m but for brevity reasons we presented 

only classification method (Bayesian with KDE). Therefore, by 
investing a minimal effort in performing the calibration for a 
couple of minutes at a single distance, we demonstrated that it 
is possible to achieve comparable performance to acquiring a 
full training set (Figure 2. and Figure 3. ). 

B. Relative Body Orientation 

Relative body orientation refers to the angle between the 
orientations of torsos [19] considering two subjects that are 
facing each other. To recognize the relative body orientation of 
subjects carrying mobile phones, we use the embedded 
orientation sensor that provides the following values (expressed 
in degrees): Azimuth – the angle between the magnetic north 
direction and the y-axis, around the z-axis (0° to 359°); Pitch – 
the rotation around x-axis (-180° to 180°) with positive values 
when the z-axis moves towards the y-axis; and Roll – the 
rotation around y-axis (-90° to 90°) with positive values when 
the x-axis moves towards the z-axis. Knowing the relative 
position between the body and the phone orientation is a 
fundamental condition in order to recognize the individual’s 
body orientation and the relative body orientation between 
subjects. Once this relationship is determined, calculating the 
relative body orientation would require relative processing of 
azimuth, pitch and roll values. In our experiments, we were 
always aware of the exact position where participants carried 
the phone. However, in the recent study, Shi et al. [20]  
demonstrated that it is possible to automatically detect on-body 
position of the mobile phone by utilizing the fusion of 
accelerometer and gyroscope. 

It will be shown that spatial setting detection can be used as 
an indicator of an ongoing social interaction. However, in order 
to ascertain whether or not two people are actually having a 
conversation it requires also knowledge about speech activity, 
which we describe in the next section. 
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III. ACCELEROMETER TO DETECT SPEECH 

Vocal chords (also known as vocal folds) are 
within larynx that vibrate when air from lungs passes through 
thus producing voice [21]. The fundamental frequenc
chords vibrations depends on a variety of factors including age, 
gender and individual differences [22]. After the age of 20 the 
predicted fundamental frequency remains approximately 
100Hz for male and 200Hz for female adults 
approach to recognizing verbal communications is based on 
detecting vibrations generated by phonation using off
accelerometers. Since mounting sensors on the neck (close to 
the larynx area) may be obtrusive, we opted for the chest as a 
suitable body position, which is already being used for placing 
various sensors including cardio, respiratory and kinematic 
sensors. Sundeberg [23] identified a number of factors that 
contribute to the chest vibrations during phonation and 
examined the distribution of displacement amplitude over the 
chest wall surface, demonstrating that the vibrat
detected all over the chest with the highest displacement 
amplitude located in the central part of the sternum, which is 
the area that we chose to place the sensor on (
position is also convenient for attaching a sensor with an elastic 
band (similarly to attaching respiratory or cardio sensors) 
minimizing the interference with typical daily routines.   

Figure 4.  Area on the chest for placing the accelerometer

accelerometer on the elastic band (right)

Specialized accelerometers for analyzing vibrations have 
found their applications in a number of fields such as sensing 
oscillations in bridges, unbalance in rotating machines, flu
flow or acoustic energy input. Using these kinds of sensitive 
accelerometers to detect the amplitudes of the chest vibrations 
would provide highly accurate detection of phonation. 
However, our goal was to detect chest wall vibrations (and 
hence speech activity) using only off-the-shelf accelerometers. 
In addition, accelerometers are used in a wide variety of  
applications (such as physical activity monitoring, for 
example), which could benefit from including speech 
recognition, thus providing new insight
comprehensive description of daily activities without additional 
sensing equipment. Olguin and Pentland [24]
it is possible to recognize some of the most common activities 
using a single accelerometer attached to the chest. Furthermore,
the approach of using accelerometer for detecting speech does 
not include recording of sensitive data (such as voice)
addressing the aspect of privacy concerns.  

A. Our Approach 

During bare foot walking 99% of the a
below 15 Hz, during running it is below 18 Hz while most of 
other daily movements occur between 0.3 
Therefore, physical activities are not expected to overlap with 
vocal chords vibrations in the frequency domain. Howev

PEECH ACTIVITY 
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detected all over the chest with the highest displacement 
amplitude located in the central part of the sternum, which is 
the area that we chose to place the sensor on (Figure 4. ). This 
position is also convenient for attaching a sensor with an elastic 
band (similarly to attaching respiratory or cardio sensors) 

ing the interference with typical daily routines.    
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Specialized accelerometers for analyzing vibrations have 
found their applications in a number of fields such as sensing 
oscillations in bridges, unbalance in rotating machines, fluid 
flow or acoustic energy input. Using these kinds of sensitive 
accelerometers to detect the amplitudes of the chest vibrations 
would provide highly accurate detection of phonation. 
However, our goal was to detect chest wall vibrations (and 

shelf accelerometers. 
In addition, accelerometers are used in a wide variety of  
applications (such as physical activity monitoring, for 
example), which could benefit from including speech 
recognition, thus providing new insights and more 
comprehensive description of daily activities without additional 
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it is possible to recognize some of the most common activities 

ached to the chest. Furthermore, 
the approach of using accelerometer for detecting speech does 
not include recording of sensitive data (such as voice) thus 

 

During bare foot walking 99% of the acceleration power is 
below 15 Hz, during running it is below 18 Hz while most of 

 Hz and 3.5 Hz [25]. 
Therefore, physical activities are not expected to overlap with 
vocal chords vibrations in the frequency domain. However, our 

investigation is focused on the following two aspects: 1) 
whether the characteristics of off
not specifically designed for detecting small vibrations) are 
sufficient for recognizing speech activity and discriminate it
from other components in the frequency spectrum 
concern refers mostly to low amplitudes of the chest wall 
vibrations [23] that may be similar to noise level, imperfect 
contact between the sensor and the chest, and physiological and 
acoustic differences between genders 
individuals;  2) whether other sources of vibrations  
encountered in everyday life including elevator, car, bus, tr
or airplane, whose engines provide components in higher 
frequency ranges that may result in false positives for speech 
detection. 

To evaluate our approach of detecting speech activity based 
on analyzing frequency spectrum of data acquired from an off
the-shelf accelerometer attached to the chest (
used the accelerometer produced by Shimmer, which is not 
specifically adapted to detect small vibratio
in our experiments comes as a part of 
The specifications are the following: the range of 
sensitivity of 800mV/g at 1.5g and
512Hz. According to the Nyquist
the ceiling boundary frequency compo
using this accelerometer is 256 Hz, which 
requirements for our application (since the fundamental 
frequencies of vocal chords are approximately 100Hz for males 
and 200Hz for females). To analyze the frequency domain of
acceleration time series (square roots of the sum of the values 
of each axis x, y and z squared

Fourier Transform (DFT) defined
0, 1, … N-1 as the sequence �

�� � �
��

��	
Frequency spectrum was analyzed in Matlab

Fast Fourier Transform (FFT) to calculate the DTF and then we 
computed the power spectral density. 

As we expected, low amplitudes of the chest wall vibration 
were similar to the noise level and we were unable to 
distinguish accelerometer rea
those that contained noise, only by analyzing the frequency 
spectra. In order to tackle the problem of noise, we applied a 
simple noise cancelling strategy 
spectra in time which is based on the assumption that the signal 
components are always focused in the same frequency range in 
contrast to noise that is, in this case, more random.  
Considering time frames for perf
analysis, we found that the best accuracy was achieved by 
analyzing a sum of power spectral densities computed 
separately for five consecutive 2
(corresponding to 1024 samples in our case). Hence, each 
seconds frame was represented with the power spectral density 
that was a sum of spectral densities computed for each 2 
seconds. Therefore, our goal was to recognize the presence of 
spectral components that correspond to speech with the 
resolution of 10 seconds. Processing data in 10
frames resulted in the highest accuracy regardless of the 

                                        
2 Some conventions place the factor 1/N in front of the transform 

investigation is focused on the following two aspects: 1) 
whether the characteristics of off-the-shelf accelerometers (i.e. 
not specifically designed for detecting small vibrations) are 
sufficient for recognizing speech activity and discriminate it 
from other components in the frequency spectrum – this 
concern refers mostly to low amplitudes of the chest wall 

that may be similar to noise level, imperfect 
contact between the sensor and the chest, and physiological and 
acoustic differences between genders [22] and also across all 
individuals;  2) whether other sources of vibrations  
encountered in everyday life including elevator, car, bus, train 
or airplane, whose engines provide components in higher 
frequency ranges that may result in false positives for speech 

To evaluate our approach of detecting speech activity based 
on analyzing frequency spectrum of data acquired from an off-

shelf accelerometer attached to the chest (Figure 4. ), we 
used the accelerometer produced by Shimmer, which is not 
specifically adapted to detect small vibrations (the sensor used 

as a part of an ECG device [26]). 
The specifications are the following: the range of ±1.5 and ±6g, 

1.5g and a maximal sampling rate of 
512Hz. According to the Nyquist-Shannon sampling theorem, 
the ceiling boundary frequency component that can be detected 
using this accelerometer is 256 Hz, which fulfils the 
requirements for our application (since the fundamental 
frequencies of vocal chords are approximately 100Hz for males 
and 200Hz for females). To analyze the frequency domain of 

square roots of the sum of the values 
squared), we performed the Discrete 

Fourier Transform (DFT) defined2 for a given sequence x�, k = 
�� , r = 0, 1, … , N-1 [27]: 
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Frequency spectrum was analyzed in Matlab applying the 
Fast Fourier Transform (FFT) to calculate the DTF and then we 
computed the power spectral density.  

As we expected, low amplitudes of the chest wall vibration 
were similar to the noise level and we were unable to 
distinguish accelerometer readings that contained speech from 
those that contained noise, only by analyzing the frequency 
spectra. In order to tackle the problem of noise, we applied a 
simple noise cancelling strategy [28] of summing frequency 
spectra in time which is based on the assumption that the signal 
components are always focused in the same frequency range in 
contrast to noise that is, in this case, more random.  
Considering time frames for performing power spectral density 
analysis, we found that the best accuracy was achieved by 
analyzing a sum of power spectral densities computed 
separately for five consecutive 2-second long time series 
(corresponding to 1024 samples in our case). Hence, each 10-
seconds frame was represented with the power spectral density 
that was a sum of spectral densities computed for each 2 
seconds. Therefore, our goal was to recognize the presence of 
spectral components that correspond to speech with the 

seconds. Processing data in 10-second time 
frames resulted in the highest accuracy regardless of the 

                                                           
Some conventions place the factor 1/N in front of the transform [27] 



duration of the speech i.e. whether there was only one word 
spoken or a continuous talk of 10 seconds. Decreasing the 
resolution corresponded to lower ratio between speech 
amplitudes and noise levels while processing data in longer 
time units was more likely to fail in detecting shorter durations 
of speech.  

We investigated various classification algorithms (namely 
SVM, Naïve Bayes, Naïve Bayes with kernel density 
estimation and k-NN) and parameters for characterizing the 
spectral density (namely mean, maximal, minimal, and integral 
values regarding different frequency ranges). It turned out that 
Naïve Bayes with kernel density estimator applied on the two 
parameters – integral and mean values of the components 
between 80 Hz and 256 Hz, provided the highest classification 
accuracy. Here we do not further elaborate on the classification 
selection, a choice of signal parameters, frame size for 
calculating power spectral density and the resolution since they 
strongly depend on the accelerometer’s characteristics. 
However, considering the predicted fundamental frequencies of 
vocal chords, the requirement for the accelerometer is sampling 
rate of minimum 200 Hz for detecting male voices and 400 Hz 
for detecting female voices.  In the following, we report the 
accuracy of our approach. 

B. Experiments and Results 

In total, 21 subjects participated in the speech activity 
detection experiment (11 males, 10 females; 31.8±7.6 years 
old). Each subject was asked to read out loud the article from 
the latest newspapers for at least two minutes, while having the 
Shimmer accelerometer attached to the chest with an elastic 
band. We evaluated the performance of our approach 
separately for each subject through cross-validation of two sets, 
one including the frequency spectra of 10-second frames 
containing subject’s voice and the other including only spectra 
of accelerometer data samples recorded during mild physical 
activities without voice. 10 out of 11 male and 9 out of 10 
female voices were successfully recognized, demonstrating that 
in large majority of the cases the accelerometer was sufficient 
to distinguish the frequency spectra of readings with and 
without voice despite the imperfect skin-sensor contact and 
individual subjects’ characteristics. 

In addition, we created a set of accelerometer data that 
contained speech activity of 19 subjects excluding 2 subjects 
that were not previously detected (overall, 2 minutes each 
subject, that is 38 minutes, divided in 10-second time frames) 
and accelerometer readings that contained physical movements 
without voice (approx. 2 hours of accelerometer readings that 
included sitting, standing and normal speed walking in 10-
second data resolution). This was done so that we can build a 
generic speech detection model. The voice recognition 
accuracy was estimated through leave-one-out method of 
sequentially selecting accelerometer readings that corresponded 
to one subject/one activity as a test unit while using the rest of 
the set for building the model (training set for Naïve Bayes 
with KDE classification). The voice was correctly recognized 
in 93% of cases while mild physical activities without voice 
induced false positives in 19% (TABLE I. a). The same model 
was used to test accelerometer readings acquired in more 
intensive activities such as fast walking or running which 
resulted in 29% rate of false positives (TABLE I. b). 
Furthermore, we investigated whether some sources that may 

be encountered in everyday life including elevator (5min of 
data), car (30min of data), bus (30 min of data), train (20min of 
data) or airplane (1 hour of data) whose engines provide 
components in higher frequency ranges result in false positives 
in speech detection. It turned out that elevator, train and 
airplane do not present an additional issue for the speech 
recognition, causing the same rate of false positives as physical 
movements performed in normal conditions (TABLE I. a and 
TABLE I. c) while travelling in a car or a bus increases the 
occurrence of false positives to the rate of 32%. It should be 
mentioned that intense physical activities and the transportation 
vehicles did not affect the recognition of speech i.e. the rate of 
true positives and false negatives remained above 90%. 

TABLE I.  A) VOICE/MILD ACTIVITIES, B) VOICE/INTENSIVE 

ACTIVITIES, C) VOICE/SOURCES OF HIGHER FREQUENCIES 

a) Voice 

Detected 

No Voice 

Detected 

 b) Fast Walking 

or Running 

Voice  93% 7%  No voice detected 

(true negatives) 

71% 

Mild 

Activities 

19% 81%  Voice detected 

(false positives) 

29% 

     
c) Elevator Bus/ Car Train Airplane 

No voice detected (true negatives) 80% 68% 81% 79% 

Voice detected (false positives) 20% 32% 19% 21% 

In addition to phonation there are other causes of vocal 
chords vibrations, which can be incorrectly classified as speech 
activity such as coughing or mumbling; however, their 
occurrence is less frequent and typically negligible in 
comparison to speech.  

Our approach demonstrates that the speech activity can be 
reliably detected in typical daily situations except in vehicles 
(such as car or bus) whose engine frequencies may result in a 
higher rate of false positives. However, this may be mitigated 
by using a different type of the accelerometer. In the following 
section we apply this approach in continuous experimental trial 
and assess the fusion of speech activity detection with spatial 
settings detection in order to recognize social interactions. 

IV. DETECTING SOCIAL INTERACTIONS 

Through several studies, Groh et al. developed probabilistic 
models for detecting social interactions based on interpersonal 
distance and relative body orientation pairs [19], speech 
activity [29], or the combination of various parameters [30]. 
The authors were mainly focused on developing probabilistic 
models while using existing solutions for detecting the 
underlying parameters: microphone from MP3-player worn 
around the neck to identify speech activity [29] and to 
recognize interpersonal distances and relative body orientation 
they relied on a commercial, multiple-camera infrared beacon-
based tracking system, where the cameras were mounted on the 
floor and ceiling and beacons attached on the body [19]. Groh 
et al. demonstrated that using the abovementioned parameters 
was sufficient for providing high accuracy in detecting social 
interactions, but emphasized the importance and potential 
benefits of using mobile sensing paradigms instead of the 
camera/beacon-based system due to obvious infrastructure 
costs. 

We have developed mobile modalities for sensing 
parameters relevant for social interactions and in this section 
we will assess whether the achieved precision of detected 



parameters is sufficient to identify existing social interactions. 
For the rest of this section, we first analyze a relative predictive 
power of using detected spatial parameters to identify co-
located, face-to-face social interactions. Afterwards, we 
investigate the potential of fusing speech activity and spatial 
settings detection. 

A. Detecting social situations through spatial settings 

The study of proxemics [31] investigated how people 
unconsciously organize space around them corresponding to 
different degrees of intimacy. A number of other factors also 
affect absolute measures of interpersonal distances (denoted as 
d) and relative body orientations (denoted as α) such as cultural 
background, gender, or types of personalities [32]. Detection of 
social interactions that will be presented in this section is based 
on analyzing spatial parameters between a pair of subjects that 
carry mobile phones. If more than two subjects are involved in 
the same conversation, our method recognizes other 
participants by examining information for each pair of 
individuals involved in the social interaction. On the other 
hand, as the number of participants increases, interpersonal 
distances expand and the angles become wider, thus putting 
constraints on developing a single model of social interactions, 
regardless of the number of participants. However, these effects 
(such as changes in angles) are typically neglected in the 
literature since practical experience suggests that when there 
are more than four or five individuals, they frequently split up 
into sub-situations [19] [33]. Therefore, the experiments that 
follow were conducted under the assumption that in real-life 
setting a number of individuals which actively participate 
social interaction is limited to four of five (usually referred to 
as a “small-group” interaction) [19] [33].  

We chose the time frame of 10 seconds to process data as 
suggested by [30] in order to capture dynamic changes in social 
interactions while at the same time to discriminate between 
existing and non-existing social interactions. Therefore, 
interpersonal distances were estimated using a sequence of Wi-
Fi RSSI values for every 10-second frame while body 
orientation is averaged for every 10 seconds (i.e. 10 samples). 
Relative body orientation of subjects was considered only if the 
standard deviation of the samples was less than or equal to 10 
degrees for each subject (regarding the 10-second time frame), 
otherwise the current frame of samples was left out. This was 
done in order to analyze situations in which subjects held stable 
relative orientation, such that random body movements are 
removed as a source of orientation uncertainty. The threshold 
of 10 degrees was confirmed to be a trade-off between 
decreasing the standard deviation of the estimated relative body 
orientation (proportional to decreasing threshold) and 
decreasing the amount of discarded data (proportional to 
increasing threshold). Overall, approximately 20% - 25% of 
unstable orientation data was discarded. We installed the 
application in five phones, two HTC Desire, two HTC Desire S 
and one Samsung Galaxy S with synchronized clocks to ensure 
correct data aligning which was crucial, considering a short 
time frame of 10 seconds for data analysis. Focusing on small-
group co-located face-to-face social interactions, we performed 
the experiments in two types of scenarios:  

1) Scenario 1 
Participants, that partially knew each other, were asked to 

communicate for an amount of time of their choosing, while 

carrying the mobile at a known place. The first trial involved 6 
participants (4 males, 2 females, age: 31±4 years) that were 
talking to each other, maximum four at a time, at 14 randomly 
selected locations, including 12 indoor and 2 outdoor 
environments. The duration of these interactions was 5.6±3.8 
minutes. The second trial was conducted in a meeting room and 
it consisted of two 15-minute sessions in each involving 4 
people (6 males, 2 females, age: 29±4 years) who were let to 
communicate freely as they wanted. This experimental trial 
resulted in 1300 pairs of relative body orientation and 
interpersonal distance (α, d) with a time frame window of 10 
seconds for processing and averaging data.   

2) Scenario 2 
The break room is the place where employees in our 

research center typically socialize. This created the opportunity 
to monitor social interaction in a natural setting. When people 
were coming to the break room, we asked them to place the 
phone in a case attached on the right hip and to continue their 
interaction. Overall, we recorded 15 interactions of duration 
6.2±3.5 minutes that included 24 different people. This 
experimental trial resulted in 1300 orientation, distance (α, d) 
pairs. 

In order to assess the potential of using spatial (α, d) 
parameters to distinguish existing and non-existing social 
interactions, it was necessary to create also a solid corpus of the 
pairs that do not correspond to social interactions. Four subjects 
that attended a fair called “Researchers Night” were monitored 
while being asked to report any social encounter among them. 
Measurements from one-hour period in which they reported no 
social interactions was extracted as a suitable data set 
containing overall 1400 (α, d) pairs for creating non-existing 
social interaction corpus; being at the stand implied their 
constant proximity and random relative body orientations 
(while sitting/standing/moving). In addition, we added 
measurements from previously described Scenario 1 (2

nd
 trial) 

that included subjects that were in concurrent social 
interactions and in a close proximity (all social encounters 
occurred within 5x5m space). Certainly, there are a number of 
scenarios which include subjects that are not interacting while 
being in close vicinity, thus making it challenging to classify 
between occurrence and non-occurrence of social interaction. 
The example of one such a case involves colleagues that share 
the office, sitting at their desks across each other at a short 
distance, but not having a conversation. This case will be 
evaluated in the continuous experimental trial, presented in the 
next section. 

TABLE II. presents the results of distinguishing existing 
(denoted as SI) and non existing social interaction cases 
(denoted as NonSI) represented with a feature-vector (α, d) by 
applying Linear Classification and Naïve Bayes with KDE 
techniques. The classification performance was evaluated using 
10-fold cross validation.  

TABLE II.   CLASSIFICATION RESULTS  (ORIENTATION, DISTANCE) 

Naïve Bayes (KDE) Linear Classifier 

 SI/ NonSI  SI/ NonSI 

SI  79%       21% 73%      27% 

NonSI 24%       76% 12%      88% 



 The results demonstrate the accuracy of 79% in detecting 
social interactions based on interpersonal distance and relative 
body orientation. Naïve Bayes with KDE performed slightly 
better in identifying social interaction pairs while Linear 
Classifier provided lower rate of false positives. A contributing 
factor to a relatively high accuracy is also a simple method of 
taking out of the consideration (α, d) pairs corresponding to the 
situations in which subjects did not hold a stable relative body 
orientation, thus eliminating the source of uncertainty created 
in most cases by random body movements. However, instead 
of using the standard deviation (SD) of relative body 
orientation for identifying “unstable” (α, d) pairs, we attempted 
to use it also as a classification feature that can be considered 
as an index of holding stable relative position of participants in 
a social interaction. SD of relative body orientation (denoted 
with σ) was also calculated for each 10-second frame (i.e. for 
10 samples) and combined with distance d and averaged 
relative body orientation α, constituting 2-feature vector (σ, d) 
and 3-feature vector (σ, α, d). TABLE III.  shows the results of 
10-fold cross validation.                                                   

The combination of interpersonal distance and SD of 
relative body orientation provided higher accuracy in 
comparison to the previous case of using relative body 
orientation angle (TABLE II. ). This may be due to the fact that 
feature-vector (σ, d) does not discriminate classes based on the 
absolute angle between body orientations in social interactions 
thus allowing for more situations to be included in the model in 
comparison to feature-vector (α, d). As expected, this resulted 
in a higher rate of false positives that occurred mostly when 
subjects were in a close proximity, having a stable body 
orientations but not interacting (for instance, sitting or being in 
concurrent social interactions). The highest accuracy was 
achieved using 3-feature vector (σ, α, d) that resulted in 93% of 
successfully classified vectors corresponding to social 
interactions and 26% of false positives.        

TABLE III.  CLASSIFICATION RESULTS (2-FEATURE AND 3 FEATURE 

VECTORS) 

(σ, d) (σ, α, d) 

 Naïve Bayes 

(KDE) 

Linear 

Classifier 

Naïve Bayes 

(KDE) 

Linear 

Classifier 

 SI/ NonSI  SI/ NonSI SI/ NonSI  SI/ NonSI 

SI  89%       11% 76%      24% 93%      7% 90%      10% 

NonSI 31%       69% 29%      71% 26%       74% 19%      81% 

The results demonstrate that the accuracy of estimating 
interpersonal distances and relative body orientations achieved 
with mobile phone sensing was sufficiently discriminative to 
identify social interactions on a small spatial scale. Note that 
the position of the phone does not affect SD of relative body 
orientation thus the model based on 2-feature vector (σ, d) does 
not require users to carry the phone on a pre-defined/known 
position on the body (or using algorithms for estimating the 
phone position [20]).  

In the next section, we analyze the performance of 
detecting social interactions in more challenging conditions - 
continuous monitoring of co-located subjects. 

B. Detecting social interactions using multi-modal mobile 

sensing 

We recruited four subjects that share the same office (3 
males and 1 female, 29.0±1.4 years) for 7 working days. Each 
day, they were carrying the mobile phone at a known and fixed 
position on the body, typically between 11h and 17h. 
Accelerometer (embedded in Shimmer device [26]) was 
attached on the chest using an elastic band which was 
comfortable for all of the subjects except one that asked to put 
the sensor over a t-shirt. Overall, there were 40 hours of 
measurements, resulting in 452 hours of sensor data, 
113.0±20.4 hours per person. In order to avoid recording 
(audio/video) or inquiring participants to label social 
interactions, ground-truth was annotated by a human observer, 
a colleague that shares the office with the participants, hence 
minimizing intrusion in typical daily routines of monitored 
workers. The observer manually noted each participant’s 
speech activity and ongoing social interactions while marking 
all the periods in which the notes were not reliable (usually due 
to the lack of his presence). Labeling structure of ground-truth 
was divided in the two categories: 1) participation in social 
interactions and speech activity (present/not present) for each 
participant annotated every minute (52% of experimental data), 
2) the existence of an ongoing social interaction, without a 
minute-by-minute description, including identification of 
participants and duration of interaction (27% of data). The rest 
of the data (21% of overall measurements) were lacking labels. 
The second category of labeling ground-truth corresponded 
mostly to longer discussion, conversations during lunch or 
coffee breaks and similar occasions during which it was 
cumbersome for the observer to take precise notes. The 
annotations were taken also for social interactions with non-
monitored subjects.  

The accelerometer data was processed providing a binary 
result (1/0) for every 10-second frame that indicated speech 
activity or not. TABLE IV. shows the results for each 
participant separately, analyzing only the portion of the data 
that was precisely annotated (minute-by-minute) – overall 
30.4±9.5 hours per person. According to the structure of 
annotations, true positives denote the percentage of speech-
labeled minutes in which speech activity was detected in at 
least one 10-second frame within that minute while false 
positives represent the percentage of minutes in which the 
speech was detected but not annotated in the observer’s notes. 
It can be seen that the accuracy is slightly worse than in the 
case of shorter experimental trials (Section III). This was 
expected considering that due to daily activities the elastic band 
can move thus causing slipping or detaching sensor from the 
skin surface. However, our prototype was an improvised elastic 
band (not purpose-manufactured) and an accelerometer that 
was not designed to be stuck to the skin. The lowest accuracy 
corresponds to the participant that was wearing the band over a 
t-shirt (Subject 1) that may have mitigated the chest vibrations.  

TABLE IV.  SPEECH ACTIVITY DETECTION  

Subject 1 Subject 2 Subject 3 Subject 4 

 SI/Non-SI SI/Non-SI SI/Non-SI SI/Non-SI 

SI 67%/33% 77%/23% 73%/27% 73%/27% 

Non-SI 18%/82% 21%/79% 29%/71% 25%/75% 



Unfortunately, the resolution of 10 seconds for speech 
activity status was not sufficient for detecting turn-taking 
patterns [30] in order to identify conversation between two 
individuals while decreasing the frame length for processing 
accelerometer data resulted in speech recognition accuracy 
degradation. Therefore, by relying only on speech detection it 
was not possible to differentiate if two or more subjects have a 
conversation or participate in concurrent social interactions. 
Rather, speech activity detection was used complementary with 
spatial settings recognition that will be described in the 
paragraphs that follow.  

Regarding spatial settings, we have built a classification 
model for social interactions using the social interactions that 
occurred during the experiments. In the test phase we excluded 
the whole day to which the tested social encounter belonged, 
hence applying a 7-fold cross-validation according to 7 days of 
measurements. We have also built and tested the model for 
non-existing social interactions in the same way while 
excluding from the model the situations in which subjects were 
sitting at their desks. The reason is that due to the office layout 
(Figure 5. ) where the experiment took place, the corresponding 
feature-vectors labeled as non-social interaction would have 
yielded a large number of false positives. However, since the 
situations in which subjects were sitting at their desks 
corresponded to the periods annotated as non-existing social 
interactions, they were included in the test phase with all other 
situations in which no interaction was reported.  

 

Figure 5.  The office layout 

Overall, there were 6 hours of social interactions that, 
according to the annotations, occurred at several locations 
including office (taking into account all social encounters in the 
office except previously mentioned “desk-to-desk” 
conversations), break room, meeting room, and corridors and 
involving two, three or four monitored workers at a time. On 
the other hand, 25 hours of non-existing social interactions data 
were annotated regardless of the location. Approximately 13% 
of the overall annotated data was discarded due to sporadically 
missing samples either from compass sensor or Wi-Fi RSSI. 
The experiments resulted in 1872 and 7420 feature vectors 
corresponding to existing and non-existing social interactions 
respectively.  

The results are presented in TABLE V.  when Naïve Bayes 
classification and (σ, α, d) model were applied, which 
previously provided the highest accuracy. 89% of true positives 
and 11% of false negatives in detecting existing social 
interactions presents the accuracy across all the pairs of 
subjects. Since no major differences were witnessed for 
different pairs of subjects regarding true positives, we reported 
the accumulated accuracy. Although at an initial look (TABLE 
V. ) the fusion of the two modalities yielded no improvement 
in the rate of true positives, speech activity detection was used 
to confirm occurrence of social interactions through the 
presence of voice of the participants. Otherwise, if no speech 
was detected, even though spatial settings suggested an 
occurrence of social interaction, the event was categorized as a 
non-existing social interaction. This strategy particularly 
improved the identification of non-existing social interaction 
when relying solely on spatial settings, which resulted in a very 
high rate of false positives for subjects pair 1 and 2 and pair 2 
and 3 (Figure 5. ). A higher rate of false positives was mainly 
due to the small distance and fixed body orientation of subjects 
in the office. Particularly for the pair of subjects 1 and 2, the 
feature vector of the interpersonal distance, relative body 
orientation and its stability (σ, α, d), was similar when sitting in 
the office to the feature vector describing face-to-face social 
interaction. This is due to the limitation of the proposed spatial 
settings detection system which has difficulty discriminating 
between a back-to-back and face-to face position of subjects. 
However, in our experimental scenario, the fusion of the two 
sensing modalities significantly improved the overall results. A 
portion of false positives was resolved by checking speech 
activity status whenever spatial settings analysis indicated an 
existing social interaction. In these cases, if the speech activity 
was not recognized for both subjects during an arbitrarily 
selected time frame of 5 minutes, the system indicated non-
existing social interaction. For the pair of subjects 1 and 2, the 
results for false positive showed the drop from 76% to 34% and 
for the pair 2 and 3 from 39% to 29%. The fusion of the two 
sensing modalities also contributed considerably in resolving 
false positives for other pairs of subjects that occurred mostly 
due to their random daily movements. It should be mentioned 
that this method for resolving false positives did not negatively 
affect the recognition rate for existing social interactions. 

TABLE V.  RESULTS OF MULTI-MODAL SENSING OF SOCIAL 

INTERACTIONS 

Spatial  Spatial + Speech 

 SI/ NonSI  SI/ NonSI 

SI  89%       11% 89%       11% 

NonSI  

Sub 1&2 76%       24% 34%       66% 

Sub 1&3 19%       81% 11%       89% 

Sub 1&4 17%       83% 15%       85% 

Sub 2&3 39%       61% 29%       71% 

Sub 2&4 15%       85% 15%       85% 

Sub 3&4 17%       83% 14%       86% 

 

V. DISCUSSION 

The level of social activity typically reflects the overall 
wellbeing status in individuals [5], while social isolation can 
lead to myriad of health implications even presenting a risk 
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factor for mortality [1]. Measuring daily amount of social 
interactions is linked to various disorders including clinical 
depression, mania and bipolar disorder for which the level of 
social activity represents an important evidence for diagnosing 
the current episode or the progress in disorders. Therefore, 
social interactions become an important aspect for monitoring 
and assessing, both for healthy subjects and patients. 
Encouraging healthier lifestyle through the monitoring mobile 
applications is based on increasing the individuals’ awareness 
of their own daily routines and consequently their wellbeing, 
while for patients, evaluating the participation in social 
interactions represents a tool for coaching and diagnosis.  

The ultimate goal is to develop a method with the highest 
precision in collecting interaction data which is fully privacy 
respecting and invisible from users’ perspective, while not 
restricting the application to a limited number of scenarios. 
However, this problem relates to a well-known trade-off 
between the spectrum of collected data and enabling natural 
experimental conditions, for which there is never a 
straightforward solution. Furthermore, monitoring patients 
involves additional constraints with respect to the symptoms of 
a certain disorder and typically rigorous ethical norms. The 
proposed solution for gathering interaction data consists of two 
technologies, namely mobile phone and accelerometer, which 
creates a unique set of concerns for the adoption in the 
healthcare setting. 

The fact that people habitually carry the mobile phone 
makes this device a suitable source for unobtrusive and 
continuous monitoring of their behavior. The applicability of a 
mobile phone has been demonstrated in monitoring both 
patients and healthy subjects. However, regarding our design, 
an accelerometer attached on the chest level may be perceived 
as obtrusive and consequently it may stigmatize monitored 
subjects. This issue, while currently a concern, is expected to 
be mitigated, since accelerometers are increasingly becoming 
widely adopted both in healthcare and everyday life. In our 
experiments, in order to test the concept of using an 
accelerometer for speech detection, we used prototype which 
was an improvised elastic band (not purpose-manufactured) 
and the accelerometer not designed to be stuck to the skin. 
However, the same concept can be applied in a less obtrusive 
manner, such as embedded in a t-shirt. Moreover, the shape and 
size of already accepted commercial accelerometer-based 
solutions can suit also the speech recognition purpose (such as 
Fitbit [34] – an accelerometer device for tracking wellbeing 
aspects of individuals’ behavior). In the healthcare setting, the 
chest surface is widely used for attaching cardio and respiratory 
sensors, thus being an adopted position by patients not only 
suffering from heart/lung related diseases but also mental 
disorders such as psychological stress [35] and bipolar disorder 
[36], for which cardio/respiratory parameters and the social 
activity are important aspects to assess. However, regarding 
certain health populations, wearing an additional sensor on the 
body may be physically and/or psychologically burdensome 
with respect to the symptoms of a particular disorder. In 
addition, the accelerometer-based speech detection does not 
provide a reliable solution for users that prevalently suffer from 
symptoms which may cause non-phonation related chords 
vibrations such as mumbling or coughing. Otherwise, relying 
on accelerometer as an alternative to the use of microphone can 
be an acceptable compromise to prevent privacy concerns 

while providing a mobile solution for continuous monitoring of 
speech activity. 

VI. CONCLUSIONS 

Classical methods of measuring social interaction include 
diaries, questionnaires and similar self-reports tools that are 
limited in detecting social interactions which take place on 
spatial scales of meters and time scales of minutes while also 
suffering from recall bias issue. The goal of this work is 
sensing small group social interactions that occur on small 
temporal and spatial scale relying on widely available 
technologies – accelerometer and smart phone. 

We exploited compass embedded in smart phones to 
measure body orientations and Wi-Fi transmitting/receiving 
mechanisms for distance estimation. These parameters were 
further combined in feature vectors demonstrating a high 
predictive power of social interaction detection. The study also 
suggested the use of standard deviation of relative body 
orientation as a suitable classification feature representing an 
index of stable relative position of participants in a social 
encounter. Such measure does not require users to carry the 
phone on a pre-defined position on the body or using complex 
algorithms to estimate the phone position. Mobile phone is 
typically a well-adopted technology both in everyday and 
healthcare settings, allowing continuous data collection with a 
minimal effect on the users’ behavior and consequently, their 
social interaction patterns. 

By using an off-the-shelf accelerometer, we demonstrated 
that speech activity can be reliably recognized by detecting 
vibrations at the chest level that are generated by vocal chords 
during phonation. This approach is not expected to raise 
privacy concerns, in comparison to typical microphone-based 
methods while being easily applicable and cost effective 
solution for recognizing speech activity considering that 
accelerometers are widely used sensors (being already 
commonly used for detecting a number of activities). However, 
wearing an accelerometer at the chest level can be burdensome 
for certain health populations which should be considered 
when designing the system.   

The two proposed sensing modalities provide 
complementary information about social interactions 
constituting a multi-modal mobile sensing system. It was 
demonstrated that the system provides the accuracy of 89% 
when tested in continuous, real-life experiments over 7 
working days. Considering the fact that the level of 
participation in social interactions has been shown to have an 
impact on various aspects of health, the proposed system 
provides a tool for monitoring one component of wellbeing of 
healthy subjects. Although this work so far has focused on 
healthy subjects, we envision its applicability in various 
healthcare settings.  
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