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Abstract 

This paper studies the plastic collapse mechanisms of uniaxially-loaded cylindrical shell-plate 

periodic honeycombs with identical mass (or relative density) but varying geometric 

parameters, by series of in-plane and out-of-plane experiments and finite element numerical 

simulations. The coupled experimental-numerical results show that mechanical properties of 

the honeycomb can be optimized in all three loading cases, thanks to the complementary 

changes of the mechanical properties of cylindrical shell and plate as the geometric parameters 

vary. The work presents a concept to optimize lattice structures by combining different 

substructures, and can be used in designing new low-density honeycomb structures with desired 

mechanical requirements but less base materials and weight. 
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1. Introduction 

Honeycomb and foamy structures widely exist in natural materials (e.g., Luffa sponge [1]), 

which are shaped by their surrounding environment. In view of optimization in the process of 

natural evolution, it facilitates the study of the natural or man-made foamy materials with 

multiple functions, such as energy-absorption [2], heat-transfer [3,4] and electromagnetic 

absorption [5]. To date, varieties of honeycomb structures are presented. From the point of view 

of mechanics, the conventional hexagon, square, triangle, Kagome honeycombs [6] or 3D 

topological lattices [7] have been widely studied, and their collapse mechanisms clearly 

described [8-10]. These studies have already been used as guidance for the design of porous 

materials. 

As the importance of hierarchical strategy in natural materials is gradually realized, 

hierarchical honeycomb and foamy structures are also constructed and studied. In general, as 

the porosity of the structure increases, reducing the relative density of the structure, their 

mechanical properties decrease (e.g., critical buckling load [11]). However, if a hierarchical 

structure is designed with a constant amount of bulk materials, its mechanical properties, such 

as Young's modulus and strength [12], can be optimized by replacing solid cell walls [13], 

[14,15] or joints [16,17] of conventional single-level honeycombs with porous substructures. 

In the case of the solid cell walls replaced by porous substructures, the bending rigidity of the 

cell walls is increased because of the increased porous cell-wall thickness [12,18], and in the 

other case, i.e., joints replaced by porous substructures, the failure modes of the cell walls and 

porous joints are interchanged [19]. It is worth mentioning that when the hierarchical level 

comes down into the nanoscale, the surfaces effect has to be taken into account [20,21]. 

To look for new and more efficient honeycomb structures, very recently, the authors 

presented a cylindrical shell-plate assembled periodic (or so-called hollow-cylindrical-joint) 

honeycomb (Fig. 1) [19], which actually derives from the family of center-symmetrical 

honeycombs [22], and analytically studied its Young's modulus, Poisson's ratio, fracture 

strength and toughness in the x direction. Moreover, they reported that the mechanical 

properties of the structure were optimized and improved compared to the conventional 

hexagonal honeycombs, thanks to the variation of structural styles. But the work only dealt with 

the in-plane mechanical properties in the x direction via a theoretical approach [19]. Then, 

questions rise: what about the in-plane mechanical properties in the y direction and out-of-plane 

mechanical properties? Are they also optimized? 

http://dx.doi.org/10.1016/j.ijmecsci.2016.03.020
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In order to thoroughly describe the mechanical behaviours of the assembled periodic 

honeycomb, we here continued the study of the honeycomb by coupling experiments and 

numerical simulations. First, two sets of quasi-static crushing experiments (six in-plane samples 

with eight unit cells loaded in the x, y directions, Fig. 1a, and five out-of-plane samples with 

three unit cells in the z direction, Fig. 1b) were performed. Plastic collapse processes of selected 

samples and stress–strain curves of all samples were recorded. Second, non-linear finite 

element method (FEM) numerical simulations were employed to deeply reveal plastic and 

fracture behaviours and stress states, which were not visually identifiable with the experiments. 

Finally, the collapse mechanisms were discussed. 

 

2. Introduction 

2.1 Experiments 

Using 6061-T4 aluminum alloy as the bulk constituent material, eleven honeycomb samples 

with a controlled dimensional error 0.03 mm in thickness, were fabricated by Nanjing Siyou 

Photoelectric Technology Limited, Nanjing, China. In the design of the samples, the samples 

had theoretically identical relative density ρ*/ρc=0.1 in which ρ*=0.27 g/cm3 and ρc=2.7 g/cm3 

are the densities of the honeycomb and the bulk aluminum alloy, respectively. The sizes in z 

direction were 20 mm and 30 mm for the in-plane and out-of-plane samples, respectively, and 

the distance l between centres of two adjacent cylindrical shells was fixed to be 20 mm. The 

radius r of the cylindrical shell was first selected, and the wall thickness t   was determined by 

the following equation ρ*/ρc=-1.155⋅(t/l)2+[2.528⋅(r/l)+1.155]⋅(t/l) [19], and the masses of the 

models were calculated by multiplying the volumes of the samples to their density ρ*=0.27 

g/cm3, see Table 1. 

Actually, their real masses mre are lower, see Table 1. Moreover, according to the design, 

the masses of the in-plane samples should theoretically be equal, and also for the out-of-plane 

ones, here the mass difference is due to the samples’ processing. 

The samples were tested under uniaxial compression with a 1000HDX Instron Universal 

Testing Machine (ITW, USA) with loading capacity of 1000 kN. Before testing, in order to 

ensure the samples to be loaded uniformly, two steel plates were respectively placed at the top 

and bottom surfaces of the samples. The whole loading process was displacement controlled 

from the bottom up. For the in-plane samples, considering their larger size along the loading 

direction, a short linear-elastic stage of stress–strain curves and limit influence of loading rate 

http://dx.doi.org/10.1016/j.ijmecsci.2016.03.020
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on the plastic collapse stage were expected; thus, the loading rates before and after the initial 

yield of the samples were set to be 1 mm/min and 10 mm/min, respectively. For the out-of-

plane samples, the loading rate was kept constant at 1 mm/min. 

Regarding the definitions of stress and strain of the compressed honeycombs in the 

experiments, the stress was calculated as σ=F/A, in which F was the applied load, and A was 

the projected convex hull area of the honeycomb samples on the plane perpendicular to the 

loading direction; the strain was calculated as ε=Δh/h0, where Δh was the height variation, and 

h0 was the initial height of the compressed samples. 

For the numerical models, material properties and stress–strain relationship of the aluminum 

alloy used in the experiment were characterized by tensioning a dog-bone specimen with 

circular cross-section of diameter d=10 mm up to failure (see the inset in Fig. 2). The 

mechanical properties extracted from the stress–strain curve (Fig. 2) were: Young's modulus 

E=68 GPa, the yield strength σy=287 MPa, the peak stress σu=318 MPa, and the failure strain 

εf=0.121. These values are consistent with those in literature [23]. 

 

2.2 Finite element models 

The aim of finite element simulations is to analyze the stress state of the honeycombs under 

compression loads, to visualize the plastic deformation, and to further to develop a referential 

tool for future mechanical analysis of other honeycombs. 

The FEM model geometry was made up of honeycombs between two rigid steel plates. The 

honeycomb material was modeled with a piecewise elastic-plastic curve: the linear elastic stage 

was defined by the experimentally determined σy and E, while the plastic stage followed the 

actual experimental points (Fig. 2) in order to include the softening stage after the reach of the 

peak stress prior to failure. It is worth mentioning that due to the size-scale effect, the plastic 

strain εpl,FEM and ultimate strain εu,FEM in the FEM models were both scaled from the nominal 

one εpl measured from the dog-bone test by εpl,FEM/εpl=d/t, since t≪d. This scaling was 

necessary, since by introducing the material law derived from dog-bone traction in the FEM 

material model we obtained brittle fracture at low strain, while with this scaling we were able 

to obtain comparable results with the experimental compression tests. Von-Mises criterion was 

employed for yielding. Contact interactions were taken into account between the steel plates 

and the honeycomb and self-contact within the honeycomb parts in the crushing process: static 

and dynamic coefficients of friction were respectively set to be 0.61/0.47 for the honeycomb-

http://dx.doi.org/10.1016/j.ijmecsci.2016.03.020
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steel contact and 1.35/1.05 for the self-contact. For the in-plane and out-of-plane models, 4-

node fully integrated shell elements with 2×2 Gauss integration (4 integration points through 

thickness, element side-thickness aspect-ratio 2:1) and 8-node selective reduced integrated 

brick elements (3 elements in the wall thickness, aspect ratio 1:1:1) with volumetric locking 

alleviation were employed, respectively. The loading process was displacement controlled with 

the bottom one moved towards the top at the same prescribed velocities as the experiments 

reported above. The load F carried by the honeycomb was computed from the resultant 

component along the loading axis of the contact forces at the steel plate-honeycomb interface. 

Material fracture was treated via an erosion algorithm: when all the integration points of an 

element reach the ultimate strain εu,FEM (maximum principal strain), the element is deleted from 

simulation, and then fracture enucleate and propagate by progression of erosions. 

 

3. Results 

3.1 In-plane mechanical behaviour 

The in-plane mechanical behaviour of the six honeycombs compressed in the x and y 

directions is plotted in Fig. 3. It can be seen that the stress–strain curves generally take on a 

serrated feature, due to the fracture in cylindrical shells and plates, and the linear-elastic stage 

(E1) of all samples is very short. The FEM results (dashed line) and experimental results (solid 

line) are in good agreement, both in terms of curve shape and of honeycomb bearing capacity. 

The samples 1 and 3 (r/l=0.2, red line and r/l=0.4, blue lines) have only one plateau stage, 

whereas, the sample 2 (r/l=0.3, green line) has two linear-elastic or plateau stages (Fig. 3a and 

b), and the second linear-elastic (E2) and plateau (P2) stages are longer and much shorter than 

their first counterparts (i.e., E1 and P1), respectively. The sample 2 reaches densification earlier 

than the samples 1 and 3. 

Young's moduli (the slope of linear-elastic stages, see the insets in Fig. 3a and b) of the 

honeycombs are optimized in both directions when r/l=0.3 for FEM and experimental results, 

but the values from FEM result are much larger than those from experiments, and this is 

consistent with the literature [24, 25]. It is analyzed that the discrepancy is mainly due to the 

over-estimated strain, which was calculated by employing the cross-head displacement of the 

testing system instead of the real deformation of the samples. However, because this work 

studies the plastic collapse behaviour of the honeycomb, Young's modulus is not in the scope. 

http://dx.doi.org/10.1016/j.ijmecsci.2016.03.020
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Yield strengths of the three samples in the x direction are 1.11 MPa (r/l=0.2), 1.20 MPa 

(r/l=0.3), 1.02 MPa (r/l=0.4) for experiments vs. 1.19 MPa, 1.29 MPa, 1.10 MPa for FEM; in 

the y direction, and they are 1.19 MPa (r/l=0.2), 1.34 MPa (r/l=0.3), 0.96 MPa (r/l=0.4) for 

experiments vs. 1.28 MPa, 1.42 MPa, 1.10 MPa for FEM. Differently from the Young's 

modulus, FEM and experimental values are comparable since the stress in experiments 

calculated directly from the readout of the load cell, which reflects the real load sustained by 

the samples. From these data, we can see that the yield strengths are optimized when r/l=0.3, 

which is consistent with the previous work [19], and the finite element results are slightly 

greater than the experimental counterparts. Moreover, the yield strength in the x direction is 

less than that in the y direction, and this is caused by the different structures of the two 

directions, with the compressed samples in the x direction including the extra axial deformation 

or instability of the vertical plates. Considering the effect of the mass variations among samples, 

we here also compare the yield strength to mass ratio, and again the optimal case for both 

directions corresponds to r/l=0.3 (Fig. 3c and d). The coherent optimizations (yield strength 

and yield strength to mass ratio) are due to the little mass difference for each intra-group (i.e., 

two groups are x and y directions). 

In addition, the large deformations and failure mechanisms (Fig. 4 and 5) in both directions 

are observed. For the x direction, the samples 1 and 2 (i.e., r/l=0.2, 0.3) have an approximate 

anti-symmetric configuration (Fig. 4a and c), thanks to the instability of vertical plates, which 

have a relative large slenderness ratio, while the sample 3 is nearly symmetric (Fig. 4e). When 

the samples fail, the plastic hinges and fracture points locate at the plate-shell connecting points 

on the plates (points A and B, Fig. 4g) or on the cylindrical shell (points C, Fig. 4h), depending 

on the r/l ratio. This behaviour has already been verified by the theoretical analysis [19]. For 

the y direction, the three samples share a symmetric configuration (Fig. 5a,c, and e), but their 

failures differ as well, since in the samples 1 and 2 (i.e., r/l=0.2, 0.3) plastic hinges and fractures 

occur in the two plates (points A in Fig. 5g), while on the cylindrical shell in the the sample 3 

(r/l=0.4, points C in Fig. 5h). The same occurs in the samples loaded in the x direction. The 

contours of von Mises stresses from the finite element simulations confirm the results, see Figs. 

4i and 5i. 
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3.2 Out-of-plane mechanical behaviour 

Like the in-plane case, the FEM and experimental stress–strain curves and the yield strength 

to mass ratio of the five out-of-plane samples are plotted in Fig. 6. In Fig. 6a, the portions 

(marked by I, II and III) between elastic limit and yield stress of the strain–stress curves of the 

sample 2, 3, 4 is longer than those of the samples 1 and 5. This is because in the loading process, 

the three samples underwent different but slight shear effect, which reduced the samples' yield 

strength. Moreover, when r/l is small (samples 1–3), there is only one couple of peak and valley; 

while r/l is large (samples 4, 5), there are multi-couples of peak and valley (①~④), and the 

plateau stage is much longer than those of the samples with small r/l, but sample 3 (r/l=0.3) 

still possesses the greatest energy-absorption capacity (computed as the area under the stress-

strain curve). And more, it is readily seen that there are jumps (dashed squares in Fig. 6a) in the 

strain–stress curves for samples 2 and 4, and this is due to the cell-wall brittle fracture. Besides, 

the FEM compression tests are shown in Fig. 6a1–a3. 

Young's moduli reflected by the slopes of the linear-elastic stages are approximately same 

(Fig. 6a), and this can be explained through the classical predication by E*/Ec=ρ*/ρc [10], and 

here ρ*/ρc is a constant. Young's moduli from FEM result are much larger than those from 

experiments, and the reason can be referred to the in-plane cases. 

The yield strengths of the five samples are 35.95 MPa (r/l=0.0), 35.46 MPa (r/l=0.2), 

38.78 MPa (r/l=0.3), 30.60 MPa (r/l=0.4), 27.81 MPa (r/l=0.5) for experiments vs. 34.99 MPa, 

34.51 MPa, 38.06 MPa, 29.09 MPa, 26.80 MPa for finite element simulations. The yield 

strength of the out-of-plane samples is 20–30 times those of the in-plane samples. The 

optimized yield strength is obtained as well when r/l=0.3, and the same for the yield strength 

to mass ratio (Fig. 6b) due to the weak mass variation of the intra-group (out-of-plane) samples. 

However, different from the in-plane samples, the FEM results are lower than their 

experimental counterparts. 

As an interesting example, we snapshotted four peak-valley states of the sample 5 assembled 

only by cylindrical shells without plates, and the sequence of events is shown in Fig. 7. Initially, 

the entire sample deforms elastically to the first peak point, i.e., yield stress. Due to the 

existence of the bottom steel plate, the further expansion of the sample's deformation is 

restrained, and the first axisymmetric outward fold (n=1) starts to form; as the load increases, 

the fold of each cylindrical shell grows and it thrusts into its adjacent shells to form an overlap 

(the arrows in ① of Fig. 7), while the rest of the sample still deforms elastically. 

http://dx.doi.org/10.1016/j.ijmecsci.2016.03.020
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Simultaneously, the constituent material at the fold begins to yield, and the entire sample shows 

a softening behaviour. Then, the deformation of the portion close to the fold accumulates. After 

the contact of the two sides in the fold, the drop of the compressive load arrests. Meanwhile, a 

new diamond fold (n=2) starts to form, and the second peak stress gradually emerges, followed 

by the second valley. In state ②, the overlaps (the arrows in ② of Fig. 7) can be clearly seen. 

After the state ②, the third and fourth diamond folds (states ③ and ④) are formed by the 

squeezed cylindrical shells (the arrows in ③ and ④ of Fig. 7), and the stress does not 

apparently increase until it reaches the densification of state ④, after which, the stress increases 

sharply. 

 

4. Discussions 

To date, a number of lattice structures have been studied and defined [7]. Here, the structure 

is discussed in a new sense, i.e., it is regarded as a periodic combination of plate and cylindrical 

shells, which are two basic elements in structural mechanics. As r/l rises, the contribution of 

the plate decreases but the one of cylindrical shell increases, and these complementary 

tendencies optimize the mechanical behaviour of the structure. Not losing generality, we 

consider this as an optimized spatial arrangement of n substructures. The general mechanical 

behaviour F of the structure is expressed as the sum of the n substructures: 

 
1

( , , )
n

i i i i

i

F f M S P


  (1) 

where fi represents the mechanical contribution of the i-th substructure, Mi, Si and Pi are 

mechanics-parametric, size and positional information of the i-th substructure, respectively. 

The general mechanical behaviour F in Eq. (1) can be the force-displacement curve, elastic 

modulus, strength, toughness, and other mechanical properties. As we know, for a structure, the 

selection of bulk materials (i.e., Mi) could be referred to Ashby's maps [10], which provide 

materials indices for mechanical designs according to stiffness, strength and other variables. 

Then, mechanical properties of the structure can be obtained by varying the size (Si) and spatial 

arrangement (Pi) of the substructures. Therefore, given a constituent material, for the 

optimization, we have: 
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The present structure, with the specific relative density (i.e., ρ*/ρc=0.1), is a peculiar case of 

the above optimized solution with the 6061-T4 Aluminum-alloy material (Mi), fixed positions 

of the plate and cylindrical shell (Pi), and two substructures (n=2). Thus, the only factor to be 

optimized is the size variable r/l, and the optimized value is about 1/3. Considering Eq. (1), we 

find the simple expression: 

 1    ( ;  ,  or )
j

i i

fF
i j i j P CS

f f
     (3) 

where fi and fj are functions of the honeycomb's relative density ρ*/ρc=0.1 and of the size 

variable r/l, and they denote the mechanical behaviours of plates (P) or cylindrical shells (CS), 

respectively. For a specific case, in the linear-elastic stage, we consider F, fP and fCS as the 

bending elastic strain energies of the whole structure, plates and cylindrical shells, respectively. 

According to the calculation of the strain energy by the authors' previous work [19], the 

competitive relation of the two parts is plotted in Fig. 8, from which we can clearly see that the 

contributions of plates and shells in the linear-elastic deformation of the honeycomb when r/l 

varies. 

 

4.1 In-plane loaded samples 

We have shown the mechanical behaviour of the six samples in Section 3.1. The feature is 

that the samples 2 (both x and y directions) have two different linear-elastic and plateau stages 

in experiments. According to Eq. (3), for the two extreme cases, if r/l→0, the cylindrical shells 

disappear, i.e., fCS=0, and the structure shrinks into the conventional regular hexagonal 

honeycomb, which has been widely studied in literature. Thus, we have F=fP; otherwise, when 

r/l→0.5, the plates disappear, i.e.  , F=fCS. For the structures in-between, smaller r/l ratio (e.g., 

sample 1) results in a more rigid cylindrical shells, and the in-plane samples fail in the weaker 

plates due to bending and buckling; on the contrary, greater r/l (e.g., sample 3) results in a more 

compliant cylindrical shell, and the samples fail in the weaker cylindrical shell due to their 

bending. These two cases result in single pair of linear elastic and plastic stages as shown in 

Fig. 3a and b. When fP is comparable to fCS, the two parts fail one after the other, namely, if 

fP<fCS, the plate fails before the cylindrical shell, which is the case of sample 2. This causes the 

double pairs of linear elastic and plastic stages, E1-P1 and E2-P2 in Fig. 3a and b: the first one 

is contributed by the bending and yielding of the plate, and the second by the bending and 

collapse of the cylindrical shell. In view of this, it can be concluded that it is the featured 

http://dx.doi.org/10.1016/j.ijmecsci.2016.03.020
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structure that provides the sample 2 with the optimized failure mechanism and further best 

energy-absorption ability even though the six samples have approximate mass. In this regard, 

the one-after-another failure mechanism of different components in the structure is similar to 

the hierarchical behaviour of spider silk [26], which enables its great extensibility, toughness 

and strength. 

 

4.2 Out-of-plane loaded samples 

In the loading process, the samples 1 and 5 were compressed almost aligned with the centroid 

of the imprint area of the two samples. The collapsed samples and their failure mechanisms are 

shown in Fig. 9. For the sample 1, the collapse of the structure, caused by the plate, is a classical 

problem, and the plastic strength is simply predicted by: 

 

2
* *

( , )
c c

ys

C
 

 
 

 
  

 
 (4) 

where, σ* and σc
ys are yield strengths of the structure and its constituent material, and C is a 

constant, which depends on the lobe's wavelength λ and the rotational angle ϕ of the plastic 

hinge. The black circled part (upper one in Fig. 9a) is representative because its boundary 

condition is close to that of the unit cell in multi-cell structures (only three unit cells here). The 

failed plates exhibit an anticlockwise trichiral arrangement, and only one lobe and fracture 

mouth forms (highlighted by the arrow in Fig. 9a), which depends on the structural geometry 

and mechanical behaviour of its constituent materials. 

For the sample 5, the collapse of the structure is caused by the cylindrical shell. For single 

cylindrical tube, many works explain its collapse mechanisms [27-29]. In particular, depending 

on thickness, diameter and length, Andrews et al. [29] classified collapse modes of cylindrical 

tubes into seven groups from concertina to tilting of the tube axis, basing on tested 189 annealed 

Ht-30 Aluminium alloy tubes. However, the cylindrical shell in the present structure is different 

from the single cylindrical tube, because of the restrains of its adjacent cylindrical shells (red 

circled points in Fig. 9b). In this case, the three-lobe collapse is prone to occur. Besides, we 

find that the sample 1 has a larger fold size and less fold number than those of the sample 5. 

For the samples 2–4, their collapse is contributed by both parts, i.e., plate and cylindrical 

shell (Fig. 10). Combining the extreme case (r/l=0 and r/l=0.5) discussed above, we can 

conclude that as r/l increases (Fig. 10), the substructure dominating the collapse of honeycombs 

again changes from the plates to cylindrical shells, as predicted by Eq. (3). The numbers of 
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folds in plates and cylindrical shells are mutually dependent, see the arrows in Fig. 10d, and the 

fold number increases for increasing r/l, and correspondingly, their wavelength decreases. 

Finally, due to the instability of the plates and cylindrical shells, marked by ellipses in Fig. 10a-

c, the shear effect as stated before is introduced, and this corresponds to the three stages (I, II, 

III) in Fig. 6a. 

 

5. Conclusions 

In this paper, we studied the mechanical behaviour of a set of cylindrical shell-plate assembled 

honeycombs. Through experiments and FEM numerical simulations carried on in-plane and 

out-of-plane loaded samples, their plastic collapse mechanisms were observed and analyzed. 

Young's modulus and yield strength of the honeycombs were optimized when r/l=0.3. In 

particular, when r/l=0.3, the in-plane loaded samples exhibited a functional gradient property 

since the plates failed after the cylindrical shells, while the out-of-plane direction was associated 

to the best energy-absorption capacity. Meanwhile, the developed numerical model was verified 

to be able to describe the experiments and could be used in the studies of future-developed 

honeycombs. Most of all, it indicates that the combination of hollow cylindrical shells and 

plates forms a new periodic assembly with better mechanical properties with respect to 

conventional honeycombs. This strategy may be used to generate new lattices for enhanced 

crashworthy structures. 
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Figures and tables 

Table 1. Geometric parameters and masses (m) of the eleven samples, note that the numbers in 

the parentheses denote the masses of the samples compressed in the y direction. 

Geometry of a unit 

cell 
n. 

In-plane 

n. 

Out-of-plane 

l  

[mm] 

r  

[mm] 

t  

[mm] 

m    

[g] 

mre    

[g] 

l  

[mm] 

r  

[mm] 

t  

[mm] 

m    

[g] 

mre    

[g] 

 

— — — —  — 1 20 0 1.78 41.7 39.6 

1 20 4 1.26 59.9 
55.8 

(53.1) 
2 20 4 1.26 41.7 38.9 

2 20 6 1.08 59.9 
55.0 

(52.3) 
3 20 6 1.08 41.7 39.8 

3 20 8 0.95 59.9 
56.7 

(53.2) 
4 20 8 0.95 41.7 36.5 

— — — —  — 5 20 10 0.84 41.7 34.6 

 

 

Figure 1. Images of (a) an in-plane loaded sample and (b) an out-of-plane loaded sample. 
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Figure 2. Stress-strain curve of 6061-T4 aluminum alloy used for the fabrication of 

honeycombs, obtained from tensile test on a dog bone specimen (picture of the failed specimen 

depicted within the graph). 

 

Figure 3. Stress-strain curves of the sample loaded in (a) x direction and (b) y directions 

showing experimental (solid lines) and FEM (dashed lines) results. Yield strength to mass ratio 

for (c) x direction and (d) y direction with comparison between experiments (filled markers) 

and FEM (unfilled markers connected by dashed lines). 
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Figure 4. Snapshots of the experimental in-plane loaded samples in the x direction with r/l=0.2 

(a and b) r/l=0.3 (c and d) r/l=0.4 (e and f) at two different strain levels. (i) Corresponding 

snapshots from finite element simulations and details of the cylindrical shell-plate joints for 

different r/l with contour of von Mises stress (red regions are the most stressed). The solid 

coloured circles in (g and h) represent the plastic hinges or fracture locations corresponding to 

the empty circles in (b, d and f). 
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Figure 5. Snapshots of the experimental in-plane loaded samples in the y direction with r/l=0.2 

(a and b) r/l=0.3 (c and d) r/l=0.4 (e and f) at two different strain levels. (i) Corresponding 

snapshots from finite element simulations and details of the cylindrical shell-plate joints for 

different r/l with contour of von Mises stress. The solid coloured circles in (g and h) represent 

the plastic hinge or fracture locations. 
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Figure 6. Comparison between experimental (solid lines) and finite element simulations 

(dashed lines) results of out-of-plane loaded samples. (a) Strain–stress curves of the five 

samples, and snapshots from the finite element simulations of the optimized structure at three 

states and the contour of plastic strain of the second state and (b) yield strength to mass ratios 

of the five samples: filled and dashed-line connected unfilled spots represents the experimental 

and FEM results, respectively. Note: the sample 1 (r/l=0.0) denotes the conventional regular 

hexagonal honeycomb. 
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Figure 7. Snapshots of four folds in the loaded sample 5: (a) experiment and (b) finite element 

simulation. 

 

 

Figure 8. Competition of elastic strain energies between the plate and the cylindrical shell as 

r/l varies. 
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Figure 9. Collapse modes of the (a) sample 1, and (b) sample 5. Simulations show the contour 

of plastic strain, and a good agreement in the collapse mechanism with experimental results. 

Figure 10. Experimental and simulated collapse modes of the out-of-plane loaded honeycombs 

with (a) r/l=0.2, (b) r/l=0.3, (c) r/l=0.4 and (d) collapse mechanisms of the cylindrical shell-

plate joints observed in the simulations, with detail of wall folding. 
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