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Abstract 

In this paper, we study the elastic buckling of a new class of honeycomb materials with hierarchical architecture, 

which is often observed in nature. Employed the top-down approach, the virtual buckling stresses and 

corresponding strains for each cell wall at level n-1 are calculated based on those at level n, then, comparing these 

virtual buckling stresses of all cell walls, the real local buckling stress is deduced; also, the progressive failure of 

the hierarchical structure is studied. Finally, parametric analyses reveal influences of some key parameters on the 

local buckling stress and strength efficiency (i.e. strength-to-density ratio); meanwhile the constitutive behaviors 

and energy-absorption properties with increasing hierarchy n are reported. The results show a possibility to tailor 

the functionality grade materials with different elastic buckling properties at each hierarchical level, and thus 

could have interesting applications, e.g. to design multiscale energy-absorption honeycomb materials. 
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1. Introduction 

Honeycomb materials are widely discovered in biological materials, such as the turtle shell (Krauss et al., 

2009) or the lobster’s exoskeleton (Fabritius et al., 2009), and they are very promising for material design (Gibson 

et al., 1982; Warren and Kraynik, 1987; Papka and Kyriakides, 1994, 1998a; Gibson and Ashby, 1997) due to their 

specific structural properties. For example, in the field of material science, they are used to be core materials in 

sandwich structures (Foo et al., 2007) and employed as energy-absorbing materials to reduce loading impact and 

protect an object from crushing (Xue and Hutchinson, 2006). 

Many pioneering works focused on its in-plane and out-plane mechanical behaviors (e.g. elastic buckling) 

(Papka and Kyriakides, 1998b; Zhang and Ashby, 1992), for example, Papka and Kyriakides (1994) explained the 

crushing process under uni-axial compression in detail. Generally, the collapse behaviour of the honeycomb 

material is characterized by three regimes: (1) At the initial loading stage, the material has a relatively high 

stiffness, the deformation is caused by the bending of cell walls and it is linear-elastic and stable; (2) as load 

increases, it collapses locally in a progressive but metastable way; (3) finally, the whole structure densifies and 

deformation is uniform and very stable. The three stages are shown in Fig. 1, in which our observations on a 

natural honeycomb and Scanning Electron Microscopic (SEM) images of the cell-wall constituent materials are 

reported.  

It is well-known that Nature creates composite structures in hierarchical way, from nanoscale to macroscale 

(Launey and Ritchie, 2009); the structures/materials at nanoscale and microscale exhibit highly anisotropy 

(Ritchie et al., 2009; Yao et al., 2011); in bioshells, they exhibit structural gradient (so-called functionality grade), 

for instance, the exoskeleton of lobsters has three different layers from exterior to interior, with decreasing 

densities, strength and hardness (Raabe et al., 2005). Honeycomb structure enable these biological materials to 

exhibit outstanding mechanical properties, e.g. low weight, high stiffness, strength, and toughness (Smith et al., 
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1999; Munch et al., 2008). For this reason, bio-inspired material is becoming of great interest  from the point of 

hierarchical structures.Munch et al. (2008) recently synthesized a tough bio-inspired hybrid material basing on 

aluminum oxide and polymethyl methacrylate, and the toughness of the product was more than 300 times higher 

than those of constituent materials. The synthesized structure was lamellar and similar to that of nacre, which has 

two hierarchical levels. Theoretically, basing on the principle of flow tolerance, Gao and co-workers (2006) 

brought a tensile-shear chain model forward to investigate the hierarchical mechanical properties of bone and 

bone-like materials, and they reported that the hierarchy of load-bearing biological materials  was dominated by 

the toughness optimization (Zhang et al., 2011). 

As for the studies on hierarchical honeycombs, Côté et al. (2009) studied the out-of-plane compressive 

properties of a composite square honeycomb sandwich core with structural hierarchy, and reported that the 

hierarchical topology substantially increased its compressive strength. Taylor et al. (2011) introduced hierarchy 

into honeycomb structures with different geometries (i.e., hexagonal, triangular or square), and investigated the 

in-plane elastic properties of honeycombs influenced by structural hierarchy; the results showed that hierarchy 

generally deterred the mechanical behavior of the hierarchical honeycomb, but interestingly, the negative 

Poisson’s ratio substructure resulted in a higher density modulus. Besides, Sen et al. (2011) studied the 

size-dependent mechanical properties of a nano-sized honeycomb silica structure, and the authors found that 

nano-sized honeycomb silica structure was tougher than larger size. 

In this paper, inspired by the hierarchical structure of natural materials (Fig. 2) (Cai, 2007; Gibson, 2005) and 

starting from an orthotropic material, we construct a new hierarchical honeycomb material (Pugno, 2006; Pugno 

et al., 2008; Chen and Pugno, 2011a; Pugno and Carpinteri, 2008), see Fig. 3 (Chen and Pugno, 2011b). Extending 

the Euler critical load of isotropic to orthotropic columns by pure bending beam theory, the local buckling stress 

of the hierarchical honeycomb material is formulated due to the significance in the energy-absorbing mechanism. 
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Besides, we perform a parametric analysis to investigate the influences of relevant parameters on local buckling 

loads, strength efficiency (i.e. strength-to-density ratio), virtual progressive failure, constitutive law and 

energy-absorption behavior.  

 

2 Elastic buckling of hierarchical honeycomb 

 Here, cell walls are treated as columns, as done in the classical theory on non-hierarchical honeycomb 

(Gibson and Ashby, 1997). For an orthotropic column, assuming the conservation of the plane sections and 

neglecting the shear effect, the buckling load 
crP  becomes (Timoshenko and Gere, 1961; Tolf, 1985): 

2 2

1

2cr

E I
P

l

 
                                                                            (1) 

where, l is the length of the column,   is a numerical factor depending on the boundary conditions, 1E  is the 

Young’s modulus in the longitudinal direction of the column and 1E I  is the bending rigidity. Eq. (1) is the 

classical Euler buckling formula, in which the Young’s modulus of an isotropic material is substituted by the 

longitudinal one of the orthotropic column.  

2.1 Elastic buckling of the nth hierarchical column 

We treat the structure in Fig. 4(a) as the nth level structure and each cell wall as the (n-1)th level structure; the 

structures at each level are considered as orthotropic due to the symmetric configuration. In order to determine its 

buckling load at level n, we need to calculate the applied loads acting on the six cell walls; then, employing Eq. 

(1), we can find the buckling loads for each column. Actually, three pairs are of our interest, i.e., ①, ②, ③ (Fig. 

4); moreover, only two of them (pair ①, ②) are treated because of the symmetry. For the sake of the simplicity, 

the cell walls ① are treated as inclined columns with one end clamped and the other fixed, and the buckling loads 

of the pairs ①, ② are expressed as (Chang, 2005; Gibson et al., 1982):  
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with 

( ) ( ) ( )2 cosn n nP sb l                                                                       (3) 

where, s is the external stress; b(n), ( )nl  and ( )n  are, respectively, the depth of the structure, the length of 

column ①and the angle made by column ① and the horizontal line at level n. 

2.1.1 Buckling stress analysis 

According to Eqs. (2) and (3), the axial loads acting on the two columns are expressed as  ( ) ( ) ( )

1 2,
T

n n nP P P  

with: 
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                                                                   (4) 

Elastic collapse occurs when one of the components in the force vector ( )nP  reaches the corresponding one in 

the critical force vector  ( ) ( ) ( )

,1 ,2,
T

n n n

cr cr crP P P , Namely: 

( ) ( )n n

crP P                                                                             (5) 

Combining Eqs. (1), (4) and (5), we find the external critical stress vector  ( ) ( ) ( )

,1 ,2,
T

n n n

cr cr crs s s : 
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where, h(n) is the length of column ②.  

Regarding the numerical factors, ( )

1

n  and ( )

2

n , they are determined in different ways. For the inclined cell walls, 

( )

1

n
,
is calculated by 

( ) 2 ( )

2 ( )1 1

( ) 2 ( ) ( )

1 1

( ) 1 cos( )
cot 2 1 0

( ) ( )sin( )

n n

n

n n nR

   


   


    (Chang, 2005), where, ( )nR  is the slenderness 

ratio; here, ( )

1

n
 

is considered as a constant and equals to 2.76, because it has a minor change when θ(n) varies 

http://dx.doi.org/10.1016/j.euromechsol.2011.12.003


This is the pre-print version of the article Q. Chen, N.M. Pugno, In-plane elastic buckling of hierarchical 

honeycomb materials, EUROPEAN JOURNAL OF MECHANICS A/SOLIDS (2012), 34, 120-129 
available in its final version at http://dx.doi.org/10.1016/j.euromechsol.2011.12.003 

 

6 
 

between 15o~75o and ( )nR  between 50-500; moreover, ( )

1

n =2.76 when θ(n)=15o is conservative, compared with 

2.86 when θ(n)=75o. For the vertical cell wall, we use the formula (Gibson and Ashby, 1997) 

( )( ) ( ) ( )

2 2tan 2
nn n nh l    to calculated ( )

2

n , which depends on 
( )( ) nnh l .The second expression in Eq. (6) is the 

same as that reported in the Reference (Gibson and Ashby, 1997) for non-hierarchical honeycomb. And, the 

Young’s modulus ( ( 1)

1

nE  ) of the cell walls is expressed as (Chen and Pugno, 2011b): 
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If we define a new pseudo-vector ( ) ( )( )
1 2( , )n nn T   : 

( ) ( )

1
( ) ( )
2

cot
2cos

n n

n n

 
 




                                                                        (9) 

then, Eq. (4) can be rewritten as: 
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n
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                                                                 (10) 

where   is the Kronecker product and ( ) ( ) ( )n n nA b t  is the cross-sectional area of the cell wall at the nth level. 

Correspondingly, Eq. (6) is expressed as: 
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Furthermore, Eq. (11) is expressed as: 

 
1
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where, 
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Accordingly, the local buckling stress at level n is the minimum one in the critical stress vector ( )n

crs , i.e. 

( ) ( )min( )n n

cr crs s                                                                         (13) 

2.1.2 Buckling strain analysis 

In Section 2.1.1, we deduced the elastic buckling stress; whereas, in this part, the corresponding buckling strain is 

derived. First, we make an assumption: when one of the columns buckles, it collapses immediately and 

completely (see Fig. 5). Then, the displacements  ( ) ( ) ( )

,1 ,2,
T

n n n

cr cr cr     
 

of pair ①, ② at level n are obtained 

through geometrical analysis in a unit cell: 
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and the buckling strains of pair ①, ② are  ( ) ( ) ( )
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cr cr cr      : 
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Thus, in general: 

( ) ( )

( ) ( ) ( )

1

sin

n n

cr crn n nl h
 


  


                                                            (16)2.2 

Elastic buckling of the (n-1)th level structure 

2.2.1 Buckling stress analysis 

Here, the (n-1)th level structure corresponds to the cell walls of the nth level structure treated before, that is to say, 

each pair cell walls of the nth level contains two pairs cell walls of the (n-1)th level structure. Thus, for the (n-1)th 

level structure, we have four pairs. Now we use the results of the nth level and find the loads on the four pairs: 

http://dx.doi.org/10.1016/j.euromechsol.2011.12.003


This is the pre-print version of the article Q. Chen, N.M. Pugno, In-plane elastic buckling of hierarchical 

honeycomb materials, EUROPEAN JOURNAL OF MECHANICS A/SOLIDS (2012), 34, 120-129 
available in its final version at http://dx.doi.org/10.1016/j.euromechsol.2011.12.003 

 

8 
 

( 1)
( 1) ( 1) ( ) ( 1)

( 1)

n
n n n n

n

l
P sA

t
 


  



 
   
 

                                                       (17) 

Following the previous procedure, we find the critical stresses for the four pairs of cell wall at level (n-1): 

   
1 1
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                                                  (18) 

Thus, the local buckling stress at level (n-1) is derived as: 

( 1) ( 1)min( )n n

cr crs s                                                                        (19) 

2.2.2 Buckling strain analysis 

Like level n, the displacements ( 1)n

cr   of pair ①, ② at level (n-1) can be calculated as: 

( 1) ( 1) ( 1)
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If we define: 

 ( ) ( )( 1) ( )
1 2sin ,

T
n nn nm m m                                                                 (21) 

where, ( )

1

nm , ( )

2

nm are numbers of unit cells at level (n-1) along the longitudinal direction of the columns ①, ② 

at level n (see Fig. 5(d)), the buckling strain at level (n-1) is expressed as: 

( 1) ( ) ( 1)
( )( ) ( )

1

sin
n n n
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l h
 


   


                                                    (22) 

2.3 Elastic buckling of the first level structure 

2.3.1 Buckling stress analysis 

Similarly, the above stress result can be used for the first level structure by extending Eqs. (17)-(19), i.e.: 

(1)
(1) (1) ( ) ( 1) (1)

(1)

n nl
P sA

t
   

    
 

                                                    (23) 

The critical stresses of each pair at level 1 are: 

       
1 1 1 1

(1) ( ) ( 1) (2) (1) (1) (0)

1

n n
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                                    (24) 

The local buckling stress at level 1 is: 
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(1) (1)min( )cr crs s                                                                        (25) 

2.3.2 Buckling strain analysis 

Extending Eq. (22), the buckling strain at level 1 is expressed as: 

(1) ( ) ( 1) (2) (1)
( )( ) ( )

1

sin
n n

cr crnn n
m m m

l h
 


     


                                        (26) 

2.4 Local buckling stress of the whole hierarchical structure 

Now, we have the local buckling loads at each level, but we usually need the buckling load for the whole structure, 

that is: 

( ) (1) (2) ( )min( , , , )n n

cr cr cr crS s s s
                                                               (27)

 

2.5 The strength-to-density ratio 

The strength-to-density ratio is an important index to design and optimize energy-absorbing materials. Budiansky 

(1999) studied the structural efficiency of several compression structures (e.g. hollow columns and foam-filled 

sandwich columns) by the maximum stress and strain theory. Here, in order to evaluate the strength efficiency of 

the hierarchical honeycombs, we employ a strong tie provided by Ashby (2010). For a uni-axially loaded structure, 

the strong tie is expressed as Ps1=S/ρ, and a light but strong structure can be obtained by optimizing the value. 

Employing the expression of the relative density for non-hierarchical honeycombs (Gibson and Ashby, 1997), we 

have: 

( ) ( ) ( ) ( )

( 1) ( ) ( ) ( ) ( ) ( )

( / 2)

2cos ( / sin )

n n n n

n n n n n n

h l t

h l l



  





                                                   (28) 

Thus, the density of the n-level hierarchical structure is derived by an iterative process as: 
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1
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with 
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Therefore, combining Eqs. (27) and (29), the strength-to-density is expressed as: 
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3 Parametric analysis 

The influences of the parameters in the vector ( ) ( ) ( ) ( ) ( ) ( )( , , )i i i i i ih l t l   are investigated under the self-similar 

conditions: ( ) ( )i ih l h l , ( ) ( )i it l t l , and thus ( ) ( )i it h t h ; the boundary coefficient 
( )

2

i

 is a function of 

( ) ( )i ih l , as well as 
( )

2 2

i

  . Thus, the self-similar conditions are: 

( ) ( , , )   1,  2,  ... ,i h l t l i n                                                             (31) 

In this section, inspired by wood, we treat the example of hierarchical honeycombs.  The elastic modulus 

(0)

1 10600E  MPa and density (0) 1.5  g/cm3 (Easterling et al., 1982) of wood cell walls are adapted here. 

3.1 Local buckling stress 

Here, the local buckling stress refers to the buckling stress under which the first column takes place, see Eq. (27). 

Taking a two-level self-similar honeycomb as an example, the parametric analysis results are plotted in Fig. 6. 

Fig. 6 shows the influences of two components in the vector   with the left one fixed. We can see that the 

buckling stress generally increases when t/l and θ increase (Fig.6a,c); while it decreases when h/l increases (see 

the inset in Fig.6b), and increasing h/l produces a weak influence (Fig.6c), compared with the other two.. For the 

mechanical behavior influenced by the three geometric parameters in the vector  , there are three different 

reasons: increasing t/l produces a larger bending rigidity of the inclined columns, thus, Young’s modulus is 

enhanced, furthermore, the buckling strength is improved; likewise, increasing θ with other parameters fixed 

results in larger Young’s modulus (Eqs. (7) and (8)) and again the structural strength increases; as for h/l, it 
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produces an inverse effect, this is because increasing h/l results in a lower buckling stress. 

Also, we compare our result with the transverse strength of natural wood, which is defined as the stress at 

proportional limit corresponding to the first bucking stress in our model. For example, radial compression strength 

of Balsa is about 1500kPa (Easterling et al., 1982), which is corresponding to the value 1497 kPa at 

o(20 ,1.0,0.4)   (see the inset in Fig.6a). Besides, more strength properties of some important commercial 

woods are available in Green et al. (1999), and their transverse compression strength ranges from 1000kPa to 

19000kPa, which match our result very well by selecting the corresponding parameters. 

3.2 Strength to density ratio 

Based on the density value of wood, the strength to density ratios (2) (2)
crS   of the two-level hierarchical 

structures influenced by ,h l  and t l  are shown in Fig. 7.  

It suggests that the strength efficiency increases when one of these geometrical parameters increases. And the 

increase in   or t l
 
is more efficient than that in h/l. The former improve the buckling-resisting capacity by 

approximately two or six orders of magnitude (  from 20o to 60 o and t l
 
from 0.04 to 0.36), while the latter is 

in the same order when h l  varies from 1.0 to 3.0. However, different from Fig.6b, Fig.7b shows that increasing 

h/l results in higher strength efficiency. This is because the increasing h/l provides a lower density, and the 

influence on density is stronger than that on strength. We can also see that the strength efficiency influenced by 

the other geometrical parameters (  or t l ) are similar as those in Fig. 6a,c, since the strength increment prevails 

on the density increment. 

3.3 Progressive buckling collapse 

Compared with the first buckling stress, the progressive failure of the hierarchical honeycomb is more complex. 

Thus, due to the complexity, the calculation is here simplified by neglecting the influences produced by collapsed 

columns (e.g., a length modification or a load redistribution in surviving columns) and plotting the stress vector 
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( ) ( 1) (1) (0)( , , , , )n n

cr cr cr cr     in ascending order with corresponding normalized strain ( 1  ) obtained from the 

vector ( ) ( 1) (1) (0)( , , , , )n n

cr cr cr cr       . Note that this simplified assumption is conservative. Here, we investigate a 

three-level self-similar honeycomband treat 14 (8+4+2) different columns, due to the symmetry, see Fig. 8. 

Note that: 

( ) ( ) ( ) ( )

2 1

i i i ih l m m h l                                                                   (32) 

Considering (3) 30mml   and ( )

1 3im   in the example, ( )ih , ( )il  and ( )

2

im  could be obtained according to the 

self-similar condition (32). The parametric analysis of the progressive failure is reported in Fig. 9a,b,c, in which 

each point corresponds to a column (Fig. 8); in particular, the experimental stress/strain curve in Easterling et al. 

(1982) is compared with the investigated curve with o(20 ,1.0,0.4)   (Fig.9d). In Fig. 9a,b,c, bij denote the 

collapsed columns in the hierarchical honeycomb, as described in Fig. 8. To some extent, Fig. 9  reflects the 

degree of graceful failure quantitatively. 

3.4 Constitutive laws and deformation energy 

In addition, employing the same procedure as Section 3.3, we investigate the stress/strain curves (Fig. 10) and 

energy density (deformation energy per unit volume) or specific energy (deformation energy per unit mass) (Fig. 

11) according to different level n, which is from one to three. We find that energy density decreases, since 

buckling stress strength decreases as level n increases; while specific energy increases, since structural density 

decreases as level n increases. This indicates that level n increases, the hierarchical structure is more efficient. And 

for the two-level structure, the structure reaches a balance between energy density and specific energy, this may 

explain why wood and grass stem have two hierarchical levels in Fig. 2. 

 

4 Conclusions 
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In this paper, we derive the buckling stresses and strains of hierarchical honeycomb materials. Parametric analyses 

are discussed for a two-level or three-level hierarchical honeycomb material, respectively. The former is 

employed to investigate the geometrical influences on the local buckling stress and mechanical efficiency, in 

general, they are improved by increasing the parameters except that increasing h/l results in a lower local buckling 

stress; and the transverse compression strength of natural wood agrees well with our results. The latter is 

considered to investigate the geometrical influences on the progressive collapse. Finally, the study on the 

stress/strain law and deformation energy shows that increasing hierarchical level n induces lower energy density 

but higher specific energy. The results indicate that the mechanical behaviors of the hierarchical structure can be 

tuned at each hierarchical level and thus is attractive for designing a new class of light but effective 

energy-absorption  materials. 

It is worth to say that the model considers hierarchical more than fractal architectures, to be more general and 

more close to the real world. However, geometrical self-similarity would lead to fractals. Thus fractals could be 

treated in our general hierarchical model as limiting cases (see also Pugno, 2006). Also future numerical analysis 

will be interesting, and including the filling of matrix could reach an optimal toughness as that in the Reference 

(Zhang et al., 2011). 
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Figure captions: 

Fig. 1 Natural honeycomb crushing process: (a) linear-elastic stable stage; (b) progressive metastable stage; (c) 

densification very stable stage; (d) schematic of a honeycomb stress-strain curve; (e) silk (inclusion); (f) wax grain 

(matrix). 

Fig. 2 SEM image of pure aspen wood: (a) aspen wood (Cai, 2007); (b) grassy stem (Gibson, 2005).  

Fig. 3 Hierarchical honeycombs. 

Fig. 4 Schematic of nth level hierarchical honeycombs. 

Fig. 5 Buckling collapse of nth hierarchical honeycomb: (a) initial configuration; (b) collapse of columns ①, ③; 

(c) collapse of column ②; (d) numbers of unit cells in columns ①, ②. 

Fig. 6 Parametric analysis on the buckling stress 
(2)

crS
 
of a two-level hierarchical honeycomb. Insets in Fig.6a, b 

are local magnifications, respectively. 

Fig. 7 Parametric analysis on the strength-to-density ratio of the two-level hierarchical honeycomb. 

Fig. 8 Schematic of a three-level hierarchical honeycomb. The subscripts of each column reflect the location in 

the hierarchical structure; the first subscript denotes the level and the second its location in the level. 

Fig. 9 Progressive failure stress-strain relationship of a three-level hierarchical honeycomb: (a) h/l=1.0, t/l=0.1; (b) 

θ=40o, t/l=0.1; (c) θ=40o, h/l=1.0; (d) comparison between theory and experiment. 

Fig. 10 Stress/strain curve vs level n: (a) h/l=1.0, t/l=0.4, θ=40o; (b) h/l=1.0, t/l=0.3, θ=40o; (c) h/l=2.0, t/l=0.4, 

θ=40o.  

Fig. 11 Energy density & Specific energy vs level n: (a) h/l=1.0, t/l=0.4, θ=40o; (b) h/l=1.0, t/l=0.3, θ=40o; (c) 

http://dx.doi.org/10.1016/j.euromechsol.2011.12.003


This is the pre-print version of the article Q. Chen, N.M. Pugno, In-plane elastic buckling of hierarchical 

honeycomb materials, EUROPEAN JOURNAL OF MECHANICS A/SOLIDS (2012), 34, 120-129 
available in its final version at http://dx.doi.org/10.1016/j.euromechsol.2011.12.003 

 

19 
 

h/l=2.0, t/l=0.4, θ=40o..  
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Figure 3: 
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Figure 4: 
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Figure 5: 
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Figure 7 
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Figure 8: 
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Figure 9: 
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Figure 10: 
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Figure 11: 
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