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Out-of-plane defects may exist in graphene inevitably or purposely.  The present study aims at investigating the influence of out-of-plane 

defects on vibrational analysis of single layered graphene sheets (SLGSs) implementing both nonlocal elasticity and molecular dynamics 

(MD) simulations. In nonlocal elasticity analysis, the defect is considered as an initial curvature which is modeled by an analytical function 

having controllable parameters for the amplitude, extension, and location. In molecular dynamics analysis, defects are simulated by 

inserting inverse Stone-Wales defects in the perfect structure of SLGSs. Both nonlocal continuum and MD   simulation results reveal that 

the defects increase the vibrational frequency. It is shown that classical elasticity overestimates frequencies with a considerable error 

while the nonlocal plate model can fit MD results by implementing a proper small scale parameter. 

 
1.  Introduction 

 
Graphene, the latest discovered carbon nanostructure, having its  especial two dimensional (2D)  geometry, has  rapidly 

outpaced other well-known carbon nanostructures, i.e. fullerenes (zero-dimensional) and carbon nanotubes (one-dimen- 

sional), in  most fields of researches due to its  exclusive mechanical, thermal, and electronic properties [1].  Recently,  in- 

vestigations on graphene are extensively performed in various domains like fabrication methods of graphene sheets (GSs) [2], 

its  wide applications in life, healthcare and technology [3], determination of its  unique physical, mechanical and electrical 

properties [4] and developing theories and mathematical models for simulating GSs [5]. 

Ideally, carbon atoms of graphene are arranged on a flat plane inside a perfect hexagonal lattice. However, experimental 

observations [6] as well as atomistic simulations [7] verified the existence of inevitable defects in graphene structure during 

its  fabrication process, which alters its  perfect two dimensional hexagonal lattice and significantly affects its  physical, me- 

chanical, and electrical properties  [8].  The defects in graphene can be categorized based on the genesis mechanisms: 

removing carbon atoms (vacancies), adding carbon atoms or  ther impurities (adatoms), and rearrangement of  existing 

carbon atoms (different ring  sizes  like Stone-Wales defects made by rotating a carbon bond). In the past years, vacancies and 

Stone-Wales defects and their influence on properties of GSs were comprehensively studied [9,10]. These defects are 

considered to alter the graphene lattice in its plane and therefore GSs remain 2D. Nevertheless, it is shown by both exper- 

imental observations [11] and atomistic simulations [12] that in the presence of specified types of defects graphene reshapes 

to a three dimensional (3D) state to minimize its energy. One of the most common out  of plane defects is observed near the 

grain boundary regions of GSs fabricated by chemical vapor deposition (CVD). Liu et al. [13,14] carried out  a series of hybrid 

molecular dynamics simulations to  study the structures, energies, and structural transformations of grain boundaries  of 

graphene and calculated the arrangement of pentagon/heptagon defects and associated out-of-plane deformations up  to 

almost 3 Å in grain boundaries, depending on the chirality and tilt angles of grains. Yazyev and Louie [15], introduced a general 

approach for constructing the dislocations in graphene grain boundaries using ab initio  calculations and investigated strong 

tendency toward out-of-plane deformation. They showed that defects in grain boundaries have important effects on physical 

properties of graphene and mentioned that these effects may be used for engineering graphene-based nano-materials and 

functional devices. 

Against inevitable out-of-plane defects like  grain boundary defects, recent studies suggest manipulating progresses to 

control position and type of defects using scanning tunneling microscopy (STM), atomic force microscopy (AFM), and ion  or 

electron irradiation to  create engineered desirable defects that modify properties of graphene [16e20]. Accordingly, some 

researchers have been motivated to design desired shapes and tune properties of graphene by manipulating out-of-plane 

defects. Lusk and Carr  [21,22] proposed a method for  engineering defects in graphene by introducing defect domains and 

presented a set  of stable defects. Using  density functional theory (DFT) they showed that some of these defects rise  up out  of 

the sheet about several angstroms. The  possibility of controlling the shape of graphene using defects based on  both con- 

tinuum and atomistic simulations was investigated by Zhang et al. [23]. They adopted a generalized von Karman equation for 

a flexible solid  membrane to  describe graphene wrinkling induced by a prescribed distribution of topological defects and 

revealed that the proposed continuum model was capable of accurately predicting the atomic scale  wrinkles near defects. 

Also, it was shown that under specific defect distributions it is possible to generate controlled large scale  graphene config- 

urations. The  influence of  out-of-plane curvature of a  monolayer graphene on  its  bending behavior was investigated by 

Jomehzadeh et al. [24].  It  was found that the proper configuration of initial curvature suggests the possibility of a smart 

stiffening tuning. 

Recently,  GSs have offered great promise for  application in  nano-electro-mechanical  systems, especially as  Gigahertz 

oscillators, resonant mass sensors, and ultra-high frequency nanoresonators [25,26]. Consequently, the vibrational charac- 

teristics of GSs have been extensively studied considering both continuum [27e32] and molecular [33,34] approaches. From  a 

continuum perspective, a GS due to  its  planar geometry is assumed as  a nanoplate and the associated well-known plate 
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theories are  employed to  predict its  response against mechanical loadings. To consider the discreteness of GSs, classical 

continuum elasticity is usually modified by adding a small scale  parameter. Reviewing the literature reveals that the nonlocal 

elasticity of Eringen [35]  has  been widely employed to consider size  effects in carbon nanostructures and its results are  in a 

good agreement with those obtained by molecular approaches [36]. 

Notifying the possibility of generating controllable defects in graphene sheets, one  may be  motivated to use  continuum 

plate for  modeling GSs with out-of-plane defects. Historically, out-of-plane defects of plates have been an  attractive issue 

among researchers in  the field known as  “plates with initial geometric imperfections”.  These imperfections refer to  per- 

manent small deviations from the perfect flat shape of plates. It is reported that these initial imperfections can  significantly 

affect response of plates to bending, vibration, and buckling loading situations [37,38]. Therefore, it may also  be tempting to 

extend the idea to nanoplates and take into account inevitable or engineered out-of-plane defects of GSs as initial geometric 

imperfections. 

According to the aforementioned review, out-of-plane defects may exist in GSs inevitably or purposely. On the other hand, 

potential application of GSs as resonators has  been widely addressed and consequently, investigating the influence of defects 

on  vibrational behavior of GSs may have significant outcomes for designing more efficient graphene-based resonators and 

sensors. Therefore, this work aims to  study the influence of defects on  the vibration behavior of single layered graphene 

sheets (SLGSs) via both nonlocal continuum elasticity and molecular dynamics approaches. At first, a SLGS is considered as a 

nanoplate with an  initial geometric imperfection then a parametric study is carried out  to explore the effects of shape and 

amplitude of initial imperfection, nonlocal small-scale parameter and geometry of SLGS on its vibrational frequency response. 

Then,  molecular dynamics simulation with some specified defects is  performed and the obtained frequency response is 

compared with nonlocal continuum results to calibrate a proper value for the nonlocal small scale  parameter finding a good 

agreement. 

 
 

2.  Nonlocal continuum elasticity for defective SLGSs 

 
In the continuum mechanics approach, let  us consider a rectangular nanoplate of length a, width b, effective thickness h 

and mass density r with an  initial geometric imperfection, w*, (Fig. 1). It is assumed that the initial geometric imperfection 

exists only  along transverse direction and the imperfect nanoplate is in a stress-free situation. It has  been proved [39]  that 

neglecting shear deformations of a plate with large thickness to length size  ratio significantly decreases the validity of plate 

model in comparison with the exact elasticity solution. In order to improve the accuracy of the results, the first order shear 

 

 
 

Fig. 1.  Continuum and molecular models of out-of-plane defective SLGSs. 
 

 

deformation plate theory (FSDT), which considers shear deformations, is  implemented to  define displacements field as 

follows: 

 
The five shown independent variables u0, v0, w0, 4x, and 4y are the mid-plane displacement components along the x, y and 

z directions and rotations about y-axis, and x-axis, respectively, and t defines time. The  strain-displacement  relations for 

small deformations are  defined as: 



  

 

where ( ),x and ( ),y indicate the differentiation with respect to x and y, respectively. To consider discrete nature of SLGSs, size 

effect could be adopted to the continuum formulation by introducing the nonlocal small scale  parameter, m ¼ (e0a0)2.  (e0  is a 

material constant, a0  is the internal characteristic length) [35], and modifying constitutive stressestrain relations. For brevity, 

we  ignored explaining step-by-step details for adding nonlocal effects to equations of motion. However, an extensive review 

on employing the nonlocal elasticity for modeling carbon nanotubes and graphene could be found in Ref. [36]. By employing 

the Hamilton's principle, the nonlocal governing equations of motion can  be obtained as [39]: 

 

  
where A ¼ Eh/(1     n2) and D ¼ Eh3/[12(1    n2)] are the longitudinal and flexural rigidity of the nanoplate, respectively (E and v 

are  Young's modulus and Poison's ratio of the nanoplate) and Ks is the shear correction factor of FSDT set  to 5/6  [39]. Also, ($) 

indicates differentiation with respect to t and I0 and I2 are  mass moments of inertia which are  defined as follows:  
 

Reviewing the literature reveals that the boundary  conditions of SLGSs needs to  be  explain more clearly. Ref. [40]  has 

reported both clamped and simply supported edges for SLGSs. In the nonlocal continuum model, as a nanoplate, it is possible 

to consider both boundaries. However, in MD simulations it was suggested to fixed one layer of carbon atoms for mimicking 

simply supported edges while four  layers of carbon atoms needed to be  fixed in clamped boundaries with zero slope. This 

assumption may cause a  misunderstanding: From  classical structural  mechanics, it  is  known that a  plate with clamped 

boundaries has  higher frequency than a simply supported one.  One the other hand, it is known that when the length size of a 

plate reduces, its  frequency increases. In MD simulations, when four  layers of carbon atoms are  fixed, these atoms are  not 

vibrating and in fact they are  not included in the active area of vibration. Actually, the SLGS margin has  been removed and its 

length size  has  been reduced. Hence, its  frequency increases because of reducing length size  not changing the boundary 

condition of clamped edges. Besides, in MD simulation results, one  can  see  that the carbon atoms close  to the fixed edges 

easily move in transverse direction and the slope of a vibrating graphene sheet in its boundaries is considerably different from 

zero and cannot be neglected. In real situation when the boundaries of a SLGS are fixed, many layers (more than four layers) of 

atoms may be attached to the substrate. However, only  the active atoms are  considered for determining the effective length. 

The conclusion is that the ideal clamped edges cannot be achieved in SLGSs. Consequently, because of existence of non-zero 

slope at the edge, in the continuum nonlocal model the edges of SLGS are  considered as simply supported. The conditions of 

simply supported boundaries are: 

 
 
 
 



 
3.  Numerical Continuum 

 
In this section, the partial differential Eq. (3) with the associated boundary conditions (5) will be numerically solved using 

spectral method [41]  in  order to  determine the frequency response of defective SLGSs. It has  been reported that pseudo- 

spectral method (the collocation version of  spectral method) can  be  accurately applied to  non-periodic finite domains 

such as structural problems [42e44]. The main idea in this method is to approximate the derivative of an unknown function, 

F, at a  collocation point by  an  equivalent weighted linear sum of  the function values at  all  collocation points. For  one- 

dimensional domains it can  be written as follows: 

 
where (N þ 1) is the number of collocation points, FðnÞ ;x ðxiÞ indicates nth differentiation of function F in ith 

collocation point and [D(n) ] is called the nth differentiation matrix, whose components can be found based on Chebyshev 

basic functions [45].  To extent the method to two-dimensional domains, one  can compute the nth partial derivative by use  

of Kronecker products as follows [45]: 

 

The Basic functions (Chebyshev polynomials) are  orthogonal in the range of [   1,1]  and consequently the differentiation 

matrix components, [D(n)], are  defined in this range. Therefore, the rectangular real  domain of nanoplate needs to be mapped 

to a 2 x 2 square computational domain by the following transformations: 

 
 

For  the purpose of  optimum distribution, the  grid   points in  both x.  and y  directions are  selected based on   the 

GausseLobatto interpolation points as [41]. 

Also, the following dimensionless parameters are introduced to make the problem dimensionless: 

where U and u are  the factual and dimensionless natural frequency of the system, respectively. Namely, the dimensionless 

displacement components are  assumed as: 

Substituting Eqs. (8),  (10)  and (11)  into Eqs. (3)  and (5),  One  can  obtain the dimensionless eigenvalue problem for  free 

vibration of defective SLGSs in the following forms: 

 



  

ij 

and the dimensionless boundary conditions are 

 
 

The discrete form of the problem based on the pseudo-spectral method can be obtained by applying Eq. (7) to Eqs. (12) and 

(13),  which is written in the following matrix form: 

where kij, and mii are the stiffness and mass components related to a perfect nanoplate and k
    

matrices contain the effect of 

the initial geometric imperfection and their description is presented in  Appendix A. From  Eq. (14),  it is seen that the 

presence of geometric imperfection causes a coupling between in-plane and transverse motions. It can be concluded that the 

assumed in-plane boundary conditions will  also  affect transverse vibration frequencies. In order to  establish the standard 

eigenvalue form of the problem, the displacement vectors can be divided into the boundary and the domain parts as follows: 

 
where the subscripts b and d indicate boundary and domain, respectively. The resulting eigenvalue equations can  be written 

in the matrix form as: 

 
 

Eliminating the boundary displacement vector {b} from Eq. (16)  yields:  
 

 
where [M]  is  the total mass matrix and [K] is  the total stiffness matrix which contains the effect of  initial geometric 

imperfections. 

 

 



 
Table  1 

Dimensionless fundamental frequencies of perfect nanoplates. (n ¼ 0.16). 
 

g a m Present Exact [29] 

0.5 0.01 0.00 12.3345 12.3352 

  0.01 11.6375 11.6382 

  0.10 8.2530 8.2534 

 0.10 0.00 12.1011 12.1597 

  0.01 11.4173 11.4726 

  0.10 8.0968 8.1360 

1 0.01 0.00 19.7330 19.7346 

  0.01 18.0332 18.0347 

  0.10 11.4426 11.4436 

 0.10 0.00 19.1478 19.2911 

  0.01 17.4985 17.6294 

  0.10 11.1034 11.1864 

 
 

4.  MD simulations 

 
MD  simulation has  been carried out   by  using the open source renowned software i.e.  large-scale atomic/molecular 

massively parallel simulator (LAMMPS)  through a  velocity-Verlet algorithm with a  time step of  0.5  fs  to  integrate the 

Newton's equations of motion. Since, the considered system only contains carbon atoms, the adaptive intermolecular reactive 

empirical bond order potential (AIREBO) [46]  is applied. AIREBO potential contains three types of interactions: the famous 

hydrocarbon REBO potential [47]  for  modeling short ranged CeC covalent interactions, 4-body torsion potentials, and the 

standard LennardeJones potential. 

Simulation is fulfilled following these steps: At the first, the defective SLGS, which is created by  manipulating perfect 

structure of graphene, allowed to be freely relaxed in a desired temperature for a long  enough time period by applying the 

NoseeHoover thermostat [48]  to  achieve the stable state of SLGS with the desired out-of-plane defect. Since  the present 

continuum model do not consider thermal effects, for the possibility of comparison, all MD simulations are  performed at low 

temperature conditions, i.e. 1 K. Boundary conditions are  implemented by fixing motion of one  layer of carbon atoms at the 

edges of SLGS. It should be mentioned that these boundaries determine the active area of SLGS in vibrating motion and the 

length and the width of SLGS are specified based on these boundaries. Then, the vibrational motion can be simulated applying 

an  initial velocity,  V0 ¼ vmaxsin(px/a)sin(py/b), associated  to its  approximate fundamental mode shape, where vmax   is the 

maximum initial velocity at  the center of the SLGS. Here, we  used vmax  ¼ 0.5  Å/ps  to  make a vibration motion with small 

amplitude to  be  comparable with small deformation assumption in  continuum model. In order to  avoid the effects of the 

thermostat on free  vibration simulation, a constant total energy ensemble (NVE) is applied and the SLGS is allowed to vibrate 

freely. The natural frequency is captured from the lateral position trajectory of every moving carbon atom (we  used central 

atom) of the SLGS during a long  enough time period (80  fs) by implementing the fast  Fourier transform (FFT) method. 

 

 
Fig. 2.  Controlling the extension of out-of-plane defect on the surface of SLGSs by changing d parameter. 

 

 



  

 
 

Fig. 3.  Three types of out-of-plane defects defined by Eq. (18): (a) sinusoidal defect with d ¼ 0, xc/a ¼ yc/b ¼ 0.5, x ¼ 1. (b) Bulge  defect with d ¼ 8, xc/a ¼ yc/b ¼ 0.5, 

x ¼ 0.6. (c) Five bulge defects dispersed on  the surface of the SLGS with d ¼ 12, x ¼ 0.6, (xc/a, yc/b) equal to (0.25, 0.25), (0.5,  0.5),  (0.75, 0.75), (0.25, 75),  and (0.75, 

0.25). 

 

 
5.  Results  and discussion 

 
5.1.  Parametric vibration study  of defective  SLGSs 

 
In  this section, the influence of  effective parameters  i.e.,  nonlocal small-scale parameter,  thickness to side  ratio, and 

amplitude, frequency and location of defects on fundamental frequency response of SLGSs is studied in detail. First  of all, in 

order to verify the accuracy of presented formulations and mathematical model, dimensionless fundamental frequencies of a 

perfect flat nanoplate (w* ¼ 0) with various thickness to side  ratios, a, aspect ratios, g, and dimensionless nonlocal parameter, 

m,  are listed in  Table  1 and compared with the analytical results obtained using nonlocal FSDT plate model [29].  A good 

agreement is observed confirming the efficiency of the present method. It is seen that increasing size  effects (m), increasing 

thickness to  side  ratio (a), and decreasing aspect ratio (b), all  results in  decreasing the dimensionless frequency of  the 

nanoplate. 

The initial geometric  imperfection,  w*(x,y), which describes the considered  defects of SLGSs, is defined as a surface that 

best fits the shape of the defective SLGS. Although it is possible to consider any arbitrary function as an initial imperfection, for 

parametric study of amplitude, frequency and location we  adopt [49]: 

 
 

where trigonometric cosine functions create a transverse bulge with the maximum located at  (xc, yc) with amplitude to 

thickness ratio of x and extension controlled by d parameter. When d equals to zero, the transverse bulge is fully extended on 

the surface of the SLGS, while increasing d concentrates the bulge to the point (xc, yc) as it is shown in Fig. 2. The dimensionless 

initial imperfection is fully  described by applying Eqs. (8) and (10)  into Eq. (18).  Some combination of these parameters and 

the associated imperfect shapes are  presented in Fig. 3.  
 

 

 

Fig. 4.  Influence of dimensionless imperfection amplitude on  imperfection sensitivity of SLGSs (d ¼ 0; xc =a ¼ yc =b ¼ 0:5; m ¼ 0; g ¼ 1). 

 



 
 

 
 
 
 

 
 

 
 
 
 
 

Fig. 5.  Influence of dimensionless nonlocal small scale parameter on  imperfection sensitivity of SLGSs (d ¼ 0, xc/a ¼ yc/b ¼ 0.5,  a ¼ 0.1,  g ¼ 1). 
 

 

To explain quantitatively the influence of initial geometric imperfection on  frequency of SLGSs, dimensionless imper- 

fection sensitivity,  S, is defined as  the percentage of relative changes of fundamental frequency due to  presence of initial 

imperfections, S ¼ ðu* =u     1Þ x 100,  where u is  fundamental frequency of  a  perfect SLGSs while u*  is  the fundamental 

frequency of the defective SLGS. Fig. 4 illustrates the variation of imperfection sensitivity, S, versus variation of dimensionless 

amplitude of  defect, x,  for  several values of  thickness to side  ratios,  with ignoring nonlocal effects. The  imperfection  is 

considered fully extended and its shape is a sinusoidal surface with one wavelength in every direction (d ¼ 0, xc/a ¼ yc/b ¼ 0.5, 

g ¼ 1). It is seen that increasing the amplitude x increases imperfection sensitivity. It means that out-of-plane defects have an 

enhancing effect on the frequency while SLGSs with larger out-of-plane defects have higher frequency, as it is expected the 

increasing of the stiffness matrix components. For defect sizes  in the order of the thickness (x ¼ 1), a significant enhancing 

effect, nearly 100%, is observed, which proves the importance of considering out-of-plane defects on the vibration analysis of 

SLGS. Also,  increasing thickness to side  ratio, a, increases the imperfection sensitivity.  To validate the present results for 

defective SLGSs, imperfection sensitivity of macro plates (m ¼ 0) with a ¼ 0.1 and sinusoidal imperfection shape reported in 

[50]  are  also  plotted in Fig. 4 which matches our  results nicely.  

 
 

Fig. 6.  Influence of Imperfection extension parameter on imperfection sensitivity of SLGSs (xc =a ¼ yc =b ¼ 0:5; m ¼ 0:1; a ¼ 0:1; g ¼ 1.). 



  
 

 
Fig. 7.  Influence of Imperfection location on  imperfection sensitivity of SLGSs (d ¼ 8; m ¼ 0:1; a ¼ 0:1; g ¼ 1.). 

 
 
 

Fig. 5 demonstrates the influence of nonlocal size  effects on  the imperfection sensitivity. The  variation of sensitivity is 

depicted for  various values of  imperfection amplitude, x,  with fully  extended  shape. One  can   observe that increasing 

dimensionless nonlocal small scale  parameter, m, decreases imperfection sensitivity for every value of x. Nevertheless, this 

decreasing effect is considerable for defects with amplitude in the order of nanoplates thickness or more (x > 1). For the small 

scale  parameter greater than 0.3 (m > 0.3),  the imperfection sensitivity tends to a constant value. 

To investigate the influence of extension of out-of-plane defects on  the frequency response, the area of SLGSs which is 

affected by out-of-plane defect, is changed by varying d parameter and results are depicted for various values of imperfection 

amplitude, x, in Fig. 6. The out-of-plane defect is assumed at  the center of square SLGSs. It is seen that increasing d, which 

decreases the extension of imperfection and concentrates it at the center of SLGS, results in decreasing imperfection sensi- 

tivity. It should be noted that increasing d to large values (e.g. greater than 20)  f a constant x results in formation of an ideal 

sharp high out-of plane defect with small area of extension. 

Finally, the effect of defect location on frequency response is investigated. An out-of-plane defect with extension of d ¼ 8 is 

assumed to be moved from the point xc/a ¼ yc/b ¼ 0.3 to the center (xc/a ¼ yc/b ¼ 0.5). Variation of imperfection sensitivity due 

 
 

 
 

Fig. 8.  Two  types of stable out-of-plane defects of SLGSs inserting inverse StoneeWales (ISW)  defects in  MD  simulations: (a)  atomic arrangement of an  ISW 

defect. (b) Out-of-plane defect by arranging six ISW defects having the maximum height of 3.36 Å. (c) Out-of-plane defect consisting of an  array of five dispersed 

ISW  defects with the maximum height of 2 Å. 





  
 

Table  2 

Comparison between continuum and MD  simulations frequencies (GHz) of out-of-plane  defected SLGSs. 
 

 MD e0a0 (nm)  
 0 1.08 

Perfect flat 584 1510 (157%)
a

 584 (0%) 

Defect type 1 740 2068 (179%) 784 (6%) 

Defect type 2 809 2113 (161%) 842 (4%) 

a  
Errors relative to MD  results.    

 
 

to  defect location (m ¼ 0:1; a ¼ 0:1; g ¼ 1)  is plotted for  several values of x in  Fig. 7. When the defect is in  the center,  the 

maximum value of imperfection sensitivity is achieved. This result agrees with our physical sense in structural plate problems 

where changing stiffness and mass close  to  the center of a vibrating plate with fix boundaries has  a larger effect on  the 

frequency than making changes in  the areas next to its  edges which are  almost motionless. It should be  noted that it  is 

impossible to  locate the center point of defect very close  to the corner as  the defected SLGS should obey the boundary 

conditions of the edges. Hence, the value of 0.3 for length size  is considered as the minimum distance from the corner. 

 
 
 

5.2.  Comparison  between nonlocal  elasticity  and  MD results 

 
MD simulations for  vibrational motion of SLGSs with out-of-plane defects are  performed. Then,  the observed MD fre- 

quencies are  compared with those obtained by  nonlocal continuum elasticity to  explore the proper nonlocal small-scale 

parameter that matches the results. At first, MD simulation is performed for  vibration of a flat perfect SLGS of dimensions 

2.08 nm  x 1.95 nm  to investigate the accuracy of the simulation. Fundamental frequency is obtained equals to 584 GHz which 

is in  agreement with the frequency of a square 2 nm  x 2 nm  SLGS reported in  [51]  with a difference less  than 6%. After 

ensuring the reliability of MD results, it will  be beneficial to compare this frequency with the result obtained from nonlocal 

model for vibration of a SLGS having the same size  to find a proper small-scale parameter that fits MD results. Properties of 

SLGS are  considered equal to values reported in  [52]  i.e. Young's  modulus E ¼ 1.06  TPa, Poisson's ratio n ¼ 0.16,  density 

r ¼ 2250 kg/m3, and effective thickness h ¼ 0.34  nm.  It is seen that small-scale parameter, e0a0 ¼ 1.08  nm  (m ¼ 0:29) can  fit 

MD for the case  of flat SLGSs. 

Then,  MD simulation is performed for  defective SLGSs. In order to create out-of-plane defects in  SLGSs, inverse Stone- 

eWales (ISW) defect [53]  is implemented. ISW defect is synthesized by inserting two adatoms between two parallel carbon 

bond of a hexagon. It rearranges four hexagons to two pairs of pentagon/heptagon rings with an out  of plane defect 2 Å high. It 

is noted that regular StoneeWales defect, having separated pentagon rings, is stable in the plane of GSs. Lusk and Carr  [21] 

showed that six ISW defects can be tactfully aligned to form a larger out-of-plane defect with the height of 3.36 Å. This idea is 

used to make a higher out-of-plane defect. Fig. 8 illustrates these two types of out-of-plane defects which is inserted in SLGSs 

as the defects “Type 1” and “Type2”. 

These two types of defective SLGSs are  considered for  MD vibration simulation according to the methods explained in 

Section 4 and the fundamental frequencies are obtained. To compare these MD results for defective SLGSs with the continuum 

model, these two types of defects should be approximated by a proper initial geometric imperfection function. The defective 

SLGS of  “Type 1” which represents  a  large bulge at the center of  SLGS can  be  mimicked defining an  initial geometric 

imperfection with x ¼ 1, d ¼ 5, and xc/a ¼ yc/b ¼ 0.5. Also, the defective SLGS of “Type 2” which represents an array of smaller 

out-of-plane defects consisting five dispersed ISW defects is mimicked by adding five w
* 

with x ¼ 0.6,  d ¼ 12  and corre- 

sponding locations on the surface of SLGS. In order to verify the validity of continuum nonlocal model with initial geometric 

imperfections for vibration analysis of out-of-plane defective SLGSs, the fundamental frequencies of a flat, defective “Type 1” 

and “Type 2” SLGSs are  listed in Table 2 with classical elasticity, nonlocal elasticity and MD simulations. One can observe that 

classical continuum  model overestimates  frequencies up  to  180%  and therefore its  result is  not reliable for  such small 

defective SLGSs. However, the frequencies obtained based on  the nonlocal model are  close  to those observed in MD simu- 

lations, which means that the presented continuum model can accurately predict the stiffening effects of out-of-plane defects 

on frequency of SLGSs. This enhancing effect can be implemented to tune the frequency characteristics of SLGSs by controlling 

the type, extension, and location of these defects. 

 
 
 

6.  Conclusion 

 
In the present study, the influence of defects on vibrational behavior of SLGSs is investigated via both nonlocal continuum 

elasticity and MD simulations. In the continuum model, the SLGS is considered as a nanoplate and out-of-plane defects are 

inserted into equations of motion as an  initial geometric imperfection. The conclusions are  listed as follows. 



 
 

• It is observed in both nonlocal continuum and MD simulation results that out-of-plane defects have an increasing effect on 

fundamental frequency of SLGSs. Increasing amplitude of defect as well as increasing its extension on the surface of SLGSs 

both increase the frequency. 

• For  the specified amplitude and extension of  out-of-plane defect, the maximum value of  imperfection sensitivity is 

achieved when the out-of-plane defect is in the center of SLGS and it decreases approaching the edges. 

• Classical plate model, which neglects nonlocality, overestimates the frequencies of defected SLGSs with notable errors, 

while nonlocal plate model can  fit MD results by implementing a proper small scale  parameter. It is seen that the cali- 

brated small scale  parameter obtained by comparison between nonlocal and MD frequencies of flat SLGSs, can  also  fit 

continuum and MD frequencies of out-of-plane defected SLGSs with an  acceptable accuracy. 
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