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Abstract

The hierarchical organization of many biological materials plays a key role in their ex-
ceptional mechanical properties. Existing studies investigate how hierarchy affects the
mechanical behavior of cellular materials and the vast majority of them assume empty
cells. In reality, in numerous natural systems the cells are filled with fluids, fibers or
other bulk materials to better resist external stimuli. Inspired by the highly efficiency of
nature, this paper investigates the effects of adding hierarchy into a composite cellular
material. Initially, the analytical expressions for the effective elastic moduli derived in the
case of self-similarity reveal the system isotropy as for the not filled configuration. Then,
from parametric analysis emerges a strong influence of the microstructure on the overall
properties. We discovered that adding hierarchical levels to a filled cellular material can
lead to a higher material specific stiffness only if the filler is stiffer than a critical value.
Thus for classical cellular materials hierarchy is detrimental for the specific stiffness. In
spite of this, for composite cellular solids an optimal number of hierarchical levels natu-
rally emerges. In addition, numerical homogenization validates the analytical approach.
Finally, the example of a hierarchical composite cellular material having different levels
with different cell topologies is also considered. The present analysis provides an insight
into the role of structural hierarchy on the in-plane elastic properties of composite cellu-
lar materials, as well as some possible ways to improve low-weight cellular structures by
mixing different materials and varying the cell topology.
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1. Introduction

It is well known that nature has developed a large number of ingenious solutions that
served as a source of inspiration for scientists and engineers [1], [3].

In the literature, many works discuss this aspect. Among others, the pioneering
textbook by Thompson [4] or, more recently, by Mattheck and Kubler [5], where the
authors extract engineering principles from the structure of trees.

Nowadays, terms like biomimetics or bioinspiration [6], [7], [8] are commonly used
to describe the new approach in chemistry, material science and engineering. That is,
researchers study biological systems to find some useful principles to create e/o improve
new materials and simplify many of our day-to-day functions.

Indeed, lessons learned from nature solved a variety of technical challenges in mate-
rial science [14], architecture [15], aerodynamics and mechanical engineering [16]. For
example, most are familiar with the Velcro, inspired by the way plant burrs stuck to
animal fur [17], [18], the high performance swimsuits, modeled on the structure of shark
skin to reduce drag in water [19] or the super adhesive fabrics that mimic the gecko foot
configuration [20].

Differently from the engineer, nature has a relatively limited number of structural
elements to choose, polymers, composites of polymers and ceramic particles [1]. Mate-
rials that certainly are not associated with strength, toughness, stiffness or durability.
However, even with these restrictions, nature developed a wide range of systems with
distinctive functions and remarkable mechanical properties that often surpass those of
their components by orders of magnitude [21], as threes, skeletons, shells.

Even though it is still unknown how nature succeeded in doing this, some authors pro-
vided a number of possible strategies. Fratzl [8], for instance, suggests the two paradigms
of growth and functional adaptation, that lead to the complex hierarchical architecture of
natural materials. In particular, one advantage of hierarchical structuring is the multi-
functionality. That is to say, a specific property, such as fracture toughness, can be tuned
at different levels, independently of others properties, and adapted to the local needs [22],
[23]. In other words, the exceptional mechanical behavior of biological systems is due to
the functional adaptation of the structure at all levels of hierarchy [1].

In line with these theories, many studies and experimental observations on different
natural materials, gecko foot, nacre shell, Armadillo armor, show that hierarchy is the
nature’s key of success [24].

In a system, hierarchy is reflected by several characteristics [22]. The first one, mul-
tiscality, is the coexistence of several structural levels with gradual transition in length
scales ranging from nano to macro scale. The second, heterogeneity, is the presence of
different properties at different levels. Also, a variety of designs are possible by changing
type and configuration of the constituents [2] and, generally, the overall properties rarely
reflect those of the constituents. Finally, anisotropy. As a consequence, many mathe-
matical laws and material sciences’ principles, that assume isotropy and homogeneity,
must be carefully applied to hierarchical systems. General introductions on hierarchical
biological materials include the recently published review articles [1], [21], [24], [22], [33].

Various authors have extensively studied structural hierarchy. Among them, Lakes
[25] analyzes the hierarchical configuration of some natural materials, as fibrous compos-
ites and cellular solids, and of the man-made Eiffel Tower. It emerges that some desirable
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properties, like stress attenuation, superplasticity, increased toughness, are due to hier-
archy. Other authors, like Pugno and Chen [26], [27], Haghpanah et al. [28], Ajdari et
al. [29], Fan et al. [30], Taylor et al. [31] develop some numerical and theoretical models,
force or energy based, to understand the role of hierarchy on the in-plane mechanical
behavior of cellular solids. In particular, [26] and [28] focus on the elastic buckling while
[27], [29], [30] obtain analytical expressions for the macroscopic elastic moduli. In addi-
tion, Bosia et al. [32] considers different hierarchical architectures of fiber bundles and,
through multiscale calculations, proposed an analytical method to evaluate how hierar-
chy can affect the structural strength. Specifically, the study shows that, in the case
of different types of fibers, the increase in the number of hierarchical levels leads to an
improvement in the material strength. In the context of hierarchical materials with a self-
similar microstructure, namely when the geometry is similar from one scale to another,
several attempts have been made to model their mechanical behavior. [9] presents a finite
element-based technique to evaluate the effective elastic moduli and scaling properties of
two-dimensional materials containing self-similar multiscale voids/rigid inclusions whose
distribution closely resemble the Serpinski-like carpet. The investigation suggests that
increasing the levels of hierarchy provides an increase in the coefficient of anisotropy, lead-
ing to a mechanical behavior close to that of unidimensional materials. It also emerges
that the scaling laws defining the transition between the properties belonging to different
length of scale are power equations whose exponents are function of the inclusions/voids’
dimension. A similar result is theoretically obtained in [12], that investigates self-similar
media with different types of inhomogeneities and stress concentrators, such as pores,
cracks, rigid inclusions. The proposed technique uses the concepts of the differential self-
consistent method [13] where it is assumed that equally-sized inhomogeneities does not
interact directly. The interacting ones have different length of scale. The material is also
represented as a sequence of homogenized continua of increasing scale, obtained in the
average sense. An attempt to numerically solve boundary value problems for self-similar
domains structured on a large number of scales is proposed in [11]. The authors, in
particular, present a finite element procedure that employs modified shape functions to
capture the complexity of the geometry at no additional computational cost. An exten-
sion of the concepts of classical Fracture Mechanics to cracks propagating in a self-similar
regime is discussed in [10]. The analysis, in particular, focuses on scaling laws of fracture
energy in brittle and quasi-brittle materials. It emerges that, independently of the ma-
terial, the fracture energy is an exponential function with the exponent only related to
the considered length of scale. Same considerations apply in the case of multiple cracks
creating a self-similar pattern.

Inspired by the complex hierarchical organization of natural materials, the present
paper focuses on the effects of adding hierarchy into a two-dimensional composite cellular
material [34]. Namely, a cellular structure having the cells filled by a generic elastic
material and a hierarchical architecture. In addition, the study investigates how hierarchy
affect the macroscopic in-plane elastic moduli and whether it is possible to improve the
specific stiffness by structural hierarchy, material mixing and varying cell topologies at
different levels. Finally, as in [34], the Euler-Bernoulli beam on Winkler foundation
elements model the microstructure at all levels.

A brief overview is of order. Initially, Section 2 focuses on a composite cellular ma-
terial with a honeycomb microstructure and n levels of hierarchy. The assumption that
the length of scale of the sub-structure is fine enough to be negligible with respect to the
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super-structure [25] leads to the elastic constants in the continuum description. Then,
Sections 3 and 4 present the comparison between the analytical and numerical approach,
as well as the results of the parametric analysis to investigate the influence of the geo-
metrical and mechanical microstructure parameters on the macroscopic properties. In
particular, the analysis reveals that adding hierarchical levels to a cellular material can
provide a higher material specific stiffness only if the filler is stiffer than a critical value.
An optimal number of hierarchical levels also emerges. Conversely, for hollow cellular ma-
terials hierarchy is detrimental for the specific stiffness. To the authors’ best knowledge,
this is the first time to report such results.

2. The hierarchical composite cellular material. Analytical model

2.1. Elastic constants

A hierarchical material contains structural elements which themselves have structure
[25]. Also, the hierarchical order of the material, n, can be defined as the number
of levels of scale with recognized structure [25]. This paper deals with the in-plane
analysis of a hierarchical composite cellular material having n levels of hierarchy. That
is to say, a material with n hierarchical levels, a honeycomb-like architecture and the
cells filled at each level (Fig. (1)). As in [34], a sequence of Euler-Bernoulli beams on
Winkler foundation forming a periodic array of hexagonal cells simulates the underlying
configuration at all levels. In accordance with [25], the length of scale of the cell walls’
structure, the (n − 1)th level, is fine enough to be negligible with respect to the nth

level. That is to say, the size of the structure of each cell wall is much smaller than the
cell wall itself. As a consequence, a continuum having the elastic moduli derived in [34]
approximates each cell arm.

First of all, let us focus on the first order hierarchical structure, n = 1, of Figure (1).
As it can be seen, it has hierarchy at one length of scale, like the composite honeycomb
of [34] made by continuous cell walls, n = 0. Accordingly, the effective Young’s modulus

and related Poisson’s ratio in the e1 and e2 direction, E
(1)
1 , ν

(1)
12 and E

(1)
2 , ν

(1)
21 respec-

tively, and shear modulus, G(1), are obtained by adopting the same approach of [34]. In

particular, it emerges E
(1)
1 = E

(1)
2 ≡ E(1), ν

(1)
12 = ν

(1)
21 ≡ ν(1) and

E(1) =
(13K

(1)
w (1− ν(0)2) + 16λ(1)E(0)(51(1 + (λ(1))2)K

(1)
w (1− ν(0)2) + 208(λ(1))3E(0))

4
√

3 (1− ν(0)2)(271(1 + (λ(1))2)K
(1)
w (1− ν(0)2) + 208(λ(1) + 3(λ(1))3)E(0))

,

(1)

G(1) =
51(1 + (λ(1))2)K

(1)
w (1− ν(0)2) + 208(λ(1))3E(0)

208
√

3(1 + (λ(1))2)(1− ν(0)2)
, (2)

ν(1) =
67(1 + (λ(1))2)K

(1)
w (1− ν(0)2)− 208λ(1)((λ(1))2 − 1)E(0)

271(1 + (λ(1))2)K
(1)
w (1− ν(0)2) + 208λ(1)(1 + 3(λ(1))2)E(0)

, (3)

with E(0) = Es and ν(0) = νs, on order, the Young’s modulus and Poisson’s ratio of

the cell walls material, K
(1)
w the Winkler foundation constant. To simplify the notation,

λ(1) = h(1)/`(1), where h(1) and `(1) are, in turn, the thickness and the length of the
cell arms. Moreover, taking into account the previous assumptions, the relations in (1),
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(2), (3) correspond to the elastic moduli of the cell walls in the case of hierarchy at two
lengths of scale. Thus, the analysis in [34] still apply and substituting E(1), ν(1) for E(0),

ν(0) and λ(2) = h(2)/`(2), K
(2)
w for λ(1), K

(1)
w in (1), (2), (3) provides the effective elastic

constants E
(2)
1 = E

(2)
2 ≡ E(2), ν

(2)
12 = ν

(2)
21 ≡ ν(2), G(2) of the second order hierarchical

composite structure.
Analogous considerations leads to the elastic moduli of the nth level structure in

the continuum form. That is to say, the Young’s modulus, E(n) ≡ E
(n)
1 = E

(n)
2 , shear

modulus, G(n), Poisson’s ratio, ν(n) ≡ ν
(n)
12 = ν

(n)
21 , are obtained by replacing E(0), ν(0)

and λ(1), K
(1)
w by E(n−1), ν(n−1) and λ(n), K

(n)
w in (1), (2), (3). With obvious notation,

E(n−1) ≡ E(n−1)
1 = E

(n−1)
2 and ν(n−1) ≡ν(n−1)

12 =ν
(n−1)
21 stand for the cell walls’ Young’s

modulus, the first, and Poisson’s ratio, the second, in the case of n levels of hierarchy.
Finally, it emerges that the above elastic constants satisfy the classical relation

G(i) =
E(i)

2(1 + ν(i))
, i = 1, 2, ..., n, (4)

typical of the isotropic materials.
It should be noted that the composite microstructures analyzed in the present paper

are represented by a sequence of elastic beams of unitary width. This assumption, in
conjunction with the Winkler foundation to model the filler, enable us to obtain a closed
form expression for the effective elastic constants, via an analytically tractable problem.
Nevertheless, as a first approximation, the results can be extended to the case in which
the cell walls are plates by assuming a not unitary width of the beams. Alternatively, to
correctly capture the mechanical behavior and to obtain more accurate results, the beam
should be replaced by plates. This leads to a mathematically less tractable problem and
a closed form expression for the effective constants and constitutive equations could not
be derived.

2.2. The stiffness-to-density ratio

Let us consider the first order hierarchical composite cellular structure of Figure (1).

The cell walls, of density ρs, and the filling material, of density ρ
(1)
f , define every cell

(Fig. (2)). From the rule of mixtures, the density of such composite configuration, ρ(1),
is

ρ(1) = f (1) ρ
(1)
f + (1− f (1)) ρs, (5)

with f (1) = V
(1)
f /V

(1)
tot the porosity, V

(1)
f and V

(1)
tot , respectively, the volume of the filling

material and of the entire cell. Simple geometrical considerations provide

f (1) =
A

(1)
f b

A
(1)
tot b

=

√
3− 2λ(1)√

3
, (6)

been A
(1)
f and A

(1)
tot, in turn, the area of the filling material and of the entire cell, b the

width and λ(1) the quantity previously defined. Replacing (6) into (5) leads to

ρ(1) = a(1)ρ
(1)
f + b(1)ρs, (7)
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where

a(1) =

√
3− 2λ(1)√

3
, b(1) =

2λ(1)√
3
. (8)

Assuming that the size of the microstructure of each cell wall is negligible with respect
to the cell wall itself, (7) can also be treated as the cell walls’ density in the case of two

levels of hierarchy. Consequently, substituting λ(2), ρ
(2)
f , ρ(1) for λ(1), ρ

(1)
f , ρs in (7), (8)

gives the density of the hierarchical composite with two hierarchical levels.
Similarly, the density of the hierarchical composite cellular structure having n levels

of hierarchy is:

ρ(n) = a(n)ρ
(n)
f + b(n)ρ(n−1), (9)

with

a(n) =

√
3− 2λ(n)√

3
, b(n) =

2λ(n)√
3
, (10)

ρ(n) and ρ(n−1), respectively, the density of the filling material and of the cell walls at
level n.

Accordingly, the stiffness-to-density ratio takes the form:

E(i)

ρ(i)
=

E(i)

a(i)ρ
(i)
f + b(i)ρ(i−1)

, (11)

G(i)

ρ(i)
=

E(i)

a(i)ρ
(i)
f + b(i)ρ(i−1)

, i = 1, 2, ..., n, (12)

been E(i) and G(i), in turn, the effective Young’s modulus and shear modulus of the ith

level hierarchical structure defined in Section 2.1.

3. Discussion

3.1. Comparison between the analytical and numerical homogenization

Finite element simulations on a computational model of the microstructure evaluate
the prediction ability of the proposed modeling strategy. The study involves a three-level
hierarchical composite cellular material having a honeycomb microstructure at all levels
and such that the self-similar condition [26]

λ(i) = λ, i = 1, 2, 3, (13)

holds true. Specifically, a system with a self-similar property exhibits a statistically
similar characteristic when examined both locally, at the level of individual entities, and
globally, at the level of the whole system. In other words, the same general characteristic
is independent of the scale at which the observation is made [41]. In biology, examples
of self-similarity include the sticky foot of the Gecko, the trabecular bone, muscles and
tendons [44], [46], [1], [45], composed by collagen fibers hierarchically arranged. Collagen,
in particular, is a protein material with superior mechanical properties and provides itself
an intriguing example of a hierarchical biological nano-material [45].

In terms of the material analyzed here, as in [34] the Euler-Bernoulli beam on Win-
kler foundation elements model the composite microstructure at all levels. The starting
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element of the hierarchical structure, the level (0) in Figure (1), has Young’s modulus
Es = 79 GPa, Poisson’s ratio νs = 0.35, density ρs = 2900 kg/m3 (aluminum alloy) [3].

The assumption that the density of the filling material, ρ
(i)
f , is the same at all levels

provides, similarly to (13),

ρ
(i)
f = ρf = αρs, i = 1, 2, 3, (14)

been α a positive constant depending on the material inside the cells. In particular,
assuming that a honeycomb cellular material fills the cells, as commonly happens in
nature [3], leads to

K(i)
w = Kw =

4
√

3

5
α3Es, i = 1, 2, 3. (15)

See Appendix A for further details.
As Figure (3) shows, the numerical simulations involve a 75x50 mm rectangular do-

main discretized in an increasing number of hexagonal cells having gradually smaller
length ` and thickness h = 0.1`. Also, Kw = 10−2Es. Finally, the load conditions
considered are the uniaxial compression in the e1 and e2 direction, Figure (3a) and
Figure (3b) respectively, and pure shear, Figure (3c), simulated by forces acting at the
unconstrained boundary nodes of the domain.

Table (1) illustrates the outcome of the analysis, in terms of the comparison between
the theoretical and numerical values of the elastic moduli. It emerges that the analytical
constants, derived from the expressions listed in Section 2.1, compare reasonably well
with the numerical results, obtained by numerical homogenization [34]. In particular,
the numerical solutions fastly converge to the analytical ones by increasing the number
of cells that discretize the domain.

3.2. The influence of the microstructure parameters in the macroscopic properties

As it can be noted from the relations (1)-(3), the elastic constants of the approximated
ith order hierarchical structure, i = 1, 2, ..., n, are obviously related to the microstructure
parameters. That is to say, the Young’s modulus, E(i−1), and the Poisson’s ratio, ν(i−1),
of the cell walls material, the ratio λ(i) = h(i)/`(i) between the thickness and the length

of the cell arms, the Winkler foundation constant, K
(i)
w . Figures (4) and (5), based on a

self-similar three-level hierarchical honeycomb as in Section 3.1, illustrate the influence

of λ(i) and K
(i)
w on the macroscopic elastic moduli.

When Kw is fixed, Figures (4a), (4b) show that the stiffness-to-density ratio, E(3)/ρ(3)

and G(3)/ρ(3), increases with increasing λ, namely, when the beam becomes thick. In
particular, for λ > 0.1 the increase is larger. As a matter of fact, the slope of the curves
corresponding to λ > 0.1 is bigger than that corresponding to λ < 0.1. Furthermore, as
expected, for an high value of Kw (10−1Es) the initial values of E(3)/ρ(3) and G(3)/ρ(3)

are higher than that occurring for small values of Kw (10−3Es, 10−4Es). That is to say,
an increase in the stiffness of the material filling the cells leads to a stiffer hierarchical
composite cellular material. In terms of the Poisson ratio, Figure (4c) suggests that, for
fixed Kw, an increase in λ provides a decrease in ν(3), that is more significant for small
values of Kw (10−3Es, 10−4Es).
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Regarding the influence of Kw in the overall properties, E(3)/ρ(3), G(3)/ρ(3) and ν(3),
Figures (5a), (5b) suggest that, for fixed λ, to an increase of Kw corresponds an high
increase in the stiffness-to-density ratio. In particular, filling the cells with an elastic
medium leads to an improvement in the specific stiffness, that is more evident in the
case of thick beams. From Figure (5c) globally emerges that, for fixed λ, an increase
in Kw yields an increase in ν(3), especially for high values of λ (0.2, 0.1). Also, the
initial increase is followed by an almost horizontal line once Kw reaches a specific value:
0.9× 10−1Es, 0.4×10−1Es respectively for λ=0.2 and λ=0.1.

As stated, the stiffness of the material within the cells strongly affects the macroscopic
properties of the hierarchical composite cellular material. One question that arises is how
much it is possible to improve the specific stiffness of a standard hierarchical cellular ma-
terial [26], [27] by filling its cells with a generic elastic medium. Table (2) presents
the comparison between the stiffness-to-density ratio of a three-level standard hierar-
chical cellular material and of a three-level hierarchical composite cellular material. It
emerges that the stiffness-to-density ratio of the filled-cells configuration, E(3)/ρ(3) and
G(3)/ρ(3), is generally 1-3 times higher than that of the hollow one, (E(3)/ρ(3))kw=0 and
(G(3)/ρ(3))kw=0. Obviously, increasing the stiffness of the filler, Kw, leads to an higher
improvement.

Finally, differently from the standard hierarchical material [26], [27], [32], Figures (6)
and (7) show that in the case of the filled-cells configuration an increase in the number
of hierarchical levels provides an increase in the stiffness-to-density ratio. Nevertheless,
to high values of Kw (10−1Es, 10−2Es) corresponds an higher increase than that which
occurs for a small value of Kw (10−3Es). Conversely, for Kw = 10−4Es, increasing the
hierarchical levels lead to a decrease in E(3)/ρ(3), as in the case of hollow configurations
(Fig. (6)). Figure (7) also reveals that the stiffness-to-density ratio has an optimal value
at level 4 for Kw = 10−1Es, at level 3 for Kw = 10−2Es and at level 2 for Kw = 10−3Es.
It should be noted that in Figure (6) and (7) it is assumed λ = 0.1. This not affect the
outcome of the analysis, been the effect of λ on the specific stiffness minimal (cfr. Figs.
(4a), (4b)).

This result, in accordance with [32], indicates that both hierarchy and material het-
erogeneity are necessary to obtain improved stiffness. Also, it could be of great interest
in practical applications as a strategy to design a more stiff bioinspired material via
structural hierarchy and material mixing.

3.3. Filled vs not-filled cells

To thoroughly analyze how the material within the cells can affect the macroscopic
mechanical behavior, this section initially deals with a traditional three-level hierarchical
cellular material having a hexagonal microstructure at all levels. As in Sections 3.1 and
3.2, the cell walls material has Young’s modulus Es = 79 GPa, Poisson’s ratio νs = 0.35
and density ρs = 2900 kg/m3 (aluminum alloy). Also, the self-similar conditions (13),
(14), (15) still apply. Then, an elastic medium fills the cells of some levels and leaves
empty the others, alternately. Specifically, the considered cases are listed in Table (3).
The outcome of the analysis reveals that the macroscopic mechanical properties of a
hierarchical composite cellular material are affected not only by the geometrical and
mechanical parameters of the microstructure, λ, Es, νs, Kw, as emerged in Section 3.2,
but also by having filled cells at one level rather than at another.
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As an example, let us consider the hierarchical composite structures of cases 2, 5, 7 of
Table (3), that have filled cells at only one level. Respectively, the first, the second and

the third. As Table (4) suggests, the resulting stiffness-to-density ratio, E
(3)
case i/ρ

(3)
case i

and G
(3)
case i/ρ

(3)
case i have different values in the three cases. In particular, the hierarchical

structure of case 2 is the least stiff while the configuration of case 7 has the higher
stiffness. Accordingly, as pointed out in [23], in terms of macroscopic properties, the
smaller the level, the less important is the presence of the filling material.

Focus now on cases 3, 4, 6, that have filled cells at two levels, levels 1 and 2, levels 1 and
3, levels 2, 3, in turn. As emerges from Table (4), case 6 is the stiffer configuration while
the elastic moduli of case 3 have the lowest values. As before, the macroscopic mechanical
properties of a hierarchical composite structure are less affected by the presence of the
filling material at small levels, as in case 3, rather than at larger levels, as in case 4 and
6.
As a conclusion, the present study reveals that the effective elastic constants of a hierar-
chical composite cellular material can be optimized by carefully choosing the microstruc-
ture’s parameters at each level.

4. Different levels with different cell topologies

As emerged in Section 3.2, the microstructure parameters generally affect the macro-
scopic elastic constants of a hierarchical composite cellular material. In Section 3.3 it also
emerged that having filled cells at one level rather than at another leads to a hierarchical
composite material with different elastic moduli. Namely, the mechanical properties of
each level play an important role in the overall mechanical behavior. To further analyze
such influence, this section treats a three-level hierarchical composite cellular material
having different cell topologies at each level: the hexagonal, square and equilateral tri-
angular, widely observed in natural and man-made cellular materials. In the considered
configurations, listed in Table (5) and illustrated in Figure (8), the cell walls are assumed
isotropic linear elastic, with Young’s modulus Es=79 GPa, Poisson’s ratio νs=0.35, den-
sity ρs = 2900 kg/m3 (aluminum alloy). Again, a honeycomb cellular material fills the
cells at all levels and the conditions in (13), (14), (15) still apply. For more details, see
Appendix B and C.

First of all, it should be noted that the hierarchical configurations analyzed in this
section are not isotropic as those in Section 3. Thus, to provide a more complete descrip-
tion, Figures (9)-(12) illustrate the specific stiffness in different directions as a function

of Kw. In particular, (·)(3)0 , (·)(3)30 , (·)(3)45 , (·)(3)60 stand, respectively, for the elastic moduli
associated with the axis rotated counterclockwise by 0◦, 30◦, 45◦, 60◦ from (e1, e2).

A common feature in the plots of Figures (9)-(12) is the increase in the stiffness-to-
density ratio for increasing Kw. Nevertheless, as expected, different results come from
the six hierarchical configurations considered. Regarding Figure (9a), it emerges that
cases 1 and 3, having a triangular microstructure at level 3, are the least performant in

terms of E
(3)
0 /ρ(3). Conversely, the hexagonal and square microstructures at level 3, as

in cases 2, 5 and 4, 6, respectively, provide high values of E
(3)
0 /ρ(3). Accordingly, such

configurations could be the best solution to obtain a hierarchical material with superior
mechanical properties and minimum weight. Furthermore, in cases 1, 3, an increase in

Kw leads to a small increase in E
(3)
0 /ρ(3) while in cases 2, 5 and 4, 6 the increase is
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larger. Also, Figure (9b) shows that higher values of G
(3)
0 /ρ(3) occur in cases 1, 3 and 2,

5 rather than in cases 4, 6. In addition, Figure (9b) reveals the existence of a value of
Kw, K∗

w = 0.76× 10−3Es, such that(
G

(3)
0

ρ(3)

)
cases 1, 3

>

(
G

(3)
0

ρ(3)

)
cases 2, 5

forKw < K∗
w, (16)

(
G

(3)
0

ρ(3)

)
cases 1, 3

<

(
G

(3)
0

ρ(3)

)
cases 2, 5

forKw > K∗
w. (17)

That is to say, small values of Kw, Kw < K∗
w, provide higher values of G

(3)
0 /ρ(3) in cases

1, 3 rather than in cases 2, 5. In contrast, in terms of G
(3)
0 /ρ(3), cases 2, 5 have superior

stiffness than cases 1, 3 for high values of Kw, Kw > K∗
w.

As can be seen from Figures (10)-(12), the specific stiffness associated with the axis
rotated by 30◦, 45◦, 60◦ exhibits very low values if compared to the plots in Figure (9).
The reason is that the square microstructure has a superior stiffness in the e1 and e2

directions, unlike in the other ones where the values are very low. This is due to the
alignment of the cell walls in the loading direction. However, neglecting this aspect,
in the case of Figure (10) the previous considerations still apply. That is to say, in

terms of E
(3)
30 /ρ

(3) and G
(3)
30 /ρ

(3), cases 2, 5 and 4, 6 have, on order, the highest and the
lowest values. Conversely, regarding Figures (11)-(12), the hierarchical material having
a triangular microstructure at level 3, namely the cases 1, 3, is the less stiff. Again,
the hexagonal microstructure at level 3, cases 2, 5, makes the composite stiffer. Finally,
focusing on Figure (13), it emerges that the effect of Kw is minimal on the effective
Poisson’s ratio. As before, different values can be observed by considering different
directions. In Figure (13a), (13c), (13d), it should be noted that cases 4, 6, having a
square microstructure at level 3, are not listed. The reason is that their Poisson’s ratio
vanishes (see Appendix B).

These findings could be useful to design/improve a new class of complex hierarchical
materials with tailored parameters at each level. The plots in Figures (9)-(12) could also
assist the selection of the cell topology for a given problem.

5. Conclusions

This paper, inspired by the complex hierarchical organization of many natural sys-
tems, investigates the effects of adding hierarchy into a two-dimensional composite cellu-
lar material subjected to in-plane loads. That is to say, a cellular material having filled
cells. In particular, a sequence of Euler-Bernoulli beams on Winkler foundation models
the microstructure at all levels.

Initially, the analysis deals with a composite cellular material having n levels of hier-
archy, a honeycomb microstructure and the cells filled at all levels. The assumption that
the length of scale of the substructure is fine enough to be negligible with respect to the
superstructure provides the macroscopic elastic constants. As expected, they are related
to the geometrical and mechanical parameters of the microstructure at all levels. To
investigate such influence, the example of a three-level structure is presented. It emerges

10



that the macroscopic specific stiffness of the material is generally improved by increas-
ing the stiffness of the filler. In particular, we discovered that adding hierarchical levels
to a composite cellular material can lead to a higher specific stiffness only if the filling
material is stiffer than a critical value. Thus for classical cellular materials hierarchy is
detrimental for the specific stiffness. In spite of this, for filled cellular solids an optimal
number of hierarchical level also emerges.

In addition, the analysis reveals that the elastic constant in the continuum description
are affected not only by the aforementioned microstructure’s parameters but also by
having filled cells at one level rather than at another.

Then, the example of a three-level hierarchical orthotropic structure having different
cell topologies, the hexagonal, square and equilateral triangular, is considered. From the
investigation emerges that also the geometrical properties of the microstructure affect
the effective elastic moduli of a hierarchical material. In particular, the hexagonal mi-
crostructure at level 3 is the best solution to obtain a material with superior stiffness
and minimum weight.

Finally, finite element simulations verify the analytical approach.
In conclusion, this paper investigates the role of structural hierarchy, material hetero-

geneity and cell topology on the elastic constants of composite cellular materials. Some
useful tools to create e/o improve complex hierarchical structures with tailored properties
at each level are also included.
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Figures and Tables
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Figure 1: The hierarchical composite cellular material.
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Figure 2: Density of the first order hierarchical structure.
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Figure 3: Finite element implementation, the load conditions. (a) Uniaxial compression in the
e1 direction, (b) Uniaxial compression in the e2 direction, (c) Pure shear.

Table 1: Comparison between the analytical and numerical approach, elastic moduli.

No. cells ` (mm) E(3) (GPa) ν(3) G(3)(GPa)

10x7 5 3.40 0.30 0.30
50x35 1 3.08 0.31 0.30
100x70 0.5 2.97 0.31 0.41
200x140 0.25 2.97 0.32 0.54
250x175 0.2 2.96 0.33 0.91
400x280 0.125 2.96 0.33 0.92
500x350 0.1 2.94 0.33 0.92

Analytical results 2.95 0.33 0.98
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Figure 4: The influence of λ in the three-level hierarchical composite cellular material. (a), (b)
Stiffness-to-density ratio, (c) Poisson’s ratio.
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Figure 5: The influence of Kw in the three-level hierarchical composite cellular material. (a),
(b) Stiffness-to-density ratio, (c) Poisson’s ratio.
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Table 2: Comparison between a three-level hierarchical composite cellular material and a stan-
dard hierarchical cellular material. Stiffness-to-density ratio.

(E(3)/ρ(3))/(E(3)/ρ(3))kw=0

λ = 0.2 λ = 0.1 λ = 0.05 λ = 0.02

Kw = 10−4Es 1.3 1.1 1.1 1.1
Kw = 10−3Es 1.8 1.6 1.6 1.5
Kw = 10−2Es 3.3 3.3 3.2 3.2
Kw = 10−1Es 16.4 16.3 16.1 16

(G(3)/ρ(3))/(G(3)/ρ(3))kw=0

λ = 0.2 λ = 0.1 λ = 0.05 λ = 0.02

Kw = 10−4Es 1.4 1.1 1.1 1.1
Kw = 10−3Es 1.8 1.8 1.7 1.6
Kw = 10−2Es 3.8 3.6 3.6 3.4
Kw = 10−1Es 19.7 19.3 19.3 19.1

Table 3: Hierarchical configurations considered.

level 1 level 2 level 3

case 1 not filled cells not filled cells not filled cells
case 2 filled cells not filled cells not filled cells
case 3 filled cells filled cells not filled cells
case 4 filled cells not filled cells filled cells
case 5 not filled cells filled cells not filled cells
case 6 not filled cells filled cells filled cells
case 7 not filled cells not filled cells filled cells
case 8 filled cells filled cells filled cells
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Figure 8: Different levels with different cell topologies: (a) Case 1, (b) Case 2, (c) Case 3, (d)
Case 4, (e) Case 5, (f) Case 6.
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Figure 9: The influence of Kw in the stiffness-to-density ratio associated with the axis (e1, e2),
with λ=0.02: (a) Young’s modulus, (b) Shear modulus.

Table 4: Filled vs not-filled. Elastic moduli, with Kw = 10−2Es

E
(3)
case i/E

(3)
case 1

λ = 0.2 λ = 0.1 λ = 0.05 λ = 0.02

case 2 1.21 1.20 1.18 1.18
case 3 1.28 1.24 1.20 1.20
case 4 1.92 1.86 1.86 1.85
case 5 1.26 1.24 1.21 1.21
case 6 2.70 2.70 2.50 2.50
case 7 1.92 1.87 1.87 1.86
case 8 3.30 3.30 3.20 3.20

G
(3)
case i/G

(3)
case 1

λ = 0.2 λ = 0.1 λ = 0.05 λ = 0.02

case 2 1.25 1.23 1.20 1.20
case 3 1.31 1.28 1.23 1.22
case 4 2.10 2.00 1.92 1.90
case 5 1.29 1.27 1.24 1.24
case 6 3.10 3.00 2.90 2.90
case 7 2.20 2.10 1.94 1.92
case 8 3.80 3.60 3.60 3.40
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Figure 10: The influence of Kw in the stiffness-to-density ratio associated with the axis rotated
counterclockwise by 30◦ from (e1, e2), with λ=0.02: (a) Young’s modulus, (b) Shear
modulus.

Table 5: Hierarchical configurations with different cell topologies.

level 1 level 2 level 3

case 1 square hexagonal triangular
case 2 square triangular hexagonal
case 3 hexagonal square triangular
case 4 hexagonal triangular square
case 5 triangular square hexagonal
case 6 triangular hexagonal square

21



(a) Kw/Es ×10
-3

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

E(3)
45 /ρ

(3)

×10
-3

0

0.5

1

1.5

2 case1
cases 2, 5
case 3
cases 4, 6

Kw/Es ×10
-3

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

E(3)
45 /ρ

(3)

×10
-3

0

0.5

1

1.5

2

(GPa·cm3/g)

2

(b) Kw/Es ×10
-3

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

G(3)
45 /ρ

(3)

×10
-4

0

1

2

3

4

5

6

7 case1
cases 2, 5
case 3
cases 4, 6

Kw/Es ×10
-3

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

G(3)
45 /ρ

(3)

×10
-4

0

1

2

3

4

5

6

7

(GPa·cm3/g)

3

Figure 11: The influence of Kw in the stiffness-to-density ratio associated with the axis rotated
counterclockwise by 45◦ from (e1, e2), with λ=0.02: (a) Young’s modulus, (b) Shear
modulus.
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Figure 12: The influence of Kw in the stiffness-to-density ratio associated with the axis rotated
counterclockwise by 60◦ from (e1, e2), with λ=0.02: (a) Young’s modulus, (b) Shear
modulus.
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Figure 13: The influence of Kw in the Poisson’s ratio associated with (a) the axis (e1, e2) and
with the axis rotated counterclockwise from (e1, e2) by (b) 30◦, (c) 45◦, (d) 60◦, in
the case of λ=0.02.
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The in-plane elastic properties of hierarchical composite
cellular materials: synergy of hierarchy, material heterogeneity

and cell topology at different levels - Appendices

Appendix A. Relation between the Young’s modulus of the filling material
and the corresponding Winkler foundation constant

As stated in Section 2, the Euler-Bernoulli beam on Winkler foundation model sim-
ulates the composite hexagonal microstructure at all levels. Specifically, a sequence of
closely spaced independent linear-elastic springs approximates the cells filling material.
Note that representing the material within the cells by a Winkler foundation is a simpli-
fication to obtain a more mathematically tractable problem. However, notwithstanding
the limitations introduced, the analysis in [1] reveals the validity of the modeling ap-
proach based on the Winkler model. A suitable relation between the Young’s modulus

of the filling material, E
(i)
f and the Winkler foundation constant, k

(i)
w , is also provided

[1]:

E
(i)
f =

5
√

3

8
K(i)
w , i = 1, 2, 3, (A.1)

been K
(i)
w = k

(i)
w `(i) and `(i) the length of the cell walls.

Assuming that the material inside the cells is a honeycomb made of an aluminum alloy
as the whole hierarchical composite cellular structure analyzed in the present paper, leads
to [2]

ρ
(i)
f

ρs
=

2√
3
λ
(i)
f , i = 1, 2, 3 (A.2)

E
(i)
f

Es
=

4√
3

(
λ
(i)
f

)3
, i = 1, 2, 3 (A.3)

with ρ
(i)
f , E

(i)
f and ρs, Es, respectively, the density and the Young’s modulus of the

honeycomb and of the constituent material. Also, λ
(i)
f is the ratio between the thickness

and the length of the cell arms. From (A.2)

λ
(i)
f =

√
3

2

(
ρ
(i)
f

ρs

)
, i = 1, 2, 3. (A.4)

Substituting (A.4) into (A.3) gives, in view of (A.1),

K(i)
w =

4
√

3

5
Es

(
ρ
(i)
f

ρs

)3

, i = 1, 2, 3. (A.5)
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Finally, from the self-similar condition

ρ
(i)
f = ρf = αρs i = 1, 2, 3 (A.6)

and the assumption

λ
(i)
f = λf , i = 1, 2, 3, (A.7)

follows

K(i)
w = Kw =

4
√

3

5
α3Es, i = 1, 2, 3. (A.8)

In particular, assuming α = 0.4, 0.2, 0.1, 0.05, (A.8) provides, on order, Kw = 10−1Es,
10−2Es, 10−3Es, 10−4Es.
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Figure A.1: Equivalence between the elastic moduli of the filling material and corresponding
spring. (a) Filling material as a classical continuum, (b) Filling material as a
Winkler foundation.

Appendix B. A continuum model for composite cellular material with square
microstructure

Appendix B.1. Elastic energy

As Figure (B.2a) shows, a sequence of elastic beams of length ` forming a periodic ar-
ray of square cells reproduces a cellular composite material with a square microstructure.
Also, an elastic foundation represents the elastic material filling the cells. In particular,
the Winkler foundation model simulates each beam, as in [1]. The unit cell of the peri-
odic array (Fig. (B.2b)) is composed by the central node (0) and the four external nodes
(1), (2), (3), (4), linked by the elastic beams (0)-(1), (0)-(2), (0)-(3), (0)-(4), represented
by the vectors

b1 = (`, 0) , b2 = (0, `) , b3 = −b1, b4 = −b2. (B.1)

Finally, the area of the unit cell is A0 = `2.
The analysis of the representative cell of the microstructure provides, firstly, the strain

energy density of the discrete structure. Its continuum approximation is the consequence
of particular assumptions.
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Figure B.2: (a) The square microstructure, (b) The unit cell, (c) The beam on Winkler elastic
foundation.

First of all, the elastic energy of each beam

we =
1

2
(ue)T · kebue +

1

2

(
1

2
(∆ ue,a)T · kewf∆ ue,a

)
+

1

2

(
1

2
(∆ ue,b)T · kewf∆ ue,b

)
,

(B.2)
derives by superposition principle due to the assumption of linear elastic beam. In
particular, ue = [ui,uj ]

T
= [ui, vi, ϕi, uj , vj , ϕj ]

T
is the generalized vector of nodal dis-

placement expressed in the local reference and

∆ ue,a =
[
∆ uai ,∆ uaj

]T
=
[
∆uai ,∆ vai ,∆ϕai ,∆uaj ,∆ vaj ,∆ϕaj

]T
, (B.3)

∆ ue,b =
[
∆ ubi ,∆ ubj

]T
=
[
∆ubi ,∆ vbi ,∆ϕbi ,∆ubj ,∆ vbj ,∆ϕbj

]T
(B.4)

is the elongation of the springs a, the first, and of the springs b, the second (Fig. (B.3)).
Note that the factor 1/2 in the second and third term of (B.2), is due to the fact that the
springs are shared by two opposite beams and contribute only half of its strain energy
to the unit cell. See Appendix D for further details.
The terms keb and kewf in (B.2) are, respectively, the stiffness matrix of the classical
elastic beam and of the Winkler foundation [3], denoted by lowercase letters since they
are expressed in the local reference (see [1] for a detailed description). Their components
are

keb =


C`/` 0 0 −C`/` 0 0

0 12D`/`
3 6D`/`

2 0 −12D`/`
3 6D`/`

2

0 6D`/`
2 4D`/` 0 −6D`/`

2 2D`/`
−C`/` 0 0 C`/` 0 0

0 −12D`/`
3 −6D`/`

2 0 12D`/`
3 −6D`/`

2

0 6D`/`
2 2D`/` 0 −6D`/`

2 4D`/`

 (B.5)
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Figure B.3: Square microstructure: (a) Springs a, (b) Springs b.

and

kewf =


0 0 0 0 0 0
0 3Kw/35 11Kw`/210 0 9Kw/70 −13Kw`/420
0 11Kw`/210 Kw`

2/105 0 13Kw`/420 −Kw`
2/140

0 0 0 0 0 0
0 9Kw/70 13Kw`/420 0 13Kw/35 −11Kw`/210
0 −3Kw`/420 −Kw`

2/140 0 −11Kw`/210 Kw`
2/105

 , (B.6)

with Kw = kw`, kw the Winkler foundation constant per unit width, C` = Es h
1−ν2

s
and

D` = Es h
3

12(1−ν2
s )

, respectively, the tensile and bending stiffness (per unit width) of the

beams, h the thickness of the arms, Es and νs the Young’s modulus and the Poisson’s
ratio of the cell walls material.

As it can be seen, the elastic energy is the sum of three terms. The first one,

1

2
(ue)T · kebue, (B.7)

corresponding to the classical elastic beam, while the second and the third,

1

2

(
1

2
(∆ ue,a)T · kewf∆ ue,a

)
,

1

2

(
1

2
(∆ ue,b)T · kewf∆ ue,b

)
, (B.8)

related to the Winkler foundation and, in particular, to the elongation of the springs a,
the first, and of the springs b, the second (Fig. (B.3)).

The elastic energy of the unit cell, W , derives from that of the four beams it consists
of. In particular, expressing (B.2) in the global reference and summing the elastic energies
of the four beams, leads to

W =
W 1 +W 2 +W 3 +W 4

2
. (B.9)

The presence of the factor 2 in (B.9) is related to the fact that each beam is shared by
two adjacent cells. So, each member contributes only half of its strain energy to the
representative cell.
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The assumption that in the limit `→ 0 there exist the continuous displacement and
microrotation fields û(·) and ϕ̂(·), and that the discrete variables previously introduced
to represent the degrees of freedom (displacements and rotations) of the external nodes
of the unit cell can be expressed by [4]:

uj = û0 +∇û bj+
1

2
∇2û b2

j , ϕj = ϕ̂0 +∇ϕ̂bj+
1

2
∇2ϕ̂b2

j , j = 1, 2, 3, 4, (B.10)

provides the continuum description of the discrete structure. In (B.10), bj are the vectors
formerly defined, û0 and ϕ̂0 are the values of û(·) and ϕ̂(·) at the central point of the
cell in the continuum description. The substitution of (B.10) into (B.9) gives the strain
energy of the unit cell as a function of the fields û(·) and ϕ̂(·). Finally, dividing the
expression that turns out by the area of the unit cell, A0, leads to the strain energy
density in the continuum approximation

w =
C``

2
(
ε211 + ε222

)
+ 24D`

(
ε212 + (ω − ϕ̂)

2
)
− 2D``

2
(
ϕ̂2
,1 + ϕ̂2

,2

)
− 12D`` ε12ϕ̂,2

2 `3
+

Kw

(
210

(
ε211 + ε222

)
+ `2

(
ϕ̂2
,1 + ϕ̂2

,2

))
420

, (B.11)

been εαβ = 1
2 (ûα,β + ûβ,α) the infinitesimal strains, ω = 1

2 (û1,2 − û2,1) the infinitesi-
mal rotation, ϕ̂,α the microrotation gradients. Note that in (B.11) only the first order
derivatives are retained, except for the terms of the form ϕ̂ ϕ̂,αα that can be integrated
by parts and result in first order derivative terms. Retaining this terms, in particular, is
important to maintain joint equilibrium, as pointed out in [4], [5], [6].

Moreover, after rewriting (B.11) in terms of c ≡ C`/` = Es (h/`)
1−ν2

s
and d ≡ D`/`

3 =

Es (h/`)3

12(1−ν2
s )

, it emerges that in the resulting energy the coefficients scale with different order

in `, as in [7], [1]. Specifically, the microrotation gradients scale with first order in `, while
the others coefficients are independent of `. Accordingly, in the limit ` → 0 the contri-
bution of the microrotation gradients is missing and, as in [1], the equivalent continuum
is non-polar. Consequently, the strain energy density in the continuum description is

w =
c
(
ε211 + ε222

)
+ 24d

(
ε212 + (ω − ϕ̂)

2
)

2 `3
+
Kw

(
210

(
ε211 + ε222

)
420

. (B.12)

Appendix B.2. Constitutive equations

The constitutive equations

σ =
1

A0

∂W

∂∇û
, (B.13)

with σ the Cauchy-type stress tensor, follows from (B.12).
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In particular, it emerges that σ is a non-symmetric tensor and its components are

σ11 = σsym11 =

(
C`
`

+Kw

)
ε11,

σ22 = σsym22 =

(
C`
`

+Kw

)
ε22,

σsym12 = σsym21 =
12D`

`3
ε12,

σskw12 = −σskw21 =
12D`

`3
(ω − ϕ̂) ,

σ12 = σsym12 + σskw12 , σ21 = σsym21 + σskw21 ,

(B.14)

with σsymγδ and σskwγδ , in turn, the symmetric and skew-symmetric parts of σ. See [1] for
further details.

Appendix B.3. Elastic constants

Simple mathematical manipulations lead to the elastic constants in the continuum
approximation. Specifically, the stress state σ11 6= 0, σ22 = σ12 = σ21 = 0 provide, in
view of (B.14) and Hooke’s law σsym11 = E∗

1 ε11, the Young’s modulus in the e1 direction:

E∗
1 =

σ11
ε11

=
Es λ

(1− ν2s )
+Kw, (B.15)

with Es and νs, respectively, the Young’s modulus and the Poisson’s ratio of the cell
walls material, λ = h/` the ratio between the thickness and the length of the beams.
The related Poisson’s ratio ν∗12 = −ε22/ε11 is

ν∗12 = 0. (B.16)

Similarly, the stress state defined as σ22 6= 0, σ11 = σ12 = σ21 = 0 gives the Young’s
modulus in the e2 direction:

E∗
2 =

σ22
ε22

=
Es λ

(1− ν2s )
+Kw, (B.17)

and the related Poisson’s ratio ν∗21 = −ε11/ε22 = 0.
As it can be seen, it emerges that E∗

1 = E∗
2 ≡ E∗ and ν∗12 = ν∗21 ≡ ν∗, with E∗ and

ν∗ stands for the Young’s modulus, the first, and the Poisson’s ratio, the second, of the
approximated continuum.

The tangential elastic modulus, G∗ = σsym12 /2 ε12, it is easily obtained by considering
the stress state σsym12 6= 0, σ11 = σ22 = 0:

G∗ =
σsym12

2 ε12
=

Es λ
3

2 (1− ν2s )
. (B.18)
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It should be noted that the elastic moduli derived do not satisfy the classical relation

for isotropic materials, G∗ =
E∗

2 (1 + ν∗)
. The effective elastic constants are equal only in

the e1 and e2 direction [2], [8].
Analogous calculations, in conjunction with the classic transformation equations for

stress and strain, provide the effective elastic moduli associated with different axis. In
particular, denoting with E∗

θ , ν∗θ , G∗
θ, respectively, the Young’s modulus, Poisson’s ratio

and shear modulus associated with the axis rotated counterclockwise through an angle
of θ from (e1, e2), it emerges:

E∗
θ =

λ3Es(Kw

(
1− ν2s

)
+ λEs)

(1− ν2s ) (c4λ3Es + λ3s4Es + 2c2s2(Kw (1− ν2s ) + λEs))
, (B.19)

ν∗θ =
2c2s2(Kw

(
1− ν2s

)
+ λEs − λ3Es)

c4λ3Es + λ3s4Es + 2c2s2(Kw (1− ν2s ) + λEs)
, (B.20)

G∗
θ =

λ3Es(Kw

(
1− ν2s

)
+ λEs)

4 (1− ν2s ) ((c2 − s2)2Kw (1− ν2s ) + λ(c4 + 2c2(−1 + 2λ2)s2 + s4)Es)
. (B.21)

To simplify the notation, c and s stand, respectively, for cos θ and sin θ.

Appendix B.4. Comparison between the analytical and numerical approach

Writing the constitutive equations derived in Section B.2 in a compact way, provide σsym11

σsym22

σsym12

 =

 C11 C12 C13

C21 C22 C23

C31 C32 C33

  ε11
ε22
ε12

 , (B.22)

been

C11 = C22 =
C`
`

+Kw =
Es λ

(1− ν2s )
+Kw,

C33 =
12D`

`3
=

Es λ
3

(1− ν2s )
,

C12 = C21 = C13 = C23 = C31 = C32 = 0. (B.23)

In terms of stress,  ε11
ε22
ε12

 =

 C∗
11 C∗

12 C∗
13

C∗
21 C∗

22 C∗
23

C∗
31 C∗

32 C∗
33

  σsym11

σsym22

σsym12

 (B.24)

where

C∗
11 = C∗

22 =
C22 C33

C2
22 C33 − C2

12 C33
=

(1− ν2s )

Kw(1− ν2s ) + Es λ
,

C∗
33 =

C2
22 − C2

12

C2
22 C33 − C2

12 C33
=

(1− ν2s )

Es λ3
,

C∗
12 = C∗

21 = C∗
13 = C∗

23 = C∗
31 = C∗

32 = 0. (B.25)
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Finite element simulations on a computational model of the microstructure evaluate
the accuracy of the theoretical model. In particular, the Euler-Bernoulli beam on Winkler
foundation elements model the composite square microstructure. The cell wall material,
isotropic linear elastic for assumption, has Young’s modulus Es = 79 GPa, Poisson’s
ratio νs = 0.35 and thickness h = 0.1`. In terms of Winkler foundation, Kw = 10−2Es.
The numerical analysis involve a 50x50 mm square domain discretized in an increasing
number of square cells of gradually smaller length `. As done in [1], the load conditions
are the uniaxial compression, uniaxial traction and in-plane shear. Specifically, forces of
the same intensity acting at the boundary, unconstrained nodes of the domain simulate
the loading states. The corresponding effective stiffness components are derived as the
ratio between the average volume strain,

εij =
1

V

∫
V

εij dV, i, j = 1, 2, (B.26)

and the applied stress. Referring the interested reader to [1] for a comprehensive descrip-
tion, in the case of forces acting horizontally, (B.24) takes the form

ε(1) =

 ε
(1)
11

ε
(1)
22

ε
(1)
12

 =

 C∗
11 C∗

12 C∗
13

C∗
21 C∗

22 C∗
23

C∗
31 C∗

32 C∗
33

  σ11
0
0

 =

 C∗
11σ11

C∗
21σ11

C∗
31σ11

 , (B.27)

been σ11 the applied stress, ε(1) the corresponding strain vector,

ε
(1)
ij =

1

V

∫
V

ε
(1)
ij dV, i, j = 1, 2, (B.28)

and V is the volume of the domain. Accordingly,

C∗
11 =

ε
(1)
11

σ11
, C∗

21 =
ε
(1)
22

σ11
, C∗

31 =
ε
(1)
12

σ11
, (B.29)

Note that the present analysis involve a domain with unitary width, composed by a
sequence of discrete beams having the same length ` and the same thickness h. Conse-
quently, denoting by s the parametric coordinate along the length of the beam (0 ≤ s ≤ `)
and remembering that

εij(s) =
1

2

(
∂ui(s)

∂xj
+
∂uj(s)

∂xi

)
, (B.30)

ε
(1)
ij =

∑nb

m=1
1
2

(
(ui(`)− ui(0)) ∂s

∂xj
+ (uj(`)− uj(0)) ∂s

∂xi

)
m

nb `
. (B.31)

been nb the number of the beams. Furthermore, the classical continuum mechanics
provides the Young’s modulus, E∗

1 , and the related Poisson’s ratio ν∗12:

E∗
1 =

σ11

ε
(1)
11

, ν∗12 = −ε
(1)
22

ε
(1)
11

. (B.32)
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Similarly, when the forces act vertically,

ε(2) =

 ε
(2)
11

ε
(2)
22

ε
(2)
12

 =

 C∗
11 C∗

12 C∗
13

C∗
21 C∗

22 C∗
23

C∗
31 C∗

32 C∗
33

  0
σ22
0

 =

 C∗
12σ22

C∗
22σ22

C∗
32σ22

 , (B.33)

and, consequently,

C∗
12 =

ε
(2)
11

σ22
, C∗

22 =
ε
(2)
22

σ22
, C∗

32 =
ε
(2)
12

σ22
. (B.34)

Also,

E∗
2 =

σ22

ε
(2)
22

, ν∗21 = −ε
(2)
11

ε
(2)
22

. (B.35)

with σ22 the applied stress, ε(2) the corresponding strain vector and ε
(2)
ij the average

volume strain given by (B.26).
Lastly, the shear loading condition provides

ε(3) =

 ε
(3)
11

ε
(3)
22

ε
(3)
12

 =

 C∗
11 C∗

12 C∗
13

C∗
21 C∗

22 C∗
23

C∗
31 C∗

32 C∗
33

  0
0
σ12

 =

 C∗
13σ12

C∗
23σ12

C∗
33σ12

 , (B.36)

C∗
13 =

ε
(3)
11

σ12
, C∗

23 =
ε
(3)
22

σ12
, C∗

33 =
ε
(3)
12

σ12
. (B.37)

and
G∗ =

σ12

2 ε
(3)
12

(B.38)

As before, σ12 and ε(3) are, in turn, the applied stress and the corresponding strain

vector, while ε
(3)
ij is the average volume strain defined in (B.26).

Tables (B.1) and (B.2) present the outcome of the present study. In Table (B.1),
in particular, the comparison involves the theoretical and numerical C∗

ij constants. In
Table (B.2), the theoretical and numerical elastic moduli. Both Table (B.1) and Table
(B.2) show that the analytical quantities are in accordance with the numerical results.

Appendix C. A continuum model for composite cellular material with equi-
lateral triangular microstructure

Appendix C.1. Elastic energy

As in Appendix B, a sequence of Euler-Bernoulli beams on Winkler foundation el-
ements model the triangular microstructure (Fig. (C.4). As Figure (C.4b) shows, the
unit cell of the periodic configuration is composed by the central node (0) and the six
external nodes (1), (2), (3), (4), (5), (6), linked by the elastic beams (0)-(1), (0)-(2),
(0)-(3), (0)-(4), (0)-(5), (0)-(6), represented by the vectors

b1 = (`, 0) , b2 =
(
`/2,

√
3 `/2

)
, b3 =

(
−`/2,

√
3 `/2

)
,

b4 = −b1, b5 = −b2, b6 = −b3.
(C.1)

9



Table B.1: Square microstructure: comparison between the analytical and numerical approach,
C∗

ij constants

No. cells ` (mm) C∗
11 C∗

22 C∗
33 C∗

12 = C∗
21 = C∗

13 = C∗
23 = C∗

31 = C∗
32

10x10 5 0.08 0.10 9.39 0
50x50 1 0.10 0.11 10.70 0

100x100 0.5 0.11 0.11 10.70 0
200x200 0.25 0.11 0.11 10.74 0
250x250 0.2 0.11 0.11 10.79 0
400x400 0.125 0.11 0.11 10.82 0
500x500 0.1 0.11 0.11 10.95 0

Analytical results 0.11 0.11 11.11 0

Table B.2: Square microstructure: comparison between the analytical and numerical approach,
elastic moduli

No. cells ` (mm) E∗
1 (GPa) E∗

2 (GPa) ν∗12 ν∗21 G∗ (GPa)

10x10 5 12.50 10.00 0 0 0.09
50x50 1 9.57 9.18 0 0 0.05

100x100 0.5 9.28 9.10 0 0 0.05
200x200 0.25 9.15 9.06 0 0 0.05
250x250 0.2 9.12 9.05 0 0 0.05
400x400 0.125 9.08 9.04 0 0 0.05
500x500 0.1 9.08 9.04 0 0 0.05

Analytical results 9.00 9.00 0 0 0.05

10



The area of the unit cell is A0 =
√

3 `2/2, with ` the length of the beams [9], [4]. As
before, the elastic energy of each beam is obtained by superposition principle

we =
1

2
(ue)T · kebue +

1

2

(
1

2
(∆ ue,a)T · kewf∆ ue,a

)
+

1

2

(
1

2
(∆ ue,b)T · kewf∆ ue,b

)
,

(C.2)
with ue, ∆ ue,a, ∆ ue,b, keb, kwf , in turn, the vector of nodal displacements, the elonga-
tion of the two sets of springs and the stiffness matrices previously defined. See Appendix
E for further details. The elastic energy of the unit cell, W , derives from that of the
six beams it consists of. Note that each beam is shared between two adjacent cells.
Consequently, each member contributes only half of its strain energy to the unit cell.

It is not difficult to see that the first node of each beam coincides with the central
node (0). So, denoted by u0 the displacements of the node (0) and by ∆ ua0 , ∆ ub0 the
elongation of the springs in (0), follows ui = u0, ∆ uai = ∆ ua0 and ∆ ubi = ∆ ub0.

As done in [7], [1], expressing (C.2) in the global reference, adding up forces at the
central node (0) and condensing the corresponding degrees of freedom to take account
of the forces balance in (0), leads to

W = W (uj ,∆ uaj ,∆ ubj), j = 1, 2, 3, 4, 5, 6. (C.3)

The assumption that in the limit `→ 0 the discrete variables (uj, ϕj) can be expressed
by

uj = û0 + ∇û bj , ϕj = ϕ̂0 + ∇ϕ̂bj , j = 1, 2, 3, 4, 5, 6 (C.4)

provides the continuum description of the discrete structure. The terms û0 and ϕ̂0 in
(C.4) are the values of û(·) and ϕ̂(·) at the central point of the cell in the continuum
description. Substituting (C.4) into (C.3) gives the strain energy of the unit cell as a
function of the fields û and ϕ̂.

Finally, dividing the expression that turns out from the calculation by the area of the
unit cell, A0, gives the strain energy density in the continuum approximation w:

w =

√
3
(
C2
` `

4
(
3ε211 + 4ε212 + 2ε11ε22 + 3ε222

)
+ 48C`D``

2
(
ε211 + ε222 + 2ε212

))
96D``3 + 8C``5

+

6
√

3
(
D2
`

(
3ε211 + 12ε212 − 6ε11ε22 + 3ε222

)
+D`

(
12D` + C``

2
)

(ω − ϕ̂)
2
)

12D``3 + C``5
+

2
√

3
(
D``

2
(
3D` + C``

2
) (
ϕ̂2
,1 + ϕ̂2

,2

))
12D``3 + C``5

+

Kw

(
39
(
59ε211 + 96ε212 + 22ε11ε22 + 59ε222

)
+ 70`2

(
ϕ̂2
,1 + ϕ̂2

,2

))
4480

√
3

(C.5)

been C` = Es h
1−ν2

s
and D` = Es h

3

12(1−ν2
s )

, respectively, the tensile and bending stiffness (per

unit width) of the beams, h the thickness, Es and νs the Young’s modulus and the
Poisson’s ratio of the cell walls material, Kw = kw`, kw the Winkler foundation constant
per unit width. In particular, the resulting energy density

w = w (εαβ , (ω − ϕ̂), ϕ̂,α) (C.6)
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is a function of the infinitesimal strains εαβ = 1
2 (ûα,β + ûβ,α) and the infinitesimal rota-

tion ω = 1
2 (û1,2 − û2,1) that represent, respectively, the symmetric and skew-symmetric

part of ∇û, as in the classical continuum mechanics, and of the microrotation gradients,
ϕ̂,α.

After rewriting (C.5) in terms of c ≡ C`/` = Es (h/`)
1−ν2

s
and d ≡ D`/`

3 = Es (h/`)3

12(1−ν2
s )

, it

emerges, as before, that the coefficients are independent of `, with the exception of the
microrotation gradients that scale with first order in `. Consequently, in the limit `→ 0
the contribution of the microrotation gradients is missing and the equivalent continuum
is non-polar. Accordingly, the strain energy density in the continuum approximation
takes the form:

w =

√
3
(
C2
` `

4
(
3ε211 + 4ε212 + 2ε11ε22 + 3ε222

)
+ 48C`D``

2
(
ε211 + ε222 + 2ε212

))
96D``3 + 8C``5

+

6
√

3
(
D2
`

(
3ε211 + 12ε212 − 6ε11ε22 + 3ε222

)
+D`

(
12D` + C``

2
)

(ω − ϕ̂)
2
)

12D``3 + C``5
+

Kw

(
39
(
59ε211 + 96ε212 + 22ε11ε22 + 59ε222

)
)

4480
√

3
. (C.7)

Appendix C.2. Constitutive equations

The constitutive equations ensue from (C.7):

σ11 = σsym11 =

(√
3
(
3C``

2 + 12D`

)
4 `3

+
767Kw

2240
√

3

)
ε11 +

(√
3
(
C``

2 − 12D`

)
4 `3

+
143Kw

2240
√

3

)
ε22,

σ22 = σsym22 =

(√
3
(
3C``

2 + 12D`

)
4 `3

+
767Kw

2240
√

3

)
ε22 +

(√
3
(
C``

2 − 12D`

)
4 `3

+
143Kw

2240
√

3

)
ε11,

σsym12 = σsym21 =

(√
3
(
C``

2 + 12D`

)
2 `3

+
39Kw

140
√

3

)
ε12

σskw12 = −σskw21 =
12
√

3D`

`3
(ω − ϕ̂) ,

σ12 = σsym12 + σskw12 , σ21 = σsym21 + σskw21 .

(C.8)

σsymγδ and σskwγδ are, in turn, the symmetric and skew-symmetric part of the not-symmetric
Cauchy-type stress tensor.

Appendix C.3. Elastic constants

Let us consider the stress state σ11 6= 0, σ22 = σ12 = σ21 = 0. From (C.8) and
Hooke’s law, σsym11 = E∗

1 ε11, the Young’s modulus in the e1 direction is:

E∗
1 =

σ11
ε11

=

√
3
(
13Kw(1− ν2s ) + 32Es λ

) (
39Kw(1− ν2s ) + 70Es λ

(
1 + λ2

))
2(1− ν2s ) (767Kw(1− ν2s ) + 560Es λ (3 + λ2))

, (C.9)
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Figure C.4: (a) The equilateral triangular microstructure, (b) The unit cell.

(a) e 1

e 2

(2)

(0) (1)

(3)

(4)

(5) (6)

(b) e 1

e 2

(2)

(0) (1)

(3)

(4)

(5) (6)

Figure C.5: Equilateral triangular microstructure: (a) Springs a, (b) Springs b.
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while the related Poisson’s ratio ν∗12 = −ε22/ε11 is:

ν∗12 =
143Kw(1− ν2s )− 560s

(
λ2 − 1

)
767Kw(1− ν2s ) + 560s (λ2 + 3)

. (C.10)

Similarly, the stress state σ22 6= 0, σ11 = σ12 = σ21 = 0 leads to the Young’s modulus
in the e2 direction, E∗

2 = E∗
1 ≡ E∗, and to the related Poisson’s ratio, ν∗21 = −ε11/ε22 =

ν∗12 ≡ ν∗.
Finally, the stress state σsym12 6= 0, σ11 = σ22 = 0 yields the tangential elastic modulus,

G∗ = σsym12 /2 ε12:

G∗ =

√
3
(
39Kw(1− ν2s ) + 70s

(
λ2 + 1

))
280(1− ν2s )

. (C.11)

Appendix C.4. Comparison between the analytical and numerical approach

In terms of stress, the compact expression of the constitutive equations derived in
Section C.2 is  ε11

ε22
ε12

 =

 C∗
11 C∗

12 C∗
13

C∗
21 C∗

22 C∗
23

C∗
31 C∗

32 C∗
33

  σsym11

σsym22

σsym12

 , (C.12)

with

C∗
11 = C∗

22 =
C22 C33

C2
22 C33 − C2

12 C33
, C∗

12 = C∗
21 =

C12 C33

C2
22 C33 − C2

12 C33
,

C∗
33 =

C2
22 − C2

12

C2
22 C33 − C2

12 C33
, C∗

13 = C∗
23 = C∗

31 = C∗
32 = 0. (C.13)

and

C11 = C22 =

√
3
(
3C``

2 + 12D`

)
4 `3

+
767Kw

2240
√

3
=

√
3Esλ(3 + λ2)

4(1− ν2s )
+

767Kw

2240
√

3
,

C12 = C21 =

√
3
(
C``

2 − 12D`

)
4 `3

+
143Kw

2240
√

3
=

√
3Esλ(3− λ2)

4(1− ν2s )
+

143Kw

2240
√

3
,

C33 =

√
3
(
C``

2 + 12D`

)
2 `3

+
39Kw

140
√

3
=

√
3Esλ

3

(1− ν2s )
,

C13 = C23 = C31 = C32 = 0. (C.14)

As in Appendix B, finite element simulations assess the analytical model. Specif-
ically, the Euler-Bernoulli beam on Winkler foundation elements model the compos-
ite microstructure. The cell wall material, assumed to be isotropic linear elastic, has
Young’s modulus Es = 79 GPa, Poisson’s ratio νs = 0.35 and thickness h = 0.1`, while
Kw = 10−2Es. The numerical analysis involve a 75x50 mm rectangular domain dis-
cretized in an increasing number of equilateral triangular cells having gradually smaller
length `. As in Appendix B, the load conditions are the uniaxial compression, uniaxial
traction and in-plane shear. Forces of the same intensity acting at the boundary, un-
constrained nodes of the domain simulate the loading states. Again, the corresponding

14



Table C.3: Equilateral triangular microstructure: comparison between the analytical and nu-
merical approach, C∗

ij constants

No. cells ` (mm) C∗
11 C∗

22 C∗
12 C∗

21 C∗
33 C∗

13 = C∗
23 = C∗

31 = C∗
32

15x10 5 6.05 6.08 6.02 6.03 7.50 0
75x50 1 6.13 6.13 6.03 6.03 5.90 0

100x100 0.5 6.25 6.23 6.03 6.05 5.90 0
300x200 0.25 6.27 6.29 6.10 6.09 5.10 0
375x250 0.2 6.35 6.34 6.15 6.13 4.80 0
600x400 0.125 6.38 6.39 6.22 6.21 4.60 0
750x500 0.1 6.38 6.39 6.22 6.22 4.60 0

Analytical results 6.43 6.43 6.40 6.40 4.50 0

Table C.4: Equilateral triangular microstructure: comparison between the analytical and nu-
merical approach, elastic moduli

No. cells ` (mm) E∗
1 (GPa) E∗

2 (GPa) ν∗12 ν∗21 G∗ (GPa)

15x10 5 11.33 11.48 0.42 0.45 4.70
75x50 1 11.33 11.39 0.41 0.40 4.63

100x100 0.5 11.10 11.08 0.41 0.40 4.63
300x200 0.25 10.91 10.90 0.32 0.33 4.51
375x250 0.2 10.70 10.78 0.33 0.33 4.50
600x400 0.125 10.61 10.50 0.33 0.33 4.22
750x500 0.1 10.50 10.47 0.33 0.33 4.10

Analytical results 10.46 10.46 0.33 0.33 3.94

effective stiffness components are calculated as the ratio between the average volume
strain,

εij =
1

V

∫
V

εij dV, i, j = 1, 2, (C.15)

and the applied stress (see Appendix B).
The results of the analysis are presented in Tables (C.3) and (C.4). In Table (C.3)

the analytical and numerical values of the C∗
ij constants are compared, while Table (C.4)

deals with the elastic constants. As it can be seen, the results from the continuum
formulation compare reasonably well with the numerical solutions.

Appendix D. The composite cellular material with square microstructure:
focus on springs

As Figure (D.6) shows, the elongation of the elastic springs is expressed by

- Beam (0)-(1)
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Figure D.6: The unit cell with focus on springs in the square microstructure. (a) Beam (0)-(1),
(b) Beam (0)-(2), (c) Beam (0)-(3), (d) Beam (0)-(4).
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Figure D.7: The bi vectors in the square microstructure.
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In the discrete system

∆ u1,a =


u0 − u4

ϕ0 − ϕ4

u1 − u5

ϕ1 − ϕ5

 , ∆ u1,b =


u0 − u2

ϕ0 − ϕ2

u1 − u6

ϕ1 − ϕ6

 , (D.1)

while in the continuum description

u0 = û, ϕ0 = ϕ̂, (D.2)

ui = û +∇û bi +
1

2
(∇2û b2

i ), (D.3)

ϕi = ϕ̂+∇ϕ̂bi +
1

2
(∇2ϕ̂b2

i ), i = 1, 2, 4, 5, 6. (D.4)

Substituting (D.2)-(D.10) into (D.1) leads to

∆ u1,a =


−∇û b4 − (∇2û b2

4)/2
−∇ϕ̂b4 − (∇2ϕ̂b2

4)/2
∇û b1 + (∇2û b2

1)/2−∇û b5 − (∇2û b2
5)/2

∇ϕ̂b1 + (∇2ϕ̂b2
1)/2−∇ϕ̂b5 − (∇2ϕ̂b2

5)/2

 , (D.5)

∆ u1,b =


−∇û b2 − (∇2û b2

2)/2
−∇ϕ̂b2 − (∇2ϕ̂b2

2)/2
∇û b1 + (∇2û b2

1)/2−∇û b6 − (∇2û b2
6)/2

∇ϕ̂b1 + (∇2ϕ̂b2
1)/2−∇ϕ̂b6 − (∇2ϕ̂b2

6)/2

 . (D.6)

Similarly, for the beams (0)-(2), (0)-(3), (0)-(4):
- Beam (0)-(j)
Discrete system

∆ uj,a =


u0 − uk
ϕ0 − ϕk
u2 − ul
ϕ2 − ϕl

 , ∆ uj,b =


u0 − um
ϕ0 − ϕm
u2 − un
ϕ2 − ϕn

 . (D.7)

Continuum description
u0 = û, ϕ0 = ϕ̂, (D.8)

ui = û +∇û bi +
1

2
(∇2û b2

i ), (D.9)

ϕi = ϕ̂+∇ϕ̂bi +
1

2
(∇2ϕ̂b2

i ), i = j, k, l,m, n (D.10)

and

∆ uj,a =


−∇û bk − (∇2û b2

k)/2
−∇ϕ̂bk − (∇2ϕ̂b2

k)/2
∇û bj + (∇2û b2

j )/2−∇û bl − (∇2û b2
l )/2

∇ϕ̂bj + (∇2ϕ̂b2
j )/2−∇ϕ̂bl − (∇2ϕ̂b2

l )/2

 , (D.11)
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∆ uj,b =


−∇û bm − (∇2û b2

m)/2
−∇ϕ̂bm − (∇2ϕ̂b2

m)/2
∇û bj + (∇2û b2

j )/2−∇û bn − (∇2û b2
n)/2

∇ϕ̂bj + (∇2ϕ̂b2
j )/2−∇ϕ̂bn − (∇2ϕ̂b2

n)/2

 . (D.12)

In particular,
Beam (0)-(2): j = 2, k = 1, l = 6, m = 3, n = 7,
Beam (0)-(3): j = 3, k = 2, l = 7, m = 4, n = 8,
Beam (0)-(4): j = 4, k = 3, l = 8, m = 1, n = 5.

Finally, the vectors bi (Fig. (D.7)) are

b1 = (`, 0) , b2 = (0, `) , b3 = (−`, 0) , b4 = (0,−`) ,
b5 = (`,−`) , b6 = (`, `) , b7 = (−`, `) , b8 = (−`,−`) . (D.13)

Appendix E. Composite cellular material with equilateral triangular microstruc-
ture: focus on springs

In the case of equilateral triangular microstructure, the elongation of the springs takes
the form (Fig. (E.8), (E.9))

- Beam (0)-(1)
Discrete system

∆ ua1 =

[
u1 − u6

ϕ1 − ϕ6

]
, ∆ ub1 =

[
u1 − u2

ϕ1 − ϕ2

]
. (E.1)

In the continuum description,

ui = û +∇û bi, ϕi = ϕ̂+∇ϕ̂bi, i = 1, 6, 2 (E.2)

that, substituted in (E.1), lead to

∆ ua1 =

[
∇û b1 −∇û b6

∇ϕ̂b1 −∇ϕ̂b6

]
, ∆ ub1 =

[
∇û b1 −∇û b2

∇ϕ̂b1 −∇ϕ̂b2

]
. (E.3)

For the other beams, similar calculations provide
- Beam (0)-(j)
Discrete system

∆ uaj =

[
uj − uk
ϕj − ϕk

]
, ∆ ubj =

[
uj − ul
ϕj − ϕl

]
. (E.4)

Continuum description

ui = û +∇û bi, ϕi = ϕ̂+∇ϕ̂bi, i = j, k, l (E.5)

and

∆ uaj =

[
∇û bj −∇û bk
∇ϕ̂bj −∇ϕ̂bk

]
, ∆ ubj =

[
∇û bj −∇û bl
∇ϕ̂bj −∇ϕ̂bl

]
, (E.6)

with
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Figure E.8: The unit cell with focus on springs in the equilateral triangular microstructure. (a)
Beam (0)-(1), (b) Beam (0)-(2), (c) Beam (0)-(3), (d) Beam (0)-(4), (e) Beam
(0)-(5), (f) Beam (0)-(6).
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(2)
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Figure E.9: The bi vectors in the equilateral triangular microstructure.

Beam (0)-(2): j = 2, k = 1, l = 3,
Beam (0)-(3): j = 3, k = 2, l = 4,
Beam (0)-(4): j = 4, k = 3, l = 5,
Beam (0)-(5): j = 5, k = 4, l = 6,
Beam (0)-(6): j = 6, k = 5, l = 1.

Finally, as stated, note that each beam is shared between two adjacent beams. So, each
member contributes only half of its strain energy to the representative cell.
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