
Proceedings of NAACL-HLT 2016, pages 1268–1278,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Convolutional Neural Networks vs. Convolution Kernels:
Feature Engineering for Answer Sentence Reranking

Kateryna Tymoshenko† and Daniele Bonadiman† and Alessandro Moschitti
†DISI, University of Trento, 38123 Povo (TN), Italy

Qatar Computing Research Institute, HBKU, 5825 Doha, Qatar
{kateryna.tymoshenko,d.bonadiman}@unitn.it

amoschitti@qf.org.qa

Abstract
In this paper, we study, compare and combine
two state-of-the-art approaches to automatic
feature engineering: Convolution Tree Ker-
nels (CTKs) and Convolutional Neural Net-
works (CNNs) for learning to rank answer
sentences in a Question Answering (QA) set-
ting. When dealing with QA, the key aspect is
to encode relational information between the
constituents of question and answer in learn-
ing algorithms. For this purpose, we propose
novel CNNs using relational information and
combined them with relational CTKs. The
results show that (i) both approaches achieve
the state of the art on a question answering
task, where CTKs produce higher accuracy
and (ii) combining such methods leads to un-
precedented high results.

1 Introduction
The increasing use of machine learning for the de-
sign of NLP applications pushes for fast methods for
feature engineering. In contrast, the latter typically
requires considerable effort especially when dealing
with highly semantic tasks such as QA. For example,
for an effective design of automated QA systems,
the question text needs to be put in relation with the
text passages retrieved from a document collection
to enable an accurate extraction of the correct an-
swers from passages. From a machine learning per-
spective, encoding the information above consists
in manually defining expressive rules and features
based on syntactic and semantic patterns.
Therefore, methods for automatizing feature en-

gineering are remarkably important also in the light
of fast prototyping of commercial applications. To

the best of our knowledge, two of the most effec-
tive methods for engineering features are: (i) kernel
methods, which naturally map feature vectors or di-
rectly objects in richer feature spaces; and more re-
cently (ii) approaches based on deep learning, which
have been shown to be very effective.

Regarding the former, in (Moschitti et al., 2007),
we firstly used CTKs in Support Vector Machines
(SVMs) to generate features from a question (Q) and
their candidate answer passages (AP). CTKs enable
SVMs to learn in the space of convolutional subtrees
of syntactic and semantic trees used for represent-
ing Q and AP. This automatically engineers syntac-
tic/semantic features. One important characteristic
we added in (Severyn and Moschitti, 2012) is the
use of relational links between Q and AP, which ba-
sically merged the two syntactic trees in a relational
graph (containing relational features).

Although based on different principles, also
CNNs can generate powerful features, e.g., see
(Kalchbrenner et al., 2014; Kim, 2014). CNNs
can effectively capture the compositional process of
mapping the meaning of individual words in a sen-
tence to a continuous representation of the sentence.
This way CNNs can efficiently learn to embed input
sentences into low-dimensional vector space, pre-
serving important syntactic and semantic aspects of
the input sentence. However, engineering features
spanning two pieces of text such as in QA is a more
complex task than classifying single sentences. In-
deed, only very recently, CNNs were proposed for
QA by Yu et al. (2014). Although, such network
achieved high accuracy, its design is still not enough
to model relational features.
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In this paper, we aim at comparing the ability of
CTKs and CNNs of generating features for QA. For
this purpose, we first explore CTKs applied to shal-
low linguistic structures for automatically learning
classification and ranking functions with SVMs.
At the same time, we assess a novel deep learn-

ing architecture for effectively modeling Q and AP
pairs generating relational features we initially mod-
eled in (Severyn and Moschitti, 2015; Severyn and
Moschitti, 2016). The main building blocks of
our approach are two sentence models based on
CNNs. These work in parallel, mapping questions
and answer sentences to fixed size vectors, which are
then used to learn the semantic similarity between
them. To compute question-answer similarity score
we adopt the approach used by Yu et al. (2014).
Our main novelty is the way we model relational
information: we inject overlapping words directly
into the word embeddings as additional dimensions.
The augmented word representation is then passed
through the layers of the convolutional feature ex-
tractors, which encode the relatedness between Q
and AP pairs in a more structured manner. More-
over, the embedding dimensions encoding overlap-
ping words are parameters of the network and are
tuned during training.
We experiment with two different QA bench-

marks for sentence reranking TREC13 (Wang et al.,
2007) and WikiQA (Yang et al., 2015). We compare
CTKs and CNNs and then we also combine them.
For this purpose, we design a new kernel that sum
together CTKs and different embeddings extracted
from different CNN layers. Our CTK-based mod-
els achieve the state of the art on TREC 13, obtain-
ing an MRR of 85.53 and an MAP of 75.18 largely
outperforming all the previous best results. On Wik-
iQA, our CNNs perform almost on par with tree ker-
nels, i.e., an MRR of 71.07 vs. 72.51 of CTK, which
again is the current state of the art on such data. The
combination between CTK and CNNs produces a
further boost, achieving an MRR of 75.52 and an
MAP of 73.99, confirming that the research line of
combining these two interesting machine learning
methods is very promising.

2 Related Work
Relational learning from entire pieces of text con-
cerns several natural language processing tasks, e.g.,

QA (Moschitti, 2008), Textual Entailment (Zanzotto
and Moschitti, 2006) and Paraphrase Identification
(Filice et al., 2015). Regarding QA, a referring work
for our research is the IBM Watson system (Fer-
rucci et al., 2010). This is an advanced QA pipeline
based on deep linguistic processing and semantic re-
sources.
Wang et al. (2007) used quasi-synchronous gram-

mar to model relations between a question and a can-
didate answer with syntactic transformations. (Heil-
man and Smith, 2010) applied Tree Edit Distance
(TED) for learning tree transformations in a Q/AP
pair. (Wang and Manning, 2010) designed a proba-
bilistic model to learn tree-edit operations on depen-
dency parse trees. (Yao et al., 2013) applied linear
chain CRFs with features derived from TED to auto-
matically learn associations between questions and
candidate answers. Yih et al. (2013a) applied en-
hanced lexical semantics to build a word-alignment
model, exploiting a number of large-scale external
semantic resources.
Although the above approaches are very valuable,

they required considerable effort to study, define and
implement features that could capture relational rep-
resentations. In contrast, we are interested in tech-
niques that try to automatize the feature engineer-
ing step. In this respect, our work (Moschitti et al.,
2007) is the first using CTKs applied to syntactic
and semantic structural representations of the Q/AP
pairs in a learning to rank algorithm based on SVMs.
After this, we proposed several important improve-
ment exploiting different type of relational links be-
tween Q and AP, i.e., (Severyn and Moschitti, 2012;
Severyn et al., 2013; Severyn and Moschitti, 2013;
Tymoshenko et al., 2014; Tymoshenko and Mos-
chitti, 2015). The main difference with our previ-
ous approaches is usage of better-preprocessing al-
gorithms and new structural representations, which
highly outperform them.
Recently, deep learning approaches have been

successfully applied to various sentence classifica-
tion tasks, e.g., (Kalchbrenner et al., 2014; Kim,
2014), and for automatically modeling text pairs,
e.g., (Lu and Li, 2013; Hu et al., 2014). Addition-
ally, a number of deep learning models have been
recently applied to question answering, e.g., Yih et
al. (2014) applied CNNs to open-domain QA; Bor-
des et al. (2014b) propose a neural embedding model
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Figure 1: Shallow chunk-based tree for the Q/AP pair in the running example.

combined with the knowledge base for open-domain
QA; Iyyer et al. (2014) applied recursive neural net-
works to factoid QA over paragraphs. (Miao et
al., 2015) proposed a neural variational inference
model and a Long-short Term Memory network for
the same task. Recently (Yin et al., 2015) pro-
posed a siamese convolutional network for match-
ing sentences that employ an attentive average pool-
ing mechanism, obtaining state-of-the-art results in
various tasks and datasets. The work closest to this
paper is (Yu et al., 2014) and (Severyn and Mos-
chitti, 2015). The former presented a CNN architec-
ture for answer sentence selection that uses a bigram
convolution and average pooling, whereas in the lat-
ter we used convolution with k-max pooling. How-
ever, these models only partially captures relational
information. In contrast, in this paper, we encode
relational information about words that are matched
betweem Q and AP.

3 Feature Engineering for QA with CTKs

Our approach to learning relations between two texts
is to first convert them into a richer structural rep-
resentation based on their syntactic and semantic
structures, and then apply CTKs. To make our ap-
proach more effective, we further enriched struc-
tures with relational semantics by linking the related
constituents with lexical and other semantic links.

3.1 Shallow Representation of Short Text Pairs
In our study, we employ a modified version of the
shallow structural representation of question and an-
swer pairs, CH, described in (Severyn et al., 2013;
Tymoshenko and Moschitti, 2015). We represent
a pair of short texts as two trees with lemmas at
leaf level and their part-of-speech (POS) tags at the
preterminal level. Preterminal POS-tags are grouped
into chunk nodes and the chunks are further grouped
into sentences. Figure 1 provides an example of this
structure.
We enrich the above representation with the in-

formation about question class and question fo-
cus. Questions are classified in terms of their ex-
pected answer type. (Severyn et al., 2013) employed
coarse-grained classes from (Li and Roth, 2002),
namely HUM (person), ENTY (an entity), DESC
(description), LOC (location), and NUM (number).
In this work, we split the NUM class into three sub-
categories, DATE, QUANTITY, CURRENCY and
train question classifiers as described in (Severyn et
al., 2013). Differently from before, we add the ques-
tion class node as the rightmost child of the root
node both to the question and the answer structures.
We detect question focus using a focus classifier,

FCLASS, trained as in (Severyn et al., 2013). How-
ever, in our previous model, we classified all words
over the chunks in the question and picked the one
with the highest FCLASS prediction score as a fo-
cus even if it is negative. In this work, if FCLASS
assigns negative scores to all the question chunks,
we consider the first question chunk, which is typ-
ically a question word, to be a focus. We mark the
focus chunk by prepending the REL-FOCUS tag to
its label.
In previous work, we have shown the importance

of encoding information about the relatedness be-
tween Q and AP into their structural representations.
Thus, we employ lexical and question class match,
described hereafter.
Lexical match. Lemmas that occur both in Q and

AP are marked by prepending the REL tag to the
labels of the corresponding preterminal nodes and
their parents.
Question class match. We detect named enti-

ties (NEs) in AP and mark the NEs of type com-
patible1 with the question class by prepending the
REL-FOCUS-QC label to the corresponding pre-
preterminals in the trees. The QC suffix in the labels

1Compatibility is checked using a predefined table,
namely Person, Organization→ HUM, ENTY; Misc→ ENTY;
Location→ LOC; Date, Time, Number→ DATE; Money,
Number→ CURRENCY; Percentage, Number→ QUANTITY
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is replaced by the question class in the given pair.
For example, in Figure 1, the Dumbledore lemma

occurs in both Q and AP, therefore the respective
POS and chunk nodes are marked with REL. The
named entities, Harris, Michael Gambon and Dum-
bledore have the type Person compatible with the
question class HUM, thus their respective chunk
nodes are marked as REL-FOCUS-HUM (overrid-
ing the previously inserted REL tag for the Dumble-
dore chunk).
3.2 Reranking with Tree Kernels
We aim at learning reranker that can decide which
Q/AP pair is more probably correct than others,
where correct Q/AP pairs are formed by an AP con-
taining a correct answer to Q along with a support-
ing justification. We adopt the following kernel for
reranking: PK (〈o1, o2〉,〈o0

1, o
0
2〉) = K(o1, o0

1) +
K(o2, o0

2) − K(o1, o0
2) − K(o2, o0

1). In our case,
oi = 〈Qi , APi〉and o0

j = 〈Q0
j , AP

0
j〉, where Q

and AP are the trees defined in the previous sec-
tion, K(oi , o0

j ) = TK(Qi , Q0
j ) + TK(APi , AP 0

j )
and TK is a tree kernel function. Finally, we also
add (~V (o1)− ~V (o2))·(~V (o0

1)− ~V (o0
2)) to PK , where

~V (oi ) is a feature vector representing Q/AP pairs.

4 Feature Engineering for QA with CNNs

The architecture of our convolutional neural net-
work for matching Q and AP pairs is presented in
Fig. 2. Its main components are: (i) sentence ma-
trices si ∈ Rd×|i | obtained by the concatenation of
the word vectors wj ∈ Rd (with d being the size
of the embeddings) of the corresponding words wj
from the input sentences (Q and AP) si ; (ii) a con-
volutional sentence model f : Rd×|i | → Rm that
maps the sentence matrix of an input sentence si to
a fixed-size vector representations xsi of sizem; (iii)
a layer for computing the similarity between the ob-
tained intermediate vector representations of the in-
put sentences, using a similarity matrixM ∈ Rm×m

– an intermediate vector representation xs1 of a sen-
tence s1 is projected to a x̃ s1 = xs1M , which is
then matched with xs2 (Bordes et al., 2014a), i.e.,
by computing a dot-product x̃ s1 xs2 , thus resulting
in a single similarity score xsim; (iv) a set of fully-
connected hidden layers that model the similarity
between sentences using their vector representations
produced by the sentence model (also integrating the

single similarity score from the previous layer); and
(v) a sigmoid layer that outputs probability scores
reflecting how well the Q-AP pairs match with each
other.
The choice of the sentence model plays a crucial

role as the resulting intermediate representations of
the input sentences will affect the successive step of
computing their similarity. Recently, convolutional
sentence models, where f(s) is represented by a se-
quence of convolutional-pooling feature maps, have
shown state-of-the-art results on many NLP tasks,
e.g., (Kalchbrenner et al., 2014; Kim, 2014). In this
paper, we opt for a convolutional operation followed
by a k-max pooling layer with k = 1 as proposed in
(Severyn and Moschitti, 2015).
Considering recent applications of deep learning

models to the problem of matching sentences, our
network is most similar to the models in (Hu et al.,
2014) applied for computing sentence similarity and
in (Yu et al., 2014) (answer sentence selection in
QA) with the following difference. To compute the
similarity between the vector representation of the
input sentences, our network uses two methods: (i)
computing the similarity score obtained using a sim-
ilarity matrix M (explored in (Yu et al., 2014)), and
(ii) directly modelling interactions between interme-
diate vector representations of the input sentences
via fully-connected hidden layers (used by (Hu et
al., 2014)). This approach, as proposed in (Sev-
eryn and Moschitti, 2015), results in a significant
improvement in the task of question answer selec-
tion over the two methods used separately. Differ-
ently from the above models we do not add addi-
tional features in the join layer.

4.1 Representation Layers
It should be noted that NNs non-linearly transform
the input at each layer. For instance, the output of
the convolutional and pooling operation f(si ) is a
fixed-size representation of the input sentence si . In
the reminder of the paper, we will refer to these vec-
tor representations for the question and the answer
passage as the question embedding (QE) and the an-
swer embedding (AE), respectively. Similarly, the
output of the penultimate layer of the network (the
hidden layer whose output is fed to the final clas-
sification layer) is a compact representation of the
input Question and Answer pair, which we call Joint
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Figure 2: CNN for computing the similarity between question and answer.

Embedding (JE).

4.2 Injecting Relational Information in CNNs
Sec. 3 has shown that establishing relational links
(REL nodes) between Q and A pairs is very impor-
tant for solving the QA task. Yih et al. (2013b) also
use latent word-alignment structure in their seman-
tic similarity model to compute similarity between
question and answer sentences. Yu et al. (2014)
achieve large improvement by combining the out-
put of their deep learning model with word count
features in a logistic regression model. Differently
from (Yu et al., 2014; Severyn and Moschitti, 2015)
we do not add additional features such as the word
count in the join layer. We allow our convolutional
neural network to capture the connections between
related words in a pair and we feed it with an ad-
ditional binary-like input about overlapping words
(Severyn and Moschitti, 2016).
In particular, in the input sentence, we associate

an additional word overlap indicator feature o ∈
{ 0, 1} with each word w, where 1 corresponds to
words that overlap in a given pair and 0 otherwise.
To decide if the words overlap, we perform string
matching. Basically this small feature vector plays
the role of REL tag added to the CTK structures.
Hence, we require an additional lookup table

layer for the word overlap features LTW o (·) with
parametersW o ∈ Rdo×2, where do ∈ N is a hyper-

parameter of the model, which indicates the num-
ber of dimensions used for encoding the word over-
lap features. Thus, we augment word embeddings
with additional dimensions that encode the fact that
a given word in a pair is overlapping or semantically
similar and let the network learn its optimal repre-
sentation. Given a word wi , its final word embed-
ding wi ∈ Rd (where d = dw + do) is obtained by
concatenating the output of two lookup table opera-
tions LTW (wi ) and LTW o (wi ).

5 Experiments

In these experiments, we compare the impact in ac-
curacy of two main methods for automatic feature
engineering, i.e., CTKs and CNNs, for relational
learning, using two different answer sentence selec-
tion datasets, WikiQA and TREC13. We propose
several strategies to combine CNNs with CTKs and
we show that the two approaches are complementary
as their joint use significantly boosts both models.

5.1 Experimental Setup
We utilized two datasets for testing our models:
TREC13. This is the factoid open-domain TREC
QA corpus prepared by (Wang et al., 2007). The
training data was assembled from the 1,229 TREC8-
12 questions. The answers for the training questions
were automatically marked in sentences by apply-
ing regular expressions, therefore the dataset can be
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noisy. The test data contains 68 questions, whose an-
swers were manually annotated. We used 10 answer
passages for each question for training our classi-
fiers and all the answer passages available for each
question for testing.
WikiQA. TREC13 is a small dataset with an even
smaller test set, which makes the system evaluation
rather unstable, i.e., a small difference in parame-
ters and models can produce very different results.
Moreover, as pointed by (Yih et al., 2013b), it has
significant lexical overlap between questions and
answer candidates, therefore simple lexical match
models may likely outperform more elaborate meth-
ods if trained and tested on it. WikiQA dataset (Yang
et al., 2015) is a larger dataset, created for open
domain QA, which overcomes these problems. Its
questions were sampled from the Bing query logs
and candidate answers were extracted from the sum-
mary paragraphs of the associated Wikipedia pages.
The train, test, and development sets contain 2,118,
633 and 296 questions, respectively. There is no
correct answer sentence for 1,245 training, 170 de-
velopment and 390 test questions. Consistently
with (Yin et al., 2015), we remove the questions
without answers for our evaluations.
Preprocessing. We used the Illinois chunker (Pun-
yakanok and Roth, 2001), question class and fo-
cus classifiers trained as in (Severyn and Moschitti,
2013) and the Stanford CoreNLP (Manning et al.,
2014) toolkit for the needed preprocessing.
CTKs. We used SVM-light-TK2 to train our mod-
els. The toolkit enables the use of structural kernels
(Moschitti, 2006) in SVM-light (Joachims, 2002).
We applied (i) the partial tree kernel (PTK) with its
default parameters to all our structures and (ii) the
polynomial kernel of degree 3 on all feature vectors
we generate.
Metaclassifier. We used the scikit3 logistic re-
gression classifier implementation to train the meta-
classifier on the outputs of CTKs and CNNs.
CNNs. We pre-initialize the word embeddings by
running the word2vec tool (Mikolov et al., 2013)
on the English Wikipedia dump and the jacana cor-
pus as in (Severyn and Moschitti, 2015). We opt for
a skipgram model with window size 5 and filtering

2
http://disi.unitn.it/moschitti/Tree-Kernel.

htm

3
http://scikit-learn.org/stable/index.html

MRR MAP P@1
State of the art

CNNc (Yang et al., 2015) 66.52 65.20 n/a
ABCNN (Yin et al., 2015) 71.27 69.14 n/a
LSTMa,c (Miao et al., 2015) 70.41 68.55 n/a
NASMc (Miao et al., 2015) 70.69 68.86 n/a

Our Individual Models
CNNR 71.07 69.51 57.20
CHcoarse 71.63 70.45 56.79
CH 72.30 71.25 58.44
VA E + QE 68.29 67.24 55.56
VJ E 67.07 65.76 52.26

Our Model Combinations
CH+VA E + QE 72.51 71.29 59.26
CH+VJ E 73.18 71.56 60.49
∗CH+VA E + QE 75.88 74.17 64.61
∗CH+VJ E 75.52 73.99 63.79
Meta: CH, VJ E , CNNR 75.28 73.69 62.96
Meta: CH, VJ E 75.08 73.64 62.55
Meta: CH+VJ E , CNNR 73.94 72.25 61.73

Table 1: Performance on the WikiQA dataset

words with frequency less than 5. The dimension-
ality of the embeddings is set to 50. The input sen-
tences are mapped to fixed-sized vectors by comput-
ing the average of their word embeddings. We use a
single non-linear hidden layer (with hyperbolic tan-
gent activation, Tanh), whose size is equal to the size
of the previous layer. The network is trained using
SGD with shuffled mini-batches using the Adam up-
date rule (Kingma and Ba, 2014). The batch size is
set to 100 examples. The network is trained for a
fixed number of epochs (i.e., 3) for all the experi-
ments. We decided to avoid using early stopping, in
order to do not overfit the development set and have
a fair comparison with the CTKs models.
QA metrics. We used common QA metrics: Preci-
sion at rank 1 (P@1), i.e., the percentage of ques-
tions with a correct answer ranked at the first po-
sition, the Mean Reciprocal Rank (MRR) and the
Mean Average Precision (MAP).

5.2 Experiments on WikiQA

State of the art. Table 1 reports the results ob-
tained on theWikiQA test set by state-of-the-art sys-
tems (lines 1-4) and our models, when removing the
questions with no correct answers (this to be aligned
with previous work). More in detail:
CNNc is the Convolutional Neural Network with
word count,
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TRAIN50 DEV
MRR MAP P@1 MRR MAP P@1

CH 69.97 68.77 55.14 67.23 65.93 51.44
VA E + QE 68.70 67.18 54.32 68.14 66.46 54.73
VJ E 70.43 68.67 57.61 68.90 67.14 55.56

Model Combinations
CH+VA E + QE 74.40 72.63 62.55 70.01 68.60 57.61
CH+VJ E 73.53 71.69 60.49 70.10 68.55 58.44
Metaclassifiers:
CH, VJ E , CNNR 74.01 72.31 62.14 n/a n/a n/a
CH, VJ E 73.95 72.15 62.14 n/a n/a n/a
CH+VJ E , CNNR 73.43 71.58 60.49 n/a n/a n/a

Table 2: Performance on the WikiQA using the development set or half of the training set for training

TRAIN TRAIN50
MRR MAP P@1 MRR MAP P@1

CH 74.87 74.17 63.49 71.31 70.45 57.94
VA E + QE 70.32 69.75 56.35 71.06 70.33 57.14
VJ E 69.86 69.24 55.56 71.11 70.43 57.14
CH+VA E + QE 71.29 70.79 57.94 72.62 72.18 59.52
CH+VJ E 71.36 70.81 57.94 71.96 71.55 59.52
∗CH+VA E + QE 76.66 75.50 66.67 75.23 74.54 64.29

Table 3: Performance on the WikiQA on the development set

ABCNN is the Attention-Based CNN,
LSTMa,c is the long short-term memory network
with attention and word count, and
NASMc is the neural answer selection model with
word count.
CNNR is the relational CNN described in Section 4.
CH4 is a tree kernel-based SVM reranker trained
on the shallow pos-chunk tree representations of
question and answer sentences (Sec. 3.1), where the
subscript coarse refers to the model with the coarse-
grained question classes as in (Tymoshenko and
Moschitti, 2015).
V is a polynomial SVM reranker, where the sub-
scripts AE, QE, JE indicate the use of the answer,
question or joint embeddings (see Sec. 4.1) as the
feature vector of SVM and + means that two em-
beddings were concatenated into a single vector.
The results show that our CNNR model performs

comparably to ABCNN (Yin et al., 2015), which
is the most recent and accurate NN model and to
CHcoarse. The performance drops when the embed-
dings AE, QE and JE are used in a polynomial

4Models marked by ∗ use an improved version of the prefer-
ence ranking framework we described in Section 3.2. It is im-
portant to show such results as they provide a referring baseline
for future research in this field.

SVM reranker. In contrast, CH (using our tree struc-
ture enriched with fine-grained categories) outper-
forms all the models, showing the importance of
syntactic relational information for the answer sen-
tence selection task.

5.2.1 Combining CNN with CTK on WikiQA

We experiment with two ways of combining CTK
with CNNR : (i) at the kernel level, i.e., summing
tree kernels with the polynomial kernel over differ-
ent embeddings, i.e., CH+V, and (ii) using the pre-
dictions of SVM and CNNR models (computed on
the development set) as features to train logistic re-
gression meta-classifiers (again only on the devel-
opment set). These are reported in the last three
lines of Table 1, where the name of the classifiers
participating with their outputs are illustrated as a
comma-separated list. The results are very interest-
ing as all kinds of combinations largely outperform
the state of the art, e.g., by around 3 points in terms
of MRR, 2 points in terms of MAP and 5 points
in terms of P@1 with respect to the strongest stan-
dalone system, CH. Directly using the predictions of
the CNNR as features in the meta-classifier does not
impact the overall performance. It should be noted
that the meta-classifier could only be trained on the
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development data to avoid predictions biased by the
training data.

5.2.2 Using less training data
Since we train the weights of CNNR on the train-

ing set of WikiQA, to obtain the embeddings mini-
mizing the loss function, we risk to have overfitted,
i.e., “biased”, JE,AE andQE on the questions and
answers of the training set. Therefore, we conducted
another set of experiments to study this case. We
randomly split the training set into two equal sub-
sets. We train CNNR on one of them and in the
other subset, (referred to as TRAIN50) we produce
the embeddings of questions and answers.
Table 2 reports the results on the WikiQA test

set which we obtained when training SVM on
TRAIN50 and on the development set, DEV. We
trained the meta-classifier on the predictions of the
standalone models on DEV. Consistently with the
previous results, we obtain the best performance
combining the CNNR embeddings with CTK. Even
when we train on the 50% of the training data only,
we still outperform the state of the art, and our
best model CH+VJE performs only around 2 points
lower in terms of MRR, MAP and P@1 than when
training on the full training set.
Finally, Table 3 reports the performance of our

models when tested on the development set and
demonstrates that the improvement obtained when
combining CTK and CNNR embeddings also holds
on it. Note, that we did not use the development set
for any parameter tuning and we train all the models
with the default parameters.

5.3 Experiments on TREC13 dataset
TREC13 corpus has been used for evaluation in a
number of works starting from 2007. Table 4 reports
our as well as some state-of-the-art system results
on TREC13. It should be noted that, to be consis-
tent with the previous work, we evaluated our mod-
els in the same setting as (Wang et al., 2007; Yih et
al., 2013a), i.e., we (i) remove the questions having
only correct or only incorrect answer sentence can-
didates and (ii) used the same evaluation script and
the gold judgment file as they used. As pointed out
by Footnote 7 in (Yih et al., 2014), the evaluation
script always considers 4 questions to be answered
incorrectly thus penalizing the overall system score.
We note that our models, i.e., CNNR , VJE ,

Models MRR MAP

State of the art
Wang et al. (2007) 68.52 60.29
Heilman and Smith (2010) 69.17 60.91
Wang and Manning (2010) 69.51 59.51
Yao et al. (2013) 74.77 63.07
Severyn and Moschitti (2013) 73.58 67.81
Yih et al. (2013a) 77.00 70.92
Yu et al. (2014) 78.64 71.13
Wang and Ittycheriah (2015) 77.40 70.63
Tymoshenko and Moschitti (2015) 82.29 73.34
Yang et al. (2015) 76.33 69.51
Miao et al. (2015) 81.17 73.39

Individual Models
CNNR 77.93 71.09
VA E + QE 79.32 73.37
VJ E 77.24 71.34
CH 85.53 75.18

Model Combinations
CH+VJ E 79.75 74.29
CH+VA E + QE 79.74 75.06
Meta: CH, VA E + QE , CNNR 81.67 75.77

Model Combinations using simpler CH
CHsm pl 78.66 71.18
CHsm pl +VA E + QE 80.19 75.01
CHsm pl +VJ E 80.42 74.16

Table 4: Results on the TREC13, answer selection task.

VAE+ QE , again align with the state of the art. In
contrast, our CTK using CH largely outperforms all
previous work, e.g., 7.6 points more than CNNR
in terms of MRR. Considering that the evaluation
of CH with a script that does not penalize systems
would show real MRR andMAP of 90.56 and 80.08,
respectively, there is little room for improvement
with combinations. Indeed, the table shows no im-
provement of model combinations over CH.
Therefore, we trained a simplified version of CH,

CHsmpl , which employs shallow chunk-based rep-
resentations without the question focus or question
class information, i.e., only using the basic rela-
tional information represented by the lexical match
REL tags. CHsmpl performs comparably to CNNR ,
and the combination with embeddings produced by
CNNR , i.e., CHsmpl+VAE+ QE , outperforms both
CHsmpl and CNNR .

6 Discussion
The main focus and novelty of this paper is compar-
ing and combining CTKs and CNETs. We showed
that the features they generate are complementary
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as their combination improve both models. For the
combinations, we used voting and our new method
of combining network layers embedded in a polyno-
mial kernels added to tree kernels.
We would like to stress that to the best of our

knowledge we are the first to merge CNNs and CTK
together. We showed that kernels based on differ-
ent embedding layers learned with our CNNs, when
used in SVMs, deliver the same accuracy of CNNs.
This enables an effective combination between TK
and CNNs at kernel level. Indeed, we experimented
with different kernel combinations built on top of
different CNN layers, improving the state of the art,
largely outperforming all previous systems exactly
using the same testing conditions. These results are
important for developing future research as they pro-
vide indications on features/methods and referring
baselines to compare with.
Finally, we generated modified structures and

used better parsers outperforming our initial result
in (Severyn and Moschitti, 2013) by more than 10
points.

6.1 Efficiency

An interesting question is the practical use of our
models, which require the discussion of their effi-
ciency. In this respect, our framework combines
CTKs and CNNs by generating a global kernel.
Thus, the time complexity during training is basi-
cally given by (i) training CNNs, (ii) extracting their
embeddings and (iii) use these embeddings during
the CTK training. The time for computing steps (i)
and (ii) is linear with respect to the number of ex-
amples as the architecture and the number of opti-
mization steps are fixed. In practice, the bottleneck
of training our CNN architecture is in the number of
weights.
Regarding Step (iii), since the embeddings just

feed a polynomial kernel, which is slightly more ef-
ficient than CTKs, the overall complexity is domi-
nated by the one of the CTK framework, i.e.,O(n2).
In practice, this is rather efficient, e.g., see the dis-
cussion in (Tymoshenko and Moschitti, 2015). The
testing complexity is reduced to the number of ker-
nel operations between the support vectors and the
test examples (the worst case is O(n2)), which are
also parallelizable.

7 Conclusions

This paper compares two state-of-the-art feature en-
gineering approaches, namely CTKs and CNNs, on
the very complex task of answer reranking in a QA
setting. In order to have a meaningful compari-
son, we have set the best configuration for CTK
by defining and implementing innovative linguistic
structures enriched with semantic information from
statistical classifiers (i.e., question and focus classi-
fiers). At the same time, we have developed power-
ful CNNs, which can embed relational information
in their representations.
We tested our models for answer passage rerank-

ing in QA on two benchmarks, WikiQA and
TREC13. Thus, they are directly comparable with
many systems from previous work. The results
show that our models outperform the state of the art
achieved by more complex networks.
In particular, CTKs outperform our CNNs but use

more information, e.g., on TREC 13, CTKs obtain
an MRR and MAP of 85.53 and 75.18 vs. 77.93
and 71.09 of CNNs. On WikiQA, CNNs combined
with tree kernels achieves an MRR of 75.88 and
an MAP of 74.17 largely outperforming the current
state of the art, i.e., MRR of 71.27 and MAP 69.14
of ABCNN by Yin et al. (2015).
It should be noted that CTK models use syntac-

tic parsing, two statistical classifiers for focus and
question classification and a named entity recog-
nizer whereas CNNs only use words and two addi-
tional unsupervised corpora.
In the future, we would like to embed CNN sim-

ilarity in CTKs. A straightforward methods for
achieving this is to use the Smoothed Partial Tree
Kernel by Croce et al. (2011). Our preliminary
experiments using word2vec were not successful.
However, CNNs may provide a more effective sim-
ilarity. Finally, it would be also very interesting to
exploit structural kernels in the network layers.
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