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Abstract

This paper presents the implementation of the Continuous Stream task model (CS) in the Linux
Kernel. The CS model is a model of computation for real-time control tasks, whose primary goal is to
obtain substantial resource savings without sacrificing the control performance. In this paper, we show
the application of the CS model to a robotic application where a mobile robot is requested to follow a
line on the ground. The analysis of the data collected from the real experiments confirms the consistency
between theory and simulations and the experimental results, verifying the validity and effectiveness of
the Continuous Stream approach in a real scenario.

1 Introduction

An interesting trend in the design and development
of modern embedded control systems is the increase
of the CPU (and sensors) power, which leads to an
increased resource sharing, and encourages to run
multiple control applications on the same embedded
board.

However, running multiple applications on the
same CPU/core reduces the determinism of the ap-
plications’ response times (due to the interference
between different applications), while the advanced
CPU architectures tend to reduce the determinism of
their execution times. These are critical issues given
that real-time control applications must be highly
predictable in terms of performance.

To enforce this requirement, the conventional
approach in real–time control design relies on the
combination of a time-triggered model of computa-

tion [9], which forces the communications between
plant and controller to take place at precise points in
time, with the hard real-time scheduling theory [10],
which ensures that all the activities are always able
to deliver the results at the planned instants.

This approach is efficient and sustainable in
terms of resource utilisation only if the computation
time of the task does not change too much. How-
ever, this assumption is not realistic when the control
application uses data coming from complex sensors
(such as cameras, RADARS, LIDARS). Under these
conditions, the classical hard real-time design ap-
proach which allocate computational resources based
on the worst-case demand of the application, results
in overly conservative choices which could lead to a
massive waste of resources and to a drastic reduction
in resource sharing.

These issues can be addressed by combining a
proper CPU scheduler (based on resource reserva-



tions) with an appropriate task model called Contin-
uous Stream task model (CS). The former guarantees
that the different tasks will have timely access to the
computational resources, while the latter forces the
interaction between computers and environment to
take place on precise instants of time, simplifying
the construction of a stochastic model for the delays
introduced in the control loop.

The recent literature has sought ways to modify
the scheduling behaviour, re-modulating the task pe-
riods in overload conditions [3, 4] or describing the
possible activations of the control task that can be
skipped without compromising stability [6].

In [7], the classic idea of the time-triggered ap-
proach is considered but with a minimal variant:
when a task does not meet its deadline, its execution
is cancelled. The solution shows how to combine the
flexibility in accepting a variety of possible timing
behaviours [5] with the simplification in the system
analysis typical of a simple cancellation policy [8].

This paper presents an experimental application
and comparison of these solutions within a robotic
scenario, where a mobile robot is required to follow a
line on the ground. The control task, periodically ac-
tivated by a timer, compete for the CPU with other
tasks. A resource-based scheduler allocates the CPU
in presence of simultaneous execution requests. Ad-
ditionally, the use of the CPU is minimised in an
attempt to save resources for other applications.

The paper is organised as follow. Section 2,
presents an overview of the implemented Continu-
ous Stream task model. Section 3, provides specific
details of the implementation of the task model. Sec-
tion 4, reports the experiments and obtained results.
Finally, Section 5, shows the conclusions and dis-
cusses future work directions.

2 The Continuous Stream

Model

The model of computation of a real-time task (also
referred as “task model”) consists of a set of rules to
decide: 1) when a job is activated (the job’s arrival
time rj), 2) when it samples the input (the sampling
time sj), and, 3) when it releases the output (at time
vj).

In this implementation, the controller is consid-
ered as a real-time task τ , which is periodically acti-

vated after a fixed amount of time called task period
T . The control task consists of a stream of jobs Jj
with j ∈ Z≥0. Each job Jj is activated at time rj and
finishes at time fj , after being executed for a time
cj . The job Jj is also characterised by a deadline dj ,
that is respected when fj ≤ dj , and is missed when
fj > dj . Moreover, each activation time is also the
deadline of the previous job (dj = rj+1 or, equiva-
lently, dj = rj + T ). The response time of job Jj is
ρj = fj − rj .

The objective of job Jj is to produce a control
action uj , to be applied to the actuators, based on
the sample yj collected from the plant (and on its
past history). The sample yj is collected at time sj
and the output uj is released at time vj . These spe-
cific points in time, where sensing and actuation take
place, are called interaction points.

In the CS model, job activations occur within a
limited set of interaction points, which can be cho-
sen as integer multiple of a minimum time granular-
ity P . In contrast to other models proposed in the
literature, such activations are not triggered by an
absolute time, but by the completion of the previous
jobs. This feature ensures that the delay introduced
by a job is independent of the delays experienced in
the previous ones.

Therefore, the idea of periodic activation is re-
laxed: when a job finishes before its soft absolute
deadline (fj < dj), then the next job is activated one
period T after the job activation. On the other hand,
when a job finishes after its soft absolute deadline
(fj > dj), it triggers the activation of the following
job. This continuous activation is the reason of the
name “Continuous Stream”. As mentioned before,
the job is actually activated at the next interaction
point. The model is described by the following rules:

1. Each job is activated at maximum between the
interaction right next the end of the previous
job and the previous job’s arrival time plus T ,

rj =
⌈

max(fj−1,rj−1+T )
P

⌉

P . For the first acti-

vation it is possible to set r0 = 0.

2. If a job Jj experiences a delay response time
greater than a thresholdD(max), it is cancelled,
and a new job Jj+1 is activated.

3. The delivery of a job’s result takes place at the
arrival time of the next job (vj = rj+1).

4. The input for a job is collected at the same
time the result of the previous job is released



(sj+1 = vj).
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FIGURE 1: Continuous Stream model: an
example

Figure 1 shows an execution example of the CS
model. In the example, the interaction points are
defined at regular intervals P and the control task
is activated periodically, with period T = 2P . The
maximum delay allowed is set to 2P . Job Jj finishes
between 2P and 3P , its output is released at time
3P . At the same time the new input for job Jj+1 is
collected and the job is started. The same happens
at time 5P for job Jj+2.

2.1 The scheduling algorithm

While the Continuous Stream task model can be
implemented over any generic real-time scheduler,
the analysis of its performance is much easier if the
scheduling algorithm provides temporal protection
(also known as temporal isolation). This property re-
quires that the worst-case temporal behavior of each
task does not depend on the other tasks running in
the system (in other words, each task is guaranteed
to receive a well-defined share of resources, indepen-
dently of the fluctuations on resource requirements
of the other tasks).

Resource Reservations [12] proved to be very ef-
fective in providing such temporal protection and
have been implemented in different real-time systems
using different scheduling algorithms (but have never
been implemented in a mainline OS kernel until re-
cently). A reservation is a pair (Qi, Ri), where Qi

(the maximum budget) is the amount of time that
the task is allowed to use the resource within every
reservation period Ri. The ratio Bi = Qi/Ri rep-
resents the fraction of resource utilization dedicated
to task τi and is often called resource bandwidth, or

bandwidth for short. When scheduling a periodic
real-time task, it is often useful to set the reserva-
tion period Ri as an integer sub-multiple of the task
period Ti (Ti = NRi, where N ∈ N).

A task τi attached to a CPU reservation (Qi, Ri)
can execute for a time Qi every period Ri with a
real-time priority, assigned according to some real-
time scheduling policy. The resource reservation al-
gorithm used in this paper is the Constant Band-
width Server (CBS) [1] (see next section for a de-
scription of the algorithm).

The policy used to choose the reservation param-
eters (Qi, Ri) depends on the real-time constraints of
the task and on its computation requirements. Some
previous works [2, 11] show how to assign the reserva-
tion parameters Qi and Ri to control the probability
to miss a deadline for task τi when the probability
distribution of the inter-arrival and execution times
are known.

In the case of the CS model, this analysis can be
simplified. Only a relative deadline has to be guar-
anteed (the time between the start of the job and its
termination). Given that Jj always starts after the
previous jobs have been completed, its finishing time
does not depend on the previous jobs (but only on
its own execution time) and the analysis can “forget”
the history.

In this paper, the reservation parameters Qi and
Ri are statically assigned to tasks and do not change
throughout the execution. The reservation period
coincides with the interaction points where sensing
and actuation take place.

3 Implementation

Since a reservation-based CPU scheduling policy,
called SCHED DEADLINE (which actually imple-
ments the CBS algorithm), has just been merged in
the Linux kernel, Linux can now be used to imple-
ment the CS model described above. This schedul-
ing algorithm is based on dynamic priorities, and in
particular on the Earliest Deadline First (EDF) al-
gorithm.

As previously mentioned, SCHED DEADLINE
provides temporal protection between tasks. In or-
der to achieve this goal, each task is characterized by
a runtime (the budget that have been introduced in
previous section) and a period. Moreover, the sched-
uler associates a scheduling deadline to each task,



and the ready task having the earliest scheduling
deadline is selected for execution. During execu-
tion, the runtime is decreased by an amount equal
to the time executed, and when a task’s runtime
reaches zero the task is throttled until its schedul-
ing deadline (when a task is throttled, it cannot be
selected for execution). At the deadline point, the
runtime is refilled, the scheduling deadline is post-
poned by one period (decreasing the task’s priority)
and the task exits the throttled state, returning to
be schedulable (see the original CBS paper, or the
Documentation/scheduler/sched-deadline.txt

file in the Linux kernel for more details).

As a result, each task is guaranteed to receive a
share of the CPU time equal to the ratio between the
runtime and the period. Of course, the sum of the
fractions of CPU time assigned to each task cannot
be higher than the total CPU bandwidth available in
the system (usually equal to the number of CPUs).

In this paper, the reservation period has been set
to Ri = 33.33ms, which is one third of the period of
the control task (N = 3). Based on [7], it is possible
to analytically estimate, the minimum bandwidth Bi

that has to be reserved to the tasks in order to ensure
the achievement of the stability requirements.

3.1 Platform model

In this implementation, it is considered a set of 4
tasks (T = τi with i ∈ {1, 2, 3, 4}) sharing the same
computation platform. These tasks are implemented
as threads; meaning that they can be managed inde-
pendently by the operating system scheduler. They
are described as follows:

1. Image capture task: responsible for interact-
ing with the camera and obtaining the image
frames to be processed. The periodic charac-
teristics of this task depends on the frame rate
supported by the camera.

2. Control task: responsible for implementing the
model of computation that establishes the pre-
cise time for the next activation of the con-
troller. Additionally, it performs the control of
the robot by receiving its position and orien-
tation and producing the control output that
guarantees its stability.

3. Image processing task: responsible for the pro-
cessing of the captured images. It runs the im-

age processing algorithm to produce the posi-
tion and orientation of the robot with respect
to the line.

4. Encoder reading task: responsible for, period-
ically, query the encoders to reconstruct the
followed path.

Algorithm 1: Continuous Stream

void *continuousStream(void *args)
/* Start the image processing */ ;
processImage();
/* Timer for controller’s next activation */
*sleep = startTimer(T) ;
while 1 do

waitActivationAt(sleep) ;
/* Image processing found a solution */
if control then

control = 0 ;
/* Execute the controller */
executeControl();
/* Start the image processing */ ;
processImage();
/* Set timer for controller’s next
activation */
setTimerAt(sleep, T) ;
/* Current image has no delay */
delayed periods = 0 ;

else
/* Reached maximum delay */
if delayed periods == D(max) then

/* Cancel image processing */
cancelProcess();
/* Start a new image processing */
processImage();
/* Set timer for controller’s next
activation */
setTimerAt(sleep, T) ;
/* Reset the delays counter */
delayed periods = 0 ;
control = 0 ;

else
/* Set timer for controller’s next
activation */
setTimerAt(sleep, R) ;
/* Increase the counter of the
delays */
delayed periods++;

end

end

end



Based on the description of the task, it is pos-
sible to observe that some tasks in T are real-time
tasks (e.g., the image processing task), while others
are best-effort tasks (e.g., the image capture task).
The former have temporal constraints on their exe-
cution, while the latter do not receive any kind of
temporal guarantees.

In Algorithm 1 it is possible to observe a basic
pseudo-code algorithm with the implementation of
the CS model.

4 Experiments

The implemented model was tested within an exper-
imental robotic scenario as shown in Figure 2. This
robotic scenario represents the path-following prob-
lem of mobile robots in which the vehicle forward
speed satisfy a reference speed while the controller
acts on the vehicle orientation to steer it to the path.

FIGURE 2: Mobile robot used in the exper-
iments.

The experimental setup consisted of a straight
line placed on the floor creating a track of 12 me-
ters long. The linear velocity was constant and set
to 0.6 m/s. The controller has been automatically
derived using the Linear Quadratic Gaussian (LQG)
systematic design procedure.

In the experimental activities reported, the sam-
pling period has been set to T = 100 ms. The num-
ber of server periods in the nominal system sampling
period was chosen to 3, hence R = 33.33 ms. The
maximum number of allowed delaysD(max) has been
fixed to 3. Additionally, a comparison between the

CS model and the more traditional Soft Real-Time
(SRT) task model [6] has been performed.

As a first step, there was performed a simulation
test to determine analytically the minimum CPU uti-
lization (bandwidth) that guarantees the Quality of
Control (QoC) requirements of the control task. To
accomplish this analysis, it was necessary to estimate
two parameters from the data collected during an
initial experimental phase: first, the worst case ex-
ecution time (WCET) of the image processing task,
and second, the parameters of the probability den-
sity function that best fits the distribution of the
computation time.

This initial experimental phase consisted of a se-
ries of path-following experiments with a full utiliza-
tion of the resources (bandwidth of 100%). In to-
tal, there were performed 30 experiments with 100%
of the bandwidth which resulted in the computation
time analysis of more than 6200 samples.

Using these preliminary experiments, it was pos-
sible to determine that the probability density func-
tion of the computation time was a beta distribu-
tion defined in the range [15, 195] ms with a mean
value of 25.5246 ms (standard deviation 11.0691 ms).
The distribution parameters were α = 2.6527 and
β = 39.7172. With these parameters, it was possible
to simulate the behavior of the control task and to
determine the minimum CPU utilization to sustain
the QoC specification.

Table 1 presents the simulation results based on
the data obtained from the initial experiments. First
of all, it is possible to observe that the CS requires
less bandwidth than the SRT. However, under these
specific conditions, the variation on the velocity of
the robot does not represent a considerable influence
in the minimum bandwidth.

Task Velocity [m/s]
model 0.4 0.5 0.6 0.7 0.8
CS 20.5 20.8 21.0 21.2 21.4
SRT 29.5 29.7 29.9 30.1 30.2

TABLE 1: Simulated minimal bandwidth
estimation.

The simulation analysis reports that, for the case
of the CS model, the image processing task has to
receive 21-22% of CPU utilization to guarantee the
QoC requirements. In the case of the SRT model,
the minimum CPU utilization required to satisfy the



QoC specifications is 30-31%.

During the experimental phase, and based on
the simulation results, there were tested 10 differ-
ent bandwidths in the range [18% - 36%]. For each
bandwidth, 10 trials were performed.

Figure 3 shows the comparison of the trajectory
followed by the robot under the CS and SRT models
with the same bandwidth. It is possible to note that,
at the same low bandwidth, the CS model is able to
stabilize the robot allowing it to complete the path;
while, in the SRT approach, the robot diverges.
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FIGURE 3: Trajectory comparison at same
bandwidth.

From the QoC perspective, the effect of minimiz-
ing the bandwidth generates a lower level of perfor-
mance. However, the stability of the system is still
guaranteed. Figure 4 reports the root mean square of
the deviation from the desired position. It is possible
to observe that the error tends to decrease while the
bandwidth increases.
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FIGURE 4: Root mean square of the devi-
ation from the desired position.

The performance dramatically improves when
more than a minimal bandwidth is allocated (22% in
the case of the CS model, 28% in the case of the SRT
model). The experimental results present a remark-
able similarity with the simulation ones, presented in
Table 1.

Using KernelShark (a GUI front end to trace-
cmd) it was possible to trace the task scheduling of
the implemented solution. Figure 5 partially depicts
the scheduling behavior. In the few sample periods
reported, all the typical behaviors of the CS model
are depicted.

IP1 IP2

Job J1

Capture

Control

Job J2

Job J3

Job J4

IP3 IP4 IP5 IP8

T R

FIGURE 5: Excerpt of the task set schedul-
ing.

It is possible to observe that the image capture
task presents a perfectly periodic behavior while the
control task adjusts its activations according to the
rules of the CS model. For example, the first image
processing job (Job J1) is started at the interaction
point IP1 and is finished within its deadline; after a
system period T (e.g., at interaction point IP2), the
control task is activated and the controller is able to



release the control output to the motors. This behav-
ior is called “nominal behavior”, where the deadlines
are respected and the system is stable by design.

When the output is released, a new image pro-
cessing job (Job J2) is started. The next activation
of the controller is set to one system period T . At
interaction point IP3, the controller is activated but
the execution of Job J2 is not yet finished; hence,
the next activation of the controller is changed to
the following interaction point IP4 (e.g., after one
reservation period R) and Job J2 is said to have one
reservation period of delay.

At interaction point IP4, the controller is acti-
vated and the execution of the Job J2 has finished.
The controller is able to release the control output
to the motors and a new image processing job (Job
J3) is started. Once again, the next activation of the
controller is set to one system period T .

In this particular case, it can be noticed that Job
J3 has reached its maximum delay (set to 3 reserva-
tion periods) and, at IP8, the job is cancelled.

After the cancellation, a new image processing
job (Job J4) is started and the next activation of the
controller is set. This scheduling behavior continues
as expected, based on the rules of the CS model. As
mentioned before, in the CS model only a relative
deadline is guaranteed and the delay introduced by
a job does not affect the execution of the following
one.

5 Conclusions

This article showed the implementation (based on
Linux and SCHED DEADLINE) of the Continuous
Stream task model. This model allows the simplifi-
cation of the controller’s design and the use of less
conservative constraints to impose the stability.

The analysis of the data collected from the real
experiments confirms the consistency between theory
and simulations and the experimental results, verify-
ing the validity and effectiveness of the Continuous
Stream approach in a real scenario. Furthermore,
the presented experiments show that new strategies,
based on SCHED DEADLINE, can offer important
advantages such as minimizing the resource utiliza-
tion and guaranteeing the control performance.

As a future work, it is planned to extend the
analysis to models without temporal protection be-

tween tasks, following novel results on the stochas-
tic analysis for fixed priority schedulers. Moreover,
otherQoC metrics are being considered, such as min-
imizing the effect of input noises or including output
performance.
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