
An Approach for Decision Support on the
Uncertainty in Feature Model Evolution

Le Minh Sang Tran and Fabio Massacci
DISI, University of Trento

Povo, Trento, Italy
{leminhsang.tran, fabio.massacci}@unitn.it

Abstract—Software systems could be seen as a hierarchy of
features which are evolving due to the dynamic of the working
environments. The companies who build software thus need to
make an appropriate strategy, which takes into consideration of
such dynamic, to select features to be implemented. In this work,
we propose an approach to facilitate such selection by providing a
means to capture the uncertainty of evolution in feature models.
We also provide two analyses to support the decision makers.
The approach is exemplified in the Smart Grid scenario.

Index Terms—evolution, product lines, feature model evolution,
variability, survivability, cost of reparation.

I. INTRODUCTION

Feature-oriented modeling [17], firstly coined by Kang et al.
in 1990, is a method capturing a software system as a hierarchy
of features. It has been widely adopted in many scenarios
of software product lines engineering [2] by the term feature
models. Feature models provide a compact representation of
different variants of software systems. This enables customers’
personalization by deciding which features to be included or
discarded in the final product.

Software keeps evolving due to various reasons (e.g., com-
pliance with new laws or standards, or changes in market
needs) and companies who ship software need a long-term
strategy for their products while still delivering products with
the features required at present time. It is therefore necessary
to have an appropriate reasoning on the evolution of software
features to support the long-term planning strategy.

A key observation underpinning our work is that apart
from unpredictable black swans, many of changes could be
anticipated with some degree of belief because they are the
results of long-term processes. Such predictions could be made
with the support of expert knowledge in a particular domain of
application. A paradigmatic example in the domain of power
supply is the development of a Smart Grid which is an infras-
tructure to efficiently manage the transmission and distribution
of electricity. Different expected features and development
roadmap of Smart Grid have been identified [15], [20] and
the important question is how to build Smart Grid software
with the right features from the beginning such that it is more
resilient to evolution, and the cost of adding new features in
future would be minimal. There are not many studies [7], [23],
[33], [28], [12], [14] concerning the evolution of software
product lines represented by feature models, although there

is a common consensus that this evolution is an important
aspect [26], [6]. In particular, no existing work takes into
consideration the uncertainty of feature model evolution.

In [30], we introduced a generic approach that captured
requirements evolution by evolution rules, and two metrics to
support the selection of a design alternative. In this work, we
extend that approach to support modeling and reasoning on the
uncertainty of feature model evolution. Our approach assists
the selection of an optimal configuration, which is a set of
features to be implemented. The system built on this optimal
configuration could be able to survive as long as possible, and
requires less effort to repair if evolution occurs. Our novel
contributions from [30] include:

• a conceptual model for modeling evolution on feature
models, which consists of two kinds of models (i)
Evolution Possibility Model (ePM) describes potential
possibilities a feature model could evolve, and (ii) Evolu-
tionary Feature Model (eFM) describes the feature model
with all changes due to evolution incorporated. Evolution
is studied within a study period T which is divided
into several milestones ti. At every milestone, different
possibilities of the original feature model are analyzed.

• two analysis techniques facilitate the decision support:
Survivability analysis answers whether a configuration
(i.e., set of features) could survive during the expected
evolution. Repair cost analysis: it is likely that few
configurations remain valid for the entire study period due
to changes, we need to repair them to make them valid.
The question is which configuration requires less effort
to get repaired. The former analysis takes the metrics’
idea in [30], specializes it for feature models, and makes
it a function of time to capture the survivability of a
configuration over time.

• a self-validation of the proposed approach on the Smart
Grid scenario, taken from the NESSoS European project.

This work aims to deal with anticipated evolution in feature
models. For the uncertainty and evolution in requirements,
readers could find a more detailed discussion in [8], [25], [9].

In the next, Section II presents the feature model back-
ground and related studies on feature model evolution. We
discuss different evolution perspectives in Section III. Our
approach is detailed in Section IV and Section V. Section VI

978-1-4799-3033-3/14 c© 2014 IEEE RE 2014, Karlskrona, Sweden

Accepted for publication by IEEE. c© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

93

Parent
Feature

Mandatory
child feature

Optional
child feature

Child
feature 1

Child
feature 2

Alternative
feature 1

Alternative
feature 2

name: Cost
domain: Real
value: 50

mandatory optional

or alternative

requires excludes

Fig. 1. An example of a feature model.

applies the proposed approach in a Smart Grid scenario.
Finally, we provide an extended discussion about the approach
in Section VII and conclude the paper in Section VIII.

II. BACKGROUND

Previous work related to this study could fall into two
categories: studies about analyses on feature models, and
studies about the evolution of feature models. For the first
category, readers are referred to [2] for a systematic survey.
Here, we only present a background about feature models, and
studies in the latter category.

A. Feature Model

Feature model has many variants, but its basic form includes
hierarchical features and relations between them [2]. The top
feature represents the software system which is implemented
by its children. A configuration is the set of features that
implement the top feature. The basic feature model could be
extended to include more information about the features via
attributes. An attribute typically should consists of a name, a
domain, and a value. The basic relations are:

• Mandatory: the selection of a parent feature requires the
selection of its mandatory child features.

• Optional: the selection of a parent feature optionally leads
to the selection of its optional child features.

• Alternative (xor): when a parent feature is selected, ex-
actly one of its alternative children ought to be selected.

• Or: when the parent feature is selected, at least one or
more of its or children must be selected.

• Requires: a feature A requires a feature B if the selection
of A implies the selection of B.

• Excludes: a feature A excludes a feature B if they are
cannot be part of a same configuration.

Extended feature models, Fig. 1, can include complex
constraints like “if an attribute of feature A is lower than a
value, then feature B cannot be part of the configuration” [2].

B. Related Work on Feature Model Evolution

Botterweck et al. [7] report the need of companies to have
a long-term strategy and plan product portfolios in the years
ahead. They apply feature models to plan changes; evolution is
considered as a sequence of feature models. They propose the
Evolution Plan and Evolution Feature Model (EvoFM). The
former provides an overview of evolution steps across time.
The latter extends an ordinary feature model with some sub-
features to support the consideration of evolution options; each
EvoFM instance expresses an evolution step. Later, Pleuss et

F0

F1 F2 Fn

(a) Before-after

F0

F1m F2n Fkt

t0 t1 t2 tk

F12

F11

F22

F21

Fk2

Fk1

(b) Continuous

Fig. 2. Two kinds of evolution perspective of feature models.

al. [23] envelop these artifacts into the EvoPL framework to
plan and manage the evolution of feature models.

Other studies about the impact of evolution in feature
models are [33], [28], [12], [14]. In these studies, evolution is
captured by the addition, removal, modification of entities in
feature models. Thüm et al. [28] study the impact of changes
by presenting an algorithm to classify changes (e.g., refactor-
ing, specialization, generalization). Gamez and Fluentes [12]
work on cardinality-based feature models and evaluate the
change impact by computing the differences between previous
configuration and new evolved configuration. Ye and Zhang
[33] provide formal specifications to detect any conflicting
dependencies introduced by adding or removing features.
Guo et al. [14] also analyze the impact of evolution on the
consistency of feature models. They provide an ontology-based
formalization of feature models and a set of consistency con-
straints to identify inconsistencies in feature model evolution.

In our work, evolution also happens in time as a sequence
of feature models. We also capture the evolution uncertainty
and provide reasoning techniques to select an optimal config-
uration while they do not do it.

Besides, there are a number of studies that have addressed
the issues of uncertainty modeling of requirements and ar-
chitecture. Our own work [30] addresses the problem of the
known unknowns. Paper [9] tackles the issue of adaptation
when the domain is known but the events are unknown. See
also [8], [25] for additional references.

III. EVOLUTION PERSPECTIVES

Evolution appears on feature models due to changes from
the environment. Changes possibly compete with each other,
for example, to do with raising standards. This is also men-
tioned as multiple change, one of the key issues in evolution,
identified by Lam and Loomes [19]. The likely winners cannot
be identified precisely, but could be foreseen at some levels
of certainty based on expert knowledge in the system domain.
This uncertainty should be addressed in order to improve the
sustainability of the system.

94

Evolution is usually examined in a determined and finite
study period. Evolution can be analyzed at once during this
period i.e., how the feature model looks like at the beginning
– the before model, and how it potentially looks like at the end
– the after ones. Many after models with different likelihood
of occurrence are allowed to capture the evolution uncertainty.
However, exactly one after model will occur in reality. We call
this evolution perspective before-after evolution.

A different perspective divides the study period into several
milestones at which we study how the feature model looks
like. At the beginning (milestone t0) the feature model appears
with no change – the original feature model. At milestone t1,
the original model could evolve into some after1 models with
some probability, similar to the above before-after evolution.
These models could further evolve into some other after2
models at milestone t2 and so on. We call this kind of evolution
perspective continuous evolution.

Fig. 2 visualizes these two kinds of evolution perspective
where a feature model is depicted as a cloud. Fig. 2(a) illus-
trates the before-after evolution perspective where a feature
model might evolve into other models. Fig. 2(b) exemplifies
the continuous evolution perspective.

Clearly, the before-after evolution perspective is a special
case of the continuous evolution perspective where there is
only a single milestone in the entire study period. Moreover,
the long-term usage period of a system in practice is often over
years. During such period, many changes might occur, and the
winner might depend on the previous ones. The continuous
evolution perspective thus looks better than its sibling to
analyze the evolution in long-term period. Thus we aim to
support continuous evolution of feature models.

IV. MODELING THE FEATURE MODEL EVOLUTION

This section discusses our proposed approach to model the
evolution in feature models. The EVE framework [19] catego-
rized changes related to evolution into four types: environmen-
tal changes (e.g., the introduction of new laws), requirement
changes (e.g., new requirements derived from environmental
changes), viewpoint changes (e.g., introduction of a new
technology), and design changes (e.g., introduction/removal
of a feature). Among those, design changes reflect changes in
an original feature model. The first three types of changes are
mostly the original cause behind design changes.

Evolution in feature models is captured by two kinds of
models: Evolution Possibility Model (ePM) and Evolutionary
Feature Model (eFM). The ePM captures changes outside
a feature model, a.k.a external changes, i.e., environmental
changes, requirements changes, and viewpoint changes. These
changes will incite design changes in a feature model, which
are captured by the eFM.

A. Evolution Possibility Model

The Evolution Possibility Model (ePM) captures all possible
anticipated external changes during a study period, and ar-
ranges them into potential situations that might occur in future
due to evolution. The ePM model enables the traceability

ePM Possibility
(probability)

Situation
(name)

Proposition

Fact Assumption Change

Relation

implies co-happens exclusive

target
0..1

source
0..1

pmEntity
before

0..1
after
0..1

Fig. 3. The meta-model of Evolution Possibility Model.

of external changes and design changes. It helps to answer
questions like “why should this new feature be introduced?”.

Fig. 3 presents the meta-model for an ePM. The ePM
consists of a set of Possibilities. A Possibility captures how
(external) changes happen. It describes the Situations that
exist before, and after changes happen. The likelihood that the
corresponding changes happen is depicted as the probability
attribute of the Possibility. A pmEntity represents an entity
(either Situation or Proposition) in an ePM model. It is used to
link between an ePM model and an eFM model. A Situation
consists of a set of Propositions which are either Facts, or
Assumptions, or potential Changes. Each Situation has a name
to distinguish itself among others. The Relation between these
Propositions includes: 1) implies relation denotes a likely
causal relation between two Propositions. For example, a Fact,
or an Assumption might incite a Change; or a Change could
also incite another Change. 2) co-happens relation denotes
that two Changes should happen together. 3) exclusive relation
denotes the mutual exclusion between two Changes. If one
change happens, the other ones will not.

The situation where no change exists is referred to as before
situation, and the others are referred to as after situations. For
every situation, we could always construct a corresponding
feature model. The feature models of before, and after situa-
tions are respectively referred to as before, and after feature
model. Hereafter we abuse the name of a situation for its
corresponding feature model, and versa.

In order to formally express the evolution possibilities, we
adopt the observable rule proposed in [30] for dealing with
requirements evolution. It has been adopted to address the
evolution of risks in long-lived software system [29].

Let F be a situation, and Fi be afteri situations which F
might evolve into. The observable rule roof F is below:

ro(F) =

{
F

pi−→ Fi

∣∣∣∣∣
n∑

i=1

pi = 1

}
(1)

where pi is the evolution probability that F evolves into Fi.
We assume all known possibilities are anticipated and mutually
exclusive. Additionally, we ignore all unknown possibilities.
Therefore the sum of all pi equals 1.

Loosely speaking, ePM could be seen as a collection
of observable rules where each situation has at most one
observable rule. In an observable rule, we call the situation

95

F0 @M1

F Fact #1
F Fact #2
A Assumption #1

F1 @M2

C Change #1

A Assumption #1
C Change #2

F2 @M2

A Assumption #1

C Change #3

F0 @M2

F3 @M3

A New assumption

C Change #4
C Change #3

F0 @M3

F1 @M3

F2 @M3

C Change #2
C Change #1

0.4

0.3

0.3

0.1

0.4

0.5

0.3

0.2

0.5

0.3

0.7

Fig. 4. An example of Evolution Possibility Model

on the left hand side of the arrow as before situation, and the
ones on the right hand side as after situations. A situation
could be an after situation in an observable rule, and could
be a before situation in another observable rule. The situation
which is not an after situation in any observable rules is also
referred to as the original situation. Similarly, the situations
which are not before situations in any rules are referred to as
leaf situations. We additionally use the empty set notation (∅)
to denote the observable rules of leaf situations as follows:

ro(F) = ∅ ⇔ F is a leaf situation (2)

Example 1. Fig. 4 illustrates an example of ePM. In this fig-
ure, situations are illustrated as folder shapes where situation
names are on the top, followed by the milestones, the situa-
tion’s propositions are located inside. An evolution possibility
is depicted by an arrow connecting a before situation to an
after situation. Evolution probability is a label decorated to
the arrow. To keep the ePM simple, this example does not
consider relations among propositions, but presents them as a
list. In this list, the first letter denotes the proposition type, i.e.,
F – fact, A – assumption, C – change. The original situation
is F0@M1, and the leaf situations are Fi@M3

B. Evolutionary Feature Model

The Evolutionary Feature Model (eFM) captures all feature
models in all situations of the ePM model. The eFM incor-
porates all design changes due to evolution. Syntactically, the
eFM is an attributed feature model which is enriched with
a new relation, namely traces, connecting an entity in ePM
(i.e., a situation, or a proposition) to an entity (i.e., a feature,
or a feature attribute, or a complex constraint) in eFM. By
modeling this way, design changes made to a feature model
are directly or indirectly associated with situations in ePM.

Fig. 5 presents the meta-model of the eFM. The meta-model
includes notions for a basic attributed feature model, and a new
type of relation – traces. An eFM consists of a set of Elements.
An Element could be either an fmEntity, or an fmRelation,
or a traces relation. An fmEntity represents a Feature, or an

eFM Element

fmRelation

exclusive

fmEntity

Feature Constraint Attribute

target
0..1

source
0..1

pmEntity traces
source

0..1
target
0..1

mandatory

optional

alternative

or

require

Fig. 5. The meta-model of Evolutionary Feature Model.

Feature 0

Feature 1

Feature 2 Feature 8
Feature 7

Feature 9

A New
assumption

«traces»
0

0

2
3

Feature 6C Change #3

«traces»

Feature 3
01

C Change #1

«traces»

1

1

Fig. 6. An example of Evolutionary Feature Model (eFM).

Attribute of a feature, or a complex Constraint. A Relation
denotes one of basic relations discussed in Section II. A traces
relation connecting a pmEntity of an ePM to an fmEntity to
denote the situation that an fmEntity belongs to.

The feature model of a given situation in ePM could be
generated easily from the eFM by filtering out all entities and
their related relations which are explicitly marked as belonging
to other situations, but not the given situation.

Example 2. Fig. 6 exemplifies an eFM model which incor-
porates all design changes due to external changes presented
in the corresponding ePM in Fig. 4. Dashed arrows with
label traces represent the link from external changes in ePM
to elements in eFM. Elements belonging to some (not all)
situations are decorated with small solid boxes with situation’s
index inside, i.e., 0–3 stand for F0−F3 in all milestones. Other
elements without such decoration belong to all situations. The
F0 will include features 0, 1, 3, 6, and 7; and F1 will include
features 0, 1, 2, 6, 7.

Even though an eFM will increase the complexity of the
feature model, we still adopt it due to its following advantages:

• Intuitively, the before and after feature models share a
large portion of the features. These shared features need
to be replicated among models. Any modifications to
the shared part consequently need to be replicated in all
models, which may be costly and error-prone. The eFM
merges before and after models in a single one, thus it
avoids this replication problem.

• The eFM captures all design changes in a single model
which facilitates a global view of the evolution, and the
difference of design changes among situations.

96

V. DECISION SUPPORT ON FEATURE MODEL EVOLUTION

This section describes the analyses that exploit ePM and
eFM to provide more information about the survivability and
cost of repair of a configuration.

A. Survivability Analysis

The survivability analysis measures whether a configuration
could be still operational without any modifications despite
of the occurrence of evolution. The analysis computes the
following quantitative metrics: Max Belief, Residual Disbelief,
and Max Disbelief. The first two metrics are based on our
previous work on requirements evolution [30] in order to
assess a configuration at a point in time.

• Max Belief (MB) is a time series measuring the maximum
belief that a configuration will still be a valid configura-
tion represented by any after feature models at certain
milestone t within the study period.

• Residual Disbelief (RD) is a time series of the comple-
ments of total belief that a configuration will still be
a valid configuration represented by any after feature
models at certain milestone t.

• Max Disbelief (MD) is a time series measuring the
maximum belief that a configuration will not be a valid
configuration represented by any after feature models at
certain milestone t.

To facilitate the formulation of these metrics, we employ
the operation valid [2] that takes a feature model and a
configuration as inputs and returns 1 if the configuration is
represented by the feature model, 0 otherwise.

valid(F,C) =

{
1 if C is represented by F

0 otherwise
(3)

We define an operation validpos that takes a feature model
and a configuration as inputs, and returns a set of evolution
possibilities where the given configuration is valid in after
model evolution:

validpos(F,C) =
{

F
pi−→ Fi ∈ ro(F) |valid(Fi,C) = 1

}
(4)

We further define an operation age, which takes a feature
model and returns the milestone when the feature model
supposes to be. The formula of age is as follows:

age(F) =

{
1 + age(F′) if ∃F′ : 〈F′ p−→ F〉 ∈ ro(F′)
0 otherwise

(5)

The cumulative values of Max Belief, Residual Disbelief,
Max Disbelief at milestone t for a configuration C, given a
feature model F, are depicted as follows:

MB(t,C|F) =
⎧⎨
⎩

valid(F,C) if stable(F, t)

max
F

pi−→Fi∈validpos(F,C)

pi · MB(t,C|Fi) otherwise (6)

RD(t,C|F) =

⎧⎪⎨
⎪⎩
1− valid(F,C) if stable(F, t)

1−
∑

F
pi−→Fi∈validpos(F,C)

pi · (1− RD(t,C|Fi)) otherwise (7)

t0 t1 t2 tk
milestone

S
ur

vi
va

bi
lit

y
1.

0
0.

5
0.

0

MB(t, C)

RD(t, C)
MD(t, C)

(a) One configuration

t0 t1 t2 tk
milestone

S
ur

vi
va

bi
lit

y
1.

0
0.

5
0.

0

MB(t, Cj)
MB(t, Ci)

(b) MB of two configurations

Fig. 7. The survivability diagram.

MD(t,C|F) =
⎧⎨
⎩

valid(F,C) if stable(F, t)

max
F

pi−→Fi �∈validpos(F,C)

pi · MD(t,C|Fi) otherwise (8)

where stable(F, t) = (ro(F) = ∅ ∨ age(F) ≥ t).
The equation (6) means that, if the given F is stable before

milestone t, the validity of the given configuration C within
F does not change. As the result, the Max Belief of C in F,
captured by as MB(t,C|F), is determined by the validity of C
in F. If F evolves, its evolution is denoted in the observable
rule ro(F), the MB(t,C|F) is the maximum belief pi of all
possibilities where C is a valid configuration in their after
models, multiplied by the Max Belief of C in these after
models if they continue to evolve. The ideas behind (7), (8)
are similarly explained.

Given that F0 is the original feature model, the time series
of Max Belief, Residual Disbelief, and Max Disbelief for a
varying t are defined as follows:

MB(t,C) = MB(t,C|F0) (9)
RD(t,C) = RD(t,C|F0) (10)

MD(t,C) = MD(t,C|F0) (11)

These time series could be plotted on a diagram called
Survivability Diagram, see Fig. 7, showing the development
of these series of a configuration over time. In Fig. 7(a) at
milestone t0, an arbitrary configuration C is valid in F0, its
MB(t0,C) is obviously 100%, whereas its RD(t0,C), and
MD(t0,C) are zero. With subsequent milestones ti, when
evolution occurs the value of MB(ti,C) might decrease, while
RD(ti,C), and MD(ti,C) might increase.

The survivability diagram can contain only one or two
series of the above metrics of two or more configurations,
see Fig. 7(b) for the Max Belief of two configurations Ci and
Cj . Such information could provide extra visual information
to support the decision making process.

The above metrics can be used to relatively compare among
configurations. We compare configurations based on individual
metrics. In particular, the comparison between configurations
using Max Belief follows the rule: the higher Max Belief, the
better configuration. Meanwhile, the comparison using RD and
MD is done in the opposite: the lower Residual Disbelief/Max
Disbelief, the better configuration.

97

B. Repair Cost Analysis
Few configurations could survive from the beginning to the

very end of the study period. Such configurations might require
a large investment on features that are only required in later
milestones. Hence, decision makers have to consider a trade-
off between two strategies: whether to implement all features
at the beginning, or postpone some features later. To support
such decision, this section provides the analysis on cost of
reparation which takes into account the expense to repair an
invalid configuration at a certain milestone.

We define two operations, namely repcst and repair, that
both take a feature model and a configuration as inputs. The
former returns a value, called repair cost, to represent the
minimum cost to make the given configuration become a valid
one represented by the given feature model. The latter returns
a set of repaired configurations, which have minimal costs.

A straightforward definition of these operators is to enumer-
ate all possible configurations of the input feature model and
compute the minimum. Such enumeration has been supported
by many studies with automated implementations (see Table 3
in [2]). We also use it because it makes the formal definition
easier to grasp. Given a set of features C and a feature model
F, let CF be the set of all configurations of F. We select
configurations C’ in CF such that the cost to migrate C to
C’ (e.g., cost to implement new features) is minimized. The
formulation of repcst and repair is as follows:

repcst(F,C) = min{
cost of adding new features︷ ︸︸ ︷

cst(Ci\C)+ cst′(C\Ci)︸ ︷︷ ︸
cost of removing obsoleted features

|Ci ∈ CF } (12)

repair(F,C) = argminCi∈CF
(cst(Ci\C) + cst′(C\Ci)) (13)

where cst(Ci\C) denotes the cost of adding new features
which are in a valid configuration, but not in the given one;
cst′(C\Ci) is the cost of removing obsoleted features in the
given configuration, but not in a valid one. For the actual im-
plementation, a more efficient result is obtained by computing
directly the minimal number of fixes for the configurations
[2]. This can be done with local search algorithms.

The repair cost analysis measures the weighted average
reparation costs to repair a configuration due to evolution
within the study period. The analysis takes into account all
costs to repair a configuration in after situations of possibilities
in observable rules, and averages them with weights that are
equal to the probabilities of the evolution possibilities. The
outcome is a time series representing the cumulative reparation
cost of a configuration at every milestone.

Let F be a feature model, we define the Cost-of-Reparation
(CoR) of a configuration C at a certain milestone t as follows:

CoR(t,C|F) =
{

repcst(F,C) if stable(F, t)

CoR′(t,C|F) otherwise
(14)

CoR′(t,C|F) =
∑

F
pi−→Fi∈ro(F)

pi · min
Cj∈repair(Fi,C)

(repcst(Fi,C) + CoR(t,C ∪ Cj |Fi))

Given that F0 is the original feature model, the Cost-of-
Reparation of a configuration C at a certain milestone t is
defined as follows:

CoR(t,C) = CoR(t,C|F0) (15)

By considering both cost-of-reparation and the initial im-
plementation cost of each configuration, we can calculate the
cumulated implementation cost of a configuration at each
milestone as follows:

Cost(t,C) =

{
initial implementation cost if t = 0

Cost(t− 1,C) + CoR(t,C) otherwise
(16)

The plot of cumulated implementation cost is referred
to as Cost Diagram which shows the development of the
implementation cost of configuration. We do not give example
of Cost diagram here but in the next section. This diagram and
Survivability Diagram previously discussed could be useful
hints to facilitate the configuration selection.

VI. APPLICATION OF THE PROPOSED APPROACH

This section exemplifies the proposed approach in the Smart
Grid scenario taken from the NESSoS European project. The
evolution described in this section is real, and is taken from
the Smart Grid evolution road maps [21], [22]. The evolution
probabilities are invented for the illustrative purpose.

A. The Smart Grid Scenario

According to the European Technology Platform [10], the
Smart Grid is “an electricity network that can intelligently
integrate the actions of all users connected to it–generators,
consumers and those that do both–in order to efficiently
deliver sustainable, economic and secure electricity supplies”.
A Smart Grid uses ICT technologies and operates in parallel
with an electric power grid to optimize the transmission and
distribution of electricity. According to [15], the evolution
of Smart Grid has three milestones. The future infrastruc-
ture will be based on one-way Automated Meter Reading
(AMR) technology, which allows utilities to remotely collect
meter data. Next, AMR is replaced or supplemented by the
Automated Metering Infrastructure (AMI) to enable utilities
to remotely change parameters inside meters, or turn on/off
switches. Finally, customers are allowed to actively choose
appropriate price options, or utilities that best suit their needs.
Different European countries have started to roll out the
different capabilities of the Smart Grid infrastructure. For
example Britain is currently discussing the roll out of AMR
technology. Italy has already rolled out AMR and the authors
own buildings have operational elements of AMI allowing
utilities to switch off electricity if consumptions exceed a
contractual threshold by 20%.

This scenario is very appropriate to capture software product
lines: software for different components of the Smart Grid
must be customized and shipped based on present needs (e.g.,
a metering software using 3G connection features versus other
network features) but be able to cope with future changes.

98

Fig. 8. The evolution of the tariff system in the Smart
Grid scenario.

To save space, we do not repeat the feature models
F0,F1,F2 in M2, M3. Instead, we use round rectangles
with label on top to represent the existence of these
models.

Acronyms in the diagram: AMR–Automated Meter
Reading, AMI–Automated Metering Infrastructure, SM
v1–Smart Meter version 1, SM v2–Smart Meter version
2, NFC–Near Field Connection, EMS–Energy Manage-
ment System, RF–Radio Frequency, PLC–Power Line
Connection, WAN–Wide Area Network, TOU–Time-of-
Use, CPP–Critial-Peak-Period, RTP–Real-time Period.

Tariff System

AMR AMI

Touch PLCRF WiFi/Wire
Flat-rate

tariff

SM v2 WAN
Connection

Tariff System

PLC WiFi/Wire

SM v2

Tariff System

WiFi/Wire

Tariff
Calculator

Gateway

EMS
Device

WAN
Connection

M
1

M
2

M
3

F0

F0 F1 F2

F0 F1 F2 F3

Tariff
Calculator

SM v1 NFC

Standard
Gateway

Tariff
Calculator

CPP tariffWAN
Connection

AMI

SM v2

Advance
Gateway

AMI

TOU tariff

Tariff System

WiFi/Wire

Tariff
Calculator

Gateway
EMS

Device

RTP tariff

AMI

WAN
Connection

SM v2

Advance
Gateway

Here we focus on the evolution of the tariff system that
calculates electric invoices based on collected meter data. The
time frame is divided into three milestones: M1, M2, and
M3. The evolution of the feature model representing the tariff
system is exhibited in Fig. 8, which is described below.

• Milestone M1. Customers could only choose a utility at
the beginning. The meter data will be monthly sent to
the utility automatically. The flat-rate tariff is applied,
which mean the same price applied for each unit of
consumption. For this purpose, either AMR or AMI could
be deployed. The AMR requires smart meter with near-
field communication technology such as Touch, or Radio
Frequency (RF) to send meter data. The AMI requires
advanced smart meter which uses either Power Line
Connection (PLC) or other Wide Area Network (WAN)
connection to send data. The feature model represents this
milestone is F0.

• Milestone M2. At this milestone, the tariff system could
stay the same as M1 i.e., F0. It could also evolve into
F1. Particularly, more fine-grain tariff could be applied,
i.e., Critial-Peak-Period (CPP) where the higher peak-
price is restricted to a small number of peak-hours per
year, and much higher price for other peak hours. For
this purpose, more meter data will be sent to utility in
fine-grain intervals. This requires some functionalities of
the AMI infrastructure. F0 could evolve into F2 which
is very similar to F1, except a new security requirement
to protect customer data arises, and Time-of-Use (TOU)
tariff is applied. In this tariff, prices vary between peak-

and off-peak hours. The security requirement requires a
home Gateway system to be deployed.

• Milestone M3. Similarly, all previous feature models F0−
F2 have some chances to be the case in this milestone.
Besides, the tariff system could evolve from either F1 or
F2 into F3. In F3, there are more utilities in the market,
enabling customers to actively choose the utilities as well
as different payment options. The tariff calculation is now
based on real-time usage of meter data.

B. Construct the ePM and the eFM

Fig. 9 presents the ePM of the tariff system of the Smart
Grid scenario. Similar to Fig. 4, situations are illustrated as
folder shapes where situation names are on the top, followed
by the milestones. The propositions are located inside each
situation.

The observable rule of the original situation F0 at milestone
M1 is described as follows:

ro(F0@M1) =
{

F0@M1
0.3−−→ F0@M2, F0@M1

0.4−−→ F1@M2,

F0@M1
0.3−−→ F2@M2

}
Fig. 10 shows the eFM model of the tariff system which

incorporates all design changes due to external changes pre-
sented in the corresponding ePM in Fig. 9.

C. Perform Survivability Analysis

Table I reports different configurations of the Smart Grid
tariff system. Due to the lack of space, we do not report parent
features in a configuration. They could be inferred by their

99

Fig. 9. The ePM of the tariff system of the
Smart Grid.

Situations are illustrated as folder shapes where
situation names Fi followed by the milestones
@Mi. The situation’s propositions are located
inside and denoted as F – Fact, A – Assumption,
C – Change. An evolution possibility is depicted
by an arrow, with probability attached, to con-
nect a before situation to an after situation.

F0 @M1

F Flat-rate tariff

F Automatic read meter data

F Single utility

F1 @M2

C CPP Tariffs

F Single utility
C Fine-grain meter data feed

F2 @M2

C TOU Tariffs

F Single utility

C Meter data protection

F0 @M2

F3 @M3

C RTP Tariffs

A Multiple utilities

C Enable customer participant
C Meter data protection

F0 @M3

F1 @M3

F2 @M3

C Fine-grain meter data feed
C Real-time meter data feed

0.4

0.3

0.3
0.1

0.4

0.5

0.3

0.2

0.5

0.3

0.7

Fig. 10. The eFM of the tariff system of the
Smart Grid.

Dashed arrows with label traces represent the
link from external changes in ePM to elements
in eFM. Elements that belong to some (not all)
situations are decorated with small solid boxes
with situation’s index inside, i.e., 0–3 stand
for F0 − F3 in all milestones. Other elements
without such decoration belong to all situations.

Tariff
System

AMR AMI

Smart
Meter v1

Near-field
Connection

Touch
Power Line
Connection

Radio
Frequency

WiFi/
Wire

Gateway

Advance
Gateway

EMS
Device TOU tariff Flat-rate

tariff

RTP tariff

C Fine-grain meter data feed

«traces»

C CPP Tariffs
C Meter data protection

«traces»

«traces»

C Enable customer participant

C RTP Tariffs

«traces»

F Automatic read meter data
«traces»

F Flat-rate tariff

«traces»

«traces»

0

0

0

0 0

02

3
2 3

C RTP meter data feed
«traces»

Smart
Meter v2

WAN
Connection 23

Standard
Gayway

23

CPP tariff

Tariff
Calculator

1

C TOU Tariffs

«traces»

«traces»

01 2 3

Table I
SURVIVABILITY METRICS FOR THE CONFIGURATIONS OF THE SMART GRID TARIFF SYSTEM.

Valid in M2 M3

Configuration(∗) F
0

F
1

F
2

F
3

MB RD MD MB RD MD

C1 {SMv1,RF,Flat-rate tariff} � 0.30 0.70 0.40 0.03 0.97 0.21
C2 {SMv2,Wifi,Flat-rate tariff} � 0.30 0.70 0.40 0.03 0.97 0.21
C3 {SMv2,WiFi,CPP tariff,Flat-rate tariff} � � 0.40 0.30 0.30 0.12 0.73 0.21
C4 {SMv2,WiFi,Standard Gateway,TOU tariff, Flat-rate tariff} � � 0.30 0.40 0.40 0.15 0.73 0.21
C5 {SMv2,WiFi,Standard Gateway,TOU tariff, CPP tariff, Flat-rate tariff} � � � 0.40 0.00 0.00 0.15 0.41 0.21
C6 {SMv2,WiFi,Advance Gateway,EMS,RTP tariff,TOU tariff, CPP tariff,Flat-rate tariff} � � � � 0.40 0.00 0.00 0.21 0.00 0.00

(∗): To save space we do not show parent features in the configurations.

selected children e.g., the configuration C1 in Table I is fully
reported as {Tariff System, AMR, SMv1, NFC, RF, Tariff
Calculator, Flat-rate tariff}. For each configuration, the table
reports situations where it is valid, and its survivability values
at milestone M2 and M3. The survivability metrics at M1 are
the same for all C1–C6, i.e., MB = 100% and RD = MD =
0%, and are not reported. The survivability diagrams of these
configurations of Smart Grid are reported in Fig. 11.

The survivability analysis shows that both C5 and C6 are
two winners at milestone M2 because they both have the
highest MB, and the lowest RD and MD. In a longer term –
milestone M3, C6 is the only winner. For other configurations,
C3 is better than C4 at M2, but it is worse than C4 at M3.
Both C1 and C2 are equivalent.

D. Perform Repair Cost Analysis

To illustrate the cost calculation, we simplify the cost of
each feature as 1 unit; and assume the cost of removing
obsoleted features while repairing a configuration is zero.
For actual costs and more detailed information, one can
consult [13] and a number of websites1. We assume an extra
20% of costs for each late implementation of a feature on a
deployed system.

Fig. 12 reports the cost diagram for the configurations listed
in Table I. This figure, instead of reporting absolute numbers,
shows the normalized value to the baseline, which is the
smallest value of configurations’ costs at the first milestone. In
this scenario, the cost of C1 (or C2) is chosen as the baseline.

1www.smartgrids.eu, www.netw.doe.gov, www.supergen-networks.org.uk

100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Max Belief
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

M1 M2 M3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Residual Disbelief

●

●

●

●

●

●

●

●

●

● ●

●

● ● ●● ● ●

M1 M2 M3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Max Disbelief

●

●

●

●

●

●

●

●

●

● ●

●

● ● ●● ● ●

M1 M2 M3

● ●C1 C2 C3 C4 C5 C6

Fig. 11. Survivability diagram for Smart Grid configurations

1.
0

1.
5

2.
0

2.
5

3.
0

Cumulated Cost

●

●

●

●

●

●

●
●

●

● ●

●
● ● ●● ● ●

M1 M2 M3

Pe
rc

en
ta

ge
 (t

o
th

e
ba

se
lin

e
co

st
)

● ●C1 C2 C3 C4 C5 C6

(a) Cumulated cost diagram

M1 M2 M3

Configuration Cost CoR Cost CoR Cost

C1 1.00 0.96 1.96 0.75 2.71
C2 1.00 0.40 1.40 0.60 2.00

C3 1.33 0.24 1.57 0.59 2.17
C4 1.67 0.16 1.83 0.50 2.33
C5 2.00 0.00 2.00 0.49 2.49
C6 2.67 0.00 2.67 0.00 2.67

(b) Data table

All costs are normalized to the baseline value, which is the smallest cost of
all configurations at the first milestone M1.

Fig. 12. The cost diagram for configurations in Table I.

The medium expensive configuration is C3 whose cost is 1.33
times higher than C1’s; and the most expensive configuration
is C6 whose cost is 2.67 times higher than C1’s.

The diagram shows that universal configurations which try
to address all possible evolution in advance are not necessary
good choices. Such configurations are C5 and C6 (see Ta-
ble I). These configurations are winners with respect to the
survivability analysis in Section VI-C because they anticipate
more potential changes in advance than others. The costs for
these configurations are always among the highest. In contrast,
a naive configuration i.e., C1 which does not take into account
evolution may cost less at the beginning, but might turn to be
the most expensive at the end. The configuration C2 is the
most appropriate choice because it has the smallest pace of
cost development during the entire study period.

VII. DISCUSSION

Applicability. The applicability of the proposed approach
depends on the ability to elicit potential evolution as well as
evolution possibilities. Both could be elicited with the aid of
domain knowledge. The Smart Grid scenario, and our previous
work [30] are examples where evolution could be anticipated.
For eliciting probabilities, we can employ a classical approach
by Boehm [5] in software risk estimation; a more recent survey
can be found in Khan et al. [18]. Different approaches can
be used to elicit such estimates like use case diagrams [24],
lists and questionnaires. Different opinions collected from
stakeholders can be combined using ranking [3], analytical
hierarchy processes [16], or cumulative sorting [4].

Our approach lacks an empirical validation with external
experts. There are two ways of doing it. At first, one could
analyze an existing, possibly open-source, system for historical
data, then asks developers of the system to assess their
decisions in the past. A second alternative is to engage a
group of experts and ask their opinion on the input parameters
such as probabilities. Then the validity of the prediction results
could be validated by them. We leave these for future work.

Scalability. The scalability of the approach is in two folds:
the ability to capture and manage big feature models, and the
ability to perform reasoning on big feature models. The former
fold is a pure technical problem which mostly depends on
capability the GUI tool to divide a big model into several
diagrams, such as our previous work to manage large model
in requirements evolution [31]. The latter fold concerns the
scalability of the proposed analyses.

The scalability of the survivability analysis mostly relies on
the operator valid which has been implemented efficiently in
past studies [32], [11].

Similarly, the scalability of the repair cost analysis relies
on two operators repair and repcst. From hypergraph theory
[1] we know that polynomial time algorithms exist for MB
or alternatively for MD because they are monotone func-
tions. However, this is not true for RD which may require
exponential time. So, an alternative would be to approximate
the results by using only MB (or MD). The naive imple-
mentations for these operators, see (13) and (12), require
to enumerate all possible configurations of a feature model.
This could be computationally expensive, especially when a
feature model consists of a huge amount of features. More
efficient approaches could be obtained by adopting artificial
intelligence planning techniques. Two promising approaches
were proposed by Soltani et al. [27] and Ernst et al. [9]. The
former generates a configuration for a feature model given
a set of core features, and set of non-functional preferences
and constraints (e.g., minimize of implementation cost). The
latter studied a class of algorithms using AI Trust Maintenance
Systems to find new configurations that use as much as
possible of the old configuration, and minimize the number
of new features that need to be implemented.

101

VIII. CONCLUSION

In this work we have addressed the challenge of dealing
with feature model evolution. We have proposed a modeling
approach to capture the uncertainty of feature model evolution
in terms of two models: Evolution Possibility Model and
Evolutionary Feature Model. The former captures different
possibilities that a feature model could evolve. The latter
captures all changes made to the original feature model due
to evolution. The proposed approach allows users to study the
continuous evolution of a feature model in several milestones.

We also develop two analyses that exploit the uncertainty
of evolution. The first analysis aims to study to what extent
a configuration (i.e., set of features to implement) could be
resilient to the evolution within the study period. The second
analysis aims to understand the development of reparation cost
to repair a configuration which is invalid due to evolution.
With these analyses, we aim to support the decision makers
in selecting an ‘optimal’ configuration regards to the evolution.

ACKNOWLEDGEMENT

This work is partly supported by EU-FP7-IST-NoE-
NESSOS, and EMFASE. We would like to thank the anony-
mous reviewers for useful comments.

REFERENCES

[1] G. Ausiello, P. Franciosa, and D. Frigioni. Directed hypergraphs:
Problems, algorithmic results, and a novel decremental approach. In
Theoretical Computer Science, volume 2202 of LNCS, pages 312–328.
Springer, 2001.

[2] D. Benavides, S. Segura, and A. Ruiz-Cortés. Automated Analysis
of Feature Models 20 Years Later: A Literature Review. Information
Systems, 35(6):615–636, 2010.

[3] P. Berander and A. Andrews. Requirements prioritization. In Engi-
neering and Managing Software Requirements, pages 69–94. Springer,
2005.

[4] P. Berander and M. Svahnberg. Evaluating two ways of calculating
priorities in requirements hierarchies - an experiment on hierarchical
cumulative voting. Journal of Systems and Software, 82(5):836–850,
2009.

[5] B. W. Boehm. Software risk management: Principles and practices.
IEEE Software, 8(1):32–41, 1991.

[6] J. Bosch. Maturity and evolution in software product lines: Approaches,
artefacts and organization. In Software Product Lines, volume 2379 of
LNCS, pages 257–271. Springer, 2002.

[7] G. Botterweck, A. Pleuss, D. Dhungana, A. Polzer, and S. Kowalewski.
EvoFM: Feature-driven Planning of Product-line Evolution. In Proc. of
Product Line Approaches in Software Engineering, pages 24–31, 2010.

[8] B. H. Cheng, R. De Lemos, H. Giese, P. Inverardi, J. Magee, J. An-
dersson, B. Becker, N. Bencomo, Y. Brun, B. Cukic, et al. Software
engineering for self-adaptive systems: A research roadmap. In Software
engineering for self-adaptive systems, volume 5525 of LNCS, pages 1–
26. Springer, 2009.

[9] N. A. Ernst, A. Borgida, and I. Jureta. Finding incremental solutions
for evolving requirements. In Proc. of the 19th IEEE Intl. Requirements
Engineering Conference (RE), pages 15–24, 2011.

[10] European Commission. European smart grids technology platform:
vision and strategy for Europes electricity. Technical report, 2006.

[11] D. Fernandez-Amoros, R. H. Gil, and J. C. Somolinos. Inferring
information from feature diagrams to product line economic models.
In Proc. of 13th Intl. Software Product Line Conference (SPLC), pages
41–50, 2009.

[12] N. Gamez and L. Fuentes. Software product line evolution with
cardinality-based feature models. In Top Productivity through Software
Reuse, volume 6727, pages 102–118. 2011.

[13] C. W. Gellings. The Smart Grid: Enabling Energy Efficiency and
Demand Response. The Fairmont Press, Inc., 2009.

[14] J. Guo, Y. Wang, P. Trinidad, and D. Benavides. Consistency mainte-
nance for evolving feature models. Expert Systems with Applications,
39(5):4987 – 4998, 2012.

[15] F. Hassan. The path of the smart grid. IEEE Power and Energy
Magazine, 8(1):18–28, 2010.

[16] S.-M. Huang, I.-C. Chang, S.-H. Li, and M.-T. Lin. Assessing risk in
erp projects: identify and prioritize the factors. Industrial Management
and Data Systems, 104(8):681–688, 2004.

[17] K. Kang, S. Cohen, J. Hess, W. Nowak, and S. Peterson. Feature-
Oriented domain analysis (FODA) feasibility study. Technical report,
CMU/SEI-90-TR-21, Carnegie Mellon University, 1990.

[18] M. A. Khan, S. Khan, and M. Sadiq. Systematic review of software
risk assessment and estimation models. Intl. Journal of Engineering
and Advanced Technology (IJEAT), 1(4):298–305, 2012.

[19] W. Lam and M. Loomes. Requirements evolution in the midst of
environmental change: a managed approach. In Proc. of the 2nd
Euromicro Conference on Software Maintenance and Reengineering
(CSMR), pages 121–127, 1998.

[20] J. Momoh. Smart Grid: Fundamentals of Design and Analysis. Wiley-
IEEE Press, 2012.

[21] National Energy Technology Laboratory. A vision for the smart grid.
Technical report, 2009.

[22] NESSoS project. Selection and documentation of the two major
application case studies. NESSoS Deliverable 11.2, 2011.

[23] A. Pleuss, G. Botterweck, D. Dhungana, A. Polzer, and S. Kowalewski.
Model-driven support for product line evolution on feature level. Journal
of Systems and Software, 85(10):2261–2274, 2012.

[24] M. Sadiq, M. Rahmani, M. Ahmad, and S. Jung. Software risk assess-
ment and evaluation process (SRAEP) using model based approach. In
Proc. of Intl. Conference on Networking and Information Technology
(ICNIT), pages 171–177, 2010.

[25] P. Sawyer, N. Bencomo, J. Whittle, E. Letier, and A. Finkelstein.
Requirements-aware systems: A research agenda for re for self-adaptive
systems. In Proc. of 18th IEEE Intl. Requirements Engineering Confer-
ence (RE), pages 95–103, 2010.

[26] S. Schach and A. Tomer. Development/maintenance/reuse: Software
evolution in product lines. In Software Product Lines, volume 576 of
Engineering and Computer Science, pages 437–450. Springer, 2000.

[27] S. Soltani, M. Asadi, D. Gašević, M. Hatala, and E. Bagheri. Automated
planning for feature model configuration based on functional and non-
functional requirements. In Proc. of 16th Intl. Software Product Line
Conference (SPLC), pages 56–65, 2012.

[28] T. Thum, D. Batory, and C. Kastner. Reasoning about edits to feature
models. In Proc. of the 31st Intl. Conference on Software Engineering
(ICSE), pages 254–264, 2009.

[29] L. M. S. Tran. Early dealing with evolving risks in long-life evolving
software systems. In Proc. of Advanced Information Systems Engineer-
ing Workshops – CAiSE Workshops, pages 518–523, 2013.

[30] L. M. S. Tran and F. Massacci. Dealing with known unknowns: Towards
a game-theoretic foundation for software requirement evolution. In Proc.
of 23rd Intl. Conference on Advanced Information Systems Engineering
(CAiSE), pages 62–76, 2011.

[31] L. M. S. Tran and F. Massacci. Unicorn: A tool for modeling and
reasoning on the uncertainty of requirements evolution. In Proc. of
CAiSE Forum, pages 161–168, 2013.

[32] J. White, D. Schmidt, D. Benavides, P. Trinidad, and A. Ruiz-Cortes.
Automated diagnosis of product-line configuration errors in feature
models. In Proc. of 12th Intl. Software Product Line Conference (SPLC),
pages 225–234, 2008.

[33] H. Ye and W. Zhang. Formal definition of feature models to support
software product line evolution. In Proc. of Software Engineering
Research and Practice, pages 349–355, 2008.

102

